Scalability Testing Automation using Multivariate Characterization and Detection of
Software Performance Antipatterns

Alberto Avritzer?, Ricardo BrittoP<, Catia Trubiani, Matteo Camilli¢, Andrea Janes®, Barbara Russo®, André van Hoorn, Robert
Heinrich®, Martina Rapp", Jorg HenB", Ram Kishan Chalawadi®

“eSulab Solutions, Princeton, USA
YEricsson AB, Karskrona, Sweden
Blekinge Institute of Technology, Karskrona, Sweden
4Gran Sasso Science Institute, Italy
¢Free University of Bozen-Bolzano, Italy
TUniversity of Hamburg, Germany
8 Karlsruhe Institute of Technology, Germany
hEZI Forschungszentrum Informatik, Karlsruhe, Germany

Abstract

Context: Software Performance Antipatterns (SPAs) research has focused on algorithms for their characterization, detection, and
solution. Existing algorithms are based on the analysis of runtime behavior to detect trends on several monitored variables, such as
system response time and CPU utilization. However, the lack of computationally efficient methods currently limits their integration
into modern agile practices to detect SPAs in large scale systems.

Objective: In this paper, we extended our previously proposed approach for the automated SPA characterization and detec-
tion designed to support continuous integration/delivery/deployment (CI/CDD) pipelines, with the goal of addressing the lack of
computationally efficient algorithms.

Method: We introduce a machine learning-based approach to improve the detection of SPA and interpretation of approach’s
results. The approach is complemented with a simulation-based methodology to analyze different architectural alternatives and
measure the precision and recall of our approach. Our approach includes SPA statistical characterization using a multivariate
analysis of load testing experimental results to identify the services that have the largest impact on system scalability.

Results: To show the effectiveness of our approach, we have applied it to a large complex telecom system at Ericsson. We have
built a simulation model of the Ericsson system and we have evaluated the introduced methodology by using simulation-based SPA
injection. For this system, we are able to automatically identify the top five services that represent scalability choke points. We
applied two machine learning algorithms for the automated detection of SPA.

Conclusion: We contributed to the state-of-the-art by introducing a novel approach to support computationally efficient SPA
characterization and detection that has been applied to a large complex system using performance testing data. We have compared
the computational efficiency of the proposed approach with state-of-the-art heuristics. We have found that the approach introduced

in this paper grows linearly, which is a significant improvement over existing techniques.

Keywords: Software Performance Antipatterns, Characterization, Detection, Multivariate Analysis

1. Introduction

The performance assessment and improvement of large dis-
tributed systems is challenging because of the need to systemat-
ically assess a complex dynamic ecosystem (Microsoft, 2019).
The identification of scalability choke points is often expen-
sive, and it involves load testing and complex analysis by per-
formance experts.

To facilitate the avoidance, identification, and correction of
performance-related issues, researchers have identified and for-
malized a series of architecture anti-patterns. Architecture anti-
patterns are defined as recurring design problems (Brown et al.,
1998), which might have a significant impact on the software
quality attributes. In the context of software performance, there
are several Software Performance Antipatterns (SPAs) that have

Preprint submitted to Journal of System and Software

been defined in the literature (Smith and Williams, 2000; Wert,
2015).

In this work, we consider the following SPAs (Wert, 2015):
Application Hiccups — repeated violations of the baseline re-
sponse time requirement; Continuous Violated Requirements
— continuous violations of the baseline response time require-
ment, for every evaluated load; Traffic Jam — high variabil-
ity in the externally observed system response times; The Sti-
fle — a software service or component that issues many short
database calls; Expensive Database Call — few long database
calls; Empty Semi Trucks — a transaction that issues many
short messages; The Blob — a component or service that acts
as a central message processor.

The characterization of each SPA depends on the specific per-
formance issue. For example, a Traffic Jam is triggered by

July 14, 2022



queuing for software resources that could be a result of con-
tention for semaphores. In contrast, an Application Hiccup
could occur as a consequence of garbage collection events, or
database backups. Therefore, SPAs could be triggered by sev-
eral factors, such as programming errors, environmental mis-
configurations, or high-level design flaws.

The extensive body of knowledge has addressed several
aspects of SPAs like SPA classification and solution (Smith
and Williams, 2012), early detection/solution at the design
phase (Cortellessa et al., 2014), methodologies to rank SPAs
occurring in design models (Trubiani et al., 2014), detec-
tion/solution during the testing or operational phases (Wert
et al., 2013), load testing and profiling to detect SPAs in Java
applications (Trubiani et al., 2018), and an automated approach
for detection in load testing and production (Wert, 2015).

The existing approaches use searching for several SPAs for
each load test result. In addition, for every evaluated SPA, a
heuristic is executed to evaluate the load test data. Therefore,
if there are N load tests, M SPAs to be evaluated, and given a
worst-case heuristic cost of Hy; among the evaluated SPAs, the
computational complexity of the state-of-the-art algorithms is
O(Hy - N). Even though polynomial, the computational effort
required for each load test could be expensive. Therefore, the
lack of computationally efficient methods for SPA characteri-
zation limits the adoption of SPA detection in continuous in-
tegration/delivery/deployment pipelines (CI/CDD) of large and
complex systems (Avritzer et al., 2020).

By taking a holistic view on the literature about the applica-
tion of performance testing approaches to CI/CDD, we learned
that it mainly consists of theoretical contributions (Avritzer
et al., 2020; Javed et al., 2020a; Laaber, 2019a) suggesting
recommendations for performance testing implementation us-
ing existing tools'. The state-of-the-art approaches for detect-
ing performance issues consist of the execution of automated
load testing combined with Application Performance Monitor-
ing (APM) tools (Heger et al., 2017).

To be useful for engineers, the automated characterization
and detection of SPAs need to provide timely results and be
integrated into shorter feedback loops. To do so, a logical solu-
tion is to integrate this type of approach into CI/CDD pipelines.
However, the state-of-the-art approaches cannot be easily inte-
grated into CI/CDD pipelines due to their computational com-
plexity. The state-of-the-art algorithms (Cortellessa et al., 2014;
Trubiani et al., 2018; Wert, 2015; Bran, 2017) that are being
used to detect SPAs, employ detailed knowledge about the sys-
tem internals and execute a search over the candidate SPAs,
while checking large portions of the monitored performance
data. Additional knowledge about system internals are not
usually available in large system logs, and are computation-
ally expensive to process in real-time for large monitored data,
as required by CI/CDD pipelines. In contrast to measuring
system-internal data, common monitoring tools routinely track
response time measurements.

! https://www.loadview-testing.com/blog/ci-cd-
load-testing-deploying-performance-optimized-
applications/,https://www.neotys.com/insights/automation-testing.

In our previous paper (Avritzer et al., 2021a), we started ad-
dressing the gap mentioned above by proposing a multivariate
approach to characterize and detect SPAs in the context of scal-
ability testing. We introduced a black box approach that only
uses response time data, which makes it a good fit for CI/CDD
pipelines. Our approach has been engineered into the PPTAM
software toolchain (Avritzer et al., 2018) and empirically eval-
uated by means of an industrial case study conducted at Erics-
soN. The case was a large real-time telecommunication system
that is expected to serve millions of users per second.

This paper extends our previous work (Avritzer et al., 2021a)
by addressing the following limitations:

e The proposal in our previous paper lacked support to in-
terpret the detection results, what could make it difficult
for engineers. We have improved on this aspect by using
machine learning (unsupervised learning) to support the
interpretation of the detection results (mainly Section 3.4).

e Our previous work lacked an evaluation of precision and
recall. We addressed this limitation by evaluating our ap-
proach using simulation (mainly Section 4.4).

In this paper, we answer the following research questions:

RQ1: What is the computational complexity of the proposed
approach?

RQ2: What are the precision and recall of the proposed ap-
proach?

The remainder of the paper is organized as follows. Section 2
provides the relevant background. Section 3 introduces an high-
level an overview of our approach, while Section 4 presents the
research design, which includes the description of the telecom-
munication system case study, and the data collection approach.
Section 5 illustrates the main steps of our approach and dis-
cusses their application to our case study. Section 6 describes
the evaluation of the proposed approach and answers our re-
search questions. Section 7 introduces a discussion of our ap-
proach including generalizability as well as threats to validity.
Section 8 discusses related work. Finally, Section 9 presents
our conclusions and challenges ahead.

2. Background

In this section, we present relevant concepts, including the
motivation for detecting SPAs, along with a brief description of
their main characteristics, followed by some examples illustrat-
ing their effect in application scenarios. We also present more
details about multivariate classification approaches.

2.1. SPAs

Motivation. The reason for applying SPA detection is that it
has been demonstrated to be beneficial, even in industrial con-
texts (Trubiani et al., 2018). More in general, the detection
of performance problems is considered very relevant. Many
studies are recently focusing on performance regressions (Liao



etal., 2021; Chen et al., 2020) as well as modeling performance
violations over time (Camilli and Russo, 2022). The benefit of
detecting SPAs is that their specification includes both the prob-
lem and the solution, hence software developers are supported
in the task of improving the system performance. Description.
SPAs have been defined in the literature as bad practices lead-
ing to performance flaws (Smith and Williams, 2012; Parsons
et al., 2008). Hereafter, we briefly present the bad practices
considered in our study; their characterization is detailed in
Section 3.2. Specifically, this manuscript focuses on the follow-
ing seven performance antipatterns (Smith and Williams, 2012;
Wert, 2015):

e Application Hiccups — Occurs in the case of temporarily
increased response times (i.e., hiccups) caused by peri-
odic tasks that either overload the system or block other
requests (e.g., OS routines, garbage collection).

o Continuous Violated Requirements — Occurs in the case of
a continuous violation of the response time requirements.

e Traffic Jam. Occurs when one problem causes a backlog of
jobs that produces wide variability in response time which
persists long after the problem has disappeared.

o The Stifle — Occurs when data is retrieved by means
of many similar (or equal) database queries. As each
database request entails a considerable overhead, the high
amount of database requests leads to a performance prob-
lem.

o Expensive Database Call — Occurs when there exist single
database calls that show a long execution time. Differently
from The Stifle antipattern, the performance overhead is
not caused by a large number of database accesses, but by
a single and long-running database request.

o Empty Semi Trucks — Occurs when an excessive number
of requests is required to perform a task. It may be due
to inefficient use of available bandwidth (e.g., in message-
based systems with a huge load of messages, each contain-
ing a small amount of information), an inefficient interface
(e.g., too fragmented access to data), or both.

o The Blob — Occurs when a single class or component either
(1) performs all of the work of an application or (2) holds
all of the application’s data. Either manifestation results in
excessive message traffic that can degrade performance.

There exist some further antipatterns defined in the literature
Smith and Williams (2012); Wert (2015) and used in related
work, see more details in Section 8.3. Specifically: Extensive
Processing (i.e., a long running process monopolizes a proces-
sor and prevents other jobs to be executed); Circuitous Trea-
sure Hunt (i.e., a high amount of requests to retrieve the data),
Wrong Cache (i.e., memory pollution through improper use of
a cache); The Ramp (i.e., the processing required to satisfy a
request increases over time); One Lane Bridge (i.e., mutual ac-
cess to a shared resource is badly designed).

The detection and solution of performance antipatterns can
be performed at different stages of the software development
process, and approaches can be reviewed accordingly.

In the case of early detection/solution, i.e., during the design
phase: (i) in (Cortellessa et al., 2014) a first-order logic repre-
sentation of performance antipatterns is provided, specifically
a set of rules express the system properties under which an-
tipatterns occur; (ii) in (Trubiani et al., 2014) a methodology to
rank performance antipatterns occurring in Palladio-based de-
sign models (Reussner et al., 2016) is proposed and applied to
optimize (i.e., by reducing the number of design alternatives to
be analyzed) the solution process.

In the case of late detection/solution, i.e., during the testing
or operational phases, there exist two approaches (Wert et al.,
2013; Trubiani et al., 2018) working in this direction. In (Wert
et al., 2013) a performance antipatterns detection approach is
presented, more specifically a decision tree specifying the per-
formance problems hierarchy is used to capture the root causes
of the identified performance problems; The nature of the data
required for a detailed analysis for each SPA, as introduced
in (Wert et al., 2013) are not usually collected in CI/CDD
pipelines. For example, for Empty Semi-Trucks, messaging re-
lated information such as the number of connections and the
number of messages would be required. In contrast, in the work
introduced in this paper, we focus on average response time pat-
terns as defined by the first and second moments of the response
time. In (Trubiani et al., 2018), load testing and profiling data
is exploited to detect performance antipatterns in Java applica-
tions, and an industrial case study demonstrates the usefulness
of detecting and solving antipatterns for system performance
improvement.

