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Abstract
The Shapiro–Wilk test (SW) and the Anderson–Darling test (AD) turned out to be
strong procedures for testing for normality. They are joined by a class of tests for
normality proposed by Epps and Pulley that, in contrast to SW and AD, have been
extended byBaringhaus andHenze to yield easy-to-use affine invariant and universally
consistent tests for normality in any dimension. The limit null distribution of the Epps–
Pulley test involves a sequences of eigenvalues of a certain integral operator induced by
the covariance kernel of a Gaussian process. We solve the associated integral equation
and present the corresponding eigenvalues.
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1 Introduction

Let X , X1, X2 . . . be a sequence of independent and identically distributed (i.i.d) ran-
dom variables with unkown distribution. To test the hypothesis H0 that the distribution
of X is some unspecified normal distribution, there is a myriad of testing procedures,
among which the tests of Shapiro–Wilk (SW) and Anderson–Darling (AD) deserve
special mention, see, e.g., the monographs of D’Agostino and Stephens (1996) and
Thode (2002). There is, however, a further test which was proposed by Epps and Pul-
ley (1983). This test, which is based on the empirical characteristic function, comes
as a serious competitor to SW and AD, as shown in simulation studies (see, e.g., Bar-
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inghaus et al. 1989; Betsch and Ebner 2020). Baringhaus and Henze (1988) extended
the approach of Epps and Pulley to test for normality in any dimension. By now, the
BHEP-test (an acronym coined by Csörgö (1989) after earlier developers of the idea)
is known to be an affine-invariant and universally consistent test of normality in any
dimension, and limit distributions of the test statistic have been obtained under H0
as well as under fixed and contiguous alternatives to normality (see the review arti-
cle Ebner and Henze 2020). In this paper, we revisit the limit null distribution of the
Epps–Pulley test statistic in the univariate case. The test statistic involves a positive
tuning parameter β, and, based on X1, . . . , Xn , is denoted by Tn,β . It is given by

Tn,β = n
∫ ∞

−∞

∣∣∣ψn(t) − e−t2/2
∣∣∣2 ϕβ(t) dt,

where ψn(t) = n−1 ∑n
j=1 exp

(
itYn, j

)
is the empirical characteristic function of the

scaled residuals Yn,1, . . . ,Yn,n . Here, Yn, j = S−1
n (X j − Xn), j = 1, . . . , n, and

Xn = n−1 ∑n
j=1 X j , S2n = n−1 ∑n

j=1(X j − Xn)
2 denote the sample mean and the

sample variance of X1, . . . , Xn , respectively. Moreover,

ϕβ(t) = 1

β
√
2π

exp
(

− t2

2β2

)
, t ∈ R,

is the density of the centred normal distribution with variance β2. A closed-form
expression of Tn,β that is amenable to computational purposes is

Tn,β = 1

n

n∑
j,k=1

exp

(
− β2

2

(
Yn, j −Yn,k

)2)

− 2√
1+β2

n∑
j=1

exp

(
− β2Y 2

n, j

2(1+β2)

)
+ n√

1+2β2
.

The limit null distribution of Tn,β , as n → ∞, is that of

T∞:=
∫ ∞

−∞
Z2(t) ϕβ(t) dt .

Here, Z(·) is a centred Gaussian element of the Hilbert space L2 = L2(R,B, ϕβ(t)dt)
(of equivalence classes) of Borel-measurable real-valued functions that are square-
integrable with respect to ϕβ(t)dt , and the covariance function of Z(·) is given by

K (s, t) = exp

(
− (s − t)2

2

)
−

(
1 + st + (st)2

2

)
exp

(
− s2

2
− t2

2

)
, s, t ∈ R

(1.1)
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(see Henze andWagner 1997). The kernel K is the starting point of this paper. Writing
∼ for equality in distribution, it is well-known that

T∞ ∼
∞∑
j=0

λ j N
2
j ,

where λ0, λ1, . . . is the sequence of nonzero eigenvalues associated with the integral
operator A : L2 → L2 defined by

(A f )(s):=
∫ ∞

−∞
K (s, t) f (t)ϕβ(t) dt,

and N0, N1, . . . is a sequence of i.i.d. standard normal random variables. In the next
section, we obtain the eigenvalues of A by numerical methods. In Sect. 3 the sum of
powers of the largest eigenvalues is compared to normalized cumulants. The differ-
ence should be close to 0 if the eigenvalues have been computed correctly. Section 4
demonstrates that the results can be applied to fit a Pearson system of distributions,
and that the fit is reasonable to approximate critical values of the Epps-Pulley test. The
article ends by some concluding remarks. Finally, Appendix A extends the results to
the cases in which no parameters, only the mean and only the variance, are estimated.

