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Abstract—Emerging network infrastructures are increasingly
softwarized, virtualized and, thus, flexible. They may even be
viewed as a large, dynamic, and distributed elastic resource pool
of network devices that can be flexibly configured and employed
according to the needs of network services. Full control of such
a resource pool requires resilient control plane connectivity. In
this paper, we present KIRA, a two-tier routing architecture
that provides self-organized, zero-touch, and extremely robust
control plane connectivity. KIRA consists of the distributed,
highly scalable, ID-based routing protocol R²/Kad that can run
on top of any link layer. It is complemented by a forwarding tier
with PathID-based fast forwarding for (control) data packets.
KIRA shows excellent performance even in very large networks
(evaluated with up to 200 000 nodes). R²/Kad allows for flexible
memory/stretch tradeoff per node and finds shortest paths to
certain destinations in most cases. R²/Kad converges loop-free and
fast, even in very large networks with drastic failure scenarios.

I. INTRODUCTION

Current and future network infrastructures tend to be more
complex than ever: the sheer number and diversity of net-
worked devices highly increased during the last couple of
years and is envisioned to grow even further. This includes not
only switches, routers, and end-systems like smartphones and
servers, but also common devices in the context of Internet
of Things (e.g., drones, mobile robots). Furthermore, the
increased use of virtualized devices and softwarization enables
higher flexibility in network infrastructures. For instance, the
6G ecosystem assumes that the future infrastructures used
by mobile telco providers will be provisioned on-demand,
mostly as virtual infrastructure allocated across administrative
boundaries [1]. This increases infrastructure reach, e.g., a
network service can be placed on a drone in a different admin-
istrative domain. Even more dynamic network infrastructures
are envisioned, so that networks (or parts thereof) will appear
and disappear, grow and shrink in much higher dynamics as
seen today. Moreover, connectivity becomes denser, because
redundant links have become cheaper.

On a more abstract level, various network services will run
on top of a highly dynamic and distributed elastic resource
pool, which is made of the above mentioned networked
devices. This requires the ability to interconnect and reach all
these resources in order to exert the necessary resource control,
e.g., as part of Operations, Administration, and Maintenance
(OAM) tasks. In this context, IETF’s ANIMA working group
envisions a unified and autonomous controllability of the re-
source pool [2]–[4]. However, a separate infrastructure for out-

of-band OAM (requiring its own setup, configuration, and also
its own OAM) has prohibitive costs and scaling limitations for
such dynamic resource pools. Thus, a pervasive, highly reliable
and resilient in-band control plane (CP) connectivity between
the networked resources is required to control an elastic on-
demand infrastructure [2]. Any CP message exchange (e.g.,
OAM, SDN/NFV/Cluster control) will run on top of this base
CP connectivity. So before any CP messages can be sent, this
connectivity must first be established, which can be achieved
by a suitable routing protocol that interconnects all resources.

For seamless and continuous CP connectivity, such a routing
protocol should have the following characteristics:
• Massive Scalability w.r.t. the number of nodes (100 000s of

nodes). Routing table size and control message overhead are
important given the high number of (virtualized) networked
resources and increasingly denser meshed networks.

• Self-organization and Supporting Dynamics – the solution
should run “zero-touch”, i.e., without any manual configura-
tion or administration. Both are prohibitive for the projected
network sizes. Connectivity must be (quickly) restored after
failures in order to regain control over the resources.

• Low Stretch – used routes should be (close to) shortest paths.
• Topological Versatility – in contrast to recently upcoming

topology-specific tailored versions of routing protocols [5]–
[7], it should work on top of various topologies.
This paper presents KIRA (Kademlia-directed ID-based

Routing Architecture) that provides self-organized and robust
CP connectivity. Our contributions comprise:
• R2/Kad, a distributed, highly scalable, ID-based routing

protocol with configurable average stretch
• A scalable dynamic routing mechanism with fast conver-

gence, which is loop-free, even during convergence
• A node individual adaptation mechanism, i.e., a node may

reduce stretch by increasing memory for its routing table
• A fast forwarding scheme that eliminates source routes for

CP data traffic, thereby reducing per-packet overhead

II. OVERVIEW OF KIRA

KIRA’s main objective is to provide self-organized robust
CP connectivity, enabling in-band control communication be-
tween all resources. The latter is important as we consider elas-
tic distributed resource control scenarios in which controllers
are instantiated dynamically on existing resources. Moreover,
their set of controlled resources may also change dynamically.

KIRA is structured into a two-tier architecture consisting
of a Routing Tier and a Forwarding Tier (see Figure 1).© IFIP, 2022. This is the author’s version of the work. It is posted here by

permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in proceedings of Networking 2022.



KIRA runs the zero-touch, distributed, highly scalable, ID-
based routing protocol R2/Kad in the Routing Tier to find
viable paths to destinations. Nodes employ this information to
construct fast path forwarding tables in the Forwarding Tier for
data packets (e.g., packets from resource control applications).
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Figure 1. KIRA Architecture

R2/Kad employs a flat ID-based addressing scheme to easily
support self-organization and zero-touch as well as mobility
and multi-homing. ID-based routing has the advantage of
providing IDs as stable addresses to upper layers. Thus, in
case (virtual) resources are moved within the topology, any
control connection to them stays alive. KIRA is a genuine ID-
based scheme, because it does not use topological addresses at
all and thus does not require any additional identifier-locator
mapping (increased risk of non-consistency) and associated
protocols (additional overhead and convergence time).

