
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 109 (2022) 275–280

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference
10.1016/j.procir.2022.05.249

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

Available online at www.sciencedirect.com

ScienceDirect
–

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

32 nd CIRP Design Conference

AI based geometric similarity search supporting component reuse in

engineering design

 Carmen Krahea,*, Milan Marinovb, Theresa Schmutza, Yannik Hermanna, Mike Bonnyb,
Marvin Maya, Gisela Lanzaa

aKarlsruhe Institute of Technology (KIT), wbk Institute of Production Science, Kaiserstrasse 12, 76131 Karlsruhe, Germany
bUSU Software AG, Rüppurrerstrasse 1, 76137 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Today, companies are faced with the challenge to develop and produce individualized products in the shortest possible time at very low cost in
order to remain attractive under strong competitive pressure. For reasons of efficiency, products are therefore often developed in generations.
Proven components are adopted in a new product generation and only some of the components are newly developed to meet new customer
requirements. Many companies, therefore, have a large database of 3D CAD product models containing years of engineering experience.
Nevertheless, it is often difficult to execute database queries to find which products or components already exist and could be reused or adapted
for a new product generation or variant. As a result, many duplicates are created, which are associated with high effort and costs, and the risk of
introducing design errors increases.
Therefore, the aim of this paper is to develop an automated approach for geometric similarity search that also takes company-specific features of
components into account. Machine learning methods are capable of automatically extracting relevant geometric features by learning a suitable
representation of the corresponding 3D object. For this purpose, an autoencoder is developed which is trained to extract class-specific feature
vectors. To improve the representativeness of those vectors for the similarity search, the architecture and hyperparameters of the autoencoder are
optimized based on several experiments. Considering a real use case with a data set from the field of mechanical engineering, it is shown that
geometrically similar CAD models can be found very quickly using the learned representation, and that better results are obtained than with
conventional methods based on meta information, e.g. volume and bounding box. On the one hand, the fast finding of similar models encourages
the reuse of existing solutions. On the other hand, standardization and, thus, economy of scale is promoted.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

 Keywords: Artificial Intelligence; Pattern Recognition; Design; Similarity Search; Product Development

1. Introduction

Nowadays, due to increasing individualization and
globalization as well as shortening of product lifecycles [1],
companies are faced with the challenge of bringing innovative
products to market at the lowest possible price in an even
shorter time. In order to meet these requirements, product
development in particular faces the great challenge of creating
innovative products under enormous cost and time pressure.
The majority of companies develop their products in

generations [2]. According to [2], to a large extent proven
solutions (e.g. components) are taken over into new
generations and are slightly adapted if necessary. Only a small
part of a new product is actually newly developed. The
advantage of this is that proven solutions and, thus, experience
can be built upon. However, in many companies, due to the lack
of transparency, this wealth of experience is not yet used
systematically [3]. Instead of reusing existing product
components, new variants are developed, leading to
unnecessary variant creation and, hence, higher costs.

Manuscript in PDF Click here to view linked References

Available online at www.sciencedirect.com

ScienceDirect
–

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

32 nd CIRP Design Conference

AI based geometric similarity search supporting component reuse in

engineering design

 Carmen Krahea,*, Milan Marinovb, Theresa Schmutza, Yannik Hermanna, Mike Bonnyb,
Marvin Maya, Gisela Lanzaa

aKarlsruhe Institute of Technology (KIT), wbk Institute of Production Science, Kaiserstrasse 12, 76131 Karlsruhe, Germany
bUSU Software AG, Rüppurrerstrasse 1, 76137 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Today, companies are faced with the challenge to develop and produce individualized products in the shortest possible time at very low cost in
order to remain attractive under strong competitive pressure. For reasons of efficiency, products are therefore often developed in generations.
Proven components are adopted in a new product generation and only some of the components are newly developed to meet new customer
requirements. Many companies, therefore, have a large database of 3D CAD product models containing years of engineering experience.
Nevertheless, it is often difficult to execute database queries to find which products or components already exist and could be reused or adapted
for a new product generation or variant. As a result, many duplicates are created, which are associated with high effort and costs, and the risk of
introducing design errors increases.
Therefore, the aim of this paper is to develop an automated approach for geometric similarity search that also takes company-specific features of
components into account. Machine learning methods are capable of automatically extracting relevant geometric features by learning a suitable
representation of the corresponding 3D object. For this purpose, an autoencoder is developed which is trained to extract class-specific feature
vectors. To improve the representativeness of those vectors for the similarity search, the architecture and hyperparameters of the autoencoder are
optimized based on several experiments. Considering a real use case with a data set from the field of mechanical engineering, it is shown that
geometrically similar CAD models can be found very quickly using the learned representation, and that better results are obtained than with
conventional methods based on meta information, e.g. volume and bounding box. On the one hand, the fast finding of similar models encourages
the reuse of existing solutions. On the other hand, standardization and, thus, economy of scale is promoted.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