2 Solution of a Fredholm integral equation

To obtain the values λ0, λ1, λ2, . . ., that determine the distribution of T∞, one has to
solve the integral equation

∫ ∞

−∞
K (s, t) f (t)ϕβ(t) dt = λ f (s), s ∈ R.

In general, this task is considered a hard problem, and solutions for kernels associated
with testing problems involving composite hypotheses are very sparse, see Stephens
(1976, 1977) for the classical tests of normality and exponentiality that are based on
the empirical distribution function. In what follows, we use a result of Zhu et al. (1997)
to obtain the eigenvalues of A by a stable numerical method. To this end, let

K0(s, t) = exp

(
− (s − t)2

2

)
, s, t ∈ R,

and

φ1(s) = s2√
2
exp

(
− s2

2

)
,

φ2(s) = s exp

(
− s2

2

)
,
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φ3(s) = exp

(
− s2

2

)
, s ∈ R.

Notice that

K (s, t) = K0(s, t) −
3∑
j=1

φ j (s)φ j (t), s, t ∈ R. (2.1)

The first step is to solve the eigenvalue problem for the covariance kernel K0. The
associated eigenvalue problem, which leads to the kernel K0, was solved in the context
of machine learning in Chapter 4 of Zhu et al. (1997). Here, we use the formulation
given in Rasmussen and Williams (2008), Sect. 4.3.1. The eigenvalues of K0 are
given by

λ
(0)
k =

√
2√

1 + 4β2 + 2β2 + 1

⎛
⎝ 2β2√√

1 + 4β2 + 2β2 + 1

⎞
⎠

k

, k = 0, 1, 2, . . . ,

with corresponding normalized eigenfunctions

ψk(x) = hk exp

(
−

(√
β−2 + 4

4β
− (4β)−1

)
x2

)
Hk

((
β−4 + 4β−2

)1/4
x/

√
2

)
,

k = 0, 1, 2, . . .

(see also the errata to Rasmussen andWilliams (2008) on the books homepage). Here,

h−2
k = (4β2 + 1)−1/42kk!, and Hk(x) = (−1)k exp(x2) d

k

dxk exp(−x2) is the kth order
Hermite polynomial.

Remark 2.1 Note that for the special case β = 1 the eigenvalues λ
(0)
k coincides with

the formula given in (6) of Baringhaus (1996). In that article, the limit distribution of a
modified statistic T (0)

n,β , which originates from Tn,β by replacing ψn(t) with ψ
(0)
n (t) =

n−1 ∑n
j=1 exp

(
it X j

)
, i.e., the problem is to test for standard normality and thus no

estimation of parameters is involved, is analyzed, cf. Appendix A. The corresponding
covariance kernel is K1(s, t) = K0(s, t)−φ3(s)φ3(t), s, t ∈ R, and explicit formulae
for the eigenvalues and eigenfunctions are given, see Baringhaus (1996), p. 3878.

To solve the eigenvalue problem of A figuring in (1.1), we adapt the methodology
in Stephens (1976). Define

a j,k =
∫ ∞

−∞
ψ j (x)φk(x)ϕβ(x) dx,

Sk(λ) = 1 +
∞∑
j=0

a2j,k

1/λ − λ
(0)
j

,
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Sk,�(λ) =
∞∑
j=0

a j,ka j,�

1/λ − λ
(0)
j

, λ > 0.

With this notation, we can formulate our main result.

Theorem 2.2 The eigenvalues of A are the reciprocals of the solutions λ > 0 of the
equation

D(λ) = d(λ)S2(λ)
(
S1(λ)S3(λ) − S21,3(λ)

)
= 0, (2.2)

where d(λ) = ∏∞
k=0

(
1/λ − λ

(0)
k

)
is the Fredholm determinant connected to the

eigenvalue problem of K0. Moreover, none of the reciprocals of the eigenvalues λ
(0)
k

of K0 solve equation (2.2).