R2/Kad messages are forwarded using source routing. In
order to avoid the per-packet overhead of source routing for
KIRA’s data packets the Forwarding Tier employs PathID-
based forwarding for the learned paths. It thus enables a more
efficient and fast forwarding of data packets. A PathID denotes
a certain path uniquely and is used as path label. It replaces the
source routing path. Some PathIDs are distributedly computed
a priori, others need to be setup in intermediate nodes by
R2/Kad on demand. KIRA’s Routing Tier does not depend
on the Forwarding Tier and also works without it as its
routing messages bypass it (cf. fig. 1). R2/Kad constructs the
forwarding tables and includes the path setup procedure to
install PathIDs along certain paths. Figure 1 also shows that
R2/Kad messages and data packets use IPv6 with IDs as ad-
dresses. The Forwarding Tier uses IPv6 GRE (Generic Routing
Encapsulation) [8] for packets with PathIDs as destination.

III. R2/KAD: BASIC OPERATION

Graph G = (V, E) represents a network topology with node
set V and set of edges E . R2/Kad uses topologically inde-
pendent identifiers (NodeIDs) as node addresses. At startup,
each node v∈V creates a random NodeID nv∈A as its address
(self-organized assignment). Address space A is usually large,
e.g., 48–128 bits (in our implementation we chose 112 bits that
make up an IPv6 address with a prepended 16-bit prefix).

We denote G as underlay where the nodes v ∈ V are
connected by physical links from E , whereas the same nodes

form an overlay in A by logical connections. Figure 2 shows
some nodes in an exemplary underlay G together with their
overlay representations, e.g., node w has NodeID nw=Y and
node u has NodeID nu=Z. In fig. 2 we assume letters closer
in the alphabet have closer distance according to some metric
d(·, ·). Although w and u are not neighbors in G they are
overlay neighbors in A, i.e., they have a logical connection.

Overlay Hop
First Message

Response Message
Later Messages

𝒏𝒗𝒗
Underlay Link 

Overlay Node
with NodeID 𝑛௩
Underlay Node 

X𝒗 A𝒑
S𝒓 Q𝒍

Y𝒘
M𝒋 Z𝒖

B𝒒
Figure 2. An exemplary topology. Letters resemble NodeIDs. Letters closer
in the alphabet have smaller distance in ID space. First message uses overlay
routing 〈X,A, Y,A,Q,M,Z〉, response message uses reversed path without
cycles 〈X,A,Q,M,Z〉, later messages can use shortcut 〈X,B,M,Z〉.

The core concept of R2/Kad is that it discovers paths in the
underlay by using an ID-based overlay routing scheme (based
on [9]) combined with source routing between overlay hops.
Every node v manages a routing table (RT ) (see section III-B)
that contains all its known overlay neighbors called contacts.
Each contact is identified by its NodeID nj and has associated
data that includes a path vector pj . pj represents the ordered
sequence 〈nh, . . . , nl〉 of all nodes between this node (nv) and
nj (nh is the next hop of nv), corresponding to the currently
best known path in the underlay leading from v to j. On
startup (see section III-C), each node populates its RT with
discovered physical neighbors (PNs) (link layer) and continues
to discover nodes in its 3-hop vicinity. The overlay metric
d(·, ·) determines which nodes will be put as contact into the
RT . Further RT entries are added by various procedures, e.g.,
by incoming or overheard R2/Kad messages during forwarding
or active probing for paths to contacts (see section III-E).

A. Path Discovery and Routing

Assume node v with ID X needs to send a message to
node u with ID Z. In case Z is a known contact of X ,
a path vector is stored already in RT that can be used for
strict source routing in order to reach Z. Otherwise, a path
to Z must be discovered using ID-based overlay routing.
R2/Kad uses a recursive version of Kademlia (Routing with
Recursive Kademlia – R2/Kad), which defines the (overlay)
distance between two NodeIDs X and Y by the XOR metric
d(X,Y ) = X ⊕ Y [9].

The Path Discovery procedure is illustrated in fig. 2 and
uses a request/response message pair, FINDNODEREQ/FIND-
NODERSP. In this example, assume that X identifies its
contact Y (learned from PN A) as next (ID-wise closest)
overlay hop toward Z. In order to discover a path to Z, X
creates a FINDNODEREQ message that contains destination
NodeID Z and source route r= 〈X,A, Y 〉 using path vector
pw = 〈A〉 of nw=Y . The FINDNODEREQ is forwarded along



r (strict source route). Assume it eventually arrives at node
Y which also looks up its currently known ID-wise closest
contact to Z. The ID space is not cyclic, i.e., in fig. 2, X
and Y are overlay neighbors as well as Y and Z, but A
and Z not. Forwarding messages between overlay neighbors
requires source routing, because the path in the underlay
may lead via nodes that are (ID-wise) further away from the
destination (e.g., Y routes via 〈A,Q,M〉 to Z in fig. 2): using
the ID-based overlay routing scheme on a hop-by-hop basis
(i.e., between directly adjacent nodes in the underlay) would
inevitably lead to forwarding loops in most cases.

