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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Today, companies are faced with the challenge to develop and produce individualized products in the shortest possible time at very low cost in 
order to remain attractive under strong competitive pressure. For reasons of efficiency, products are therefore often developed in generations. 
Proven components are adopted in a new product generation and only some of the components are newly developed to meet new customer 
requirements. Many companies, therefore, have a large database of 3D CAD product models containing years of engineering experience. 
Nevertheless, it is often difficult to execute database queries to find which products or components already exist and could be reused or adapted 
for a new product generation or variant. As a result, many duplicates are created, which are associated with high effort and costs, and the risk of 
introducing design errors increases. 
Therefore, the aim of this paper is to develop an automated approach for geometric similarity search that also takes company-specific features of 
components into account. Machine learning methods are capable of automatically extracting relevant geometric features by learning a suitable 
representation of the corresponding 3D object. For this purpose, an autoencoder is developed which is trained to extract class-specific feature 
vectors. To improve the representativeness of those vectors for the similarity search, the architecture and hyperparameters of the autoencoder are 
optimized based on several experiments. Considering a real use case with a data set from the field of mechanical engineering, it is shown that 
geometrically similar CAD models can be found very quickly using the learned representation, and that better results are obtained than with 
conventional methods based on meta information, e.g. volume and bounding box. On the one hand, the fast finding of similar models encourages 
the reuse of existing solutions. On the other hand, standardization and, thus, economy of scale is promoted.  
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1. Introduction 

Nowadays, due to increasing individualization and 
globalization as well as shortening of product lifecycles [1], 
companies are faced with the challenge of bringing innovative 
products to market at the lowest possible price in an even 
shorter time. In order to meet these requirements, product 
development in particular faces the great challenge of creating 
innovative products under enormous cost and time pressure. 
The majority of companies develop their products in 

generations [2]. According to [2], to a large extent proven 
solutions (e.g. components) are taken over into new 
generations and are slightly adapted if necessary. Only a small 
part of a new product is actually newly developed. The 
advantage of this is that proven solutions and, thus, experience 
can be built upon. However, in many companies, due to the lack 
of transparency, this wealth of experience is not yet used 
systematically [3]. Instead of reusing existing product 
components, new variants are developed, leading to 
unnecessary variant creation and, hence, higher costs.  

Manuscript in PDF Click here to view linked References

 

 

Available online at www.sciencedirect.com 

ScienceDirect 
–

 

 

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference 

32 nd CIRP Design Conference  

AI based geometric similarity search supporting component reuse in 

engineering design 

 Carmen Krahea,*, Milan Marinovb, Theresa Schmutza, Yannik Hermanna, Mike Bonnyb, 
Marvin Maya, Gisela Lanzaa 

aKarlsruhe Institute of Technology (KIT), wbk Institute of Production Science, Kaiserstrasse 12, 76131 Karlsruhe, Germany 
bUSU Software AG, Rüppurrerstrasse 1, 76137 Karlsruhe, Germany  

 
* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu 

Abstract 

Today, companies are faced with the challenge to develop and produce individualized products in the shortest possible time at very low cost in 
order to remain attractive under strong competitive pressure. For reasons of efficiency, products are therefore often developed in generations. 
Proven components are adopted in a new product generation and only some of the components are newly developed to meet new customer 
requirements. Many companies, therefore, have a large database of 3D CAD product models containing years of engineering experience. 
Nevertheless, it is often difficult to execute database queries to find which products or components already exist and could be reused or adapted 
for a new product generation or variant. As a result, many duplicates are created, which are associated with high effort and costs, and the risk of 
introducing design errors increases. 
Therefore, the aim of this paper is to develop an automated approach for geometric similarity search that also takes company-specific features of 
components into account. Machine learning methods are capable of automatically extracting relevant geometric features by learning a suitable 
representation of the corresponding 3D object. For this purpose, an autoencoder is developed which is trained to extract class-specific feature 
vectors. To improve the representativeness of those vectors for the similarity search, the architecture and hyperparameters of the autoencoder are 
optimized based on several experiments. Considering a real use case with a data set from the field of mechanical engineering, it is shown that 
geometrically similar CAD models can be found very quickly using the learned representation, and that better results are obtained than with 
conventional methods based on meta information, e.g. volume and bounding box. On the one hand, the fast finding of similar models encourages 
the reuse of existing solutions. On the other hand, standardization and, thus, economy of scale is promoted.  
 