 Keywords: Artificial Intelligence; Pattern Recognition; Design; Similarity Search; Product Development

1. Introduction

Nowadays, due to increasing individualization and
globalization as well as shortening of product lifecycles [1],
companies are faced with the challenge of bringing innovative
products to market at the lowest possible price in an even
shorter time. In order to meet these requirements, product
development in particular faces the great challenge of creating
innovative products under enormous cost and time pressure.
The majority of companies develop their products in

generations [2]. According to [2], to a large extent proven
solutions (e.g. components) are taken over into new
generations and are slightly adapted if necessary. Only a small
part of a new product is actually newly developed. The
advantage of this is that proven solutions and, thus, experience
can be built upon. However, in many companies, due to the lack
of transparency, this wealth of experience is not yet used
systematically [3]. Instead of reusing existing product
components, new variants are developed, leading to
unnecessary variant creation and, hence, higher costs.

Manuscript in PDF Click here to view linked References

276	 Carmen Krahe et al. / Procedia CIRP 109 (2022) 275–280
 / Procedia CIRP 00 (2022) 000–000 3

five different classes: 524 adapters, 137 covers, 94 flanges, 102
housings and 143 O-Rings. For Processing, the objects are
converted to point clouds, centralized and normalized. For
normalization, each coordinate is scaled by an individual
scaling factor in the form of the maximum dimension of its
bounding box. 95% of the data, both per class and consequently
in total, is used for training, with the remaining 5% constituting
the test set. The split is chosen because in a real use case a large
amount of data is already available and only a small amount of
new components will be added.

2.2. Architecture of the autoencoder

In contrast to 2D images or 3D voxels, the individual points
of a point cloud, consisting of 3 coordinates, are not sorted in
any specific order. One of the consequences is that
convolutions such as those used by CNNs, can not be applied
to point clouds. The AE introduced by [19] for 3D point cloud
processing consists of a graph based encoder and a folding
based decoder, as shown in Fig. 2. The encoder architecture
implements a graph kernel based approach, which captures
local features of point clouds in a manner analogous to CNNs
capturing local semantic features of images. The decoder uses
two consecutive multilayer perceptrons to bend a fixed 2D grid
into the original 3D point cloud shape based on the information
stored in the feature vector. The encoder component of the AE
learns to produce a latent representation of the original point
cloud X. The input of the encoder is a list of points, respectively
an unordered list of 3D-coordinates. The output of the encoder
is a latent vector of size M which is an Mx1-dimensional list of
real numbers. The size of the vector corresponds to the size of
the AE’s bottleneck, the so-called bottleneck size (BNS). The
learned latent vector represents the most significant features of
the point cloud, which are necessary for the decoder to learn a
reconstruction X’ of the original input point cloud X.

Fig. 2. Architecture of the AE based on [19].

2.3. Results with basic autoencoder

In the first experiment, the basic AE was trained with a BNS
of 512 and a learning rate of 0,0005. Subsequently, used to
generate the latent vectors. To investigate the
representativeness of those vectors, a k-Means clustering is
performed that leads to a Homogeneity Score (HS) [26] of
35.74 %. A maximum HS is achieved when there are only
objects of one class in a cluster. Fig. 3 shows the visualization
of the latent space of the training data set in two dimensions

using tSNE, a method introduced by [27] to visualize high
dimensional data. In general, the object vectors in the latent
space do not form distinct clusters and are highly intermixed
across the different classes. Only O-rings (purple), with the
exception of a few outliers, arrange themselves in an elongated
cluster. Considering the flanges (green) several small clusters
can be identified. One cluster is concentrated at the top and the
bottom respectively, several small clusters are located in the
middle of the diagram. In general, round and angular flanges
are each grouped in separate clusters. In addition, differences
in the orientation of the components are noticeable for the
individual clusters. The upper cluster contains flanges aligned
vertically in space. The same applies to the lower cluster,
however those objects are rotated by 90 °. The components of
the middle clusters are oriented horizontally.

Fig. 3. tSNE visualization of the learned latent vectors for the basic AE.

2.4. Experiments for optimization

As shown in Section 2.3, different clusters have emerged
due to inconsistent orientation of the objects. To eliminate such
variation within the data set, in a first experiment the
components were aligned in a uniform standard orientation. To
better discriminate between different classes, additional class
labels are considered in another experiment for a part of the
dataset. A general drawback is that size information relevant to
the engineering domain is lost due to the necessary
normalization of the objects. Therefore, these are transferred
into the latent space in a last experiment with a two-stage AE
architecture.

