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Zusammenfassung

Sensornetzwerke werden in vielen verschiedenen Anwendungen, z. B. zur Überwachung des Flu-
graumes oder zur Lokalisierung in Innenräumen eingesetzt. Dabei werden Sensoren häufig räumlich
verteilt, um eine möglichst gute Abdeckung des zu beobachtenden Prozesses zu ermöglichen.
Sowohl der Prozess als auch die Sensormessungen unterliegen stochastischem Rauschen. Daher
wird oftmals eine Zustandsschätzung, z. B. durch ein Kalmanfilter durchgeführt, welcher die
Unsicherheiten aus dem Prozess- und Messmodel systematisch berücksichtigt. Die Koopera-
tion der individuellen Sensorknoten erlaubt eine verbesserte Schätzung des Systemzustandes des
beobachteten Prozesses. Durch die lokale Verarbeitung der Sensordaten direkt in den Sensorknoten
können Sensornetzwerke flexibel und modular entworfen werden und skalieren auch bei steigen-
der Anzahl der Einzelkomponenten gut. Zusätzlich werden Sensornetzwerke dadurch robuster,
da die Funktionsfähigkeit des Systems nicht von einem einzigen zentralen Knoten abhängt, der
alle Sensordaten sammelt und verarbeitet. Ein Nachteil der verteilten Schätzung ist jedoch die
Entstehung von korrelierten Schätzfehlern durch die lokale Verarbeitung in den Filtern. Diese
Korrelationen müssen systematisch berücksichtigt werden, um genau und zuverlässig den Sys-
temzustand zu schätzen. Dabei muss oftmals ein Kompromiss zwischen Schätzgenauigkeit und den
begrenzt verfügbaren Ressourcen wie Bandbreite, Speicher und Energie gefunden werden. Eine
zusätzliche Herausforderung sind unterschiedliche Netzwerktopologien sowie die Heterogenität
lokaler Informationen und Filter, welche das Nachvollziehen der individuellen Verarbeitungsschritte
innerhalb der Sensorknoten und der korrelierten Schätzfehler erschweren.

Diese Dissertation beschäftigt sich mit der Fusion von Zustandsschätzungen verteilter Sensorknoten.
Speziell wird betrachtet, wie korrelierte Schätzfehler entweder vollständig oder teilweise gelernt
werden können, um eine präzisere und weniger unsichere fusionierte Zustandsschätzung zu erhalten.
Um Wissen über korrelierte Schätzfehler zu erhalten, werden in dieser Arbeit sowohl analytische
als auch simulations-basierte Ansätze verfolgt.

Eine analytische Berechnung der Korrelationen zwischen Zustandsschätzungen ist möglich, wenn
alle Verarbeitungsschritte und Parameter der lokalen Filter bekannt sind. Dadurch kann z. B.
ein zentraler Fusionsknoten die die Korrelation zwischen den Schätzfehlern rekonstruieren. Dieses
zentralisierte Vorgehen ist jedoch oft sehr aufwendig und benötigt entweder eine hohe Kommunika-
tionsrate oder Vorwissen über die lokale Verarbeitungsschritte und Filterparameter. Daher wurden
in den letzten Jahren zunehmend dezentrale Methoden zur Rekonstruktion von Korrelationen
zwischen Zustandsschätzungen erforscht. In dieser Arbeit werden Methoden zur dezentralen
Nachverfolgung und Rekonstruktion von korrelierten Schätzfehlern diskutiert und weiterentwickelt.
Dabei basiert der erste Ansatz auf der Verwendung deterministischer Samples und der zweite auf
der Wurzelzerlegung korrelierter Rauschkovarianzen. Um die Verwendbarkeit dieser Methoden
zu steigern, werden mehrere wichtige Erweiterungen erarbeitet. Zum Einen schätzen verteilte
Sensorknoten häufig den Zustand desselben Systems. Jedoch unterscheiden sie sich in ihrer lokalen
Berechnung, indem sie unterschiedliche Zustandsraummodelle nutzen. Ein Beitrag dieser Arbeit ist

