KIT | KIT-Bibliothek | Impressum | Datenschutz

A knowledge graph embeddings based approach for author name disambiguation using literals

Santini, Cristian 1; Gesese, Genet Asefa ORCID iD icon 1; Peroni, Silvio; Gangemi, Aldo; Sack, Harald 1; Alam, Mehwish 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Scholarly data is growing continuously containing information about the articles from a plethora of venues including conferences, journals, etc. Many initiatives have been taken to make scholarly data available in the form of Knowledge Graphs (KGs). These efforts to standardize these data and make them accessible have also led to many challenges such as exploration of scholarly articles, ambiguous authors, etc. This study more specifically targets the problem of Author Name Disambiguation (AND) on Scholarly KGs and presents a novel framework, Literally Author Name Disambiguation (LAND), which utilizes Knowledge Graph Embeddings (KGEs) using multimodal literal information generated from these KGs. This framework is based on three components: (1) multimodal KGEs, (2) a blocking procedure, and finally, (3) hierarchical Agglomerative Clustering. Extensive experiments have been conducted on two newly created KGs: (i) KG containing information from Scientometrics Journal from 1978 onwards (OC-782K), and (ii) a KG extracted from a well-known benchmark for AND provided by AMiner (AMiner-534K). The results show that our proposed architecture outperforms our baselines of 8–14% in terms of F1 score and shows competitive performances on a challenging benchmark such as AMiner. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149077
Veröffentlicht am 27.07.2022
Originalveröffentlichung
DOI: 10.1007/s11192-022-04426-2
Scopus
Zitationen: 13
Web of Science
Zitationen: 8
Dimensions
Zitationen: 17
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0138-9130, 1588-2861
KITopen-ID: 1000149077
Erschienen in Scientometrics
Verlag Springer-Verlag
Band 127
Heft 8
Seiten 4887–4912
Vorab online veröffentlicht am 04.07.2022
Schlagwörter Author Name Disambiguation; Bibliographic data; Citation data; Clustering; Knowledge graph embeddings; Open citations
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page