 
© 2022 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference 

 Keywords: Artificial Intelligence; Pattern Recognition; Design; Similarity Search; Product Development

1. Introduction 

Nowadays, due to increasing individualization and 
globalization as well as shortening of product lifecycles [1], 
companies are faced with the challenge of bringing innovative 
products to market at the lowest possible price in an even 
shorter time. In order to meet these requirements, product 
development in particular faces the great challenge of creating 
innovative products under enormous cost and time pressure. 
The majority of companies develop their products in 

generations [2]. According to [2], to a large extent proven 
solutions (e.g. components) are taken over into new 
generations and are slightly adapted if necessary. Only a small 
part of a new product is actually newly developed. The 
advantage of this is that proven solutions and, thus, experience 
can be built upon. However, in many companies, due to the lack 
of transparency, this wealth of experience is not yet used 
systematically [3]. Instead of reusing existing product 
components, new variants are developed, leading to 
unnecessary variant creation and, hence, higher costs.  

Manuscript in PDF Click here to view linked References



276	 Carmen Krahe  et al. / Procedia CIRP 109 (2022) 275–280
 / Procedia CIRP 00 (2022) 000–000  3 

five different classes: 524 adapters, 137 covers, 94 flanges, 102 
housings and 143 O-Rings. For Processing, the objects are 
converted to point clouds, centralized and normalized. For 
normalization, each coordinate is scaled by an individual 
scaling factor in the form of the maximum dimension of its 
bounding box. 95% of the data, both per class and consequently 
in total, is used for training, with the remaining 5% constituting 
the test set. The split is chosen because in a real use case a large 
amount of data is already available and only a small amount of 
new components will be added. 

2.2. Architecture of the autoencoder 

In contrast to 2D images or 3D voxels, the individual points 
of a point cloud, consisting of 3 coordinates, are not sorted in 
any specific order. One of the consequences is that 
convolutions such as those used by CNNs, can not be applied 
to point clouds. The AE introduced by [19] for 3D point cloud 
processing consists of a graph based encoder and a folding 
based decoder, as shown in Fig. 2. The encoder architecture 
implements a graph kernel based approach, which captures 
local features of point clouds in a manner analogous to CNNs 
capturing local semantic features of images. The decoder uses 
two consecutive multilayer perceptrons to bend a fixed 2D grid 
into the original 3D point cloud shape based on the information 
stored in the feature vector. The encoder component of the AE 
learns to produce a latent representation of the original point 
cloud X. The input of the encoder is a list of points, respectively 
an unordered list of 3D-coordinates. The output of the encoder 
is a latent vector of size M which is an Mx1-dimensional list of 
real numbers. The size of the vector corresponds to the size of 
the AE’s bottleneck, the so-called bottleneck size (BNS). The 
learned latent vector represents the most significant features of 
the point cloud, which are necessary for the decoder to learn a 
reconstruction X’ of the original input point cloud X. 

Fig. 2. Architecture of the AE based on [19]. 

2.3. Results with basic autoencoder 

In the first experiment, the basic AE was trained with a BNS 
of 512 and a learning rate of 0,0005. Subsequently, used to 
generate the latent vectors. To investigate the 
representativeness of those vectors, a k-Means clustering is 
performed that leads to a Homogeneity Score (HS) [26] of 
35.74 %. A maximum HS is achieved when there are only 
objects of one class in a cluster. Fig. 3 shows the visualization 
of the latent space of the training data set in two dimensions 

using tSNE, a method introduced by [27] to visualize high 
dimensional data. In general, the object vectors in the latent 
space do not form distinct clusters and are highly intermixed 
across the different classes. Only O-rings (purple), with the 
exception of a few outliers, arrange themselves in an elongated 
cluster. Considering the flanges (green) several small clusters 
can be identified. One cluster is concentrated at the top and the 
bottom respectively, several small clusters are located in the 
middle of the diagram. In general, round and angular flanges 
are each grouped in separate clusters. In addition, differences 
in the orientation of the components are noticeable for the 
individual clusters. The upper cluster contains flanges aligned 
vertically in space. The same applies to the lower cluster, 
however those objects are rotated by 90 °. The components of 
the middle clusters are oriented horizontally.  