2.4.1. Pre-alignment of input data
In the first optimization step the input point clouds are

brought into a standard orientation according to the standard
orientation algorithm introduced in [25]. With these standard
aligned point clouds, the AE is trained with the same
parameters as in Section 2.3. K-Means Clustering resulted in a
HS of 46 %, which is an improvement of about 10 % compared
to the basic approach. The tSNE visualization is shown in
Fig. 4. It is quickly noticeable that the clusters are better
separated from each other compared to the clusters of the basic
approach, in particular for the O-Ring class. Only one adapter
and one housing are located in this cluster. However, a closer
look at these objects reveals that they are obviously outliers that
are very close to the geometric shape of an O-ring. Compared
to Section 2.3, the flanges now form two unique clusters
consisting of angular or round flanges respectively.
Furthermore, the thickness of the flanges is responsible for an

2 / Procedia CIRP 00 (2022) 000–000

A variety of commercial software for similarity search on
3D models exists, but they are usually based on hand-crafted
attributes, e.g. [4,5] use so-called geometrical footprints.

In the state of the art, also a variety of approaches are based
on predefined features. For example, in [6,7] several geometric
features (e.g. volume, surface) are used to describe the
geometry of the CAD models and, thus, to determine the
similarity. The approach of [8] considers the CAD model tree
to find geometrically similar models or model components via
similarities of subtrees. The similarity is determined based on
the CAD design features used. An overview is given e.g. in [9].

Machine learning methods, on the other hand, offer the
possibility of automatically extracting suitable and
representative features from the data [10]. In recent years, the
increasing availability of 3D models in public databases has
promoted the further development of existing 2D Deep
Learning methods to 3D. In the 2D domain, Deep Learning
methods are already widely used in practice [11]. In the 3D
domain, however, special challenges have to be met, in
particular a suitable form of a 3D object representation [11].
Common approaches are multi-view [12], voxel [13], point
clouds [14,15], graphs [16] or meshes [17]. A comprehensive
overview of current 3D data representations used in deep
learning is given in [11]. Based on these representations,
supervised learning tasks such as classification or segmentation
are performed. However, there are also some approaches, such
as [18–20], in which unsupervised methods are first used to
learn suitable representations based on point clouds. For this
purpose, autoencoder (AE) architectures are used and the
learned representations are tested on tasks like classification. In
general, AEs are capable of learning a compressed
representation of a dataset by encoding the relevant features in
a self-supervised way. In [19] a point cloud AE based on a
graph kernel operation is used. The graph kernel functions, in
analogy to convolution kernels in CNNs, extract semantically
meaningful local features from the local neighborhood of a
point cloud. This improves the quality of the latent vectors and
at the same time, the robustness of the model. In [20] a
combination of an AE and Capsule networks is presented,
which first learns an alignment of the objects in a canonical
frame allowing the processing of non-aligned objects. Based on
the representations learned via AE, a clustering of 3D objects
is performed in [21] or [22]. However, those promising deep
learning approaches have largely been performed only on
simple datasets, such as ShapeNet [23]. These datasets contain
simple objects that are normalized and aligned to the unit cube.

Recently, there has been a growing interest in using deep
learning methods, especially in the field of CAD [24]. In CAD,
however, it is often dealt with data on component-level, some
of which may be very similar within a component class, but
some of which may be very different. Often, companies are also
unaware of corresponding class labels, but further information,
such as maximum dimensions or material, can be extracted
from the CAD models. Existing methods do not yet take such
information into account.

Therefore, the goal is to adapt methods of deep learning for
3D objects for the application in the CAD domain and to use
them in the form of a geometric similarity search. To this end,
a design assistance system according to [25] is being developed
that is intended to show designers similar components at part

level that already exist in the early stages of product
development in order to make better use of already existing
knowledge and, thus, to avoid unnecessary creation of variants.

The specific contributions of this paper are:
 Development of an AE architecture based on state of the

art point cloud AEs specifically for use in the product
development process.

 Approaches to improve the representativeness of learned
coding specifically for product development applications.

 Development of a geometric similarity search
methodology based on the learned representations.

 Evaluation of the approach based on a real data set from
the engineering domain to find similar CAD models.