VII



CONTENTS

daher die Verallgemeinerung dezentraler Methoden zur Nachverfolgung in unterschiedlichen (het-
erogenen) Zustandsräumen gleicher oder geringerer Dimension, die durch lineare Transformationen
entstehen. Des Weiteren ist die Rekonstruktion begrenzt auf Systeme mit einem einzigen zentralen
Fusionsknoten. Allerdings stellt die Abhängigkeit des Sensornetzwerkes von einem solchen zentralen
Knoten einen Schwachpunkt dar, der im Fehlerfall zum vollständigen Ausfall des Netzes führen
kann. Zudem verfügen viele Sensornetzwerke über komplexe und variierende Netzwerktopologien
ohne zentralen Fusionsknoten. Daher ist eine weitere wichtige Errungenschaft dieser Dissertation
die Erweiterung der Methodik auf die Rekonstruktion korrelierter Schätzfehler unabhängig von
der genutzten Netzwerkstruktur. Ein Nachteil der erarbeiteten Algorithmen sind die wachsenden
Anforderungen an Speicherung, Verarbeitung und Kommunikation der zusätzlichen Informatio-
nen, welche für die vollständige Rekonstruktion notwendig sind. Um diesen Mehraufwand zu
begrenzen, wird ein Ansatz zur teilweisen Rekonstruktion korrelierter Schätzfehler erarbeitet Das
resultierende partielle Wissen über korrelierte Schätzfehler benötigt eine konservative Abschätzung
der Unsicherheit, um genaue und zuverlässige Zustandsschätzungen zu erhalten.

Es gibt jedoch Fälle, in denen keine Rekonstruktion der Korrelationen möglich ist oder es eine
Menge an möglichen Korrelationen gibt. Dies ist zum Einen der Fall, wenn mehrere Systemmodelle
möglich sind. Dies führt dann zu einer Menge möglicher korrelierter Schätzfehler, beispielsweise
wenn die Anzahl der lokalen Verarbeitungsschritte bis zur Fusion ungewiss ist. Auf der anderen Seite
ist eine Rekonstruktion auch nicht möglich, wenn die Systemparameter nicht bekannt sind oder die
Rekonstruktion aufgrund von begrenzter Rechenleistung nicht ausgeführt werden kann. In diesem
Fall kann ein Simulationsansatz verwendet werden, um die Korrelationen zu schätzen. In dieser
Arbeit werden Ansätze zur Schätzung von Korrelationen zwischen Schätzfehlern basierend auf der
Simulation des gesamten Systems erarbeitet. Des Weiteren werden Ansätze zur vollständigen und
teilweisen Rekonstruktion einer Menge korrelierter Schätzfehler für mehrere mögliche Systemkon-
figurationen entwickelt. Diese Mengen an Korrelationen benötigen entsprechende Berücksichtigung
bei der Fusion der Zustandsschätzungen. Daher werden mehrere Ansätze zur konservativen Fu-
sion analysiert und angewendet. Zuletzt wird ein Verfahren basierend auf Gaußmischdichten
weiterentwickelt, dass die direkte Verwendung von Mengen an Korrelationen ermöglicht.

Die in dieser Dissertation erforschten Methoden bieten sowohl Nutzern als auch Herstellern von
verteilten Schätzsystemen einen Baukasten an möglichen Lösungen zur systematischen Behand-
lung von korrelierten Schätzfehlern. Abhängig von der Art und den Umfang des Wissens über
Korrelationen, der Kommunikationsbandbreite sowie der gewünschten Qualität der fusionierten
Schätzung kann eine Methode passgenau aus den beschriebenen Methoden zusammengesetzt und
angewendet werden. Die somit geschlossene Lücke in der Literatur eröffnet neue Möglichkeiten für
verteilte Sensorsysteme in verschiedenen Anwendungsgebieten.
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Abstract

Sensor networks are essential for many different applications, e.g., air space surveillance or indoor
localization. Thereby, sensors are often spatially distributed to allow for better coverage for
observing the process of interest. However, the process and the sensor measurements are subject
to stochastic noise. Therefore, the state of the process is estimated, e.g., using a Kalman filter
that systematically considers the uncertainties of the process and measurements. Sensor nodes can
improve their estimation by cooperating with other nodes to execute their estimation tasks by
exchanging local information among each other or a central processing unit. This makes the sensor
network design more flexible and modular, and it scales better with an increasing number of sensor
nodes. Additionally, the sensor networks are more robust because the failure of a single sensor
node that collects and processes all measurements serves as a single point of failure. Unfortunately,
the local estimation and the exchange of information between sensor nodes result in correlated
estimation errors. These correlations have to be accounted for to ensure credible and reliable fusion
results. Because of limited resources, e.g., bandwidth, memory, and energy, compromises between
the quality of the estimation and costs have to be made. Additionally, sensor networks pose more
challenges, e.g., different network topologies or heterogeneous local information and filters, making
the reconstruction of individual processing steps and correlated estimation errors demanding.