Examples. In the following we describe two applications as
well as possible scenarios leading to the visible manifestation
of SPAs.

Smart Parking. Let us consider cars looking for an empty
parking spot. Each request triggers the server to acquire up-
dated information about a specific zone. Let us also assume that
there exist scanning cars that periodically send images on found
available spots. In case a large number of cars is configured to
contact the server at a specific point in time (e.g., 6 pm), then
the Traffic Jam antipattern is triggered, in fact a backlog of jobs
is generated, and wide variability in response time is expected
at the server side. To avoid such a scenario, it is better to design
the system so that scanning cars randomly send images to the
server. This way, all images can be parsed without generating
a peak of incoming requests to be simultaneously processed by
the server. We let the reader refer to (Pinciroli et al., 2021) for
further examples of antipatterns occurring in the Smart Parking
scenario.

Medical Application. Let us consider one service display-
ing a list of all patients, and the doctor has to scroll through it
to select the current patient before retrieving her/his history of
diseases. It is quite evident that this system behavior matches
with the Expensive Database Call antipattern, since a single
database call is executed, and useless information is displayed
after a while. This can be avoided by allowing to introduce the
names of patients and accessing the database to get informa-



tion more efficiently. We let the reader refer to (Smith, 2020)
for further examples of antipatterns occurring in the Medical
Application.

2.2. Multivariate classification approaches

A partially ordered set (or simply poset) consists of a set
along with a binary relation indicating that, for specific pairs
of elements, one of the elements is greater than the other one in
the ordering. Namely, we say that two elements are numerically
ordered, i.e., e; > e, if each variable value in ¢; is greater than
the correspondent variable value in e;.

A Hasse diagram (Skiena, 1990) is a graph structure used
to represent a poset. A Hasse diagram represents a convenient
visualization method when the multiple values associated with
the nodes in the poset can be numerically ordered. In this pa-
per, we use Hasse diagrams based on two variable values that
are numerically ordered to prioritize software components ac-
cording to their impact on the software scalability of the system
under study.

The theory of scalogram algebra and associated heuristics
known as Multiple Scaling by Partial Order Scalogram Analy-
sis by Coordinates (POSAC) was introduced in (Shye, 1985) to
generalize the concept of one dimension (Guttman scale (Mag-
gino, 2014)) to several dimensions. When a one-dimension
variable can be numerically ordered, it is called a Guttman
Scale (Maggino, 2014). In this paper, we apply concepts de-
rived from the POSAC (Shye, 1985) methodology to parti-
tion the performance antipattern domain into regions using the
structure induced by the measurement variables.

3. The Proposed Approach

In this section, we present our approach to characterize and
detect SPAs that can be integrated into CI/CDD pipelines. The
section is organized as follows. Section 3.1 introduces an high-
level overview of our approach. Section 3.2 presents the per-
formance modeling approach used to characterize SPAs. Sec-
tion 3.3 describes the approach used for performance modeling
parameterization using measurements from the telecommuni-
cation system case study. Finally, Section 3.4 presents the ap-
plication of the POSAC procedure to SPAs detection.

3.1. Overview

The approach, illustrated in Figure 1, consists of three main
parts: (1) What, the automated calculation of the pass/fail crite-
ria, (2) Where, the automated identification of the problematic
services, (3) How, the automated analysis of the performance
results to match the detected performance problems to their root
causes, using the specification of software performance anti-
patterns. The shaded boxes in Figure 1 represent our contribu-
tions. The major boxes are briefly described below.

1. Extract operational data. This step was described in
our previous research (Avritzer et al., 2020; Avritzer and
Weyuker, 1995). It aims at creating a model of operational
usage based on the most-likely usage scenarios.

2. What. Calculate pass/fail criteria based on automatically
computed baseline requirements from load test response
time measured under small workload. The automated scal-
ability assessment approach used to define scalability re-
quirements follows the approach introduced in (Avritzer
et al., 2020). This approach computes average response
time and standard deviation at low loads to automatically
compute the scalability requirement for each method.

3. Where. Define a multivariate approach that can be used
to create a poset of the evaluated services. Identify a set
of services, in the poset, that have the largest impact on
system scalability.

4. How. Match multivariate analysis results to performance
anti-patterns. Multivariate analysis is used to characterize
and detect SPAs.

5. Model and Simulation. Conduct simulation activities to
validate modeling assumptions.

Our approach uses a multi-layer decomposition approach
based on performance modeling and multivariate characteriza-
tion of SPAs. In doing so, it decouples the performance cost of
SPA characterization, which can be done offline, from the cost
of executing the (SPA) detection procedure, which needs to be
efficient enough to be integrated into the CI/CDD pipelines. In
particular, the cost of SPA detection in our approach consists
of the execution of the multivariate characterization of load test
results; it is not a function of the number of evaluated SPAs.

The induced partition of the studied domain creates a pro-
file based on the two-coordinate values: (1) slope of the fitted
linear regression line of the maximum response time measure-
ment for each of the evaluated loads in the y-axis vs. load level
in the x-axis; and (2) normalized distance between the max-
imum response time and the baseline performance/scalability
requirement.

Intuitively, the slope of the maximum response time regres-
sion line is an indication of the performance degradation as a
function of the offered load. The normalized distance is an in-
dication of the system ability to meet the scalability require-
ments and is related to the customer perception of system per-
formance.

The normalized distance, nd, is evaluated through Equa-
tion 1, where M is the measurement and B is the baseline.

M
M+ B

nd=2- (1)

The normalized distance is evaluated to 1 when the measure-
ment is equal to the baseline, < 1 when the measurement is
lower than the baseline, and > 1 when the measurement is larger
than the baseline.

3.2. SPA Characterization

The approach introduced in this section relies on the assump-
tion that the specification of SPAs includes the most common
performance issues introduced by programming and configu-
ration errors. This creates network queuing bottlenecks that



Is it necessary to
increase predictive
capability?

Extract
Operational Data

statistical
approach

Calculate pass/fail
criterion using an

Pass/Fail Criterion
per Service

How

Match multivariate

analysis results to

performance anti-
patterns

Identify
problematic
services using a
multivariate
approach

n
v
>

Model and
Simulate System

Operational
Data

Simulated
Operational
Data

Problematic
Services

Figure 1: High-level schema of the proposed approach.

are ultimately reflected in the perceived customer experience
through the first and second moments of the response time. In
addition, to be efficiently integrated into CI/CDD pipelines, an
analytical solution to the queuing SPA induced queuing prob-
lem needs to be implemented. The M/G/1 is the most general
model for which we have a simple closed form analytical solu-
tion for the average waiting time (W) (Bertsekas and Gallager,
1992). In this section, we abstract from each of the most rel-
evant SPAs by using the M/G/1 queue with vacations model.
We instantiate from the General distribution, for each SPA, by
specifying its first and second moment as shown in Table 1. In
summary, we propose to use a model with Poisson Arrivals (M)
and general service distributions (G) for several reasons. First,
it allows to model service variability by the parameterization of
G. Second, the Poisson arrivals assumption has been shown to
be a reasonable approximation for the arrivals process, in sev-
eral domains (Kleinrock and Collection, 1974), where the inde-
pendence assumption for the user arrival process can be mod-
eled (Bertsekas and Gallager, 1992).

Let us describe how the single server M/G/1 model, and
its analytical P-K (Pollaczek—Khinchine) (Bertsekas and Gal-
lager, 1992) solution, can be used to characterize the impact of
SPAs on the system under study performance, as defined by the
average response time and variance.

In the single server M/G/1 queueing model, M represents
the Poisson process arrivals assumption and G stands for gen-
eral, i.e., any service time distribution of the single server (Bert-

sekas and Gallager, 1992). M/G/1 is the appropriate model to
represent SPAs, because the most common impact of SPAs is
to introduce single service bottlenecks (Avritzer and Weyuker,
2004).

The first moment of a random variable is the Mean. The
second moment of a random variable X around a is defined
as E [(X - a)Z]. Variance is the second moment around the
mean (Bertsekas and Gallager, 1992). Variance is a measure
of the distribution spread around the mean.

The M/G/1 P-K (Pollaczek—Khinchine) formula (Bertsekas
and Gallager, 1992) for average waiting time in the system, W,
and residence time, 7', as a function of the first and second mo-
ments of the service time distribution, X, and X2, and system

arrival rate, A is given by (Bertsekas and Gallager, 1992):
X2
=— 2
2(1 — AX)

and

T=X+W 3)

In the following, we describe how the M/G/1 model can be
used to characterize the performance of the SPAs considered in
this paper.

3.2.1. Application Hiccups

The Application Hiccups (Wert, 2015) is characterized by re-
peated violations of the scalability requirement. There are sev-
eral approaches for modeling the application hiccups, such as,



M/G/1 queues with vacations that occur when the system tran-
sitions to the idle state, and using queues with preemptive or
non-preemptive priorities. In this section, we model Applica-
tion Hiccups by using the M/G/1 with vacations model, de-
scribed below. Using the same notation as in Equation (2), and
using as the first and second moments of the vacation time dis-
tribution, ‘_/, and V2, the M/G/1 with vacations average waiting
time in the system is given by (Bertsekas and Gallager, 1992)
and shown in Equation 4:

AX2 V2
=& ¥ )
21 -AX) 2V

3.2.2. Continuous Violated Requirements

The Continuous Violated Requirements (Wert, 2015) is char-
acterized by the continuous violations of the scalability require-
ment, for every evaluated load. The approach used in this sec-
tion, for modeling the Continuous Violated Requirements is to
use an M/D/1 queue, with an average service time larger than
the computed baseline requirement. D stands for deterministic
and represents a constant service time.

3.2.3. Traffic Jam

The Traffic Jam software antipattern represents high vari-
ability in the externally observed system response times that
is caused by queuing at software resources. In this section, we
model the Traffic Jam SPA by using the M/G/1 queuing sys-
tem, and modeling the increase in the system variability in the
departure process function G.

3.2.4. The Stifle

The Stifle software antipattern (Wert, 2015) represents a soft-
ware component that issues many short database calls to imple-
ment a service. In this section, the Stifle SPA is modeled by
using the M/G/1 queueing system, where G is modeled by an
Erlangian distribution with k — stages (Bertsekas and Gallager,
1992), M/E;/1. Each of the k states in the Erlangian distribu-
tion is used to model the Stifle fan-out of one call to k serial
database calls.

3.2.5. Expensive Database Call

The Expensive Database Call software antipattern (Wert,
2015) represents few long database calls and can be modeled
by using an M/G/1 queuing system with a long tail distribution
for service times.

3.2.6. Empty Semi Trucks

The Empty Semi Trucks software antipattern (Wert, 2015)
represents a transaction that issues many short messages in se-
ries to implement the transaction. Therefore, this antipattern
can be modeled similarly to the Stifle antipattern, by using a
M/G/1 queueing system, where G is modeled by an Erlangian
distribution with k — stages (Bertsekas and Gallager, 1992),
M/Ey/1.

® theblob traffic jam

500 @ empty semi trucks ® continuous violated requirements
g ® expensive db calls ® application hiccups
= ® the stifle
2 400
=z
% [ ) ) ) ) o
2 300 A
o
2
B
- 200 A
o
A e o
@ ]
§101 ¢ o @ ° ° an o
¢ ase o

0 T T . T T T T
0.6 0.8 1.0 1.2 1.4 1.6 1.8

normalized distance > 1 failed performance requirement baseline

Figure 2: Partition induced by slope and normalized distance by the SPAs ana-
lyzed, for the loads 40%, 50%, 60%, 70%, 80%, and 90%.

3.2.7. The Blob

The Blob antipattern (Wert, 2015) represents a component
that manages most of the overall messages in the system. As a
consequence of being the focus of messages, message process-
ing performance degradation is observed. Therefore, the Blob
software antipattern can be modeled similarly to the Expensive
Database Call software antipattern. In Section 3.3 we describe
the approach that was used for the parameterization of the SPA
models just described, by using measurements derived from the
large telecom software, as described in Section 4.1.