Fig. 3. tSNE visualization of the learned latent vectors for the basic AE. 

2.4. Experiments for optimization 

As shown in Section 2.3, different clusters have emerged 
due to inconsistent orientation of the objects. To eliminate such 
variation within the data set, in a first experiment the 
components were aligned in a uniform standard orientation. To 
better discriminate between different classes, additional class 
labels are considered in another experiment for a part of the 
dataset. A general drawback is that size information relevant to 
the engineering domain is lost due to the necessary 
normalization of the objects. Therefore, these are transferred 
into the latent space in a last experiment with a two-stage AE 
architecture. 

2.4.1. Pre-alignment of input data 
In the first optimization step the input point clouds are 

brought into a standard orientation according to the standard 
orientation algorithm introduced in [25]. With these standard 
aligned point clouds, the AE is trained with the same 
parameters as in Section 2.3. K-Means Clustering resulted in a 
HS of 46 %, which is an improvement of about 10 % compared 
to the basic approach. The tSNE visualization is shown in 
Fig. 4. It is quickly noticeable that the clusters are better 
separated from each other compared to the clusters of the basic 
approach, in particular for the O-Ring class. Only one adapter 
and one housing are located in this cluster. However, a closer 
look at these objects reveals that they are obviously outliers that 
are very close to the geometric shape of an O-ring. Compared 
to Section 2.3, the flanges now form two unique clusters 
consisting of angular or round flanges respectively. 
Furthermore, the thickness of the flanges is responsible for an 
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A variety of commercial software for similarity search on 
3D models exists, but they are usually based on hand-crafted 
attributes, e.g. [4,5] use so-called geometrical footprints.  

In the state of the art, also a variety of approaches are based 
on predefined features. For example, in [6,7] several geometric 
features (e.g. volume, surface) are used to describe the 
geometry of the CAD models and, thus, to determine the 
similarity. The approach of [8] considers the CAD model tree 
to find geometrically similar models or model components via 
similarities of subtrees. The similarity is determined based on 
the CAD design features used. An overview is given e.g. in [9]. 

Machine learning methods, on the other hand, offer the 
possibility of automatically extracting suitable and 
representative features from the data [10]. In recent years, the 
increasing availability of 3D models in public databases has 
promoted the further development of existing 2D Deep 
Learning methods to 3D. In the 2D domain, Deep Learning 
methods are already widely used in practice [11]. In the 3D 
domain, however, special challenges have to be met, in 
particular a suitable form of a 3D object representation [11]. 
Common approaches are multi-view [12], voxel [13], point 
clouds [14,15], graphs [16] or meshes [17]. A comprehensive 
overview of current 3D data representations used in deep 
learning is given in [11]. Based on these representations, 
supervised learning tasks such as classification or segmentation 
are performed. However, there are also some approaches, such 
as [18–20], in which unsupervised methods are first used to 
learn suitable representations based on point clouds. For this 
purpose, autoencoder (AE) architectures are used and the 
learned representations are tested on tasks like classification. In 
general, AEs are capable of learning a compressed 
representation of a dataset by encoding the relevant features in 
a self-supervised way. In [19] a point cloud AE based on a 
graph kernel operation is used. The graph kernel functions, in 
analogy to convolution kernels in CNNs, extract semantically 
meaningful local features from the local neighborhood of a 
point cloud. This improves the quality of the latent vectors and 
at the same time, the robustness of the model. In [20] a 
combination of an AE and Capsule networks is presented, 
which first learns an alignment of the objects in a canonical 
frame allowing the processing of non-aligned objects. Based on 
the representations learned via AE, a clustering of 3D objects 
is performed in [21] or [22]. However, those promising deep 
learning approaches have largely been performed only on 
simple datasets, such as ShapeNet [23]. These datasets contain 
simple objects that are normalized and aligned to the unit cube. 