Proof Since a j,1a j,2 = a j,2a j,3 = 0 holds for all j = 0, 1, 2, . . ., we use Theorem 2.2
of Sukhatme (1972) to see that the Fredholm determinant for the eigenvalue problem
takes the form

D(λ) = d(λ) det

⎛
⎝ S1(λ) 0 S1,3(λ)

0 S2(λ) 0
S1,3(λ) 0 S3(λ)

⎞
⎠ = d(λ)S2(λ)

(
S1(λ)S3(λ) − S21,3(λ)

)
.

Hence, the reciprocals of the roots of D(λ) are the eigenvalues of A. By direct calcu-
lation, it follows that a j,2 = 0 if j is even, and we have a j,1 = a j,3 = 0 if j is odd.

Consequently, none of the reciprocals of the eigenvalues λ
(0)
k is a root of D(λ) and

thus a solution of the eigenvalue problem associated with the kernel K . ��

According to Theorem 2.2, the eigenvalues of A are the roots of S2(λ) and of
S1(λ)S3(λ) − S21,3(λ). The reciprocals of the roots have been obtained numerically,
and the largest twenty eigenvalues are displayed in Table 1 for different values of β.
Note that, since these values tend to be very small, the reciprocal approach used here
leads to numerically stable procedures to find the roots of the Fredholm determinant.

3 Accuracy of the numerical solutions

The accuracy of the values presented in Table 1 may be judged by a comparison with
results of Henze (1990). That paper gives the first four cumulants of the distribution
of T∞ in the special case β = 1. The m-th cumulant of T∞ is

κm(β) = 2m−1(m − 1)!
∞∑
j=1

λmj = 2m−1(m − 1)!
∫ ∞

−∞
Km(x, x)ϕβ(x) dx, m ≥ 1,
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Table 1 Eigenvalues of A for different tuning parameters β, here E–j stands for 10− j

λ j \β 0.25 0.5 1 2 3

λ0 4.07235E−04 1.01443E−02 7.42748E−02 1.54164E−01 1.59960E−01

λ1 3.96229E−05 2.98027E−03 4.48104E−02 1.29257E−01 1.45877E−01

λ2 8.87536E−07 2.13968E−04 8.41907E−03 4.99665E−02 7.56703E−02

λ3 7.41169E−08 5.45396E−05 4.58684E−03 3.98239E−02 6.69664E−02

λ4 2.36367E−09 5.42325E−06 1.07998E−03 1.70946E−02 3.68745E−02

λ5 1.81032E−10 1.27337E−06 5.51939E−04 1.31547E−02 3.19372E−02

λ6 6.72990E−12 1.46554E−07 1.45739E−04 6.00412E−03 1.82413E−02

λ7 4.87430E−13 3.26023E−08 7.12110E−05 4.49725E−03 1.55292E−02

λ8 1.97617E−14 4.08130E−09 2.01821E−05 2.14175E−03 9.10854E−03

λ9 1.37638E−15 8.73898E−10 9.53839E−06 1.56980E−03 7.64324E−03

λ10 5.90134E−17 1.15555E−10 2.83684E−06 7.71666E−04 4.57714E−03

λ11 3.99302E−18 2.40495E−11 1.30684E−06 5.55566E−04 3.79317E−03

λ12 1.78040E−19 3.30498E−12 4.02503E−07 2.79917E−04 2.31011E−03

λ13 1.17813E−20 6.72882E−13 1.81702E−07 1.98509E−04 1.89295E−03

λ14 5.40732E−22 9.51525E−14 5.74665E−08 1.01995E−04 1.16876E−03

λ15 3.51545E−23 1.90367E−14 2.55205E−08 7.13642E−05 9.46891E−04

λ16 1.64986E−24 2.75201E−15 8.24056E−09 3.71939E−05 5.90055E−04

λ17 1.05731E−25 5.42770E−16 3.61045E−09 2.56128E−05 4.70590E−04

λ18 6.60890E−28 1.07411E−17 1.18543E−09 2.86884E−06 8.19769E−05

λ19 7.53533E−29 3.77859E−18 5.13526E−10 3.67008E−06 1.22699E−05

where K1(x, y):=K (x, y) and

Km(x, y) =
∫ ∞

−∞
Km−1(x, z)K (z, y)ϕβ(z) dz

for m ≥ 2 (see e.g., Chapter 5 of Shorack and Wellner (1986)). We have

κ1(1) = E(T∞) =
∞∑
j=1

λ j = 1 −
√
3

2
= 0.133974596 . . . , (3.1)