3.3. Analytical Model Parametrization

In this section, we present an illustration of one possible cal-
ibration that was used for the parameterization of the SPAs per-
formance models.

The SPA model parametrization approach shown in Table 1
presents the model used, the service from the case software se-
lected for calibration, the calibration approach, and the first and
second moments selected to represent the SPA.

The results obtained for each SPA multivariate characteriza-
tion are presented in Table 2 and Figure 2. They show the two-
dimensional (x, y) coordinates, i.e., the normalized distance and
slope, for each of the evaluated SPAs. Table 2 shows the multi-
variate pair for the 90% load experiment, while Figure 2 shows
the multivariate pairs associated with the evaluated SPAs, for
loads varying from 40% to 90%.

3.4. SPA Detection

In (Shye, 2009), a step-by-step procedure is presented to il-
lustrate the application of Multiple Scaling by Partial Order
Scalogram Analysis by Coordinates (POSAC) in the behavioral
sciences domain. POSAC induces a partition of the studied
space, because profiles are distinguished by high/low values of
the x,y coordinates. In the application of POSAC described
in (Shye, 2014) the interpretation of the POSAC coordinates
represents the subjective concern in the target research commu-
nity. For example, in the assessment of quality of life, a two-
dimensional space representing intelligence and well-being was
used.



Table 1: SPA modeling parametrization approach.

SPA ‘ model service used calibration approach ‘ X ‘ X2
Application hiccups M/G/1 with vac. | control add vacation variability per control | 5.01 88.1
Continuous violated req. | M/D/1 interrogation + ¢ add c=5 to baseline 2695 | 0
Traffic jam M/G/1 control double variability 5.01 177.6
The stifle M/E;/1 interrogation use 10 stages 99.5 1089.4
Expensive DB call M/G/1 enquiry double X 7.2 327.6
Empty semi-trucks M/E /1 control use 10 stages 50.1 276.1
The blob M/G/1 database management | double X 6.6 71.98

Table 2: Partition induced by slope and normalized distance by the SPAs, for
the load 90%.

normalized sloe
distance P
Application hiccups 1.74 130.42
Continuous Violated Requirements 1.08 0.00
Traffic Jam 1.72 260.84
The Stifle 1.60 80.54
Expensive Database Call 1.59 334.51
Empty Semi-trucks 1.47 40.55
The Blob 1.51 79.56
400
Expensive

T 350 4 DB Calls

5 [

<. 300

= Traffic Jam

< 250 4 ®

z 200 A

2 Application

£ 150 4 Hiccups

- °

A 100 4 The Blob

[J] ()

s 50 - Continuous Violated  Empty Semi-Trucks The Stiffle

v Requirements L

0 o

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
normalized distance > 1 failed performance requirement baseline

Figure 3: Partition induced by slope and normalized distance by the SPAs ana-
lyzed, for loads = 90%.

In this section, we present the application of POSAC to the
SPA detection domain. The x coordinate, the normalized dis-
tance of the performance requirement, represents the impact of
response time requirement violation to the user, or user well-
being (Shye, 2014). In addition, the y coordinate, the slope
of the linear regression of response time as load levels increase,
represents the risk that the user will be impacted by the response
time degradation, or system intelligence (Shye, 2014).

The notion of POSAC can be used to partition the SPA do-
main by means of the following steps:

1. Define a mapping sentence to create a framework for the
system of observations.

2. Determine the empirical structure of the content universe.

3. Execute the POSAC algorithm using the (x, y) coordinates
of the location of their profile in space.

4. Interpret the POSAC coordinates to understand the in-
duced partition on the POSAC space.

4. Research Design

To address our research questions, we conducted an indus-
trial case study. In this section, we describe the case and the
research design of our investigation. Section 4.1 introduces our
case and unit of analysis, that is, a large real-world telecommu-
nication system. Section 4.2 describes data collection carried
out by using load testing and a simulation model. Section 4.3
describes the method we adopted to evaluate the computational
complexity of our approach, while Section 4.4 describes the
measures we used to evaluate its accuracy.

4.1. The case and unit of analysis

The case and unit of analysis of our case study is a large and
complex real-time telecommunication system developed by Er-
icssoN. The system is composed of 20 subsystems which are
developed using a Service-Oriented Architecture (SOA). The
system is developed by many distributed teams using agile soft-
ware development practices.

The system has hard performance requirements and is ex-
pected to handle millions of users per second. Furthermore, the
system shows many performance indicators. Therefore, moni-
toring the system’s performance is challenging through a man-
ual approach. The scale of operation makes the system partic-
ularly interesting for our investigation. Furthermore, it repre-
sents a relevant and representative example of a performance-
critical application.

The main hardware and software performance-critical com-
ponents of our target system are: network, network interface
subsystem, processor subsystem, and database. The system re-
ceives requests from a network, which are received by a load
balancer and then forwarded to the two subsystems of inter-
est. The network interface subsystem provides services that are
invoked by the network. The processor subsystem processes re-
quests that are forwarded by the network interface subsystem to
our subsystem of interest running 12 performance-critical ser-
vices.



4.2. Data Collection

We collected data from load testing and simulation experi-
ments using a load testing environment and a simulation model,
respectively.

Load Testing. The performance data was the result from a 21-
hour long load testing session of the system investigated in this
paper. The data was collected in December 2019. It includes
data associated with 12 services provided by the case software
system.

During the testing session, the load varied between 40% and
100% (where 100% represents a load of 16k transactions per
second), in steps of 10%. Based on the operational data, the
frequency of occurrence of such workload intensity values is
as follows: 40% = 0.24,50% = 0.05,60% = 0.14,70% =
0.10,80% = 0.14,90% = 0.24, and 100% = 0.10.

Simulation Modeling. To evaluate the precision and recall of
our approach (RQ2), we present in this section a simulation
model designed with PaLrabio (Reussner et al., 2016), i.e., a
tool-supported approach to model and analyze software archi-
tectures for performance prediction among other quality at-
tributes.

We choose PaLLabpio because it is an established approach for
performance prediction and provides mature tooling (Heinrich
et al., 2018) (e.g., model editors, simulators and experiment au-
tomation) to support us in the study. It has been applied before
for identification and solving of anti-pattern in simulated soft-
ware architectures by Trubiani et al. (2014).

We created the following partial models using PaLLADIO:

e The component repository model specifies the software
components and their interfaces stored in a repository.
The components’ inner behaviors are specified in so-called
Service Effect Specifications.

e The software architecture is described in the system model
by assembling components from the repository.

e The processing resources (CPU, hard disk, and network)
of execution containers are specified in the resource envi-
ronment model.

e The allocation model describes the deployment of the
components to the resources.

e User behavior and usage intensity (i.e. workload) of the
system are described in the usage model.

The models are annotated with performance-relevant anno-
tations, such as capacities of resources like CPUs and HDDs
and resource demands of software actions, and then applied for
simulation-based performance prediction.

Figure 4 shows the base simulation model on a conceptual
level taking the Enquiry operation as an example. The Enquiry
operation involves calls to services offered by the Network In-
terface Service (NIS), Database (DB) and Processor (PROC)
software components.

The Enquiry operation’s Service Effect Specification de-
scribes the operation’s control flow graph by specifying the
components’ resource demanding internal behavior as internal
actions and the connection between components by external ac-
tions that connect the various services.

The Enquiry operation first calls the NIS component through
the «EntryLevelSystemCall» NIS.enquiry action. Next fol-
lows the internal behavior modeled by the «InternalAc-
tion» NIS.enquiry. This step consumes an exponential dis-
tributed resource demand with a rate of 1/0.55 for internal pro-
cessing. Then, the operation calls the DB component through
the «ExternalCallAction» DB.read action. For reasons of sim-
plicity, the service demands for the database read are not
shown in the figure, but are included in the model. After-
wards it calls the PROC component by the «ExternalCallAc-
tion» PROC.enquiry action. Next follows the «InternalAc-
tion» PROC.enquiry action taking an exponential distributed
CPU resource demand with a rate of 1/35. Finally it calls the
DB component via «ExternalCallAction» DB.read action again
without resource consumption.

The right-hand side of Figure 4 illustrates the deployment
of software components to hardware nodes. The model as-
sumes that each software component is deployed on a virtual
machine (VM). A resource container represents a single VM
with one CPU core working at a processing rate of 1000 to
reflect the use of service time specifications in milliseconds.
Furthermore, there exist 8 instances of the NIS component, 34
instances of the PROC component and 18 instances of the DB
component. Each component instance is deployed on a single
resource container offering distinct services. The NIS compo-
nent is deployed on the resource container « Computinglnfras-
tructure» vml offering the service enquiry. The PROC compo-
nent is deployed on the resource container « Computinglnfras-
tructure» vm2 offering the service enquiry. The DB component
is deployed on the resource container «Computinglnfrastruc-
ture» vm3 offering the services read and write.

Based on the structural model, we approximated the stochas-
tic distributions of resource demands of the modeled actions
that resemble CPU and IO based operations. We applied dif-
ferent resource demand estimation techniques to create our
baseline-calibrated model from the provided log data.

Our initial approach uses the minimum response times pro-
vided in the logged data as approximation for the service time
without congestion. Then, we combined those results with esti-
mates from applying the utilization law (Daniel et al., 2004) to
estimate the mean service time and added additional variance
to the model to match the log data.

Our more advanced approach used the LibReDe frame-
work (Spinner et al., 2014) to create a state model of the con-
nected call hierarchy and approximate the resource demand
for each service individually based on the observed data. Li-
bReDe uses estimation algorithms like least square regression
or Kalman filters to find solutions for the formulated state
model that minimize the error. However, due to high degree of
aggregation (5 min averages) in the observation data, we were
not able to find a suitable and plausible solution for all services
using this approach.



<<ServiceEffectSpecification>>
Enquiry

<<implements>>

<<ResourceDemand>:
ResourceType: CPU
Specification: Exp(1/0.55)

<EntryLevelSystem
Call>>
NIS.enqui

<<InternalAction>>
NIS.enquiry

<<InternalAction>>
NIS.enquiry

<ExternalCallAction>:
DB.read

<<ResourceDemand>:
ResourceType: CPU
Specification: Exp(1/35.0)

<ExternalCallAction>:
PROC.enquiry

<<InternalAction>>
PROC.enquiry

<ExternalCallAction>:

DB.read

.

<<DataCenter>>

<<Configuratior ifi
ResourceType="CPU"
<<UsageProfile>> ProcessingRate=1000
i Interarrival Time: Exp(33.0) Cores: 1
Replica: 8

Actor <<C

ion: <<Configurati ification
ResourceType="CPU"
ProcessingRate=1000
Cores: 1
Replica: 18

frastructure>> vm1
DB.read() [\
%:] DB.write()
e NS :
INIS.enquiry() [\ [ <<Computing|nfrastructure>> vm3
7S :
:6:()— DB
PROC enquiry( <<C ingInfrastructure>> vm2
[ PROC

Figure 4: Conceptual level of simulation model with usage scenario 40% load.

Our calibration approach focused on creating a simulation
model with similar mean response times and similar levels
of CPU utilization. Thus, we neglected other performance-
influencing factors like IO-based contention or limited concur-
rency due to thread pools as they could not be derived directly
from the given observation data. For extracting a more fine-
grained performance model, we could use a trace-based ap-
proach as described by Walter et al. (2017).

For each modeled system service, we defined a usage sce-
nario in the ParLLapio model that describe the imposed load for
each service independently. We opted for modeling the sce-
narios as open workload models with exponentially distributed
inter-arrival times for simulating Poisson process arrivals as de-
scribed in Section 3.2. By analyzing the average number of
requests per period of time in the provided experiment data, we
derived the rate of arrival for each level of load.

Our initial simulation results showed, for our baseline model,
that while the minimum response times and CPU utilization
were matching well, the mean and the overall variance in re-
sponse times was too low. We therefore increased the vari-
ance in the baseline model by using exponentially distributed
resource demands and added additional demands for the ser-
vice calls. Figure 5 shows the result of increasing the variance
for the service adjustment.

4.3. Computational Complexity Evaluation Approach

The analysis of algorithms approach (big-O) used in this pa-
per (Knuth, 1997), estimates an upper bound on the required
number of computations that are executed by the evaluated al-
gorithm, when presented with a large enough number of data
inputs. The big-O notation consists of expressing an upper
bound on the algorithm complexity growth function. More for-
mally (Nasar, 2016),

Definition of big-O: If a(n) and b(n) are two positive valued
functions, we define that a(n) = O(b(n)), if there exists a con-
stant, K, which satisfies the condition a(n) < Kb(n) for all, but
finitely many n.