Recently, there has been a growing interest in using deep 
learning methods, especially in the field of CAD [24]. In CAD, 
however, it is often dealt with data on component-level, some 
of which may be very similar within a component class, but 
some of which may be very different. Often, companies are also 
unaware of corresponding class labels, but further information, 
such as maximum dimensions or material, can be extracted 
from the CAD models. Existing methods do not yet take such 
information into account. 

Therefore, the goal is to adapt methods of deep learning for 
3D objects for the application in the CAD domain and to use 
them in the form of a geometric similarity search. To this end, 
a design assistance system according to [25] is being developed 
that is intended to show designers similar components at part 

level that already exist in the early stages of product 
development in order to make better use of already existing 
knowledge and, thus, to avoid unnecessary creation of variants.  

The specific contributions of this paper are: 
 Development of an AE architecture based on state of the 

art point cloud AEs specifically for use in the product 
development process. 

 Approaches to improve the representativeness of learned 
coding specifically for product development applications. 

 Development of a geometric similarity search 
methodology based on the learned representations. 

 Evaluation of the approach based on a real data set from 
the engineering domain to find similar CAD models. 

2. Methodology 

The aim of this approach is to find the geometrically most 
similar existing CAD models from a database for a given CAD 
model. The corresponding features, which are used to 
determine the similarity between the geometries, are learned 
automatically from the corresponding data set using deep 
learning methods. In contrast to conventional methods based 
on predefined attributes, company-specific component features 
can be learned. On this basis components can be distinguished. 
A point cloud AE based on [19] is used to extract these features. 
For this, the CAD models firstly are transformed into point 
clouds. Based on the point clouds, the latent representations are 
learned which finally represent the geometric properties of the 
3D model. Consequently, in the learned latent space, latent 
vectors whose corresponding 3D models are geometrically 
similar are supposed to be close to each other. This property is 
used for similarity search. For a given model, the latent 
representation of an input CAD model can first be created using 
the trained encoder. For this latent vector, the most similar 
CAD models are then found by searching for the closest vectors 
in the latent space. For example, the Euclidean distance can be 
used as a distance measure for this. The approach is represented 
in Fig. 1. The core prerequisite for the approach is a sufficient 
representativeness of the learned latent space. For this purpose, 
the basic architecture of the AE, which is based on [19] was 
first tested on a sample data set. Based on these results, iterative 
optimizations were made, on the one hand by preprocessing the 
input data, and on the other hand by adapting the AE 
architecture itself.  

Fig. 1. Overview of the AE based similarity search approach. 

2.1. Data set 

The basis for the experiments is an industrial database 
containing CAD models of real-world, practice-relevant 
components. In total, the data set comprises 1000 objects of 
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five different classes: 524 adapters, 137 covers, 94 flanges, 102 
housings and 143 O-Rings. For Processing, the objects are 
converted to point clouds, centralized and normalized. For 
normalization, each coordinate is scaled by an individual 
scaling factor in the form of the maximum dimension of its 
bounding box. 95% of the data, both per class and consequently 
in total, is used for training, with the remaining 5% constituting 
the test set. The split is chosen because in a real use case a large 
amount of data is already available and only a small amount of 
new components will be added. 