When the FINDNODEREQ arrives at Y , the same procedure
is repeated (thus, it is a recursive variant of Kademlia).
Node Y tries to find a contact no closer to Z than Y itself
(i.e., d(no, Z) < d(Y,Z)). If no exists, source route r is
appended by 〈po, no〉 and the FINDNODEREQ is forwarded
to no. Otherwise, the FINDNODEREQ is terminated at this
node and a response is sent back depending on the “exact
flag” in the FINDNODEREQ. If exact was not set, Y sends
a FINDNODERSP back to originator X that contains an RT
excerpt of Y ’s (at most) k closest contacts to Z in a so called
RTable object. This enables finding the responsible node for
a destination ID Z if used as object key. The latter allows
for so called key-based routing [10] that is used to realize
distributed hash tables (DHTs). If exact was set, X assumed
that a node with ID Z must exist, but the current node is the
ID-wise closest node to Z and does not know Z as contact.
Consequently, the node cannot forward the FINDNODEREQ
closer to Z and returns a “Dead End” ERROR message (which
may happen occasionally during convergence).

In the given example of fig. 2, we assume that Y knows Z
as its contact with path vector 〈A,Q,M〉. It extends source
route r of the FINDNODEREQ by 〈A,Q,M,Z〉 and forwards
it to A as next hop in the source route. If routing information
has been converged, this ID-based routing scheme guarantees
progress in the ID space [9] during forwarding and eventually
finds node Z. In case source route r contains a broken link or
unreachable node, a “Segment Failure” ERROR message will
be sent back to X along the reversed source route.

The destination node responds with a FINDNODERSP mes-
sage along the reversed source path with any cycles removed
(see Response Message in fig. 2). Due to XOR’s symmetry, the
responding node Z also learns the new contact X as neighbor.
The FINDNODERSP returned to X not only provides a path to
Z, but also a list of k closest contacts to Z together with their
path vectors. This list is used to improve X’s routing table.

The first message (e.g., initial FINDNODEREQ to Z) incurs
a stretch that is largely correlated with the average number of
traversed overlay hops (which grows with O(log n)), because
each node knows the shortest paths to its contacts in most cases
as shown in section VII. Stretch of response messages, e.g.,
FINDNODERSP is already reduced by eliminating any cycles.
Subsequent messages (or “later messages”) can do even better
(cf. fig. 2): the originating node tries to shorten the reversed
path of the response by applying shortcuts using its own RT
information, thereby reducing path stretch further.

Note that R2/Kad (and also KIRA) is loop-free even during
convergence due to its ID-based routing with XOR’s unique-
ness (∀X, d ∈ A ∃!Y ∈ A : d(X,Y ) = d) and strict source
routing between overlay hops: messages get dropped if there
is no guaranteed progress.

B. Routing Table

R2/Kad’s efficiency and flexibility is closely related to its
routing table. It is structured as tree of k-buckets (see fig. 3)
as in [9]. A k-bucket in the RT contains a list of (at most)
k contacts in distance between 2i and 2i+1 (i.e., the bucket’s
range, where 0≤ i < 112) from this node. Usually, k≥ 20 is
constant and the same for all buckets and nodes, but it can also
be varied per node. Buckets at deeper levels share more prefix
bits with the node’s own ID, however, buckets for small values
of i are generally empty as no appropriate nodes exist in this
address space. Thus, the highest bucket contains contacts from
half of the ID space whose highest NodeID bit differs from
the node’s ID, whereas the deepest bucket contains all nodes
that are ID-wise closest to the node (i.e., the ID-wise closest
overlay neighbors).

If node X learns a new contact Y , it puts it into the
corresponding k-bucket bl in case it still has capacity left.
The bucket index l is determined by calculating the common
prefix length between X and Y (number of high-order zero
bits of d(X,Y )). If the bucket contains k entries already,
it is split into two new buckets (and the contained entries
moved to them accordingly) in case X falls into the bucket’s
range. Otherwise, a selection algorithm determines whether the
new contact should replace an existing entry in this bucket.
In our case we use Proximity Neighbor Selection (PNS) so
that contacts with shorter path lengths are preferred. Physical
neighbors are kept in special buckets that have no capacity
limit, i.e., they will never be preempted. In general, routing
also works without this PN buckets extension of [9], but the
resulting stretch will be slightly higher.
X identifies its closest known contact in RT by locating

the k-bucket that corresponds to the longest matching prefix
of destination Z with its own NodeID X by using d(X,Z).
It then selects a contact with the shortest path vector from
within the bucket; this is called Proximity Routing (PR). If no
prefix-wise progress can be made in this node, all paths have
equal length, or it is the deepest bucket, the XOR metric is
used to uniquely select the closest contact.

Consequently, the overall RT size grows only with
O(lG · log n), where n is the number of existing nodes and
lG is the average path length of network G: there are O(log n)
contacts with a path vector of length lG in average. These
small RT sizes lead to enormous advantages in dynamic
scenarios (see section IV), because they cause less RT updates
compared to larger RT s.