κ2(1) = V(T∞) = 2
∞∑
j=1

λ2j = 2
√
5

5
+ 5

6
− 155

√
2

128
= 0.015236301 . . .

and thus

∞∑
j=1

λ2j = 1√
5

+ 5

12
− 155

128
√
2

= 0.0076181509 . . .
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Furthermore,

κ3(1) = E(T∞ − κ1(1))
3 = 8

∞∑
j=1

λ3j = 0.00400343 . . . , (3.2)

κ4(1) = E(T∞ − κ1(1))
4 = 48

∞∑
j=1

λ4j = 0.001654655 . . .

and thus

∞∑
j=1

λ3j = 0.0005004285291 . . . and
∞∑
j=1

λ4j = 0.00003447197917 . . .

From Table 2, we see that the corresponding sums of the first 20 numerical values
of the eigenvalues (as well of their squares and cubes) agree approximately with the
values figuring in (3.1) and (3.2), respectively, in most cases up to five significant
digits.

The results of Henze (1990) have been partially generalized in Henze and Wagner
(1997), Theorem 2.3, for the first three cumulants and a fixed tuning parameter β, and
they thus lead to general formulae in the univariate case. For the sake of completeness,
we restate the formulae of the first two cumulants here. For the first cumulant, we
have

κ1(β) = 1 − (2β2 + 1)−1/2
[
1 + β2

2β2 + 1
+ 3β4

(2β2 + 1)2

]
,

and the second cumulant is

κ2(β) = 2√
1 + 4β2

+ 2

1 + 2β2

[
1 + 2β4

(1 + 2β2)2
+ 9β8

4(1 + 2β2)4

]

− 4√
1 + 4β2 + 3β4

[
1 + 3β4

2(1 + 4β2 + 3β4)
+ 3β8

2(1 + 4β2 + 3β4)2

]
.

The formula for the third cumulant is found in Henze and Wagner (1997), Theorem
2.3, for the case d = 1. Table 2 exhibits the normalized cumulants, together with the
corresponding sums of the first 20 eigenvalues taken from Table 1. We stress that by
now no formula for the fourth cumulant is known in the literature for general tuning
parameter β.

4 Pearson system fit for approximation of critical values

The first four cumulants can directly be used in packages that implement the Pear-
son system of distributions (see Sect. 4.1 of Johnson et al. (1994)). In the statistical
computing language R (see R Core Team 2021), we use the package PearsonDS
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Table 2 Sums over different powers of the first 20 eigenvalues and corresponding theoretical cumulants
for different values of β. The entry denoted by ∗ could not be computed due to numerical instabilities

β 0.25 0.5 1 2 3

∑19
j=0 λ j 4.47822E−04 1.34000E−02 1.33975E−01 4.19722E−01 5.83761E−01

∑19
j=0 λ2j 1.67411E−07 1.11838E−04 7.61814E−03 4.50863E−02 6.02196E−02

∑19
j=0 λ3j 6.75980E−11 1.04392E−06 5.00428E−04 6.01902E−03 8.02464E−03

∑19
j=0 λ4j 2.75053E−14 1.06687E−08 3.44719E−05 8.52858E−04 1.16350E−03

κ1(β) 4.47822E−04 1.34000E−02 1.33975E−01 4.19753E−01 5.84700E−01

κ2(β)/2 1.66500E−07 1.11838E−04 7.61814E−03 4.50863E−02 6.02202E−02

κ3(β)/8 ∗ 1.07115E−06 5.00429E−04 6.01903E−03 8.02468E−03

(see Becker and Klößner 2017) to approximate critical values of the Epps–Pulley test
statistic. The Epps–Pulley test is implemented in the R-Package mnt (see Butsch and
Ebner 2020) by using the function BHEP. Table 3 shows simulated empirical critical
values of the Epps–Pulley statistic for sample sizes n ∈ {10, 25, 50, 100, 200} and
levels of significance α ∈ {0.1, 0.05, 0.01}. For each combination of n and β, the
entries corresponding to different values of α are based on 106 replications under the
null hypothesis. Each entry in a row named ’∞’ is the calculated (1 − α)-quantile of
the fitted Pearson system using the cumulants given in Table 2. We conclude that, for
larger sample sizes, the simulated critical values are close to the approximated coun-
terparts of the Pearson system. Moreover, we have corroborated the results of Henze
(1990) for the special case β = 1, and we have extended these results for general
β > 0.