In Section 6.1, we present results of the application of the
big-O (Knuth, 1997) notation summarized above to compare

0.15-

—
_ 1

response time (s)

°
5

1: low 2: high
variance

Figure 5: Boxplots of response time for the baseline and variance increased
Adjustment service.

the computational efficiency of the proposed approach with
some of the algorithms presented by (Wert, 2015).

The notation used in the computation efficiency assessment
is presented in Table 3.

4.4. Precision and Recall Evaluation Approach

In this section, we describe the approach used to measure the
precision and recall of our approach (RQ2). To do so, we used
simulation. Specifically, we used simulation to inject SPA and
identify the extent to which our approach was able to detect
them.

The approach used to compute SPA precision, recall and F-
measure, was to execute five simulation model experiments,
one with no SPA injection, and four with specific SPA injec-
tions as follows: (1) baseline (no SPA injected), (2) injected
Expensive database call (EDB) SPA, (3) injected continuously
violated requirements (CVR) SPA, (4) injected Hiccups SPA,



Table 3: Computational complexity notation.

Notation = Meaning

N Number of load levels evaluated, one per load test

D, Length of response time series to be processed by SPA heuristics, per load test

o Length of sql response time series to be processed by SPA heuristics, per load test
On Length of messaging dataset to be processed by SPA heuristics, per load test

Ty Length of message tracing dataset to be processed by SPA heuristics, per load test
M number of SPA to be evaluated

O(s) big-O upper bound on the algorithm complexity of function s

O(Hm) the upper bound on the algorithm complexity of the worst-case SPA heuristic

(5) injected Stifle SPA. For each experiment we defined a tar-
get region for SPA detection and we assessed true/false positive
and true/false negative for the specific method where the SPA
injection was introduced.

In this evaluation, we use the following definitions of preci-
sion, recall and the F-measure (Powers, 2011):

TP
Precision = — -
recision PP )
TP
Recall = ——
eca PN ©
F-Measure = 2 X Precision X Recall -

Precision + Recall

Where TP represents true positives, FP represents false posi-
tives, and FN represents false negatives. Precision assesses the
impact of false positives on the approach positive detection abil-
ity, while Recall assesses the approach fraction of accurate SPA
detection. In addition, the F-measure provides a balance be-
tween the precision and recall assessments.

4.4.1. Application Hiccup Injection

For injecting application hiccups, an additional workload on
the system is applied. The simulated application hiccups anti-
pattern can be characterized by the following parameters:

® hiccupgisrance distribution function of time between hic-
cups

® hicCupinensiry intensity of hiccup
o hiccup gurarion distribution function of active hiccup time

In our ParLLapio simulation model, the hiccups are mapped
to an additional usage scenario that represents a background
workload on the system. We decided to use an open workload
where the inter-arrival time represents the hiccupgisiance- The
hiccupipensiry 1 represented by additional load caused by the
hiccup workload on the system. The hiccupgyrarion 1s reflected
by the loop count and delay between user system calls. When
injecting hiccups using this approach the transient phase fol-
lowing the hiccup phase must not exceed hiccup isiance to avoid
overlaps.

10

4.4.2. Continuous Violated Requirements injection

For injecting Continuous Violated Requirements, we have to
adjust service times to higher values, so that requirements can
not be met anymore. The simulated Continuous Violated Re-
quirements anti-pattern can be characterized by the following
parameter:

® CVrlincrease Tepresented the increased service time as per-
centage value

This increase in service times can be mapped to a decrease
of the processing rates in the Palladio resource model. Thus,
we adjust the processing rate of active resources by 1/(1 +
CVincrease) - Moreover, when adjusting the processing rate, all
services deployed on the same node are affected by this SPA.

4.4.3. Expensive Database Call Injection

The Expensive Database Call anti-pattern can be character-
ized by the following parameters:

® dbiux—query—duration 1€ngth of tail, max duration of DB query
® dbjyg—query Probability of long running query

We map the expensive database call by changing the DB
component: we introduce a complexity parameter for queries
that when set to high imposes a load on the DB component
resembling dbqx—queryduration- In the calling services the com-
plexity parameter will be characterized as high with the proba-
bility dbjong—query-

4.4.4. The Stifle Injection

The Stifle anti-pattern can be characterized by the following
parameter:

o stif flep s number of splits (n)

For injecting the stifle in the DB calling services, the call is
replaced by a loop action that issues a call to the DB service.
The repetition count of the loop action is set to stif fleg,is.
To compensate for the additional load on the DB the resource
demands in the DB service were adjusted, due to reduced query
scope.



5. Approach Illustration

In this section, we illustrate the application of our approach
to our telecommunication system case study. The section
presents response time measurements carried out in a real-
world setting and it discusses the characterization of each in-
dividual component that has been analyzed using our approach.

To interpret the POSAC coordinates and to map the induced
partition on the POSAC domain from measurements of load
testing results to the associated SPAs, we define the multivariate
mapping using as (x, y) coordinates the normalized distance and
slope of the response time.

In the following, we instantiate the Antipattern Characteri-
zation and Detection approach by outlining the specific steps
proposed for SPA characterization and detection in the context
of our research:

1. Define a scalability requirement baseline, as introduced
in (Avritzer et al., 2020, 2018) that is used to provide an
automated scalability assessment, i.e., the pass/fail criteria
of load tests. Figure 7 illustrates pass/fail assessment of
the load tests analyzed in the case study.

2. Define a multivariate approach, based on the load test re-
sponse time measurements that can be used to create a
partial order of the evaluated services. In this paper, we
have used as the multivariate system of coordinates: (1)
the slope of the linear regression of response times per
load, s/, and, (2) the normalized distance, nd, between the
measured response time and the defined baseline require-
ment, as shown in Equation 1.

3. Define a function f(sl, nd) to charaterize SPAs by using
the defined multivariate approach. An example of the mul-
tivariate characterization of the considered SPAs is shown
in Figure 3.

4. Identify a set of services, s;(sl,nd), in the poset, that
have the largest impact on system scalability. The set
si(sl,nd) can be found among the members of the top
two rows in Figure 6. The detailed values used to cre-
ate the Hasse diagram are shown in Table 4. The members
of the example set, s;(sl, nd), for the telecom application
are: Status-updates, Offline, Resources-update, DB-Data-
Management, and, Recompose.

5. Detect potential SPA associated with the problematic ser-
vices identified in the previous step. In this paper we have
introduced the use of machine learning to perform the SPA
detection step.

We use the data obtained from the investigated system to il-
lustrate our approach. The computation of the pass/fail criteria
(performance/scalability requirement) uses the approach pro-
posed by (Avritzer et al., 2018), which calculates pass/fail cri-
teria as:

average + 3 - standard deviation

of the no-load response time measurement. Then, these values
are used to calculate the two metrics used to detect the SPA:

11

Status-Updates Offline

Resources-

High

Low

Figure 6: Hasse Diagram using performance testing results for load = 90%.

Status Update ‘

High Impact, High Risk

35

counter_name

Resources Read

Resources Update

Status Updates

Adjustment

Control

DB Data Management

Enquiry

Internal Communication

Interrogation

Offline

Online

5 Recompose
assessment

e False

30

Resources Update

I Low Impact, High Risk

Adjustment
0 Low Impact, Low Risk®

T
Oﬁline
) High Impact, Low Risk
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

ndistance

X %

Figure 7: System services for load = 90%.

slope and normalized distance. Figure 7 shows a plot with slope
(y axis) and normalized distance (x axis) for the load 90%.

Using a risk assessment approach, we can observe that ser-
vices of the investigated system can be grouped into four risk
partitions (see Figure 8 for an example of risk assessment for
the 90% load in the case software):

1. Low risk / Low Impact — Performance requirements met
and no scalability degradation detected. The services that
lie in the lower left quadrant have a slope less than 0.1 and
a normalized distance less than 1.

2. High risk / Low Impact — Performance requirements
met and scalability degradation detected. The services that
lie in the upper left quadrant have a slope greater than 0.1
and a normalized distance less than 1.

3. High risk / High Impact — Performance requirements
not met and scalability degradation detected. The com-
ponents that lie in the upper right quadrant have a slope



35

30

25

20

slope > 0.1 failed scalability trend

0 oo
[ )

e ® ¢ (] °

0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
normalized distance > 1 failed performance requirement baseline, load = 90%

Figure 8: Partition induced by slope and normalized distance on the investigated
system services for load = 90%.

greater than 0.1 and normalized distance greater than 1.

4. Low risk / High Impact — Performance requirements not
met and no scalability degradation detected. The services
that lie in the lower right quadrant have slope less than 0.1
and normalized distance greater than 1.

In our previous work (Avritzer et al., 2021a), the SPA de-
tection was done manually using Euclidean Distance. In
this paper, we introduced the use of machine learning tech-
niques to automate the detection and make it easier to inter-
pret the detection results. To do so, we have evaluated two
approaches: K-means (Likas et al., 2003) and K-nearest neigh-
bors (KNN) (Mucherino et al., 2009). The motivation to use
these approaches is due to their widely use by the community
in clustering. Such approaches can be used to label the degree
to which a given service resembles any of the considered SPA.

Figures 9a and 9b illustrates the use of K-means and KNN
for the SPA detection step, respectively. These figures only plot
the services that failed the scalability assessment test, which are
located to the right of the line indicating normalized distance
equal to 1 (Figure 8).

The detection using K-means follows these steps:

e The cluster centroids are initialized using the SPA’s nor-
malized distance and normalized slope values.

e K-means forms clusters of services, indicating the SPA to
which it belongs. This is also illustrated in Figure 9a.

e The Euclidean distance from the new centroid to the ex-
treme point in the cluster is calculated and represented as
the radius of the cluster.

e When a new service is evaluated, K-means computes the
Euclidean distance from all the cluster centroids (the SPA
values) and converges to one of the local minima (Bradley
and Fayyad, 1998) i.e., the new service is assigned to the
cluster that is closest to the service.

The detection using KNN follows instead these steps:

12

e The KNN classifier is first trained with the normalized
SPA coordinates generated by the analytical performance
model.

e The normalized values associated with the services are
classified using KNN.

e New centroids are calculated and the Euclidean distance
from the new centroid to the extreme point in the classi-
fication is measured and represented as the radius of the
classifier.

In the K-means implementation, the “offline” service was not
assigned to an SPA cluster, while KNN was able to classify it
into an SPA, as shown in Figure 9a and Figure 9b.

In the KNN approach, whenever a new service is added, the
service data point queries the k nearest neighbors and is as-
signed the most common value among the queried results. Due
to this so-called “poll and vote” nature of the algorithm, the
KNN is not prone to the outliers’ problem, where a service is
left out of the classification.

The time complexity of KNN is O(k - M - d) = O(M), where,
M 1is the number of SPA coordinates being evaluated, k = 1 is
the number of neighbors used for voting, and d = 2 is the data
dimension used in the multivariate assessment.

In contrast, the time complexity of K-means is O(i - k- M -
d) = O(M), where i = 1 is the number of iterations, k = 7 is
the number of clusters, M is the number of SPA, d = 2 is the
number of dimensions in the data.

In summary, we found that KNN represents in our case a
better choice to classify the services into possible SPAs. Thus,
it is the preferred option in our approach.

Table 4: Multivariate data for each system service for load 90%.

service normalized distance slope
Adjustment 0.38 -1.88
Enquiry 1.30 0.43
Interrogation 1.14 0.88
Resources Read 0.91 0.45
Resources Updates 0.85 14.56
Status Updates 1.57 35.95
Control 1.30 0.90
DB Data Management 1.46 1.28
Internal Communication 0.82 0.13
Offline 1.73 0.01
Online 0.94 0.92
Recompose 1.22 1.35

6. Evaluation

In this section, we present our evaluation activity. Section 6.1
presents the results of the computational complexity, while Sec-
tion 6.2 discusses the results of the accuracy our approach.