2.2. Architecture of the autoencoder 

In contrast to 2D images or 3D voxels, the individual points 
of a point cloud, consisting of 3 coordinates, are not sorted in 
any specific order. One of the consequences is that 
convolutions such as those used by CNNs, can not be applied 
to point clouds. The AE introduced by [19] for 3D point cloud 
processing consists of a graph based encoder and a folding 
based decoder, as shown in Fig. 2. The encoder architecture 
implements a graph kernel based approach, which captures 
local features of point clouds in a manner analogous to CNNs 
capturing local semantic features of images. The decoder uses 
two consecutive multilayer perceptrons to bend a fixed 2D grid 
into the original 3D point cloud shape based on the information 
stored in the feature vector. The encoder component of the AE 
learns to produce a latent representation of the original point 
cloud X. The input of the encoder is a list of points, respectively 
an unordered list of 3D-coordinates. The output of the encoder 
is a latent vector of size M which is an Mx1-dimensional list of 
real numbers. The size of the vector corresponds to the size of 
the AE’s bottleneck, the so-called bottleneck size (BNS). The 
learned latent vector represents the most significant features of 
the point cloud, which are necessary for the decoder to learn a 
reconstruction X’ of the original input point cloud X. 

Fig. 2. Architecture of the AE based on [19]. 

2.3. Results with basic autoencoder 

In the first experiment, the basic AE was trained with a BNS 
of 512 and a learning rate of 0,0005. Subsequently, used to 
generate the latent vectors. To investigate the 
representativeness of those vectors, a k-Means clustering is 
performed that leads to a Homogeneity Score (HS) [26] of 
35.74 %. A maximum HS is achieved when there are only 
objects of one class in a cluster. Fig. 3 shows the visualization 
of the latent space of the training data set in two dimensions 

using tSNE, a method introduced by [27] to visualize high 
dimensional data. In general, the object vectors in the latent 
space do not form distinct clusters and are highly intermixed 
across the different classes. Only O-rings (purple), with the 
exception of a few outliers, arrange themselves in an elongated 
cluster. Considering the flanges (green) several small clusters 
can be identified. One cluster is concentrated at the top and the 
bottom respectively, several small clusters are located in the 
middle of the diagram. In general, round and angular flanges 
are each grouped in separate clusters. In addition, differences 
in the orientation of the components are noticeable for the 
individual clusters. The upper cluster contains flanges aligned 
vertically in space. The same applies to the lower cluster, 
however those objects are rotated by 90 °. The components of 
the middle clusters are oriented horizontally.  

Fig. 3. tSNE visualization of the learned latent vectors for the basic AE. 

2.4. Experiments for optimization 

As shown in Section 2.3, different clusters have emerged 
due to inconsistent orientation of the objects. To eliminate such 
variation within the data set, in a first experiment the 
components were aligned in a uniform standard orientation. To 
better discriminate between different classes, additional class 
labels are considered in another experiment for a part of the 
dataset. A general drawback is that size information relevant to 
the engineering domain is lost due to the necessary 
normalization of the objects. Therefore, these are transferred 
into the latent space in a last experiment with a two-stage AE 
architecture. 

2.4.1. Pre-alignment of input data 
In the first optimization step the input point clouds are 

brought into a standard orientation according to the standard 
orientation algorithm introduced in [25]. With these standard 
aligned point clouds, the AE is trained with the same 
parameters as in Section 2.3. K-Means Clustering resulted in a 
HS of 46 %, which is an improvement of about 10 % compared 
to the basic approach. The tSNE visualization is shown in 
Fig. 4. It is quickly noticeable that the clusters are better 
separated from each other compared to the clusters of the basic 
approach, in particular for the O-Ring class. Only one adapter 
and one housing are located in this cluster. However, a closer 
look at these objects reveals that they are obviously outliers that 
are very close to the geometric shape of an O-ring. Compared 
to Section 2.3, the flanges now form two unique clusters 
consisting of angular or round flanges respectively. 
Furthermore, the thickness of the flanges is responsible for an 
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hyperparameter of training. For the experiment, the second 
order AE is trained with a BNS of 256 and a learning rate of 
0,0005. The weighting factors are set to Κ1= 0,1 and Κ2= 0,9 
based on a grid search. Input for the encoder are the first order 
latent vectors according to Section 2.4.1 .Clustering on the 
latent vectors using k-Means leads to a HS of 53 %. Fig. 8 
shows the resulting tSNE visualization of the latent space. 
Compared to Section 2.4.1, a slightly better HS is achieved, but 
the clusters are not further separated. However, when looking 
more closely at the scaling factors, it can be seen that the mean 
values are very similar across the different classes with the 
exception of the O-Ring class. To illustrate the effect of the 
scaling factor, the scaling factors of some of the O-Rings are 
increased by a factor of 100 in a further experiment. The AE is 
trained with the same hyperparameters as before. As shown in 
Fig. 9, O-Rings with different scaling factors are clearly 
separated, which demonstrates the general viability of the 
approach. 