5 Conclusions

We have solved the eigenvalue problem of the integral operator associated with the
covariance kernel K of the limiting Gaussian process that occurs in the limit null dis-
tribution of the Epps–Pulley test statistic. In view of a comparison with the first three
known cumulants from the literature, Table 2 shows that the eigenvalues obtained by
numerical methods are very close to the corresponding theoretical values. In Sect. 5
of Ebner and Henze (2021), the authors present a Monte Carlo based approximation
method to find stochastic approximations of the eigenvalues. A comparison of Table
1 and Table 1 of Ebner and Henze (2021) reveals that there are some significant dif-
ferences for some values of β, which can be explained by the approximation of the
eigenvalues by a Monte Carlo method in Ebner and Henze (2021). This observation is
of particular interest, since the largest eigenvalue is used in the derivations of approx-
imate Bahadur efficiencies. Recent results concerning this topic for the Epps–Pulley
test are presented in Ebner and Henze (2021) and, for other normality tests based on
the empirical distribution function, in Milošević et al. (2021).

We point out the difficulties encountered if one tries to generalize our findings
to the multivariate case, i.e. to obtain the eigenvalues associated with the limit null
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Table 3 Empirical critical
values (simulated with 106

replications) and approximated
critical values by the Pearson
system (denoted by ’∞’) for
different levels of significance α

α n\β 0.25 0.5 1 2 3

0.1 10 7.28E−04 0.0245 0.277 0.817 1.03

25 9.58E−04 0.0289 0.288 0.814 1.04

50 1.05E−03 0.0304 0.289 0.811 1.04

100 1.10E−03 0.0310 0.290 0.812 1.04

200 1.13E−03 0.0314 0.291 0.811 1.04

∞ 1.14E−03 0.0319 0.292 0.812 1.04

0.05 10 1.06E−03 0.0343 0.355 0.99 1.22

25 1.39E−03 0.0403 0.371 1.00 1.25

50 1.51E−03 0.0420 0.374 1.01 1.25

100 1.57E−03 0.0427 0.376 1.01 1.25

200 1.60E−03 0.0429 0.378 1.01 1.25

∞ 1.61E−03 0.0429 0.379 1.01 1.25

0.01 10 1.91E−03 0.0589 0.543 1.39 1.65

25 2.58E−03 0.0696 0.570 1.44 1.72

50 2.75E−03 0.0711 0.575 1.45 1.74

100 2.78E−03 0.0720 0.581 1.46 1.75

200 2.78E−03 0.0717 0.585 1.46 1.75

∞ 2.74E−03 0.0700 0.585 1.46 1.74

distribution of the BHEP test of multivariate normality, see (Baringhaus and Henze
1988; Henze and Wagner 1997; Henze and Zirkler 1990). The d-variate analog to the
covariance kernel K in (1.1) is given in Theorem 2.1 of Henze and Wagner (1997),
namely, writing ‖ · ‖ for the Euclidean norm and � for the transpose of vectors, we
have

K (s, t) = exp

(
−‖s − t‖2

2

)
−

{
1 + s�t + (s�t)2

2

}
exp

(
−‖s‖2 + ‖t‖2

2

)
,

s, t ∈ R
d . (5.1)

The first step is to derive explicit expressions for eigenvalues w.r.t. the kernel

K0(s, t) = exp
(
−‖s − t‖2/2

)
, s, t ∈ R

d

(for a starting point, see Baringhaus 1996). The second step is to find the correspond-
ing multivariate representation of (2.1), which seems to be non-standard, since the
quadratic summand (s�t)2 in (5.1) does not factorize easily. Both problems have to
be solved in order to successfully apply the method presented in Sect. 2.

