KIT | KIT-Bibliothek | Impressum | Datenschutz

Recent progress in the CoCrNi alloy system

Bajpai, Sakshi ; MacDonald, Benjamin E.; Rupert, Timothy J.; Hahn, Horst 1; Lavernia, Enrique J.; Apelian, Diran
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The exceptional mechanical properties, particularly at cryogenic temperatures, of the equiatomic CoCrNi alloy are documented in numerous published studies. Similar to the equiatomic CoCrFeMnNi (so called Cantor alloy), from which the ternary alloy was derived, the CoCrNi ternary possesses low stacking fault energy that promotes complex deformation modes, as well as the activation of deformation twinning at ambient temperatures and increased strain. In addition to outstanding deformation mechanisms, chemical short-range order and face-centered cubic (FCC)-hexagonal close packed (HCP) transitions have been verified in this alloy and prove to be key factors contributing to the alloy's notable properties. The relationship between stacking fault energy and FCC→HCP phase transitions has been developed over the years through other low stacking fault materials, but the question that arises is: do well established physical metallurgical mechanisms require modification when applied to systems such as CoCrNi given their compositional complexity? Local chemical order plays an important role in that it brings the deviation from the random solid solution behavior generally expected from complex concentrated alloys. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149050
Veröffentlicht am 27.07.2022
Originalveröffentlichung
DOI: 10.1016/j.mtla.2022.101476
Scopus
Zitationen: 19
Dimensions
Zitationen: 19
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2022
Sprache Englisch
Identifikator ISSN: 2589-1529
KITopen-ID: 1000149050
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Materialia
Verlag Elsevier
Band 24
Seiten Art.-Nr.: 101476
Schlagwörter Stacking fault energy; Compositional complexity; Chemical short-range order; Deformation mechanisms
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page