A remarkable property of R2/Kad is that the paths for
contacts get improved over time (see section III-E) and tend to
be shortest paths regardless of the topology. That means the av-
erage routing table stretch SRT = 1

|RT |
∑

i∈RT |〈pi, ni〉|/|P ∗i |
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Figure 3. Sketch of the R2/Kad routing table structure for node nv = X
with ID 01001101 . . . 0: k-buckets hold contacts with path vectors. For clarity
reasons, not all contacts of a bucket are shown.

is very close to 1 (|RT |: number of contacts, |〈pi, ni〉|: current
path length to i, |P ∗i |: length of the shortest path to i).

C. Startup and Vicinity Discovery

At startup, each node v generates its address nv randomly.
Afterwards, it explores and discovers its 3-hop vicinity, i.e.,
underlay nodes in physical distance ≤ 3 hops. Every node v
maintains a local state sequence number sv that is increased
by one with every connectivity change in its set of directly
attached physical neighbors. The discovery of PNs uses PN-
HELLO messages that are sent periodically on every physical
link and contain the node’s NodeID nv and sv . A node w
may respond (e.g., in case of detecting v as new PN) with
a PNDISCREQ, which also contains node w’s current set of
PNs. The PNDISCRSP from v contains sv and its current set
of PNs. PNDISCREQ and PNDISCRSP ensure bidirectional
connectivity. They can be sent any time to check connectivity
or to resynchronize the state, e.g., in case node v sees a newer
sw in w’s PNHELLO or hears it indirectly from other nodes.
During vicinity discovery, node v puts every PN into its RT .
QUERYROUTEREQ/QUERYROUTERSP messages are used to
get PNs or RTable objects from nodes in the vicinity.

D. Initial Join

As result of the vicinity discovery, all PNs of v and some
nodes within its 3-hop radius will populate v’s RT . However,
in order to get network connectivity and to contribute to
connectivity, the node needs to find its ID-wise closest overlay
neighbors and make itself known to them. Thus, to join the
network v simply “searches” for the k closest nodes to its own
ID nv: v sends a FINDNODEREQ for its own ID nv and the
closest neighbor replies with FINDNODERSP. This is repeated
with a limited exponential backoff in order to detect or heal
any network partitioning.

E. Routing Table Population and Improvement

Nodes may learn new contacts or new paths to already
known contacts while forwarding messages, thereby refreshing
several buckets. Normally, routing traffic can be triggered by
KIRA application traffic, e.g., a control plane application that
wants to initiate a control connection to a new destination.

In addition, nodes may randomly probe for entries in their
buckets to keep the overlay connected, heal partitions, etc.
There are multiple mechanisms that may create new or update
existing RT entries:

1) Random Probing: FINDNODEREQ messages may carry
arbitrary destination IDs that do not correspond to NodeIDs
of existing nodes. In this case, the ID-wise closest node will
send back its k closest contacts. Each node periodically sends
FINDNODEREQs to randomly chosen IDs with cleared exact
flag (by default 2.5 messages/s). This will slowly populate or
improve all buckets with existing contacts.

2) Path Overhearing: Nodes that forward routing messages
may use the contained source route to improve their own
routing information: they may learn shortcut routes to existing
contacts or learn new existing contacts. However, only the so
far traversed path is considered as it can be assumed that all
traversed links worked recently.

3) Incoming Requests and Responses: The source routing
path of incoming requests and responses is also considered
for improving the RT . Some messages like FINDNODERSP,
QUERYROUTERSP or UPDATEROUTEREQ contain RTable
objects that are evaluated likewise.

4) Overhearing QUERYROUTERSP Messages: Bypassing
QUERYROUTERSP messages contain RTable objects (as re-
quested by QUERYROUTEREQ) and are inspected for inter-
esting contacts and paths.

5) Periodic Path Probing: aims at reliably detecting any
RT inconsistencies (e.g., seemingly valid contacts with paths
that contain recently failed links). Each node periodically
checks the path validity for all of its contacts by sending a
FINDNODEREQ to them. ID-wise closest neighbors are probed
more often than other contacts and those recently contacted
(≤ 2 s) are not probed. In case a path has a link or node failure,
the FINDNODEREQ will elicit a “Segment Failure” ERROR
message from an intermediate node along the broken path,
notifying about the failed link. The contact’s state will be set to
invalid and a rediscovery process is scheduled (see section IV).

IV. DYNAMICS: RECOVERY FROM FAILURES

In order to improve R2/Kad’s robustness against link or
node failures we introduce a recovery procedure that notifies
about failures and actively tries to find alternative paths that
route around the failure. This procedure is extremely robust
and achieves a fast convergence. It retains R2/Kad’s utmost
scalability by showing affordable overhead w.r.t. the amount
of additionally required control messages (see section VII-D).

R2/Kad nodes detect link and node failures of PNs by
link layer notifications, missing PNHELLO or PNDISCRSP
messages as well as “Segment Failure” errors anytime during
forwarding along source routes (see section III-E5). To recover
from such failures, R2/Kad’s recovery procedure uses the
following mechanisms:
• Notify own nearest overlay neighbors about failed links

or unreachable nodes (“bad news”) by sending UPDATE-
ROUTEREQs via a non-impacted physical link.