Finally, it is an interesting question whether the results may be extended to other
recent tests of normality associated with the empirical characteristic function, such
as Ebner (2020), or to other empirical integral transformations, such as the moment
generating function, seeHenze andKoch (2020), or formultivariate versions see Ebner
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et al. (2021) as well as Henze and Visagie (2020). In each of these papers an explicit
formula of the covariance kernel under the null hypothesis is derived, but it is again
unclear how to find explicit expressions for the eigenvalues of the reduced kernel
formula. Hence we leave these problems open for future work.
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A Approximation of eigenvalues in case of testing under partially
known parameters

In the spirit of the work of Stephens (1976), we provide the approximation of the
eigenvalues for the following three related cases:

1. both parameters known: The test statistic is applied to Y j = (X j − μ)/σ , where
μ and σ are the parameters under the null hypothesis. The covariance kernel then
reduces to

K1(s, t) = K0(s, t) − φ3(s)φ3(t), s, t ∈ R,

and the Fredholm determinant is D(λ) = d(λ)S3(λ). The zeros of D(λ) (note that
some zeros of d(λ) are not zeros of D(λ)) provide the eigenvalues in Table 4.

2. the mean is unknown, but the variance is known: The test statistic is applied to
Yn, j = (X j − Xn)/σ and the covariance kernel reduces to

K2(s, t) = K0(s, t) −
3∑
j=2

φ j (s)φ j (t), s, t ∈ R.

Here, the Fredholm determinant takes the form D(λ) = d(λ)S2(λ)S3(λ). The
zeros of D(λ) provide the eigenvalues in Table 5. Note that none of the zeros of
d(λ) are zeros of D(λ).

3. the mean is known, but the variance is unknown: The test statistic applied to
Yn, j = S−1

n (X j − μ). The covariance kernel reduces to

K3(s, t) = K0(s, t) − φ1(s)φ1(t) − φ3(s)φ3(t), s, t ∈ R,

123

http://creativecommons.org/licenses/by/4.0/


On the eigenvalues associated...

Table 4 Eigenvalues ofA applied to kernel K1 for different tuning parameters β, here E–j stands for 10− j

λ j \β 0.25 0.5 1 2 3

λ0 5.26225E−02 1.42136E−01 2.36068E−01 2.37985E−01 2.02640E−01

λ1 4.39314E−03 3.61356E−02 1.27399E−01 1.87334E−01 1.77471E−01

λ2 1.63425E−04 4.18408E−03 3.44419E−02 8.84416E−02 1.04356E−01

λ3 1.13824E−05 8.95872E−04 1.62590E−02 6.45254E−02 8.70835E−02

λ4 5.07537E−07 1.23168E−04 5.02500E−03 3.28673E−02 5.37419E−02

λ5 3.29555E−08 2.46420E−05 2.23123E−03 2.29768E−02 4.35288E−02

λ6 1.57622E−09 3.62572E−06 7.33137E−04 1.22143E−02 2.76763E−02

λ7 9.07802E−11 6.99678E−07 3.14550E−04 8.30900E−03 2.19590E−02

λ8 4.89513E−12 1.06731E−07 1.06963E−04 4.53918E−03 1.42528E−02

λ9 2.72830E−13 2.01376E−08 4.49058E−05 3.03064E−03 1.11393E−02

λ10 8.47202E−16 5.81399E−10 6.45455E−06 1.11118E−03 5.67138E−03

λ11 2.63109E−18 1.62478E−11 9.31517E−07 4.08788E−04 2.89477E−03

λ12 8.17116E−21 4.67570E−13 1.34787E−07 1.50730E−04 1.48022E−03

λ13 2.53765E−23 1.37512E−14 1.95378E−08 5.56673E−05 7.57908E−04

λ14 7.88098E−26 4.04788E−16 2.83563E−09 2.05829E−05 3.88457E−04∑14
j=0 λ j 5.71910E−02 1.83503E−01 4.22631E−01 6.63970E−01 7.55041E−01

∑14
j=0 λ2j 2.78845E−03 2.15266E−02 7.34401E−02 1.05574E−01 9.74343E−02

∑14
j=0 λ3j 1.45803E−04 2.91876E−03 1.52687E−02 2.10636E−02 1.59814E−02

∑14
j=0 λ4j 7.66842E−06 4.09848E−04 3.37053E−03 4.51932E−03 2.86707E−03

κ1(β) 5.71910E−02 1.8350E−01 4.22649E−01 6.66667E−01 7.70584E−01

κ2(β)/2 2.78845E−03 2.1527E−02 7.34401E−02 1.05577E−01 9.75077E−02

κ3(β)/8 1.45802E−04 2.9188E−03 1.52687E−02 2.10636E−02 1.59818E−02

κ4(β)/48 7.66638E−06 4.0985E−04 3.37053E−03 4.51932E−03 2.86707E−03

and the Fredholm determinant is D(λ) = d(λ)(S1(λ)S3(λ) − S21,3(λ)). The zeros
of D(λ) provide the eigenvalues in Table 6. Note that some zeros of d(λ) are also
zeros of D(λ).