Expensive Database Call

v

Traffic Jam
X

The Stifle

£ 04 ‘

The Blob VL
<

Empty Semi-tricks

Appfallon Hiccups

02 Continuous Violated Requirements

L,

% J \¥ / (]

nomalized distance

(a) SPA detection using K-means

SPAS and Services
Expensive Database Call

v

Traffic Jam
x

The Stifle
Appfallon Hiccups
The Blob W
X

02 Continuous Violated Requirements Empty Semi-trucks

nomalized distance

(b) SPA detection using KNN

Figure 9: K-means and KNN centroids induced by normalized slope and performance requirements normalized distance for load = 90%.

6.1. Computational Complexity

In this section, we compare the computational efficiency of
the algorithmic approach presented in previous work (Wert,
2015) with the computational efficiency of the statistical ap-
proach introduced in this paper. This subsection addresses
RQ1: What is the computational complexity of the proposed
approach?

The approach for detection of SPAs is composed of two parts:
1) an offline training phase, and, 2) an online prediction phase.

In the analyzed literature, the training phase consists mostly
of threshold definitions for each of the analyzed SPAs (Cortel-
lessa et al., 2014; Trubiani et al., 2018; Wert, 2015; Bran, 2017),
and the prediction phase employs specific algorithms defined
for each of the candidate SPAs. Therefore, the ultimate online
detection of the specified SPAs requires the execution of the
specified prediction algorithms to detect one or more SPA.

In our approach, the training phase consists of SPA
parametrization using analytical modeling to identify the par-
titions of the SPA domain that are induced by the measurement
variables. This training phase is illustrated in Figure 3, where
the partitions induced by the normalized slope, and, the per-
formance requirements normalized distance, for load 90% are
shown. In the statistical approach, the online detection consists
of mapping load test results into the specified SPA partitions, as
illustrated by the blue dots in Figure 8.

Algorithmic approach from previous research. The offline
training of the heuristics presented in (Wert, 2015) consists of
determining the parameters to be used in the SPA prediction
heuristics, and is out of scope of this section, because the focus
of this analysis is on determining the computational complexity
of online prediction. The state of the art approaches presented
by (Wert, 2015) execute heuristics to detect SPAs, for each load
test result. Therefore, if there are N load tests, M SPAs to
be evaluated, and given that the computational complexity of
the worst-case heuristic is defined as O(H),), the computational
complexity of the state of the art algorithms is O(Hy - N). In

13

Table 5: SPA Heuristics Computational Complexity summary.

SPA Heuristic

Application hiccups
Continuous violated req.
Traffic jam

Justification

two nested loops

two nested loops
outer loop on re-
sponse time series
and inner loop for
linear regression

two nested loops on
response time and
SQL response time
series

two nested loops on
response time and
SQL response time
series

loop on message
tracing dataset

loop on messaging
dataset

The stifle
Expensive DB call

(O

Empty semi-trucks

The blob

this section we present a summary of the results obtained from
the analysis the heuristics presented by (Wert, 2015).

We illustrate the approach for the computational complex-
ity evaluation of the online prediction heuristics presented
by (Wert, 2015), by using as example, the application hiccups
and continuous violated requirement SPAs. These SPA predic-
tion heuristics are organized as two nested loops. Therefore,
the computational complexity of these two anti-patterns is es-
timated as O(®2). The outer loop scans the response time se-
ries of length ®,, ordered by timestamp, and passes a starting
pointer to the inner loops to execute a linear search on the se-
ries, and perform calculations to detect SPAs.

We present in Table 5 the justifications for the estimated
worst-case computational complexity for each of the SPA pre-
diction heuristics introduced by (Wert, 2015). Adding all the



computational complexities in Table 5, we get:

302 + 207, - @, + T, + 0, (8)
Therefore, we have found that
O(Hp) = D> + 0, - D, + 7, + 6, 9)

Statistical approach introduced in this paper. In the following,
we evaluate the computational complexity of SPA detection for
the approach introduced in this paper.

The number of SPAs to be evaluated in offline training is M.
The approach introduced in this paper calls for analytical mod-
eling, parametrization, and solution of the M SPAs for N load
levels. Therefore, the computational complexity of the offline
training approach introduced in this paper, can be computed us-
ing the following steps:

1. Parametrization and solution of Equation 4, for each SPA
and each evaluated load level. Therefore, the computa-
tional complexity of this step is O(M - N).

. Computation of normalized distance, for each SPA, for the
evaluated load level. For example, in Figure 3, we used
the load level of 90%. Therefore, the computational com-
plexity of this step is O(M).

3. The computational complexity of linear regression of one
variable, slope in this case, is linear O(N) (Hladik and
Cerny, 2015). Therefore, the computational complexity of
obtaining the slope of the response vs. load curve using
linear regression, for each SPA is O(M - N).

The computational complexity of the online training ap-
proach introduced in this paper, can be computed considering
the following steps:

1. Compute the normalized distance for the evaluated load
level. Therefore, the computational complexity of this step
is O(®,, - N).

. Compute the slope of the response time vs. load level plot
using linear regression of the load testing results. Similarly
to the offline computation, the computational complexity
of linear regression of one variable, slope in this case, is
linear O(®,, - N).

3. Implement automated SPA detection as described in Sec-
tion 3.4 in O(M).

RQ1 summary: according to our evaluation, the computa-
tional complexity of the offline training approach introduced
in this paper, is O(M - N), which is O(K - M) = O(M). This is
because, for SPA detection, we can assume N is O(K), where
K is a small constant. The number of SPAs to be evaluated
is likely to grow, but the number of load levels evaluated is
usually a number less than 10. the computational complex-
ity of the online training approach is O(®,, - N).

14

6.2. Precision and Recall

We address here the research question RQ2: What are the
precision and recall of the proposed approach?

We first show the results of the simulation modeling results,
followed by the results of the precision and recall evaluation.

6.2.1. Simulation Modeling Results

In the following, we present simulation results for the five
experiments that were used to evaluate the precision and recall
of detecting SPAs. The precision and recall evaluation is pre-
sented in Section 6.2. The precision and recall computation
was performed at the 80% load. In addition, simulation results
for the loads of 40%, 50%, 60%, and 70% are also shown to
illustrate the impact of the load on the slope and normalized
distance measures.

Baseline — We present simulation results obtained from the
baseline experiment, with no SPAs, in Figure 10. We can see
from the figures that the evaluated normalized distances re-
mains close to 1, i.e., equal to requirement, but are sensitive to
offered load, and remain less than 1.15 for the whole range of
offered loads. The slope behavior for the baseline case depends
on the specific node/method combination.

Hiccups SPA — We present the simulation results obtained
from the implementation of the Hiccups SPA in Figure 11. We
can see from the figures that the evaluated normalized distances
are impacted by the Hiccups SPA with values reaching up to
1.4. The slope behavior for the Hiccups case also depends on
the specific node/method combination.

Continuous Violated Requirements (CVR) SPA — We
present simulation results obtained from the implementation of
the CVR SPA in Figure 12. We can see from the figures that
the evaluated normalized distances are marginally impacted by
the CVR SPA with values reaching up to 1.15. The slope be-
havior for the CVR case depends on the specific node/method
combination.

The Stifle SPA — We present simulation results obtained
from the implementation of the Stifle SPA in Figure 13. We
can see from the figures that the evaluated normalized distances
are impacted by the Stifle SPA with values reaching up to 1.2.
The slope behavior for the Stifle case depends on the specific
node/method combination.

Expensive database Call SPA — Simulation results for the
Expensive database Call SPA are shown in Figure 14. We can
see from the figures that the evaluated normalized distances are
significantly impacted by the Expensive database Call SPA with
values reaching up to 2.0, which is the upper range of the met-
ric. The evaluated normalized distance is very sensitive to load.
In addition, the Expensive database Call SPA has a major im-
pact on the slope for several methods, as shown in the figures.

6.2.2. Precision and Recall Results

To answer RQ2, we discuss the simulation results for
the baseline case, i.e., with no injected SPAs, and the
SPA injection experiments for the four SPAs that were
characterized in the previous subsection, for several ser-
vices. The naming notation used for the simulated meth-
ods is callerNode.method.calleeNode.operation. For example,



0.015 0.015

0.010 0.010

0.005 0.005

slope
slope

0.000 0.000

-0.005 -0.005

-0.010 -0.010

0.6 0.7 0.8

ndistance

0.9 0.6 0.7

(a) 40% load.

0.015 0.015

0.010 0.010

0.005 0.005

slope
slope

0.000 0.000

-0.005 -0.005

-0.010 -0.010

0.6 0.7 0.8 0.6 0.7

ndistance

0.9

(d) 70% load.

ndistance

(b) 50% load.

ndistance »

(e) 80% load.

0.015

0.010

0.005

slope

0.000

-0.005

-0.010

0.8 0.9 0.6 0.7 0.8

ndistance

0.9

(c) 60% load.

counter_name
EntryLevelSystemCall.NIS.adjustment
EntryLevelSystemCall.NIS.enquiry
EntryLevelSystemCall.NIS.interrogation
EntryLevelSystemCall.NIS.networkControl
NIS.adjustment.DB.read
NIS.adjustment.PROC.adjustmentPROC

® NIS.enquiry.DB.read

® NIS.enquiry.PROC.enquiry

»  NIS.networkControl. PROC.control

» PROC.adjustment.Db.write

PROC.control.DB.read

PROC.enquiry.Db.read

PROC.offline

PROC.online

PROC.recompose.Db.write

PROC.resourcesRead.DB.read

PROC.resourcesUpdate.DB.write

PROC.statusUpdate.Db.write

assessment

False

True

0.8 0.9

(f) Legend.

Figure 10: Simulation results for baseline case — slope and normalized distance for load from 40% to 80%.

“PROC.enquiry.DB.read" means that the method “enquiry" in
the PROC node has called the operation “read" on the DB node.

The mapping between SPA injection and evaluation tables is
as follows: (1) Expensive database Call results are presented in
Table 6, (2) Application Hiccups results are in Table 7, (4) Stifle
results are in Table 8, (5) Continuous Violated Requirements
results are in Table 9.

These tables list precision, recall, and F-measure for each
one of the five methods we have evaluated for true/false posi-
tive/negative after SPA injection. To compute such metrics, in
each table we present the baseline assessment for the evaluated
method and the SPAs detection assessment for the four charac-
terized SPAs.

The experiments were able to detect true positives for the Ex-
pensive database Call SPA and Continuous Violated Require-
ment SPA, for a total number of 2 true positives out of four
injected SPAs. Overall we found 2 true positives, 2 false neg-
atives, and 3 false positives. The overall precision of the SPA
detection approach was found to be 0.4, while the overall recall
of the approach was found to be 0.5. In addition, the overall
F-measure was found to be 0.44.

The interpretation of SPA detection precision, as defined in
Equation 35, is that 40% of the SPA detected instances triggered
by the approach are true instances. The interpretation of SPA
detection recall, as defined in Equation 6, is that 50% of the
SPAs that should have been detected by the approach are in-
deed detected. The interpretation of SPA detection F-measure,

15

as defined in Equation 7, is that the balance between precision
and recall is 0.44. Therefore, we can conclude that the low cost
computationally efficient approach introduced in this paper can
be used effectively by performance engineers, when the objec-
tive is to trade-off cost, practical applicability, and accuracy.

RQ2 summary: The simulation modeling results show that
the introduced approach for SPA detection, is able to detect
the Expensive Database Call SPA, as this performance anti-
pattern has significant impacts on both the normalized dis-
tance and the slope measures. In addition, SPAs that have a
minor impact on normalized distance and slope, such as the
Continuous Violated Requirement SPA, can also be detected.
The presented approach has great potential for practical ap-
plicability at a coarse level of granularity, as it can be used to
automatically differentiate between SPAs with significantly
different normalized distance and normalized slope, as it is
the case when analyzing the Expensive database Call and the
Continuous Violated Requirement SPAs.

According to our experience, the recommended approach to
apply SPA detection within CI/CDD pipelines is to: (1) de-
tect performance degradation using normalized distance and
slope, and, (2) detect a small number of SPAs that can be
automatically classified with good precision and recall.




Table 6: Evaluation of precision and recall for the NIS.networkControl. PROC.control method. Expensive database Call SPA objective region objective defined by

calibration as (Normalized slope near 1 and Normalized distance less than 1.6), assessment for simulation load level 80%.