2. Methodology

The aim of this approach is to find the geometrically most
similar existing CAD models from a database for a given CAD
model. The corresponding features, which are used to
determine the similarity between the geometries, are learned
automatically from the corresponding data set using deep
learning methods. In contrast to conventional methods based
on predefined attributes, company-specific component features
can be learned. On this basis components can be distinguished.
A point cloud AE based on [19] is used to extract these features.
For this, the CAD models firstly are transformed into point
clouds. Based on the point clouds, the latent representations are
learned which finally represent the geometric properties of the
3D model. Consequently, in the learned latent space, latent
vectors whose corresponding 3D models are geometrically
similar are supposed to be close to each other. This property is
used for similarity search. For a given model, the latent
representation of an input CAD model can first be created using
the trained encoder. For this latent vector, the most similar
CAD models are then found by searching for the closest vectors
in the latent space. For example, the Euclidean distance can be
used as a distance measure for this. The approach is represented
in Fig. 1. The core prerequisite for the approach is a sufficient
representativeness of the learned latent space. For this purpose,
the basic architecture of the AE, which is based on [19] was
first tested on a sample data set. Based on these results, iterative
optimizations were made, on the one hand by preprocessing the
input data, and on the other hand by adapting the AE
architecture itself.

Fig. 1. Overview of the AE based similarity search approach.

2.1. Data set

The basis for the experiments is an industrial database
containing CAD models of real-world, practice-relevant
components. In total, the data set comprises 1000 objects of

n
x

3

m x 1

n
x

3

Encoder DecoderLatent
space

	 Carmen Krahe et al. / Procedia CIRP 109 (2022) 275–280� 277
 / Procedia CIRP 00 (2022) 000–000 3

five different classes: 524 adapters, 137 covers, 94 flanges, 102
housings and 143 O-Rings. For Processing, the objects are
converted to point clouds, centralized and normalized. For
normalization, each coordinate is scaled by an individual
scaling factor in the form of the maximum dimension of its
bounding box. 95% of the data, both per class and consequently
in total, is used for training, with the remaining 5% constituting
the test set. The split is chosen because in a real use case a large
amount of data is already available and only a small amount of
new components will be added.

2.2. Architecture of the autoencoder

In contrast to 2D images or 3D voxels, the individual points
of a point cloud, consisting of 3 coordinates, are not sorted in
any specific order. One of the consequences is that
convolutions such as those used by CNNs, can not be applied
to point clouds. The AE introduced by [19] for 3D point cloud
processing consists of a graph based encoder and a folding
based decoder, as shown in Fig. 2. The encoder architecture
implements a graph kernel based approach, which captures
local features of point clouds in a manner analogous to CNNs
capturing local semantic features of images. The decoder uses
two consecutive multilayer perceptrons to bend a fixed 2D grid
into the original 3D point cloud shape based on the information
stored in the feature vector. The encoder component of the AE
learns to produce a latent representation of the original point
cloud X. The input of the encoder is a list of points, respectively
an unordered list of 3D-coordinates. The output of the encoder
is a latent vector of size M which is an Mx1-dimensional list of
real numbers. The size of the vector corresponds to the size of
the AE’s bottleneck, the so-called bottleneck size (BNS). The
learned latent vector represents the most significant features of
the point cloud, which are necessary for the decoder to learn a
reconstruction X’ of the original input point cloud X.

Fig. 2. Architecture of the AE based on [19].

2.3. Results with basic autoencoder

In the first experiment, the basic AE was trained with a BNS
of 512 and a learning rate of 0,0005. Subsequently, used to
generate the latent vectors. To investigate the
representativeness of those vectors, a k-Means clustering is
performed that leads to a Homogeneity Score (HS) [26] of
35.74 %. A maximum HS is achieved when there are only
objects of one class in a cluster. Fig. 3 shows the visualization
of the latent space of the training data set in two dimensions

using tSNE, a method introduced by [27] to visualize high
dimensional data. In general, the object vectors in the latent
space do not form distinct clusters and are highly intermixed
across the different classes. Only O-rings (purple), with the
exception of a few outliers, arrange themselves in an elongated
cluster. Considering the flanges (green) several small clusters
can be identified. One cluster is concentrated at the top and the
bottom respectively, several small clusters are located in the
middle of the diagram. In general, round and angular flanges
are each grouped in separate clusters. In addition, differences
in the orientation of the components are noticeable for the
individual clusters. The upper cluster contains flanges aligned
vertically in space. The same applies to the lower cluster,
however those objects are rotated by 90 °. The components of
the middle clusters are oriented horizontally.

Fig. 3. tSNE visualization of the learned latent vectors for the basic AE.