Note that the sums of powers of the eigenvalues are close to the respective cumulants
in all three Tables 4 - 6, which confirms the good approximation of the eigenvalues.
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Table 5 Eigenvalues ofA applied to kernel K2 for different tuning parameters β, here E–j stands for 10− j .
The entry denoted by ∗ could not be computed due to numerical instabilities

λ j \β 0.25 0.5 1 2 3

λ0 4.39314E−03 3.61356E−02 1.27399E−01 1.87334E−01 1.77471E−01

λ1 4.07235E-04 1.01443E−02 7.42748E−02 1.54164E−01 1.59960E−01

λ2 1.13824E−05 8.95872E−04 1.62590E−02 6.45254E−02 8.70835E−02

λ3 8.87536E−07 2.13968E−04 8.41907E−03 4.99665E−02 7.56703E−02

λ4 3.29965E−08 2.46420E−05 2.23123E−03 2.29768E−02 4.35288E−02

λ5 2.36367E−09 5.42325E−06 1.07998E−03 1.70946E−02 3.68745E−02

λ6 9.88175E−11 6.99683E−07 3.14550E−04 8.30900E−03 2.19590E−02

λ7 6.72990E−12 1.46554E−07 1.45739E−04 6.00412E−03 1.82413E−02

λ8 3.00073E−13 2.01411E−08 4.49058E−05 3.03064E−03 1.11393E−02

λ9 1.97617E−14 4.08130E−09 2.01821E−05 2.14175E−03 9.10854E−03

λ10 9.17796E−16 5.83944E−10 6.45455E−06 1.11118E−03 5.67138E−03

λ11 5.90134E−17 1.15555E−10 2.83684E−06 7.71666E−04 4.57714E−03

λ12 2.81901E−18 1.70012E−11 9.31517E−07 4.08788E−04 2.89477E−03

λ13 1.78040E−19 3.30498E−12 4.02503E−07 2.79917E−04 2.31011E−03

λ14 8.68183E−21 4.96305E−13 1.34787E−07 1.50730E−04 1.48022E−03∑14
j=0 λ j 4.81268E−03 4.74207E−02 2.30200E−01 5.18487E−01 6.60957E−01

∑14
j=0 λ2j 1.94656E−05 1.40954E−03 2.20888E−02 6.64619E−02 7.47405E−02

∑14
j=0 λ3j 8.48536E−08 4.82298E−05 2.48243E−03 1.06496E−02 1.09279E−02

∑14
j=0 λ4j 3.72505E−10 1.71565E−06 2.93941E−04 1.82038E−03 1.74279E−03

κ1(β) 4.81268E−03 4.74207E−02 2.30200E−01 5.18519E−01 6.61914E−01

κ2(β)/2 1.94653E−05 1.40954E−03 2.20888E−02 6.64619E−02 7.47408E−02

κ3(β)/8 8.46157E−08 4.82310E−05 2.48243E−03 1.06496E−02 1.09279E−02

κ4(β)/48 ∗ 1.71569E−06 2.93941E−04 1.82038E−03 1.74279E−03
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Table 6 Eigenvalues ofA applied to kernel K3 for different tuning parameters β, here E–j stands for 10− j