• Rediscover a feasible alternative route to the affected node
using FINDNODEREQs. These carry NotVia information
about failed links that must not be considered for routing.

• Per contact state sequence numbers sj (see section III-C)
avoid using obsolete information for path rediscovery. Addi-
tionally, an aging mechanism is used to avoid dissemination
of obsolete routing information. It uses time periods to
assess the currentness of the related path.

• Overhearing of NotVia information and UPDATEROUTE-
REQs about failed links during forwarding informs nodes
about failed links, which initiates a path rediscovery. Over-
hearing is also used to update obsolete path information.

• When an alternative path has been found for a prior affected
contact or a link comes back up again, an UPDATEROUTE-
REQ is sent to own nearest overlay neighbors for dissemi-
nating the “good news”.
The ID-based overlay routing scheme is used for rediscov-

ery of a route, because NodeIDs are randomly distributed all
over the underlying topology. Therefore, a rediscovery uses
different paths that are likely not affected by the failure. How-
ever, if overlay nodes still have obsolete routing information,
i.e., they would normally route via the failed link, they can
detect the need to update their routes as well by seeing the
more current NotVia information.

A. Path Rediscovery

A node v that detects its PN q (cf. fig. 2) or the correspond-
ing link (v, q) has failed, reacts as follows (unless isolated by
that failure):
1) Set the state of the corresponding contact to invalid (in

fig. 2 nq=B). Invalid contacts will temporarily not be
considered for routing.

2) Set the state of all contacts whose paths contain the failed
link (nv, nq)=(X,B) to invalid (in fig. 2 nu=Z with
〈B,M,Z〉 becomes invalid).

3) Send UPDATEROUTEREQ messages indicating the failure
to four of its ID-wise nearest neighbors (e.g., Y and Z in
fig. 2) via non-affected contacts (cf. also fig. 4).

4) Trigger a rediscovery process (described below) for nq (sets
state to rediscovery) and for other invalid contacts.

5) If the rediscovery process is successful for a contact, its
state is set to valid and UPDATEROUTEREQ messages are
sent to notify ID-wise nearest neighbors about the change.

Since UPDATEROUTEREQs have notification character only,
they do not create any responses (even no errors if dropped).
The rediscovery process simply sends a FINDNODEREQ for
all invalid contacts (all invalid contacts will be ignored in
finding the next hop). This FINDNODEREQ for rediscovery
(also denoted as rediscovery message) contains a set exact
flag and the failed link (v, q) as additional NotVia information
(nv, nq). It is sent to v’s currently known nearest neighbors
of the invalid contact (e.g., np=A in the example), which will
then try to forward the FINDNODEREQ further toward the
failed contact. The NotVia information avoids that nodes use
obsolete routing information when forwarding the rediscovery
message, i.e., paths that contain the failed link will not be

FindNodeReq

NotVia (X,B)→X
FindNodeRsp

FindNodeRsp

FindNodeReq

NotVia (X,B)→B

UpdateRouteReq

NotVia (X,B)→Y

X A M ZY

UpdateRouteReq

NotVia (X,B)→Z

UpdateRouteReq

NotVia (X,B)→Z
FindNodeReq

NotVia (X,B)→X

UpdateRouteReq

→Y; X: <M,Q,A> 

X (Invalid):<M,B>

 Rediscover X

(Rediscover B)

Figure 4. Exemplary excerpt of messages from nv=X (see fig. 2) to inform
about the failure of link (X,B) and to rediscover alternative paths. Node
nq=B will perform corresponding actions, which are not shown.

used for forwarding. Node A may not have heard yet about
the broken link and thus will invalidate contact nq=B if its
prior preferred path is via 〈X,B〉. In order to ensure that only
current NotVia information is considered, every link contained
in NotVia is also accompanied by a related age value ∆T ,
specifying in ms how long ago the sender heard about the
failed link. In case a FINDNODERSP is returned by nq , a
valid path has been discovered and the contact’s state is set
to valid (triggering subsequent UPDATEROUTEREQs with the
new path as mentioned before).

Nodes receiving UPDATEROUTEREQs or FINDNODEREQs
containing the failed link also set their corresponding affected
contacts to invalid and trigger a rediscovery process of the
routes (like Z in fig. 4). The actual rediscovery messages are
sent after different randomly chosen waiting times from an
interval [0.5tp, 1.5tp]. The mean value tp is set as follows: for
affected ID-wise near contacts (in the deepest bucket) 500 ms,
for PNs 1 s and for all others 2 s. Rediscovery messages
are sent simultaneously to two different neighbors of the
affected contact at a time, until k neighbors have been tried
unsuccessfully to rediscover a path to the currently invalid
contact. In the latter case, a new round of rediscovery attempts
will be initiated with exponential backoff until a certain limit
of retry rounds (default: 6) have been made without any
success, after which the contact will be deleted. Although there
is no guarantee that a viable alternative route can be found, our
results in section VII show that connectivity is very quickly
restored after a failure even in drastic failure scenarios.

Node q at the other end of the failed link (v, q) also tries
to rediscover v and thus sends an UPDATEROUTEREQ to its
nearest overlay neighbors (e.g., np=A). Thereby, it may inform
A as well as X about a new alternative route via M .