Fig. 7. Architecture of the second order AE. 

Fig. 8. tSNE visualization of the learned latent vectors for the two-stage AE 
with scaling factor. 

Fig. 9. tSNE visualization of the learned latent vectors for the two-stage AE 
with scaling factor. O-Rings with initial scaling factor are colored in purple 
and with manipulated scaling factors in pink. 

3. Case Study 

To validate the developed approach, the (geometric) 
similarity search is tested using the example data set of Section 
2.1 from the field of mechanical engineering. For this purpose, 
the latent vectors of the AE with standard oriented input, with 
additional class labels as well as with scaling factors are used. 
To imitate a real industrial use case, all objects from the test 
data set are considered as new (unknown) CAD models, for 
which the most similar models from the existing database are 
to be identified. The existing database corresponds to the 
(known) training data. For a given input model from the 
(unseen) test data set, a latent representation is first created 
using the corresponding trained encoder. Finally, using the 
Euclidean distance, the most similar models are presented from 
the training dataset. A similarity search based purely on 
geometry descriptive metainformation (e.g. volume, bounding 
box) serves as a basis for comparison. For this purpose, 18 
attributes in accordance with [7] are extracted from each model 
of the data set.  

Fig. 10. Results of the similarity search based on line (1) metainformation, (2) 
latent vectors of the AE with standard oriented input, (3) latent vectors of the 
AE with Classifier and (4) latent vectors of the two-stage AE with scaling 
factors. Models found across different approaches are color coded. 

Fig. 10 shows the results for an exemplary component. To 
determine the similarity, the calculated Euclidean distance is 
normalized with the maximum distance in the data set. Since 
the data are not based on labels as to how similar the 
components actually are, no quantitative statement is possible.  

According to the results in Fig. 10, it is obvious that the 
similarity search via the attributes is not able to represent 
geometric details like the upper flap of the input model. The 
latent vector search based on the approaches of Section 2.3 and 
2.4, on the other hand, returns flanges that also have such a flap. 
Moreover, the flange with the closest match is the same for all 
latent vector search approaches. 

4. Discussion 

As shown in the case study, with the developed approach 
data specific geometric details can be learned self-supervised. 
However, to show the effectiveness of the approach more 
clearly, testing on geometrically more complex data is 
necessary. In addition, only qualitative assessments of the 
similarities could be made in the case study. In various 
experiments, it was shown that the learned representations are 
significantly enhanced by a standard alignment. Using 
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additional division for the round flanges. Considering the 
adapters, two larger clusters can now be identified with shorter 
ones in the lower area and much longer ones in the upper area. 
The geometries within the cover and housing classes are highly 
inhomogeneous, which makes clustering fundamentally 
difficult. Nevertheless, for covers, a grouping with similar 
diameter and wall thickness can be found. 

Fig. 4. tSNE visualization of the learned latent vectors for the AE with 
standard oriented input. 

2.4.2. Transfer learning with partially labeled data 
To better distinguish between latent vectors of different 

classes despite similar geometries, the labels are additionally 
used for training from a small part of the dataset. Therefore, the 
AE architecture is extended by a classifier, which can be 
optionally activated (see Fig. 5). In this way, the AE can be 
trained both with and without labels. The classifier has a 
multilayer perceptron (MLP) architecture with dropout and 
batch normalization layers, as well as a softmax activation 
function applied on the last layer. It is attached to the final layer 
of the encoder in parallel with the decoder. 