2.4. Experiments for optimization

As shown in Section 2.3, different clusters have emerged
due to inconsistent orientation of the objects. To eliminate such
variation within the data set, in a first experiment the
components were aligned in a uniform standard orientation. To
better discriminate between different classes, additional class
labels are considered in another experiment for a part of the
dataset. A general drawback is that size information relevant to
the engineering domain is lost due to the necessary
normalization of the objects. Therefore, these are transferred
into the latent space in a last experiment with a two-stage AE
architecture.

2.4.1. Pre-alignment of input data
In the first optimization step the input point clouds are

brought into a standard orientation according to the standard
orientation algorithm introduced in [25]. With these standard
aligned point clouds, the AE is trained with the same
parameters as in Section 2.3. K-Means Clustering resulted in a
HS of 46 %, which is an improvement of about 10 % compared
to the basic approach. The tSNE visualization is shown in
Fig. 4. It is quickly noticeable that the clusters are better
separated from each other compared to the clusters of the basic
approach, in particular for the O-Ring class. Only one adapter
and one housing are located in this cluster. However, a closer
look at these objects reveals that they are obviously outliers that
are very close to the geometric shape of an O-ring. Compared
to Section 2.3, the flanges now form two unique clusters
consisting of angular or round flanges respectively.
Furthermore, the thickness of the flanges is responsible for an

278	 Carmen Krahe et al. / Procedia CIRP 109 (2022) 275–280
 / Procedia CIRP 00 (2022) 000–000 5

hyperparameter of training. For the experiment, the second
order AE is trained with a BNS of 256 and a learning rate of
0,0005. The weighting factors are set to Κ1= 0,1 and Κ2= 0,9
based on a grid search. Input for the encoder are the first order
latent vectors according to Section 2.4.1 .Clustering on the
latent vectors using k-Means leads to a HS of 53 %. Fig. 8
shows the resulting tSNE visualization of the latent space.
Compared to Section 2.4.1, a slightly better HS is achieved, but
the clusters are not further separated. However, when looking
more closely at the scaling factors, it can be seen that the mean
values are very similar across the different classes with the
exception of the O-Ring class. To illustrate the effect of the
scaling factor, the scaling factors of some of the O-Rings are
increased by a factor of 100 in a further experiment. The AE is
trained with the same hyperparameters as before. As shown in
Fig. 9, O-Rings with different scaling factors are clearly
separated, which demonstrates the general viability of the
approach.

Fig. 7. Architecture of the second order AE.

Fig. 8. tSNE visualization of the learned latent vectors for the two-stage AE
with scaling factor.

Fig. 9. tSNE visualization of the learned latent vectors for the two-stage AE
with scaling factor. O-Rings with initial scaling factor are colored in purple
and with manipulated scaling factors in pink.

3. Case Study

To validate the developed approach, the (geometric)
similarity search is tested using the example data set of Section
2.1 from the field of mechanical engineering. For this purpose,
the latent vectors of the AE with standard oriented input, with
additional class labels as well as with scaling factors are used.
To imitate a real industrial use case, all objects from the test
data set are considered as new (unknown) CAD models, for
which the most similar models from the existing database are
to be identified. The existing database corresponds to the
(known) training data. For a given input model from the
(unseen) test data set, a latent representation is first created
using the corresponding trained encoder. Finally, using the
Euclidean distance, the most similar models are presented from
the training dataset. A similarity search based purely on
geometry descriptive metainformation (e.g. volume, bounding
box) serves as a basis for comparison. For this purpose, 18
attributes in accordance with [7] are extracted from each model
of the data set.

Fig. 10. Results of the similarity search based on line (1) metainformation, (2)
latent vectors of the AE with standard oriented input, (3) latent vectors of the
AE with Classifier and (4) latent vectors of the two-stage AE with scaling
factors. Models found across different approaches are color coded.

Fig. 10 shows the results for an exemplary component. To
determine the similarity, the calculated Euclidean distance is
normalized with the maximum distance in the data set. Since
the data are not based on labels as to how similar the
components actually are, no quantitative statement is possible.

According to the results in Fig. 10, it is obvious that the
similarity search via the attributes is not able to represent
geometric details like the upper flap of the input model. The
latent vector search based on the approaches of Section 2.3 and
2.4, on the other hand, returns flanges that also have such a flap.
Moreover, the flange with the closest match is the same for all
latent vector search approaches.

4. Discussion

As shown in the case study, with the developed approach
data specific geometric details can be learned self-supervised.
However, to show the effectiveness of the approach more
clearly, testing on geometrically more complex data is
necessary. In addition, only qualitative assessments of the
similarities could be made in the case study. In various
experiments, it was shown that the learned representations are
significantly enhanced by a standard alignment. Using

4 / Procedia CIRP 00 (2022) 000–000

additional division for the round flanges. Considering the
adapters, two larger clusters can now be identified with shorter
ones in the lower area and much longer ones in the upper area.
The geometries within the cover and housing classes are highly
inhomogeneous, which makes clustering fundamentally
difficult. Nevertheless, for covers, a grouping with similar
diameter and wall thickness can be found.