B. Ensuring Routing Information Validity

R2/Kad uses state sequence numbers and aging to pre-
vent obsolete routing information from spreading or settling.
Messages carry routing information in an RTable object that
contains a list of contacts nj , and for each contact nj the
corresponding path vector pj leading from the reporting node
to the contact, its state sequence number sj and the age ∆Tj
of this information. The currentness of contact information



can always be assessed by sj . However, sj alone does not
suffice to assess the currentness of the associated path to this
contact as intermediate links may have been failed/repaired.
Therefore, each reported path, as well as NotVia links, carry an
associated age value ∆Tj that corresponds to the time period
when the path information was updated last at the originating
node. This avoids spreading and wrongfully accepting obsolete
routing information. A path is updated only if the contact’s
state sequence number is larger than the prior known sequence
number for this contact, or, in case of equal sequence numbers,
the received path information must be more recent when
comparing their age values. Since age values are relative, they
can be compared even if they stem from different nodes, i.e.,
synchronized clocks are not required.

The previously described mechanisms cannot guarantee
notification of all affected nodes about link failures in their
path vectors. In order to reliably detect such inconsistencies,
each node periodically probes the paths to all its contacts as
described in section III-E5. Thanks to R2/Kad’s small routing
table sizes, it is guaranteed that all inconsistencies are detected
within at most 2 min in a 100 000 nodes network (k=20) with
a probing rate of 2.5 messages/s per node.

V. FAST FORWARDING

A potential drawback of R2/Kad is its use of source routing
to forward between two overlay hops. Handling a (potentially
long) list of source routing hops is currently not as efficiently
realized as regular destination-based routing. Moreover, source
routing increases per-packet overhead. To forward data packets
more efficiently, the Forwarding Tier (see fig. 1) leverages
an approach similar to label switching. KIRA distributedly
computes so-called PathIDs to avoid explicit path setup sig-
naling in most cases. Every source routing path is hashed into
a unique PathID (similar to [11]). IPv6 GRE [8] is used to
carry the outgoing PathID in addition to source and destination
NodeIDs. KIRA implements fast forwarding as follows:
• Each node computes incoming and outgoing PathIDs for

each discovered path. Paths must be calculated for the
full 2-hop vicinity and are then used for the a priori pre-
computation of PathIDs. A PathID is a hash of all NodeIDs
along a source path.

• The node inserts forwarding table entries in the form of In-
coming PathID→(Outgoing PathID, Next Hop). The source
route for the incoming PathID includes the own NodeID,
whereas it is stripped off for computing the outgoing PathID.
The outgoing PathID is omitted for the last hop.

• A node that wants to send a data packet, sets the outgoing
PathID of the source route as destination address of the
outer encapsulation header and sends it to its PN. The source
address of the outer header is set to the sender’s NodeID.

• A node that receives a packet containing an incoming PathID
tries to match it in its forwarding table. If it finds an entry, it
rewrites the PathID with the outgoing PathID. Including the
own NodeID into the incoming PathID has the advantage of
being more resilient against misrouted packets. If no entry

is found, a corresponding ERROR is sent back, indicating a
temporary inconsistency.
Each node computes all PathIDs for its 2-hop vicinity

to avoid path setup signaling, because it allows all nodes
to assume that PathIDs exist for all source paths of length
≤3 hops. PathID pre-computation for the full 2-hop vicinity
provides a good trade-off between the number of a priori
computed PathIDs and required path setup signaling. Rout-
ing information between nodes differ (in contrast to [11]),
because they discover a different part of the topology and
learn different contacts and paths due to cycle elimination
and applied shortcuts. Therefore, intermediate nodes along a
source route may not have computed the necessary PathIDs
for others. Nodes explicitly setup paths via PATHSETUPREQ
only for paths >3 hops. The PATHSETUPREQ can be answered
earlier if the PathID for the rest of the path is already known.

The routing information from the Routing Tier is used by
the Forwarding Tier to generate two forwarding tables inside
each node: one based on the calculated PathIDs and one based
on NodeIDs (generated from RT ). We can employ common
longest prefix matching for both tables. The required prefix
length is typically much shorter than the full length of the
NodeIDs. The PathID forwarding table size comprises at least
all stored contacts, but it is usually larger due to the number
of pre-computed and signaled entries (cf. section VII-E).

VI. RELATED WORK

KIRA provides underlay connectivity by using source rout-
ing for path discovery based on Kademlia [9] overlay prin-
ciples. Though overlay-based routing was proposed earlier
[12]–[14], KIRA goes far beyond these approaches in several
aspects. It provides fast forwarding of data packets without
any source routing by employing PathIDs. Kademlia-based
underlay connectivity and routing are optimized by a careful
design of mechanisms, allowing to discover shortest paths for
contacts in nearly all cases. Moreover, its design includes
a highly robust and efficient mechanism to recover from
failures. To best of our knowledge, KIRA is a novel concept
that comprises many well-engineered mechanisms for a self-
organized underlay connectivity even in very large networks
and under high dynamic situations.

