KIT | KIT-Bibliothek | Impressum | Datenschutz

Riemannian Surface on Carbon Anodes Enables Li-Ion Storage at −35 °C

Lu, Zongjing; Wang, Jingnan; Cheng, Xuechun; Xie, Weiwei 1; Gao, Zhiyi; Zhang, Xuejing; Xu, Yong; Yi, Ding; Yang, Yijun; Wang, Xi ; Yao, Jiannian
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)

Abstract:

Since sluggish Li$^{+}$ desolvation leads to severe capacity degradation of carbon anodes at subzero temperatures, it is urgently desired to modulate electron configurations of surface carbon atoms toward high capacity for Li-ion batteries. Herein, a carbon-based anode material (O-DF) was strategically synthesized to construct the Riemannian surface with a positive curvature, which exhibits a high reversible capacity of 624 mAh g$^{-1}$ with an 85.9% capacity retention at 0.1 A g$^{-1}$ as the temperature drops to −20 °C. Even if the temperature drops to −35 °C, the reversible capacity is still effectively retained at 160 mAh g$^{-1}$ after 200 cycles. Various characterizations and theoretical calculations reveal that the Riemannian surface effectively tunes the low-temperature sluggish Li$^{+}$ desolvation of the interfacial chemistry via locally accumulated charges of non-coplanar sp$^{x}$ (2 < x < 3) hybridized orbitals to reduce the rate-determining step of the energy barrier for the charge-transfer process. Ex-situ measurements further confirm that the sp$^{x}$-hybridized orbitals of the pentagonal defect sites should denote more negative charges to solvated Li$^{+}$ adsorbed on the Riemannian surface to form stronger Li–C coordinate bonds for Li$^{+}$ desolvation, which not only enhances Li-adsorption on the curved surface but also results in more Li$^{+}$ insertion in an extremely cold environment.


Verlagsausgabe §
DOI: 10.5445/IR/1000148988
Veröffentlicht am 29.07.2022
Originalveröffentlichung
DOI: 10.1021/acscentsci.2c00411
Scopus
Zitationen: 9
Web of Science
Zitationen: 9
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Physikalische Chemie (IPC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2374-7943, 2374-7951
KITopen-ID: 1000148988
Erschienen in ACS Central Science
Verlag American Chemical Society (ACS)
Band 8
Heft 7
Seiten 905–914
Vorab online veröffentlicht am 08.06.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page