Fig. 4. tSNE visualization of the learned latent vectors for the AE with
standard oriented input.

2.4.2. Transfer learning with partially labeled data
To better distinguish between latent vectors of different

classes despite similar geometries, the labels are additionally
used for training from a small part of the dataset. Therefore, the
AE architecture is extended by a classifier, which can be
optionally activated (see Fig. 5). In this way, the AE can be
trained both with and without labels. The classifier has a
multilayer perceptron (MLP) architecture with dropout and
batch normalization layers, as well as a softmax activation
function applied on the last layer. It is attached to the final layer
of the encoder in parallel with the decoder.

In the first training phase on the labeled data, the loss
functions of the decoder (Chamfer distance) and the classifier
(cross entropy loss) are combined via weighted sum and used
for updating the encoder network via back propagation. The
goal is that the encoder now also takes into account the class
information in the latent vectors in addition to the pure
geometry of the point clouds. In the second training phase for
the unlabeled part of the data set, the classifier is deactivated
again and only reconstruction loss is used for network updates.
The aim is to transfer the initially learned representation
improved for class-specific clustering of the smaller, labeled
dataset, to the training of the unlabeled dataset. For the
experiment, the original training data set is subdivided: First,
10 % of the training data is passed to the AE with labels. The
second phase of the training without labels is carried out on the
remaining 90 %. This division is chosen because in a real use
case usually only a few data with labels exist. Given this input
data, the AE is iteratively trained with a BNS of 512, a learning
rate of 0,001 with labels and of 0,0001 without labels.
Clustering on the latent vectors using k-Means leads to a HS of
53,72 %. Fig. 6 shows the resulting tSNE visualization of the
latent space. Compared to Section 2.4.1, a relative
improvement in HS of about 16 % can be achieved.
Nevertheless, housings as well as partly covers remain highly
dispersed and intermingle with other clusters. This observation
can be attributed to the wide range and high variation of
housings and covers in terms of their geometry. However, a
closer look at the covers can reveal geometric peculiarities of

the latent space. For example, the covers at the bottom left of
the tSNE-diagram, i.e. those that intersect the flange cluster,
are flat, round covers that strongly resemble a flange.

Fig. 5. AE with classifier.

Fig. 6. tSNE visualization of the learned latent vectors for the AE with
additional classifier.

2.4.3. Two-stage autoencoder with scaling factor input
For the second extension of the AE architecture, the object

size, represented by the object’s scaling factor (see Section
2.1), is used as an additional input for influencing the latent
space. In contrast to Section 2.4.2, a second AE is
implemented, which is independent of the point cloud auto-
encoder (see Fig. 7). In the following, this AE is referred to as
second order AE. Input for the second order AE are the learned
latent vectors from the point cloud AE, in the following called
first order AE. In this way, the learning of geometry (point
cloud reconstruction) is clearly separated from the learning of
other features, such as scaling factors.

The architecture of the second order AE is based on MLP
layers, with one encoder and two decoders. Each of these
components consists of only three MLP layers, so that the
model architecture is simpler than the one of the first order AE.
Correspondingly, the resource and time consumption of the
second order AE is lower.

Input for the encoder are the first order latent vectors, which
are extended by one dimension for the normalized scaling
factor. First order latent vectors and corresponding scaling
factors are transformed together into a second order latent
space. Those second order latent vectors serve as input for both
decoders. The first decoder learns to reconstruct the first order
latent vector, while the second decoder learns to reconstruct the
scaling factor. Mean Squared Error (MSE) is used as a loss
function for both decoders. Consequently, the loss function for
the AE is composed of the weighted sum of both decoder
losses. The appropriate choice of the weighting factors is a

	 Carmen Krahe et al. / Procedia CIRP 109 (2022) 275–280� 279
 / Procedia CIRP 00 (2022) 000–000 5

hyperparameter of training. For the experiment, the second
order AE is trained with a BNS of 256 and a learning rate of
0,0005. The weighting factors are set to Κ1= 0,1 and Κ2= 0,9
based on a grid search. Input for the encoder are the first order
latent vectors according to Section 2.4.1 .Clustering on the
latent vectors using k-Means leads to a HS of 53 %. Fig. 8
shows the resulting tSNE visualization of the latent space.
Compared to Section 2.4.1, a slightly better HS is achieved, but
the clusters are not further separated. However, when looking
more closely at the scaling factors, it can be seen that the mean
values are very similar across the different classes with the
exception of the O-Ring class. To illustrate the effect of the
scaling factor, the scaling factors of some of the O-Rings are
increased by a factor of 100 in a further experiment. The AE is
trained with the same hyperparameters as before. As shown in
Fig. 9, O-Rings with different scaling factors are clearly
separated, which demonstrates the general viability of the
approach.