Experiment Norm. Slope/Norm. Distance true/false positive  true/false negative  precision recall F-Measure
baseline 0.08/1.02 0/0 1/0
EDB 1/1.73 1/0 0/0
CVR 0.08/0.97 0/0 1/0
hiccups 0/0.91 0/0 1/0
stifle 0.097/1.075 0/0 1/0

S ummary 1/0 4/0 1 1 1

Table 7: Evaluation of precision and recall for the NIS.enquiry.PROC.enquiry method. Application Hiccups SPA objective region objective defined by calibration

(Normalized slope near 0.4 and Normalized distance > 1.7 and < 1.8), assessment for simulation load level = 80%.

Experiment Norm. Slope/Norm. Distance  true/false positive  true/false negative  precision recall F-Measure
baseline 0.07/1.03 0/0 1/0
EDB 0.98/1.72 0/1 0/0
CVR 0.07/0.98 0/0 1/0
hiccups 0.07/1.3 0/0 0/1
stifle 0.08/1.08 0/0 1/0

S ummary 0/1 3/1 0 0 0

Table 8: Evaluation of precision and recall for the EntryLevelSystemCall.NIS.adjustment Stifle SPA objective region defined by calibration (Normalized slope < 0.3
and Normalized distance > 1.5 and < 1.8), assessment for simulation load level = 80%.

Experiment Norm. Slope/Norm. Distance  true/false positive  true/false negative  precision recall F-Measure
baseline 0.033/0.99 0/0 1/0
EDB 1/1.87 0/1 0/0
CVR 0.032/0.93 0/0 1/0
hiccups 0.032/1.08 0/0 1/0
stifle 0.02/1.19 0/0 0/1

S ummary 0/1 3/1 0 0 0

Table 9: Evaluation of precision and recall for the PROC.recompose.Db.write Continuous Violated Requirements SPA objective region defined by calibration

(Normalized slope < 0.2 and Normalized distance > 1.0 and < 1.2), assessment for simulation load level = 80%.

Experiment  Norm. Slope/Norm. Distance true/false positive  true/false negative  precision recall F-Measure
baseline 0/1.00 0/0 1/0
EDB 0.576/1.96 0/0 1/0
CVR 0.000168/1.02 1/0 0/0
hiccups 0.0001/1.0 0/0 1/0
stifle 0.00019/1.02 0/1 0/0
Summary 1/1 3/0 0.5 1 0.6666

16



0.020 0.020

0.020

0.015 0.015 0.015
0.010 0.010 0.010
. 0
2 0.005 2 0.005 2 0.005
o o o
@ @ @
0.000 o 0.000 0.000 > O
-0.005 -0.005 -0.005
-0.010 -0.010 -0.010
0.7 0.8 0.9 1.0 1.1 1.2 13 1.4 07 0.8 0.9 1.0 11 1.2 13 14 0.7 0.8 0.9 1.0 1.1 12 1.3 1.4
ndistance ndistance ndistance
(a) 40% load. (b) 50% load. (c) 60% load.
0.020 0.020 counter_name
EntryLevelSystemCall.NIS.adjustment
EntryLevelSystemCall.NIS.enquiry
0.015 0.015 EntryLevelSystemCall.NIS.interrogation
EntryLevelSystemCall.NIS.networkControl
NIS.adjustment.DB.read
0.010 0.010 NIS.adjustment.PROC .adjustmentPROC
® NIS.enquiry.DB.read
® NIS.enquiry.PROC.enquiry
2 0.005 £ 0.005 »  NIS.networkControl.PROC.control
2 2 PROC.adjustment.Db.write
PROC.control.DB.read
0.000 0.000 e PROC.enquiry.Db.read
PROC.offline
PROC.online
-0.005 -0.005 PROC.recompose.Db.write
PROC.resourcesRead.DB.read
PROC.resourcesUpdate.DB.write
-o.010 -0.010 PROC statusUpdate.Db.write
assessment
07 08 08 10 11 12 13 14 07 08 09 10 14 12 13 14 o False
ndistance ndistance ® True

(d) 70% load.

(e) 80% load.

(f) Legend.

Figure 11: Simulation results for Hiccups SPA — slope and normalized distance for load from 40% to 80%.

7. Discussion

In this section, we present a discussion of our approach by
considering generalizability concerns as well as possible threats
to validity.

7.1. Generalizability of Our Approach

In this section, we describe the generalization of the ap-
proach to other domains and we provide references to high-
level guidelines for software engineers to use PPTAM in their
projects. In (Avritzer et al., 2021b) we presented a component
diagram that basically describe the architectural concerns that
were taken into account to enable generalization to further ap-
plications. Specifically, in (Avritzer et al., 2021b) we have out-
lined a methodology for cross-domain generalization of the ap-
proach presented in this paper.

PPTAM has been designed to separate the main tool archi-
tectural concerns into individual components. In the follow-
ing we summarize the main activities carried out with the goal
of providing a cross-domain generalization of our approach, as
presented in (Avritzer et al., 2021b).

1. Configuration — this specifies the configuration setup
used for load-test execution.

2. Test plan definition — this specifies the tests used in the
test campaign.

17

3. Deployment alternatives — they are evaluated as sup-
ported by instrumented APM tools.

4. Metrics collection — this is used to specify and subse-
quently select the plug-in that will be activated in the test
campaign.

5. User experience — this defines the dashboarding tool.

We have successfully applied this cross-domain generaliza-
tion approach to support a major digital transformation initia-
tive within a large global information services provider. This
is a very different domain from telecommunications. This new
project employed large grained off the shelf third party compo-
nents that runs database transactions supporting a very large
user community. This information services provider used a
state of the art industrial approach for performance analysis that
included AppDynamics?, which was used to monitor system
performance flows, and Neoload?, which was used to execute
performance tests at different load levels. These two tools were
used to identify software bottlenecks. We generalized the PP-
TAM approach to improve the scalability assessment method-
ology used by this major digital transformation initiative. We
took advantage of PPTAM component architecture to extend
the state-of-the-art industrial approach used by that project (i.e.,

2https ://www.appdynamics.com
3https://www.neotys.com


https://www.appdynamics.com
https://www.neotys.com

0.015 0.015 0.015
0.010 0.010 0.010
o 0.005 e o 0.005 - o 0.005 e
Q Q a
o k<] o
@ ? B
0.000 e 0.000 AL 0.000 >
-0.005 -0.005 -0.005
-0.010 -0.010 -0.010
0.6 0.7 0.8 0.9 1.0 11 0.6 0.7 0.8 0.9 1.0 11 0.6 0.7 0.8 0.9 1.0 11
ndistance ndistance ndistance
(a) 40% load. (b) 50% load. (c) 60% load.
counter_name
EntryLevelSystemCall.NIS.adjustment
0.015 0015 EntryLevelSystemCall.NIS.enquiry
EntryLevelSystemCall.NIS.interrogation
EntryLevelSystemCall.NIS.networkControl
NIS.adjustment.DB.read
0.010 0.010 NIS.adjustment.PROC.adjustmentPROC
® NIS.enquiry.DB.read
. . ®  NIS.enquiry.PROC.enquiry
g 0005 g 0005 ®  NIS.networkControl.PROC.control
2 2 PROC.adjustment.Db.write
. PROC.control.DB.read
0.000 0.000 PROC.enquiry.Db.read
PROC.offline
PROC.online
-0.005 -0.005 PROC.recompose.Db.write
PROC.resourcesRead.DB.read
PROC.resourcesUpdate.DB.write
-0.010 -0.010 PROC statusUpdate.Db.write
assessment
0.6 0.7 0.8 0.9 1.0 1.1 0.6 0.7 0.8 0.9 1.0 1.1 ® False
ndistance ndistance ®  True

(d) 70% load.

(e) 80% load.

(f) Legend.

Figure 12: Simulation results for Continuous Violated Requirements SPA — slope and normalized distance for load from 40% to 80%.

AppDyanics and Neoload). Specifically, the state of the art
industrial approach was extended with the definition of opera-
tional profile, automated analysis of pass/fail tests, the integra-
tion of performance testing into the devops environment, the
automated population of the scalability dashboard with devops
performance testing results, and the dashboard integration us-
ing the state of the art visualization tool used by the project
(PowerBI).

7.2. Threats to Validity

In this section, we discuss the threats to the validity of our
investigation using the categories reliability, internal, construct,
and external validity described by (Runeson et al., 2012).

We mitigated reliability threats by involving several re-
searchers in the design and execution of our investigation.
Moreover, our results were verified with the help of Ericsson
experts to avoid false interpretations.

Regarding internal validity, the performance of the investi-
gated system may be impacted by factors that were not present
in the performance data used to illustrate our approach and to
conduct part of the evaluation. This is a limitation that might
have affected the related evaluation steps. We mitigated this
threat by creating a PCM-based simulation model. We plan to
apply our approach to additional projects.

The main threat to construct validity is that we used only one
method to measure a construct. To mitigate this threat in the
case study, we collected data from different sources to evaluate
our approach (data triangulation).

18

Regarding external validity, although our method was devel-
oped using an analytical approach and is expected to be quite
generic, the evaluation used data from just one system from one
company.

8. Related Work

In this section, we present an overview of the reviewed work,
describing software performance testing approaches, and SPA
detection at different stages of the software development pro-
cess.

8.1. Software Performance Testing

A toolchain for automated software performance testing dur-
ing continuous integration of Python projects is proposed in
(Javed et al., 2020b) where users specify testing tasks, analyze
unit tests, and evaluate performance data to get feedback on the
code. However, the detection of performance problems seems
to refer to software bottlenecks only. The benefit of antipatterns
is that they capture more complex root causes of performance
issues.

An evolutionary fuzzing algorithm to generate inputs that
impact on performance functions is proposed in (Tizpaz-Niari
et al., 2020) with the purpose of identifying a set of classes
(in machine learning libraries) exhibiting different performance
characteristics. An automated performance testing framework



0.020 0.020

0.015 0.015
0.010 0.010

0.005 0.005

slope
slope

0.000 Se 0.000

-0.005 -0.005

-0.010 -0.010

0.5 0.6 0.7 0.8 0.9

ndistance

1.0 0.5 0.6 0.7

(a) 40% load.
0.020 0.020

0.015 0.015

0.010 0.010

0.005 0.005

slope
slope

0.000 CL 0.000

-0.005 -0.005

-0.010 -0.010

0.5 0.6 0.7 0.8 0.9

ndistance

1.0 0.5 0.6 0.7

(d) 70% load.

0.8
ndistance

(b) 50% load.

0.8
ndistance -

(e) 80% load.

0.020

0.015

0.010

0.005

slope

0.000 2

-0.005

-0.010

0.9 1.0 0.5 0.6 0.7 0.8 0.9

ndistance

1.0 1.1

(c) 60% load.
counter_name
EntryLevelSystemCall.NIS.adjustment
EntryLevelSystemCall.NIS.enquiry
EntryLevelSystemCall.NIS.interrogation
EntryLevelSystemCall.NIS.networkControl
NIS.adjustment.DB.read
NIS.adjustment.PROC.adjustmentPROC
® NIS.enquiry.DB.read
e NIS.enquiry.PROC.enquiry
»  NIS.networkControl. PROC.control
PROC.adjustment.Db.write
e PROC.control.DB.read
2 PROC.enquiry.Db.read
PROC.offline
PROC.online
PROC.recompose.Db.write
PROC.resourcesRead.DB.read
PROC.resourcesUpdate.DB.write
PROC.statusUpdate.Db.write
assessment
False
True

0.9 1.0 1.1 12 °

(f) Legend.

Figure 13: Simulation results for Stifle SPA — slope and normalized distance for load from 40% to 80%.

has been presented in (He et al., 2020) by means of an empirical
study conducted on 12 software systems, and results indicate
that typically a system configuration change reflects common
expectation on performance changes.

Continuous software performance assessment is pursued in
(Laaber, 2019b; Laaber and Leitner, 2018) where the assump-
tion is that performance problems can be detected at build time
by executing microbenchmarks. This way, the detection of per-
formance problems is anticipated before software is released
and for each new commit, interestingly focusing on the tempo-
ral frequency of executing tests.

A testing approach to evaluate performance and cost require-
ments when porting applications to public clouds is proposed
in (Wang et al., 2018) where bootstrapping is adopted to get
performance results of applications with unknown theoretical
performance distributions.

Summary. The approaches described above complement our
work. In fact we share the same goal of achieving a contin-
uous performance assessment, but differently from the papers
above, we make use of SPA detection.