This thesis focuses on the fusion of state estimates from distributed sensor nodes. In particular,
the focal point is to retrieve either full or partial knowledge of correlated estimation errors that
are subsequently used to increase the quality and credibility of the fused estimate. In order to
obtain this knowledge, this thesis proposes an analytic and a simulation approach.

The analytic calculation of correlated estimation errors is possible when all processing steps and
the parameters of the local estimators are known. In this case, e.g., a central fusion node can
reconstruct the correlation of estimation errors. However, this centralized approach suffers from
a high communication rate or requires previously determined knowledge about local processing
steps and filtering parameters. To alleviate this limitation, distributed methods to keep track of
correlated estimation errors have received increasing attention within recent years. This thesis
introduces and further develops methods to keep track and reconstruct correlated estimation
errors using deterministic samples and square root decompositions of correlated noise covariances.
Several significant limitations of these approaches are addressed and solved in this thesis. The first
limitation is that local estimators often observe the same phenomenon, but their local estimation
can be carried out in different local coordinate systems. Therefore, an essential contribution of this
thesis is the generalization to track keeping in systems with linearly transformed local state-spaces
in the same or lower dimensions. Further, distributed track-keeping methods have been limited
to reconstructing correlated estimation errors in one dedicated fusion center. Unfortunately, this
introduces a single point of failure when the fusion center is not available and, therefore, can
cause outages within the network. Moreover, sensor networks often feature complicated and
varying network topologies without a central fusion node. Therefore, this dissertation proposes
methods to keep track of correlated estimation errors independent of the underlying network
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structure. A disadvantage of reconstructing cross-covariances using samples or decompositions
is the communication of additional information that causes growing requirements in processing,
memory and bandwidth. To limit communication requirements, this thesis proposes a sliding
window approach that partially discards information about correlated noise terms. Further, it
proposes methods to address the resulting partial knowledge of correlations using conservative
approximations.

However, there are cases where the full reconstruction of correlated estimation errors is impossible.
On the one side, this is the case when various system models are possible that result in a set of
correlations, e.g., when the number of local processing steps is uncertain. On the other side, this
also applies when there is no knowledge about the underlying system parameters, or when the
proposed reconstruction algorithms cannot be executed due to limited computational power. In
this case, a simulation-based approach can be adopted to estimate the correlation. This thesis
proposes a simulation approach that can estimate the correlation between estimation errors for
systems in which correlated estimation errors cannot be reconstructed. Further, it proposes an
analytic approach to fully or partially reconstruct correlated estimation errors for several possible
system configurations. Finally, this thesis derives methods to exploit partial knowledge, either
from estimated correlations or for sets of fully or partially reconstructed correlations. Further, this
thesis proposes a Gaussian mixture approach to use sets of correlations directly.

The methods proposed in this thesis offer users and a manufacturers of distributed estimation
systems a wide variety of systematic approaches to deal with unknown correlated estimation
errors from various sources and with different levels of uncertainty. Depending on the kind of
partial knowledge, the communication requirements, and the needed quality of the fusion result,
practitioners in distributed estimation can pick a method that perfectly fits their application.
Hence, this thesis fills a pressing gap in the literature that has great potential to open new
applications for distributed sensor systems.
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1.5 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Many sensor networks have emerged from military research and development [33, 39]. While
military applications are still a key aspect, sensor networks are also becoming a vital technology in
many other applications, e.g., environmental and habitat monitoring, traffic control [61] or maritime
surveillance to control marine transport or to combat smuggling activities [21]. Furthermore, sensor
networks are also present in many industrial applications [41] for the monitoring of air, water,
waste, the condition of buildings and machines or to control industrial processes and resources.