In the first training phase on the labeled data, the loss 
functions of the decoder (Chamfer distance) and the classifier 
(cross entropy loss) are combined via weighted sum and used 
for updating the encoder network via back propagation. The 
goal is that the encoder now also takes into account the class 
information in the latent vectors in addition to the pure 
geometry of the point clouds. In the second training phase for 
the unlabeled part of the data set, the classifier is deactivated 
again and only reconstruction loss is used for network updates. 
The aim is to transfer the initially learned representation 
improved for class-specific clustering of the smaller, labeled 
dataset, to the training of the unlabeled dataset. For the 
experiment, the original training data set is subdivided: First, 
10 % of the training data is passed to the AE with labels. The 
second phase of the training without labels is carried out on the 
remaining 90 %. This division is chosen because in a real use 
case usually only a few data with labels exist. Given this input 
data, the AE is iteratively trained with a BNS of 512, a learning 
rate of 0,001 with labels and of 0,0001 without labels. 
Clustering on the latent vectors using k-Means leads to a HS of 
53,72 %. Fig. 6 shows the resulting tSNE visualization of the 
latent space. Compared to Section 2.4.1, a relative 
improvement in HS of about 16 % can be achieved. 
Nevertheless, housings as well as partly covers remain highly 
dispersed and intermingle with other clusters. This observation 
can be attributed to the wide range and high variation of 
housings and covers in terms of their geometry. However, a 
closer look at the covers can reveal geometric peculiarities of 

the latent space. For example, the covers at the bottom left of 
the tSNE-diagram, i.e. those that intersect the flange cluster, 
are flat, round covers that strongly resemble a flange.  

Fig. 5. AE with classifier. 

Fig. 6. tSNE visualization of the learned latent vectors for the AE with 
additional classifier. 

2.4.3. Two-stage autoencoder with scaling factor input 
For the second extension of the AE architecture, the object 

size, represented by the object’s scaling factor (see Section 
2.1), is used as an additional input for influencing the latent 
space. In contrast to Section 2.4.2, a second AE is 
implemented, which is independent of the point cloud auto-
encoder (see Fig. 7). In the following, this AE is referred to as 
second order AE. Input for the second order AE are the learned 
latent vectors from the point cloud AE, in the following called 
first order AE. In this way, the learning of geometry (point 
cloud reconstruction) is clearly separated from the learning of 
other features, such as scaling factors. 

The architecture of the second order AE is based on MLP 
layers, with one encoder and two decoders. Each of these 
components consists of only three MLP layers, so that the 
model architecture is simpler than the one of the first order AE. 
Correspondingly, the resource and time consumption of the 
second order AE is lower. 

Input for the encoder are the first order latent vectors, which 
are extended by one dimension for the normalized scaling 
factor. First order latent vectors and corresponding scaling 
factors are transformed together into a second order latent 
space. Those second order latent vectors serve as input for both 
decoders. The first decoder learns to reconstruct the first order 
latent vector, while the second decoder learns to reconstruct the 
scaling factor. Mean Squared Error (MSE) is used as a loss 
function for both decoders. Consequently, the loss function for 
the AE is composed of the weighted sum of both decoder 
losses. The appropriate choice of the weighting factors is a 
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hyperparameter of training. For the experiment, the second 
order AE is trained with a BNS of 256 and a learning rate of 
0,0005. The weighting factors are set to Κ1= 0,1 and Κ2= 0,9 
based on a grid search. Input for the encoder are the first order 
latent vectors according to Section 2.4.1 .Clustering on the 
latent vectors using k-Means leads to a HS of 53 %. Fig. 8 
shows the resulting tSNE visualization of the latent space. 
Compared to Section 2.4.1, a slightly better HS is achieved, but 
the clusters are not further separated. However, when looking 
more closely at the scaling factors, it can be seen that the mean 
values are very similar across the different classes with the 
exception of the O-Ring class. To illustrate the effect of the 
scaling factor, the scaling factors of some of the O-Rings are 
increased by a factor of 100 in a further experiment. The AE is 
trained with the same hyperparameters as before. As shown in 
Fig. 9, O-Rings with different scaling factors are clearly 
separated, which demonstrates the general viability of the 
approach. 

Fig. 7. Architecture of the second order AE. 