λ j \β 0.25 0.5 1 2 3

λ0 5.26225E−02 1.42136E−01 2.36068E−01 2.37985E−01 2.02640E−01

λ1 1.63425E−04 4.18408E−03 4.48104E−02 1.29257E−01 1.45877E−01

λ2 3.96229E−05 2.98027E−03 3.44419E−02 8.84416E−02 1.04356E−01

λ3 5.07537E−07 1.23168E−04 5.02500E−03 3.98239E−02 6.69664E−02

λ4 7.41169E−08 5.45396E−05 4.58684E−03 3.28673E−02 5.37419E−02

λ5 1.57622E−09 3.62572E−06 7.33137E−04 1.31547E−02 3.19372E−02

λ6 1.81032E−10 1.27337E−06 5.51939E−04 1.22143E−02 2.76763E−02

λ7 4.89513E−12 1.06731E−07 1.06963E−04 4.53918E−03 1.55292E−02

λ8 4.87430E−13 3.26023E−08 7.12110E−05 4.49725E−03 1.42528E−02

λ9 1.37638E−15 8.73898E−10 9.53839E−06 1.56980E−03 7.64324E−03

λ10 3.99302E−18 2.40495E−11 1.30684E−06 5.55566E−04 3.79317E−03

λ11 1.17813E−20 6.72882E−13 1.81702E−07 1.98509E−04 1.89295E−03

λ12 3.51545E−23 1.90367E−14 2.55195E−08 7.13642E−05 9.46891E−04

λ13 1.05731E−25 5.42770E−16 3.60561E−09 2.56128E−05 4.70590E−04

λ14 7.53533E−29 3.77859E−18 1.43728E−10 3.67008E−06 1.22699E−04∑14
j=0 λ j 5.28261E−02 1.49483E−01 3.26406E−01 5.65205E−01 6.77846E−01

∑14
j=0 λ2j 2.76915E−03 2.02289E−02 5.89695E−02 8.41984E−02 8.29135E−02

∑14
j=0 λ3j 1.45718E−04 2.87160E−03 1.32867E−02 1.64331E−02 1.30781E−02

∑14
j=0 λ4j 7.66805E−06 4.08143E−04 3.11106E−03 3.55180E−03 2.28777E−03

κ1(β) 5.28261E−02 1.49483E−01 3.26425E−01 5.67901E−01 6.93371E−01

κ2(β)/2 2.76915E−03 2.02289E−02 5.89695E−02 8.42017E−02 8.29872E−02

κ3(β)/8 1.45717E−04 2.87160E−03 1.32867E−03 1.64331E−02 1.30786E−02

κ4(β)/48 7.66704E−06 4.08145E−04 3.11106E−03 3.55180E−03 2.28779E−03

References

Baringhaus L (1996) Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes. Proc
Am Math Soc 124(12):3875–3884

Baringhaus L, Danschke R, Henze N (1989) Recent and classical tests for normality - a comparative study.
Communications in Statistics - Simulation and Computation 18:363–379

Baringhaus L, Henze N (1988) A consistent test for multivariate normality based on the empirical charac-
teristic function. Metrika 35(1):339–348

Becker, M., Klößner, S.: PearsonDS: Pearson Distribution System. R package version 1.1 (2017)
Betsch S, Ebner B (2020) Testing normality via a distributional fixed point property in the Stein character-

ization. TEST 29(1):105–138
Butsch L, Ebner B (2020) mnt: Affine Invariant Tests of Multivariate Normality, R package version 1.3
Csörgö S (1989) Consistency of some tests for multivariate normality. Metrika 36:107–116
D’Agostino RB, Stephens MA (1986) (eds) Goodness-of-fit techniques. Statistics: textbooks and mono-

graphs, vol 68. Dekker, New York
Ebner B (2020) On combining the zero bias transform and the empirical characteristic function to test

normality. ALEA 18:1029–1045
Ebner B, Henze N (2020) Tests for multivariate normality–a critical review with emphasis on weighted

L2-statistics. TEST 29(4):845–892

123



B. Bruno , N. Henze

Ebner B, Henze N (2021) Bahadur efficiencies of the Epps-Pulley test for normality. Zapiski Nauchnykh
Semin 501:302–314

EbnerB,HenzeN,StriederD (2021)Testing normality in anydimensionbyFouriermethods in amultivariate
stein equation. Can J Stat. https://doi.org/10.1002/cjs.11670

Epps TW, Pulley LB (1983) A test for normality based on the empirical characteristic function. Biometrika
70(3):723–726

Henze N (1990) An approximation to the limit distribution of the Epps-Pulley test statistic for normality.
Metrika 37(1):7–18

Henze N, Koch S (2020) On a test of normality based on the empirical moment generating function. Stat
Pap 61(1):17–29

Henze N, Visagie J (2020) Testing for normality in any dimension based on a partial differential equation
involving the moment generating function. Ann Inst Stat Math 72(5):1109–1136

Henze N, Wagner T (1997) A new approach to the BHEP tests for multivariate normality. J Multivar Anal
62(1):1–23

Henze N, Zirkler B (1990) A class of invariant consistent tests for multivariate normality. Commun Stat
Theory Methods 19(10):3595–3617

Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley,
New York
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