Fig. 7. Architecture of the second order AE.

Fig. 8. tSNE visualization of the learned latent vectors for the two-stage AE
with scaling factor.

Fig. 9. tSNE visualization of the learned latent vectors for the two-stage AE
with scaling factor. O-Rings with initial scaling factor are colored in purple
and with manipulated scaling factors in pink.

3. Case Study

To validate the developed approach, the (geometric)
similarity search is tested using the example data set of Section
2.1 from the field of mechanical engineering. For this purpose,
the latent vectors of the AE with standard oriented input, with
additional class labels as well as with scaling factors are used.
To imitate a real industrial use case, all objects from the test
data set are considered as new (unknown) CAD models, for
which the most similar models from the existing database are
to be identified. The existing database corresponds to the
(known) training data. For a given input model from the
(unseen) test data set, a latent representation is first created
using the corresponding trained encoder. Finally, using the
Euclidean distance, the most similar models are presented from
the training dataset. A similarity search based purely on
geometry descriptive metainformation (e.g. volume, bounding
box) serves as a basis for comparison. For this purpose, 18
attributes in accordance with [7] are extracted from each model
of the data set.

Fig. 10. Results of the similarity search based on line (1) metainformation, (2)
latent vectors of the AE with standard oriented input, (3) latent vectors of the
AE with Classifier and (4) latent vectors of the two-stage AE with scaling
factors. Models found across different approaches are color coded.

Fig. 10 shows the results for an exemplary component. To
determine the similarity, the calculated Euclidean distance is
normalized with the maximum distance in the data set. Since
the data are not based on labels as to how similar the
components actually are, no quantitative statement is possible.

According to the results in Fig. 10, it is obvious that the
similarity search via the attributes is not able to represent
geometric details like the upper flap of the input model. The
latent vector search based on the approaches of Section 2.3 and
2.4, on the other hand, returns flanges that also have such a flap.
Moreover, the flange with the closest match is the same for all
latent vector search approaches.

4. Discussion

As shown in the case study, with the developed approach
data specific geometric details can be learned self-supervised.
However, to show the effectiveness of the approach more
clearly, testing on geometrically more complex data is
necessary. In addition, only qualitative assessments of the
similarities could be made in the case study. In various
experiments, it was shown that the learned representations are
significantly enhanced by a standard alignment. Using

280	 Carmen Krahe et al. / Procedia CIRP 109 (2022) 275–280
6 / Procedia CIRP 00 (2022) 000–000

additional class labels leads to a further improvement. For the
application in practice, this means that at least a small part of
the data would have to be labeled manually. The general
functionality of the second order AE could be demonstrated
using the manipulated scaling factors for O-Rings.
Nevertheless, it should be investigated again on a more suitable
data set with larger differences in the scaling factors. A general
drawback of the approach is that no accurate representation can
be learned for outliers. For practice this means that very rare
components can be represented less well.

5. Conclusion and Outlook

In this paper, an approach for a deep learning based
geometric similarity search is developed to enable the reuse of
existing product models in the early phase of product
development. For this purpose, an AE is used to extract relevant
features of existing components in the form of latent
representations. In several experiments it is shown how the
learned representations can be further optimized for the
similarity search. First, by aligning the data in a standard
orientation, a significant improvement can be achieved.
Second, the AE architecture is extended by an additional
classifier which enables a better separation of different classes
in the latent space. Third, the architecture is extended in a
modular way, so that additional information like size or
material can be encoded. Finally, a proof of concept is
demonstrated in a case study with real industrial data from the
field of engineering. In addition to its application in design, the
approach can also be used in strategic procurement to achieve
economies of scale or in manufacturing, e.g., to reuse routings
of similar products. Further work should investigate how the
approach works with semi-finished parts as input for the
similarity search. In addition, it should be considered how the
approach works when not only one, but several additional
pieces of information are processed simultaneously, besides
geometry. Furthermore, it should be investigated how the
approach performs in recognizing certain components within
an assembly and thus suggesting the complete assemblies in
which the component is installed.

Acknowledgements

This paper was also funded by the German Federal Ministry
of Education and Research (BMBF) project AIAx, Machine
Learning-driven Engineering – CAx goes AIAx (01IS18048B).