The original Kademlia scheme, in contrast, is completely
situated in the overlay and does not provide any path re-
discovery mechanism. UIP [14] also uses genuine ID-based
addressing with a Kademlia-like overlay, but the efficiency of
routes was not in focus (e.g., no PNS and PR used). Moreover,
dynamics besides network split and network merge were not
considered or evaluated. Virtual Ring Routing (VRR) [13]
is an ID-based overlay-inspired routing protocol that sets up
virtual links between overlay neighbors. Route efficiency is not
considered, so routes may incur high stretch. Virtual links may
cause lots of forwarding entries in intermediate nodes that have
to forward lots of traffic. In contrast to KIRA’s PathID scheme,
paths setup by VRR are not aggregatable. VIRO [15] proposes
a virtual ID-routing scheme based on an additional mapping
layer that employs a Kademlia-like structure. Its virtual IDs



are topology dependent, so changes in the underlay require
changes in the virtual ID space. The protocol requires address
space construction, address assignment as well as a publish
and query mechanism for address mappings.

DISCO [16] is an ID-based distributed compact routing
scheme using landmarks, so traffic will concentrate around
them. Our investigations of KIRA’s routes showed no indica-
tion of traffic concentrations. DISCO possesses a worst case
stretch guarantee, but its RT size scales with O(

√
n log n).

It is not a genuine ID-based protocol since it uses topolog-
ical addresses and two mapping systems for ID to locator
resolution. Its reaction to link failure/repair have not been
designed or evaluated in [16] and larger network changes (e.g.,
partitions) require re-election of landmarks that would change
all addresses. The approach is more complex as it requires four
interworking protocols. RPL [17] is used as routing protocol
for the Autonomic Control Plane [4]. RPL, however, is based
on a tree-like structure, requires manual configuration of roots
and produces heavy traffic concentration near the root node as
well as stretch [18]. More efficient routes come at the cost of
additional entries and also additional route discovery overhead.
Recent efforts try to mitigate the scaling issues of link-state
protocols in denser data center topologies [5]–[7]. However,
some of the solutions possess inherent scaling limitations,
because they still use flooding and O(n) state, others (e.g.,
RIFT) are designed for specific topologies only.

VII. EVALUATION

KIRA’s behavior with varying network topologies and sizes
was investigated by using the OMNeT++ [19] simulation
framework. To achieve some variation, the processing time
per message was randomly uniformly drawn from [0, 500]µs,
whereas links have no speed limitation. As soon as a link
comes up, a PNHELLO is sent to the other end and startup
continues as described in section III-C. The initial join starts
after 100 ms plus a random delay chosen from an interval of
250 ms, which is doubled every time until a limit of 300 s
is reached. Simulation runs were performed multiple times
(≥ 10) with different seeds, but the deviation between the
results was always so small (cf. error bars at 2σ in figs. 5
and 8) that mostly mean values are shown without deviation.
This is expected as the change in the random distribution of
NodeIDs across the topology has negligible impact on R2/Kad.

A. Short Paths and Small Routing Tables

R2/Kad discovers shortest paths to contacts almost always
despite using small routing tables. We use the path stretch
SPi = |Pi|/|P ∗i | to assess the quality of the discovered path,
Pi is the current discovered path, P ∗i the shortest path to
node i in the underlay. The used topology was a Holme-
Kim power-law graph [20] with parameter m=3 and clustering
parameter 0.5. Many practical networks like the Internet are
scale-free and challenging for dynamics [21]. The bottom plot
in fig. 5 shows path stretch to randomly chosen destinations
for first and later packets as well as average RT stretch (i.e.,
path stretch for contacts) in dependency of different k values

and network sizes n. Stretch of response packets is between
that of first and later packets. For k=40 path stretch of later
packets is below 1.25 for sizes up to 104 nodes and below
1.5 even for 200 K nodes. Stretch for first, response, and later
packets grows with O(log n), caused by the average number
of required overlay hops that increases in the same way with
n. The results highlight the efficacy of eliminating cycles
for response packets and applying shortcuts for later packets.
Stretch of later packets is reduced by about 25% compated to
first packets. Most importantly, the average RT stretch is ≈1
irrespective of n (and even from topology, see fig. 6).
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Figure 5. RT Size and Path Stretch for varied sizes n and values of k

Besides providing short paths, KIRA’s small RT sizes are
especially advantageous in very large networks. The number of
RT entries scales with O(log n) as shown in the topmost plot
of fig. 5. For a network of 100 k nodes, 300 entries are needed,
in case of 200 k nodes 320 RT entries (99 percentiles for
k=20). Compared to a traditional link-state or distance vector
routing approaches KIRA yields a reduction of three orders of
magnitude. The memory requirements depicted in the middle
plot of fig. 5 were calculated by multiplying the average RT
path length by a node’s average number of contacts. They also
scale with O(lG log n) as discussed in section III-B.

B. Tunable Efficiency – Trading RT Size for Path Stretch

With R2/Kad, path stretch can be reduced by increasing
the RT size. This can be done individually by each node –
independently from any other node. This way, stronger nodes
with more resources can increase the number of RT entries,
e.g., by increasing k. Figure 5 shows the impact of RT size (by



varying k) on stretch. Clearly, with increasing k, the number of
contacts increases and, consequently, the overall path stretch
decreases. In this case, all network nodes used the same k.