8.2. Anomaly Detection with Multiple Performance Indices

System anomaly detection approaches like (Sahoo et al.,
2003; Di Sanzo et al., 2021) have been developed to predict sys-
tem failures, for example due to software aging effects and reju-
venate the system (e.g., by resetting to checkpoints or restarting
affected nodes). These approaches usually use multiple system

19

quality metrics like CPU and memory usage, number of threads
and time, since such metrics are collected as inputs for machine
learning unhealthy system states. As performance anti-patterns
can be the root causes of system anomalies, these approaches
could also be applied to potentially identify performance issues.
In (Di Sanzo et al., 2021) the authors also identified the slope of
memory used/free and swap used/free as an important factor for
their prediction model. In (Peiris et al., 2014) up to 200 perfor-
mance counters are collected per system to identify the cause
of software anomalies. Those counters cover system informa-
tion on memory and CPU, but also information about message
queue length and send/received messages. Developers can vi-
sualize counters and specify thresholds on different aggregation
levels to find anomalies. The approach then uses a correlation
and comparative analyses to identify causes of anomalies. As
result of their case study, the authors state that (i) only few per-
formance counters were necessary to detect anomalies, and (ii)
visualization and statistic aggregation are especially helpful for
developers. In some cases, however, even one second aggrega-
tion was too coarse for root cause analysis.

Summary. In general, system anomaly detection usually fo-
cuses on node level and does not differentiate between ser-
vices/methods. To successfully apply machine learning algo-
rithms for anomaly detection large datasets of labeled training
data are necessary.



0.12 0.12
0.10 0.10
0.08 0.08

g &

w 0.06 » 0.06
0.04 0.04
0.02 0.02
0.00 0.00

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0
ndistance
(a) 40% load.
0.12 0.12
0.10 0.10

slope

0.6 0.8 1.0 12 14

ndistance

1.6 1.8 2.0 0.6 0.8 1.0

(d) 70% load.

12

ndistance

(b) 50% load.

1.2

ndistance *

(e) 80% load.

0.12

0.10

0.08

0.06

slope

0.04

0.00

14 16 1.8 20 0.6 0.8 1.0 1.2 14

ndistance

16 1.8 2.0

(c) 60% load.

counter_name
EntryLevelSystemCall.NIS.adjustment
EntryLevelSystemCall.NIS.enquiry
EntryLevelSystemCall.NIS.interrogation
EntryLevelSystemCall.NIS.networkControl
NIS.adjustment.DB.read
NIS.adjustment. PROC.adjustmentPROC

® NIS.enquiry.DB.read

® NIS.enquiry.PROC.enquiry

»  NIS.networkControl. PROC.control

PROC.adjustment.Db.write

PROC.control.DB.read

PROC.enquiry.Db.read

PROC.offline

PROC.online

PROC.recompose.Db.write

PROC.resourcesRead.DB.read

PROC.resourcesUpdate.DB.write

PROC.statusUpdate.Db.write

assessment

False

True

14 16 1.8 20 °

(f) Legend.

Figure 14: Expensive DB Call SPA - Slope and normalized distance for load from 40% to 80%.

8.3. SPA Detection in Real-time Systems

In (Avritzer et al., 2020, 2018) a methodology for the quanti-
tative assessment of micro-service architecture deployment al-
ternatives by automated performance testing was introduced.
The methodology was developed to be integrated with CI/CDD
pipelines, as it assesses scalability by incrementally incorporat-
ing results from individual tests that are run for a fixed short
time-frame, as for example, 30 minutes.

In (Wert, 2015), response time requirements, measured re-
sponse time, CPU, network and database utilization were used
to detect SPAs. A set of algorithms was introduced in (Wert,
2015) to detect SPAs by analyzing the evolution over time of
the monitored performance signatures. However, the detection
of performance issues relies on the comparison with injected
faults, some system instrumentation is needed for this scope. In
contrast, in (Cortellessa et al., 2014) a logic-based represen-
tation of SPAs is presented and a more detailed set of perfor-
mance signatures is used for monitoring. Moreover, the per-
formance signatures being monitored are compared with pre-
defined thresholds. The set of performance signatures that are
proposed to be monitored in (Cortellessa et al., 2014) extends
the set proposed in (Wert, 2015) and also includes the num-
ber of objects created/deleted, number of connections, number
of messages, and other related variables. Detection algorithms
are represented by the conjunction of logical formulas, but they
need to be customized to specific implementation or architec-
tural description languages, they are not directly applicable.

20

In (Trubiani et al., 2018; Bran, 2017), the logic-based
representation of performance antipatterns was applied to a
large complex Java-based system. The approach presented in
(Cortellessa et al., 2014) was applied to the following SPAs:
Extensive Processing, Circuitous Treasure Hunt, and Wrong
Cache. The approach served as the basis for the implementation
of a tool named PADProf. Logical formulas defined in (Cortel-
lessa et al., 2014) were customized to software implementation
code since Java applications are targeted, and profiling data al-
lowed to match performance indices of interest, however only
three antipatterns were specified. The authors have concluded
that the logic-based approach was effective to automatically de-
tect SPAs in the large complex system studied. However, addi-
tional research and testing was required to generalize the appli-
cation to other systems.

In (Keck et al., 2016), the feasibility of injecting SPAs in
a system under study was evaluated. It provided an example
of the implementation of a proposed performance antipattern
framework, where the Ramp and the One Lane Bridge imple-
mentation were demonstrated. The authors introduced an SPA
injection framework that was designed to generate problems re-
lated to response time and memory use. However, only two
simple antipatterns were implemented. This limitation, that the
injected problem itself is artificial, poses a threat to the validity
of the experiment.

Summary. The vision of integrating automated detection of
SPAs into CI/CDD pipelines (Avritzer et al., 2020) poses sev-



Table 10: Comparison of the state of the art approaches on automated SPA detection. Considered capabilities: bottleneck detection (bd), proven devops support
(devops), scalability analysis through dashboard (dash), SPA detection (spa).

Approach Description Capabilities
bd devops dash spa
APM Designed for production support. Examples are AppDynamics and DynaTrace. It v
uses detailed flow performance monitoring for applications and infrastructures in
real-time. It provides integrated response time monitoring.
LoadTesting Designed for load testing support. Examples are Jmeter, NeoLoad, New Relic. V'
It allows the simulation of different load levels to uncover server side limits and
estimates client side expected performance for specific performance tests.
Algorithmic approach ~ Algorithmic approach for SPA detection (Wert, 2015). Monitored variables and al- v
gorithms are defined for each SPA to be detected.
Logic-based approach  Logic-based approach for SPA detection (Cortellessa et al., 2014). Monitored vari- v
ables and formulas are defined for each SPA to be detected.
PPTAM (this paper) The approach introduced in this paper supports the automated calculation of the v v v v

pass/fail criteria, the automated identification of the problematic services, and the
automated analysis of the performance results to match the detected performance

problems to their root causes using the specification of performance anti-patterns.

eral challenges, as CI/CDD pipelines might be executed several
times a day, for many components, and they have a specific per-
formance budget for completion time.

8.4. Qualitative Comparison

The state of the art on automated detection of SPAs (Cortel-
lessa et al., 2014; Trubiani et al., 2018; Wert, 2015; Bran,
2017) contains algorithms that analyze detailed monitoring data
to detect trends on several monitored variables (e.g., response
time, CPU utilization, number of threads) and using pre-defined
thresholds.

The research gap addressed in this paper is the lack of a com-
putationally efficient approach to integrate SPA characterization
and detection into CI/CDD pipelines. We address the aforemen-
tioned research gap by introducing a new approach to charac-
terize and detect SPAs using multivariate analysis.

Table 10 compares of the state of the art approaches for the
automated SPA detection. We consider the following capabil-
ities: bottleneck detection, proven support for integrating per-
formance testing with DevOps, support for scalability analysis
through dashboard, and SPA detection. In this qualitative com-
parison we evaluated the following approaches:

1. Application Performance Monitoring (APM) — AppDy-
namics, Dynatrace;

2. Performance Load Testing Tools (LoadTesting) — Jmeter,
NewRelic, NeoLoad;

3. Academia research considers mainly algorithms and logic-
based representation for implementing the detection of
SPAs (Wert, 2015; Cortellessa et al., 2014);

4. PPTAM — the approach presented in this paper.

We have concluded that the approach presented in this pa-
per is able to complement and advance the state of industrial
practice by enabling devops integration of performance testing,
scalability analysis through dashboard support, and SPA detec-
tion at low computational cost.

21

Precision and Recall analysis of our SPA detection approach
shows good results for two SPAs, i.e., Expensive Database Call
(EDC) and Continuous Violated Requirements (CVR). This is
a very valuable result, because inefficient database calls are
one of the most difficult performance problems to detect and
are usually detected after production deployment according to
the experience of engineers at Ericsson. Our approach of inte-
grating the automated detection of the Expensive Database Call
(EDC) at low cost in a devops environment is very effective to
uncover performance problems early in the software develop-
ment process. In addition, as future research, we are extending
the PPTAM methodology to improve the effectiveness of the
detection ability of Application Hiccups and Stifle SPAs.

9. Conclusion and Future Work

In this paper, we have extended our previously proposed ap-
proach for the characterization and the detection of SPAs that
was designed to be integrated into CI/CDD pipelines, and its
implementation is computationally efficient.

We extended our previous work as follows: (1) we improved
the detection step by using machine learning techniques, (2) we
have evaluated the computational efficiency of the application
of machine learning algorithms to the automated detection of
SPA, and we have found that the evaluated machine learning al-
gorithms are a good fit to this task, (3) we have also developed
a simulation model of the Ericsson system to measure our ap-
proach’s precision and recall. To do so, we injected four SPAs.
We were able to evaluate the SPA detection approach precision
and recall by comparing the simulation and analytical results.
We have obtained good results for the Extensive Database Call
and Continuous Violated Requirement SPA. As future research,
we plan to experiment with several calibration methods to eval-
uate their impact on overall precision and recall of the SPA de-
tection approach.

We have compared the computational efficiency of the pro-
posed approach with state-of-the-art heuristics, and we have
found that the approach introduced in this paper grows linearly



as O(®,), while the computational complexity of the state-of-
the-art heuristics grows as O(®?).

Moreover, because our approach characterizes each SPA us-
ing a multivariate approach that is based on the response time
measurement, it can be efficiently implemented and deployed in
industry, as response time measurements are normally logged in
load testing experiments. In contrast, existing SPA approaches
may require additional datasets for SPA analysis that might not
be readily available.

The introduced approach can be applied to continuous de-
velopment ecosystems that collect response time measurements
logs, and are required to meet performance and scalability re-
quirements. The application domains of interest are related
to critical infrastructures by (Avritzer et al., 2012), such as
telecommunication and banking.

We are currently planning to extend this research in several
ways. Our research agenda includes the following points:

e Accuracy analysis — While we have measured the preci-
sion and recall of our approach using a simulation-based
approach, it is necessary to do the same analysis using real
systems. We plan to deploy the approach in Ericsson to
evaluate it through a few development sprints.

o Integration — We plan to integrate the introduced ap-
proach for automated SPA detection into automated per-
formance testing and analysis tools, such as the one intro-
duced at Avritzer et al. (2020).

We expect that the new approach for SPA detection intro-
duced in this paper will trigger research and development on
new methods and tools to automatically characterize SPAs us-
ing the introduced multivariate characterization approach.

Artifacts

Artifacts used in this paper are publicly available in Zenodo:
https://doi.org/10.5281/zenodo.6521707.

Acknowledgments

This work has been partially funded by eSulabSolutions, the
MUR PRIN project 2017TWRCNB SEDUCE (Designing Spa-
tially Distributed Cyber-Physical Systems under Uncertainty),
the German Federal Ministry of Education and Research un-
der grant 011S18067D (RESPOND), the KASTEL institutional
funding, and by the Baden-Wiirttemberg Stiftung (ORCAS).
We would like to thank the anonymous reviewers for their valu-
able and constructive comments, and all the experts at Ericsson
who supported this research.

References

Avritzer, A., Britto, R., Trubiani, C., Russo, B., Janes, A., Camilli, M., van
Hoorn, A., Heinrich, R., Rapp, M., Hen8, J., 2021a. A multivariate charac-
terization and detection of software performance antipatterns, in: Proceed-
ings of the 12th ACMS/SPEC International Conference on Performance En-
gineering (ICPE). ACM.