Because of the wide variety of different tasks and application fields, sensor networks are facing
various challenges. In many applications it is expected that sensor networks execute their tasks
autonomously without intervention of a human operator. This means, that they need to work
self-sufficiently, using their own energy supply, memory and take care of necessary communication
themselves. Sensor networks are required to work reliably under different conditions and often
in harsh environments without constant supervision. Additionally, they need to be versatile,
simple to use and install, and have long life time. The last two decades have seen a growing trend
towards low-cost sensor nodes [61] based on small embedded devices. These devises are often
supplied by batteries or renewable energy sources, e.g., solar panels and therefore come with a
limited energy supply. Furthermore, they often contain low-cost hardware with limited memory
and computational power. Since the bandwidth in sensor networks is usually limited and the
exchange of data uses a significant amount of energy, communication is a bottleneck for many
applications [39].

1.1 Context

Sensor networks contain a number of sensors that are often spatially distributed to better monitor
the phenomenon of interest. The sensors are able to capture different forms of information such
as distances, bearings, temperatures, or images. Yet, the sensor network does not monitor all
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Chapter 1. Introduction

θ1

θ2

θ3

v

Node 1

Node 2

Node 3

Target

x

y

(a) Test setup for the acoustic localization using three
sensor nodes measuring the bearing θ towards a single
target that is moving with velocity v.

(b) PCB of the used microphone sensor array
to determine the angle towards a sound source.

Figure 1.1: Experimental setup for acoustic bearings-only tracking (adapted from[145]).

available information, but a small subset of interesting parameters of the system, e.g., the position
or velocity of a moving object.

The observed system can be characterized by the system state, which contains the information or
variables about the process we are interested in. Usually, the time evolution of the system cannot
be modeled deterministically [71] as there are uncertainties about the system model or the input
to the system. Therefore, it is modeled as a dynamic system excited by noise. Because of this
noise, the uncertainty about the system’s state grows over time. Thus, additionally, information is
provided by the sensors to gain knowledge about the state of the system and decrease uncertainty.
However, measurements obtained by sensors are also subject to noise. Hence, estimation, or also
referred to as filtering, methods, e.g., the popular Kalman filter [71] are used to estimate the state
of the system and minimize the uncertainty. A special kind of estimate is called a track which
often refers to the position, heading, or velocity of a moving target.

By distributing sensor nodes over a wide area, the sensor network is able to capture more information
about the system, e.g., by providing different angles towards a moving target based on the position
of the sensor. Sensor networks also often contain heterogeneous sensor nodes that differ in the
measurement principle, the type of sensor, or the operating point. An example for a system with
distributed sensor nodes is depicted in Figure 1.1. In this application, several sensor nodes are
equipped with microphone arrays that each contain six microphones (see Figure 1.1b) that pick
up the sounds emitted by a moving target. In addition, each sensor node is equipped with an
embedded PC to allow the local storage and processing of recorded audio sequences. Furthermore,
the sensor nodes can communicate over wireless technology, e.g., Zigbee or WiFi. Because of the
limited communication bandwidth, it is infeasible to send audio tracks of every sensor array to a
central processing unit. However, audio tracks can be processed locally to obtain measurements of
the bearings towards the target [143, 145] (see Figure 1.1a).

2



1.2 Problem Formulation

Sensor Node A

Sensor Node B

A

B

Target

S

S

Sensor A

Sensor B

Communication

and Network

Topology

Local Information

Fusion node

f

Data Fusion

Distributed Estimation in Sensor Networks

Application

Measurements

Local Filtering

Figure 1.2: Processing steps for distributed estimation in sensor networks, two sensor nodes A
(blue) and B (red) and a fusion node f (green).

1.2 Problem Formulation

Because of the spatial distribution, sensor nodes can only collect locally available data that capture
a tiny amount of information about the complete system state. In the example from Figure 1.1,
the locally available bearings towards the target are not sufficient to recover the position of the
target. Hence, local data have to be fused to obtain the bigger picture about the observed system.
There are different possibilities to design this distributed setup. For example, it is possible to
collect all measurements from local sensors and send them to a central filtering node that optimally
estimates the state. While this approach results in the most accurate and least uncertain estimate,
it is often impractical in large sensor networks. Since measurements are taken with a high update
rate, the central processing results in a significant amount of data that needs to be communicated.
Furthermore, measurements can get lost or delayed due to network effects and the utilization of a
single filtering node introduces a single point of failure.