References

 [1] Fleischer, B., 2019. Methodisches Konstruieren in Ausbildung und
Beruf. Springer Fachmedien Wiesbaden, Wiesbaden.

[2] Albers, A., Bursac, N., Wintergerst, E., 2015. Product generation
development-importance and challenges from a design research
perspective, in: New developments in mechanics and mechanical
engineering: proceedings of the International Conference on Mechanical
Engineering (ME 2015).

[3] Ehrlenspiel, K., Kiewert, A., Lindemann, U., Mörtl, M., 2014.
Kostengünstig Entwickeln und Konstruieren. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[4] simus systems GmbH, 2021. Geometrical Similarity Search for 3D
Models. https://www.simus-systems.com/en/applications/geometrical-
similarity-search-3d-models/.

[5] PDXVISION, 2021. ModelSearch.
https://www.pdsvision.com/solutions/all-solutions/modelsearch/.

[6] Rea, H.J., Corney, J.R., Clark, D.E.R., Pritchard, J., Breaks, M.L.,
Macleod, R.A., 2002. Part-sourcing in a Global Market. Concurrent
Engineering 10 (4), 325–333.

[7] Machalica, D., Matyjewski, M., 2019. CAD models clustering with
machine learning. Archiv of Mechanical Engineering (vol. 66), 133–152.

[8] Bai, J., Gao, S., Tang, W., Liu, Y., Guo, S., 2010. Design reuse oriented
partial retrieval of CAD models. Computer-Aided Design 42 (12), 1069–
1084.

[9] Lupinetti, K., Pernot, J.-P., Monti, M., Giannini, F., 2019. Content-based
CAD assembly model retrieval: Survey and future challenges.
Computer-Aided Design 113 (5), 62–81.

[10] Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT
Press, Cambridge, Massachusetts, London, England, 785 pp.

[11] Gezawa, A.S., Zhang, Y., Wang, Q., Yunqi, L., 2020. A Review on
Deep Learning Approaches for 3D Data Representations in Retrieval and
Classifications. IEEE Access 8, 57566–57593.

[12] Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-View
Convolutional Neural Networks for 3D Shape Recognition, in:
Proceedings of the IEEE International Conference on Computer Vision,
pp. 945–953.

[13] Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T. Orientation-boosted
Voxel Nets for 3D Object Recognition, in: British Machine Vision
Conference (BMVC).

[14] Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation, in: Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 77-85.

[15] Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space, in:
Advances in Neural Information Processing Systems, pp. 5100–5109.

[16] Simonovsky, M., Komodakis, N. Dynamic Edge-Conditioned Filters in
Convolutional Neural Networks on Graphs, in: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
pp. 29–38.

[17] Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or,
D., 2019. MeshCNN: A Network with an Edge. ACM Trans. Graph. 38
(4), 1–12.

[18] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L., 2018. Learning
Representations and Generative Models for 3D Point Clouds. 35th
International Conference on Machine Learning (ICML).

[19] Yang, Y., Feng, C., Shen, Y., Tian, D., 2018 through 2018. FoldingNet:
Point Cloud Auto-encoder via Deep Grid Deformation, in: Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 206–215.

[20] Sun, W., Tagliasacchi, A., Deng, B., Sabour, S., Yazdani, S., Hinton, G.,
Yi, K.M., 2020. Canonical Capsules: Unsupervised Capsules in
Canonical Pose.

[21] Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D., 2018.
Clustering with Deep Learning: Taxonomy and New Methods.

[22] Hassani, K., Haley, M., 2019. Unsupervised Multi-Task Feature
Learning on Point Clouds, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 8160–8171.

[23] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.,
2015. ShapeNet: An Information-Rich 3D Model Repository.

[24] Yoo, S., Lee, S., Kim, S., Hwang, K.H., Park, J.H., Kang, N., 2021.
Integrating Deep Learning into CAD/CAE System: Generative Design
and Evaluation of 3D Conceptual Wheel. Structural and
Multidisciplinary Optimization (Volume 64), 2725–2747.

[25] Krahe, C., Iberl, M., Jacob, A., Lanza, G., 2019. AI-based Computer
Aided Engineering for automated product design - A first approach with
a Multi-View based classification. Procedia CIRP 86, 104–109.

[26] Rosenberg, A., Hirschberg, J., 2007. V-Measure: A Conditional
Entropy-Based External Cluster Evaluation Measure, in: Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 410–420.

[27] van der Maaten, L., Hinton, G., 2008. Viualizing data using t-SNE.
Journal of Machine Learning Research 9 (2605), 2579–2605.