Fig. 8. tSNE visualization of the learned latent vectors for the two-stage AE 
with scaling factor. 

Fig. 9. tSNE visualization of the learned latent vectors for the two-stage AE 
with scaling factor. O-Rings with initial scaling factor are colored in purple 
and with manipulated scaling factors in pink. 

3. Case Study 

To validate the developed approach, the (geometric) 
similarity search is tested using the example data set of Section 
2.1 from the field of mechanical engineering. For this purpose, 
the latent vectors of the AE with standard oriented input, with 
additional class labels as well as with scaling factors are used. 
To imitate a real industrial use case, all objects from the test 
data set are considered as new (unknown) CAD models, for 
which the most similar models from the existing database are 
to be identified. The existing database corresponds to the 
(known) training data. For a given input model from the 
(unseen) test data set, a latent representation is first created 
using the corresponding trained encoder. Finally, using the 
Euclidean distance, the most similar models are presented from 
the training dataset. A similarity search based purely on 
geometry descriptive metainformation (e.g. volume, bounding 
box) serves as a basis for comparison. For this purpose, 18 
attributes in accordance with [7] are extracted from each model 
of the data set.  

Fig. 10. Results of the similarity search based on line (1) metainformation, (2) 
latent vectors of the AE with standard oriented input, (3) latent vectors of the 
AE with Classifier and (4) latent vectors of the two-stage AE with scaling 
factors. Models found across different approaches are color coded. 

Fig. 10 shows the results for an exemplary component. To 
determine the similarity, the calculated Euclidean distance is 
normalized with the maximum distance in the data set. Since 
the data are not based on labels as to how similar the 
components actually are, no quantitative statement is possible.  

According to the results in Fig. 10, it is obvious that the 
similarity search via the attributes is not able to represent 
geometric details like the upper flap of the input model. The 
latent vector search based on the approaches of Section 2.3 and 
2.4, on the other hand, returns flanges that also have such a flap. 
Moreover, the flange with the closest match is the same for all 
latent vector search approaches. 

4. Discussion 

As shown in the case study, with the developed approach 
data specific geometric details can be learned self-supervised. 
However, to show the effectiveness of the approach more 
clearly, testing on geometrically more complex data is 
necessary. In addition, only qualitative assessments of the 
similarities could be made in the case study. In various 
experiments, it was shown that the learned representations are 
significantly enhanced by a standard alignment. Using 
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additional class labels leads to a further improvement. For the 
application in practice, this means that at least a small part of 
the data would have to be labeled manually. The general 
functionality of the second order AE could be demonstrated 
using the manipulated scaling factors for O-Rings. 
Nevertheless, it should be investigated again on a more suitable 
data set with larger differences in the scaling factors. A general 
drawback of the approach is that no accurate representation can 
be learned for outliers. For practice this means that very rare 
components can be represented less well. 

5. Conclusion and Outlook 

In this paper, an approach for a deep learning based 
geometric similarity search is developed to enable the reuse of 
existing product models in the early phase of product 
development. For this purpose, an AE is used to extract relevant 
features of existing components in the form of latent 
representations. In several experiments it is shown how the 
learned representations can be further optimized for the 
similarity search. First, by aligning the data in a standard 
orientation, a significant improvement can be achieved. 
Second, the AE architecture is extended by an additional 
classifier which enables a better separation of different classes 
in the latent space. Third, the architecture is extended in a 
modular way, so that additional information like size or 
material can be encoded. Finally, a proof of concept is 
demonstrated in a case study with real industrial data from the 
field of engineering. In addition to its application in design, the 
approach can also be used in strategic procurement to achieve 
economies of scale or in manufacturing, e.g., to reuse routings 
of similar products. Further work should investigate how the 
approach works with semi-finished parts as input for the 
similarity search. In addition, it should be considered how the 
approach works when not only one, but several additional 
pieces of information are processed simultaneously, besides 
geometry. Furthermore, it should be investigated how the 
approach performs in recognizing certain components within 
an assembly and thus suggesting the complete assemblies in 
which the component is installed. 
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