An alternative approach is distributed estimation, visualized in Figure 1.2. Sensor nodes A and B
do not send raw measurements to a central node. Instead, measurements are processed in local
filters, recursively incorporated into state estimates that account for the uncertainty of the data
and observed process. Hence, the local state estimates contain the history of previously obtained
measurements. Therefore, no information is lost if the network between sensor nodes fails since
the information is still present in the local sensor nodes. The state estimates are then send to a
fusion node. Distributed estimation leads to more robust systems because no single point of failure
exists. It is also flexible since new sensor nodes can be added and removed without reconfiguring
the complete system. Lastly, distributed estimation is more scalable because the computational
power of a central node does not have to scale with the size of the network. Instead, computational
demands are split and distributed to the local nodes that can be designed in a modular fashion [57].
Because of limited local information, sensor nodes rely on information from other sensor nodes.
On the one side, local estimators use the same assumptions about the process. On the other
hand, sensor nodes also share local measurement information that is incorporated in the state
estimates that are shared and fused. Therefore, the downside of the distributed estimation is
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common information resulting in correlated estimation errors. This double-counting of information
is also known as the Track-to-Track Fusion (T2TF) problem, which was first studied in [11]. These
correlated estimation errors must be accounted for during the fusion of local state estimates to
obtain correct fused estimates.

Two aspects for the fusion result are important when fusing state estimates. First, the fused
estimate should be accurate, meaning that it has to be as close as possible to the system’s actual
state, resulting in a minimal estimation error. Second, the estimate has to be credible [83]. The
term consistency [10] is sometimes also used in this context. However, consistency is an already
well-established concept in statistics with a different meaning. An estimator can be seen as credible
at a certain level when the actual error between the true system state and the estimated state
has no statistically significant difference to the estimated uncertainty, e.g., the covariance matrix.
This means that the fused estimate should not overly under- or overestimate the uncertainty.
Therefore, depending on the application, one can define a certain confidence level for the difference
between estimation error and estimated uncertainty for which an estimator is deemed credible. An
estimator is optimistic when the estimated uncertainty is smaller at a certain level than the actual
estimation error, while it is conservative (or pessimistic) when it overestimates its uncertainty at a
certain level.

1.3 Related Work

There is a growing body of literature that covers different aspects of sensor networks. The following
section gives a brief overview of related work about sensor networks and distributed estimation.
A more thorough discussion of related work is given in the individual chapters. The authors
in [127] discuss several important aspects of sensor networks such as limited communication
resources, data quantization, random transmission delays, packet dropouts, fading measurements,
or communication disturbances. Sensor networks are also closely related to cyber-physical systems.
A survey on various challenges and applications is given in [72]. A specific topic of networked
data processing is target tracking, where several sensor nodes track the trajectory or the pose
of one or several moving targets. These tracking problems also cover other topics such as data
association or sensor management [77]. As discussed earlier, sensor networks are required to
operate autonomously and therefore work reliably at all times. This requirement for reliability
also includes a robust and credible fusion of local information from distributed sensor nodes.

Distributed estimation has been an object of research since the 1980s [32]. While distributed
estimation improves the robustness of the sensor network, it also introduces new challenges. The
authors in [58] provide a comprehensive collection of chapters about different aspects and methods
of distributed estimation for network-centric operations. A survey on advances in distributed
filtering and state estimation problems by [39] also touches topics such as network topology,
network-induced phenomena, and power constraints that influence the filtering performance. Many
existing fusion methods are based on the information form of the Kalman filter [94, 95, 98].
The information form can be used to optimally distribute Kalman filters over the network of
nodes [56, 60, 76, 114, 122] and similar approaches are presented in publications about the channel
filter [30, 57] or the Information Matrix Fusion (IMF) [131]. In cases where the sensor nodes are
not fully connected and do not have a full update rate, they tend to be suboptimal, leading to
underestimating uncertainty.
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1.4 Open Challenges of Data Fusion in Sensor Networks

A special class of fusion algorithms for sensor networks aims to converge to a global estimate
by iteratively exchanging information between neighboring nodes. Prominent examples of such
algorithms are consensus on measurements [104], consensus on information [15, 105] or hybrid
approaches [17, 87]. Consensus methods can be regarded as suboptimal fusion rules [31]. A similar
class of suboptimal fusion rules are diffusion methods [22, 62]. While diffusion methods have
similarities with consensus methods, they are better suited for highly dynamic problems because
they do not wait until a consensus is reached [31].