C. Topological Versatility

Figure 6 shows that KIRA works definitely well in different
topologies due to its structural pervasion by randomly dis-
tributing NodeIDs across the topology. The used topologies are
(from left to right, number of nodes in parentheses): Internet
(autonomous systems topology from 2021/12/21), Holme-Kim
power-law [20], Watts Strogatz [22] (with different p values),
Random (with average degree 8), Random Geometric (with
average degree 8), 100×100 Grid, MixedFT-PL (a 400 node
power-law topology connecting all cores nodes of four 20-ary
Fat Trees [23]), 32-ary Fat Tree and the Kentucky Data Link
topology from the Topology Zoo [24]. Watts Strogatz graphs
can be varied by p values from regular structure (small p) via
small world to random (p=1) graphs. The results for bucket
size k=40 show that the average RT stretch is 1, i.e., shortest
paths to contacts are learned in all different topologies. Stretch
becomes larger in randomly connected topologies, because
there is no underlying structure that R2/Kad can make use
of. R2/Kad is able to work efficiently also in topologies with
large diameters (e.g., 151 for p=0.003) and in a mixture of Fat
Tree and power-law topologies (MixedFT-PL).
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Figure 6. Mult. Path Stretch and RT Stretch for different topologies (k=40)

D. Dynamics – Recovery from Failures

KIRA’s dynamics mechanism (see section IV) is extremely
robust, shows fast convergence and overhead with scalable
growth w.r.t. increasing n. The first scenario tests whether
recovery from link failures is successful so that all (non-
isolated) nodes can be reached. Every node sends 2.5 FIND-
NODEREQs/s as reachability test packets randomly to other
nodes (but not to isolated nodes, because they cannot be
reached physically at all). In fig. 7 a drastic failure scenario
is investigated: 15% of the links fail randomly and simultane-
ously at t=20 s and are re-enabled again at once at t=50 s.

Figure 7a shows that the delivery ratio drops during the link
failure at t=20 s slightly (y-axis begins at 0.9), but it takes only
roughly 6 s (cf. zoomed range) until nearly all test packets
reach their destinations again, i.e., recovery is extremely fast.
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Figure 7. 15% randomly distributed links (41 226) fail at t=20 s and are re-
enabled at t=30 s in a power-law topology of n = 100 000 nodes

When the failed links become available again after 30 s, the
recovery period is even shorter. At first, some packets get
dropped, because test packets are sent to previously isolated
nodes again, but the reachability information has not reached
all nodes yet. Figure 7b shows the average rate of sent and
received control traffic per node as well as the number of RT
updates. Since not all rediscovery messages are successfully
delivered, there is a small difference between sent and received
messages during the failure period. The rate of RT updates
shows quick convergence in both cases. Link state routing
would have sent at least 82 452 link state advertisements
instantaneously and forwarded them to all nodes.

KIRA is also extremely scalable while coping with dy-
namics, because its message overhead per node grows only
logarithmically with increasing network sizes. Figure 8 shows
overhead in terms of the number of additionally sent and
received messages for the recovery from link failures (upper
plot) and during the period after the failed links have been
restored (lower plot) respectively. The overhead is calculated
by summing up all messages after the corresponding event
that are above the regular periodic messages level. The link
failure ratio (LFR) is varied as well as the size of the (power-
law) topology. The overhead clearly increased with higher
LFRs, but corresponds to logarithmic growth. Overhead may
even decrease with increasing topology size due to overhearing
messages with repaired/restored paths. These results confirm
that KIRA is able provide fast recovery from (even severe)
failure situations with scalable overhead growth.
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E. Fast Forwarding

We briefly show that KIRA’s forwarding table sizes remain
scalable even though other other nodes create “foreign” entries
by path setup requests. The left plot in fig. 9 shows different
types of forwarding table entries for different power-law
topology sizes (log scale). The number of foreign PathID
entries increases with

√
n only.

The right plot shows the cumulative distribution functions
of the number of forwarding table entries for a 100 k nodes
topology. One can see that the number of actually used
pre-computed entries is often smaller than the overall pre-
computed entries and in the range of the number of contacts.
Implementations can install actually used pre-computed entries
on demand, thereby saving precious forwarding table space.
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VIII. CONCLUSIONS AND OUTLOOK

KIRA is a novel architecture that comprises a combination
of a distributed, zero-touch, highly scalable ID-based routing
protocol R2/Kad and PathID-based forwarding for data pack-
ets. It is well suited to provide robust control connectivity for

a large resource pool. R2/Kad’s routing table size grows with
O(lG log n), where n is the number of existing nodes and lG is
the average path length. KIRA is loop-free, shows acceptable
low stretch in various topologies, discovers shortest paths for
contacts, and showed fast convergence even for drastic failure
scenarios with scalable overhead growth in large (100k+)
topologies. A unique feature is also its per-node tunable
efficiency, i.e., nodes can increase their local routing table
size, thereby reducing global stretch. KIRA’s PathID-based
forwarding scheme allows fast and more efficient forwarding
for data packets. Due to space restrictions we cannot present
extensions for end-system nodes or for improved path diver-
sity. Further work investigates the introduction of link weights,
multi-path routing, and support of mobile end-systems.
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