22

Avritzer, A., Camilli, M., Janes, A., Russo, B., Jahic, J., van Hoorn, A., Britto,
R., Trubiani, C., 2021b. Pptam/l: What, where, and how of cross-domain
scalability assessment, in: Proceedings of International Conference on Soft-
ware Architecture (ICSA), Companion Volume, pp. 62—-69.

Avritzer, A., Ferme, V., Janes, A., Russo, B., van Hoorn, A., Schulz, H.,
Menasché, D., Rufino, V., 2020. Scalability assessment of microservice
architecture deployment configurations: A domain-based approach leverag-
ing operational profiles and load tests. Journal of Systems and Software 165,
110564.

Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., van Hoorn, A., 2018.
A quantitative approach for the assessment of microservice architecture de-
ployment alternatives by automated performance testing, in: Proceedings of
the European Conference on Software Architecture (ECSA), pp. 159-174.

Avritzer, A., Giandomenico, F.D., Remke, A.K.I., Riedl, M., 2012. Assess-
ing dependability and resilience in critical infrastructures: challenges and
opportunities. Springer. pp. 41-63.

Avritzer, A., Weyuker, E.J., 1995. The automatic generation of load test suites
and the assessment of the resulting software. IEEE Trans. Softw. Eng. 21.

Avritzer, A., Weyuker, E.J., 2004. The role of modeling in the performance
testing of e-commerce applications. IEEE Transactions on Software Engi-
neering 30, 1072-1083.

Bertsekas, D., Gallager, R., 1992. Data Networks (2nd Ed.). Prentice-Hall,
Inc., USA.

Bradley, P.S., Fayyad, U.M., 1998. Refining initial points for k-means cluster-
ing., in: ICML, Citeseer. pp. 91-99.

Bran, A., 2017. Detecting software performance anti-patterns from profiler
data. B.S. thesis.

Brown, W., Malveau, R., McCormick, H., Mowbray, T., 1998. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons.

Camilli, M., Russo, B., 2022. Modeling performance of microservices systems
with growth theory. Empirical Software Engineering 27, 1-44.

Chen, J., Shang, W., Shihab, E., 2020. Perfjit: Test-level just-in-time predic-
tion for performance regression introducing commits. IEEE Transactions on
Software Engineering , 1-1doi:10.1109/TSE.2020.3023955.

Cortellessa, V., Di Marco, A., Trubiani, C., 2014. An approach for modeling
and detecting software performance antipatterns based on first-order logics.
Software & Systems Modeling 13, 391-432.

Daniel, M., Almeida, V.A., Dowdy, L.W., Dowdy, L., et al., 2004. Performance
by design: computer capacity planning by example. Prentice Hall Profes-
sional.

Di Sanzo, P., Avresky, D.R., Pellegrini, A., 2021. Autonomic rejuvenation of
cloud applications as a countermeasure to software anomalies. Software:
Practice and Experience 51, 46-71.

He, H., Jia, Z., Li, S., Xu, E., Yu, T., Yu, Y., Wang, J., Liao, X., 2020. Cp-
detector: using configuration-related performance properties to expose per-
formance bugs, in: Proceedings of the International Conference on Auto-
mated Software Engineering (ASE), pp. 623-634.

Heger, C., van Hoorn, A., Mann, M., Okanovic, D., 2017. Application perfor-
mance management: State of the art and challenges for the future, in: Pro-
ceedings of the 2017 ACM/SPEC International Conference on Performance
Engineering (ICPE), pp. 429-432.

Heinrich, R., Werle, D., Klare, H., Reussner, R., Kramer, M., Becker, S.,
Happe, J., Koziolek, H., Krogmann, K., 2018. The palladio-bench for mod-
eling and simulating software architectures, in: Proceedings of the Inter-
national Conference on Software Engineering: Companion Proceeedings,
ACM. p. 37-40.

Hladik, M., Cerny, M., 2015. Total least squares and chebyshev norm. Proce-
dia Computer Science 51, 1791 — 1800. doi:https://doi.org/10.1016/
j.procs.2015.05.393. International Conference On Computational Sci-
ence, ICCS 2015.

Javed, O., Dawes, J.H., Han, M., Franzoni, G., Pfeiffer, A., Reger, G., Binder,
W., 2020a. Perfci: A toolchain for automated performance testing during
continuous integration of python projects, in: 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 1344—
1348.

Javed, O., Dawes, J.H., Han, M., Franzoni, G., Pfeiffer, A., Reger, G., Binder,
W., 2020b. Perfci: a toolchain for automated performance testing during
continuous integration of python projects, in: Proceedings of the Interna-
tional Conference on Automated Software Engineering (ASE), pp. 1344—
1348.


https://doi.org/10.5281/zenodo.6521707
http://dx.doi.org/10.1109/TSE.2020.3023955
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.05.393
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.05.393

Keck, P, van Hoorn, A., Okanovié, D., Pitakrat, T., Diillmann, T.F., 2016.
Antipattern-based problem injection for assessing performance and reliabil-
ity evaluation techniques, in: Proceedings of the International Symposium
on Software Reliability Engineering Workshops (ISSREW), pp. 64-70.

Kleinrock, L., Collection, KM.R., 1974. Queueing Systems, Volume I. A
Wiley-Interscience publication, Wiley.

Knuth, D.E., 1997. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc.,
USA.

Laaber, C., 2019a. Continuous software performance assessment: Detecting
performance problems of software libraries on every build, in: Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Association for Computing Machinery, New York,
NY, USA. p. 410-414. URL: https://doi.org/10.1145/3293882.
3338982, doi:10.1145/3293882.3338982.

Laaber, C., 2019b. Continuous software performance assessment: detecting
performance problems of software libraries on every build, in: Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA),
pp. 410-414.

Laaber, C., Leitner, P., 2018. An evaluation of open-source software mi-
crobenchmark suites for continuous performance assessment, in: Proceed-
ings of the International Conference on Mining Software Repositories
(MSR), pp. 119-130.

Liao, L., Chen, J., Li, H., Zeng, Y., Shang, W., Sporea, C., Toma, A., Sajedi, S.,
2021. Locating performance regression root causes in the field operations of
web-based systems: An experience report. IEEE Transactions on Software
Engineering , 1-1doi:10.1109/TSE.2021.3131529.

Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algo-
rithm. Pattern recognition 36, 451-461.

Maggino, F., 2014. Guttman Scale. Springer Netherlands, Dordrecht. pp. 2626—
2630.

Microsoft, 2019. Performance tuning a distributed application. https://
docs.microsoft.com/en-us/azure/architecture/performance/,
(accessed on June 25, 2020).

Mucherino, A., Papajorgji, P.J., Pardalos, P.M., 2009. K-nearest neighbor clas-
sification, in: Data mining in agriculture. Springer, pp. 83-106.

Nasar, A., 2016. The history of algorithmic complexity. The Mathematics
Enthusiast 13, 217-242.

Parsons, T., Murphy, J., et al., 2008. Detecting performance antipatterns in
component based enterprise systems. Journal of Object Technology 7, 55—
91.

Peiris, M., Hill, J.H., Thelin, J., Bykov, S., Kliot, G., Konig, C., 2014. Pad:
Performance anomaly detection in multi-server distributed systems, in: 2014
IEEE 7th International Conference on Cloud Computing, IEEE. pp. 769—
776.

Pinciroli, R., Smith, C.U., Trubiani, C., 2021. Qn-based modeling and anal-
ysis of software performance antipatterns for cyber-physical systems, in:
Proceedings of the ACM/SPEC International Conference on Performance
Engineering, pp. 93—104.

Powers, D.M.W., 2011. Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies 2, 37-63.

Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek,
H., Kramer, M., Krogmann, K., 2016. Modeling and Simulating Software

23

Architectures — The Palladio Approach. MIT Press.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons.

Sahoo, R.K., Oliner, A.J., Rish, 1., Gupta, M., Moreira, J.E., Ma, S., Vilalta,
R., Sivasubramaniam, A., 2003. Critical event prediction for proactive man-
agement in large-scale computer clusters, in: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pp. 426-435.

Shye, S., 1985. Multiple Scaling: The Theory and Application of Partial Order
Scalogram Analysis. North-Holland, Amsterdam.

Shye, S., 2009. Partial order scalogram analysis by coordinates (POSAC) as a
facet theory measurement procedure: how to do posac in four simple steps.
pp- 295-310.

Shye, S., 2014. Systemic Quality of Life Model (SQOL). pp. 6569-6575.

Skiena, S., 1990. Hasse Diagrams. §5.4.2 in Implementing Discrete Mathe-
matics: Combinatorics and Graph Theory with Mathematica. Reading, MA:

Addison-Wesley, p. 163, 169-170, and 206-208.
Smith, C.U., 2020. Software performance antipatterns in cyber-physical sys-

tems, in: Proceedings od the International Conference on Performance En-
gineering (ICPE), ACM. pp. 173-180.

Smith, C.U., Williams, L.G., 2000. Software performance antipatterns, in:
Proceedings of the 2nd International Workshop on Software and Perfor-
mance, Association for Computing Machinery, New York, NY, USA. p.
127-136. URL: https://doi.org/10.1145/350391.350420, doi:10.
1145/350391.350420.

Smith, C.U., Williams, L.G., 2012. Software performance antipatterns for iden-
tifying and correcting performance problems, in: International Computer
Measurement Group Conference.

Spinner, S., Casale, G., Zhu, X., Kounev, S., 2014. Librede: A library for
resource demand estimation, in: Proceedings of the 5th ACM/SPEC inter-
national conference on Performance engineering, pp. 227-228.

Tizpaz-Niari, S., Cerny, P., Trivedi, A., 2020. Detecting and understanding
real-world differential performance bugs in machine learning libraries, in:
Proceedings of the International Symposium on Software Testing and Anal-
ysis (ISSTA), pp. 189-199.

Trubiani, C., Bran, A., van Hoorn, A., Avritzer, A., Knoche, H., 2018. Exploit-
ing load testing and profiling for performance antipattern detection. Infor-
mation and Software Technology 95, 329 — 345.

Trubiani, C., Koziolek, A., Cortellessa, V., Reussner, R.H., 2014. Guilt-based
handling of software performance antipatterns in palladio architectural mod-
els. J. Syst. Softw. 95, 141-165.

Walter, J., Stier, C., Koziolek, H., Kounev, S., 2017. An expandable extrac-
tion framework for architectural performance models, in: Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineer-
ing Companion, pp. 165-170.

Wang, W., Tian, N., Huang, S., He, S., Srivastava, A., Soffa, M.L., Pollock,
L., 2018. Testing cloud applications under cloud-uncertainty performance
effects, in: Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pp. 81-92.

Wert, A., 2015. Performance Problem Diagnosis by Systematic Experimenta-
tion. Ph.D. thesis.

Wert, A., Happe, J., Happe, L., 2013. Supporting swift reaction: automatically
uncovering performance problems by systematic experiments, in: Interna-
tional Conference on Software Engineering (ICSE), pp. 552-561.


https://doi.org/10.1145/3293882.3338982
https://doi.org/10.1145/3293882.3338982
http://dx.doi.org/10.1145/3293882.3338982
http://dx.doi.org/10.1109/TSE.2021.3131529
https://docs.microsoft.com/en-us/azure/architecture/performance/
https://docs.microsoft.com/en-us/azure/architecture/performance/
https://doi.org/10.1145/350391.350420
http://dx.doi.org/10.1145/350391.350420
http://dx.doi.org/10.1145/350391.350420

	Introduction
	Background 
	SPAs
	Multivariate classification approaches

	The Proposed Approach
	Overview
	SPA Characterization
	Application Hiccups
	Continuous Violated Requirements
	Traffic Jam
	The Stifle
	Expensive Database Call
	Empty Semi Trucks
	The Blob

	Analytical Model Parametrization
	SPA Detection

	Research Design
	The case and unit of analysis
	Data Collection
	Computational Complexity Evaluation Approach
	Precision and Recall Evaluation Approach
	Application Hiccup Injection
	Continuous Violated Requirements injection
	Expensive Database Call Injection
	The Stifle Injection


	Approach Illustration 
	Evaluation
	Computational Complexity
	Precision and Recall
	Simulation Modeling Results
	Precision and Recall Results


	Discussion
	Generalizability of Our Approach
	Threats to Validity

	Related Work
	Software Performance Testing
	Anomaly Detection with Multiple Performance Indices
	SPA Detection in Real-time Systems
	Qualitative Comparison

	Conclusion and Future Work