Instead of using the information form for the fusion, it is also possible to fuse state estimates
directly. In this thesis, we will mainly focus on the fusion of state estimates from distributed
sensor nodes. As discussed earlier, this problem is also known as T2TF [11, 12, 29, 102]. In many
applications, state estimates have correlated estimation errors due to common prior information
and common process noise. However, knowledge about the correlation of estimation errors is needed
to fuse tracks properly, and neglecting this fact during the fusion steps leads to underestimating
the uncertainty of the fused estimate [34]. The interdependency of correlated estimation errors
is usually unknown. Several methods propose ways to handle the missing knowledge. The most
prominent of these algorithms is Covariance Intersection (CI) [27, 67, 111]. CI can fuse state
estimates with any correlation while always yielding fusion results that are guaranteed to never
underestimate the uncertainty. However, state estimation errors are usually not fully correlated
since fusion is only valuable when nodes contribute new information. Hence, the performance
of the fusion can be enhanced by considering a smaller set of admissible correlations. Several
methods propose less conservative fusion results, such as Ellipsoidal Intersection (EI) [120],
Inverse Covariance Intersection (ICI) [101, 103], or methods for improved parameterization of
CI [2, 106, 113].Furthermore, other authors formulate fusion rules using optimization-based
approaches [24, 139].

Many methods that use conservative approximations, e.g., CI or ICI, still obtain much more
conservative fusion results, while certain assumptions about the dependency of estimation errors,
e.g., EI, may underestimate the uncertainty [3, 100]. However, the fusion using the interdependency
of correlated estimation errors is advantageous because it allows optimal fusion of state estimates.
In recent years, several methods for the reconstruction of cross-covariances using ensembles [37],
deterministic samples [125], or decompositions [110] have been proposed. These methods require
additional information to reconstruct correlated estimation errors, leading to a trade-off between
optimality and network capacity.

1.4 Open Challenges of Data Fusion in Sensor Networks

The fusion of state estimates from distributed local sensor nodes is still a challenge in many sensor
networks. One of the main issues is the correct handling of correlated estimation errors, which
is vital for a credible and robust fusion. Neglecting these correlations results in an overconfident
fusion result where the uncertainty of the state estimate is assumed to be smaller than the actual
error. In the worst case, this can lead to filter divergence and bring down the complete sensor
network. In linear systems, it is possible to reconstruct the current correlation between estimation
errors analytically by using knowledge about the processing steps and the parameters of the local
filters. However, sensor networks often contain different sensor systems, and sensor nodes differ
in their local computation. Moreover, local state estimates might relate to each other by known
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transformations or share different amounts of information. Therefore, the information present in
local nodes can be heterogeneous [136, 137, 138], which has to be accounted for when calculating
correlated estimation errors.

Distributed estimation requires information to be shared between sensor nodes, e.g., by using a
wireless network. The flow of information between sensor nodes is highly dependent on the utilized
network topology. For example, data may be collected in a central node or passed on through
several nodes to finally reach the hierarchically highest nodes. There might be no predefined
hierarchy in other cases, and sensor nodes collect information only through their neighboring
nodes. While information flow is easier to keep track of in networks with a central or hierarchical
structure, the aim in many sensor networks is to create redundancy and robustness. Therefore,
decentralized sensor networks are the best way to achieve autonomous and robust systems. Since
the information flow is unregulated in such networks, information loops occur where the sensor
nodes receive previously incorporated information. Thus, the correlation of estimation errors also
has to be kept track of in networks with complicated topology and possibly many sensor nodes.

As discussed previously, sensor networks often consist of low-cost sensor nodes with limited
energy supply. Another limiting factor is the communication bandwidth. Since communication
consumes a significant amount of energy, information passed between sensor nodes must be as
valuable as possible. Furthermore, the sensor nodes cannot exchange information at all times
and between all sensor nodes simultaneously. Therefore, fusion algorithms have to be robust to
these limitations. Consequently, local sensor nodes have to reduce the amount of data to make
communication as efficient as possible.

The subsequent reduction on information needs to be done in a fashion that does not negatively
affect the credibility and robustness of the fused estimate. Since the full knowledge about correlated
estimation errors is not available when the reconstruction is incomplete, fusion methods need to
account for the missing information to ensure credible fusion results. Therefore, only partial
knowledge about the correlation of estimation errors is available for the fusion. Partial knowledge
can be represented in different forms [4]. The estimate can be split into two parts, representing
known or unknown correlation, as proposed by Split Covariance Intersection (SCI), or a set of
admissible correlations can be utilized [59, 108]. Other approaches use heuristics, e.g., EI, or
implicit bounds on the common information, e.g., ICI. The calculation of these sets of admissible
correlation coefficients is still an open research question but bears great potential for improving
the fusion and obtaining tight bounds.

1.5 Contributions and Outline

The contribution of this thesis is a systematic framework for the fusion of state estimates from
distributed sensor nodes that accounts for correlated estimation errors in the form of cross-
covariances or correlation coefficients. In this thesis, the term distributed means that the global
computational effort is distributed to several instances that execute local computations with limited
information. As discussed, this is the case for sensor nodes that are spatially distributed within a
sensor network. However, a distributed system can also contain nodes at the same location, but
where the computation is distributed to several entities, e.g., for parallel computation on different
processor cores. While parallelization is also applicable to the proposed solutions, this thesis mainly
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refers to spatially distributed sensor nodes. The local processing leads to correlated estimation
errors that are usually unknown. Therefore, this thesis proposes several essential contributions.
First, methods for fully reconstructing correlated estimation errors using information inferred from
the local state estimates are proposed. These approaches are extended to reconstruct correlated
estimation errors in systems with different state-space representations and network topologies.
Then, the partial reconstruction of correlated estimation errors is proposed to alleviate bandwidth
considerations. Furthermore, approaches to learning sets of correlated estimation errors using an
analytic and a simulation-based approach to obtain partial knowledge about correlated estimation
errors are developed. Last, approaches to utilize this partial knowledge to obtain accurate and
credible fusion results are proposed. In this thesis, discrete-time systems and a linear fusion
framework are considered. The thesis is structured as follows.

Chapter 2 - Distributed Estimation: gives a brief introduction to the problem of distributed state
estimation. First, the basics of state estimation and communication in sensor networks relevant to
the fusion step are provided. Afterward, the linear fusion of state estimates is introduced, and
sources for correlated estimation errors are discussed. This chapter further discusses reasons and
types of uncertainty about correlated estimation errors in distributed estimation. Last, different
strategies and open challenges to address these uncertainties and gain more knowledge about the
correlated estimation errors are given, motivating the rest of this thesis.

Chapter 3 – Reconstruction of Cross-Covariances: introduces methods to analytically calculate
correlated estimation errors in the form of cross-covariance matrices that are necessary to fuse state
estimates optimally. First, the chapter focuses on the reconstruction of cross-covariance matrices
for systems with a centralized fusion center. Then, based on this initial discussion, two methods are
introduced and compared that optimally keep track of cross-covariances in a distributed fashion.
The first method is based on square root decomposition of correlated noise terms, while the
second method uses deterministic samples. Afterward, both methods are extended to the fusion
of state estimates and the track-keeping of cross-covariances in distributed estimation tasks with
heterogeneous local state representations that are subject to linear transformations. Last, the
methods are generalized for the track-keeping of cross-covariances for fusion in hierarchical and
fully decentralized sensor networks.

Chapter 4 – Partial Reconstruction of Cross-Covariances: continues the reconstruction of
cross-covariances. Both distributed track-keeping methods for cross-covariance from the previous
chapter require the communication of a significant amount of information that grows over time.
This increase in data can be problematic in many sensor networks as they suffer from limited
communication bandwidth and energy. Therefore, this chapter proposes methods to reduce
communication requirements by limiting the amount of tracked information. Furthermore, since
the discarded information is only partially available to the fusion center, methods are proposed that
account for this partial knowledge about correlated estimation errors. The proposed framework
leads to a trade-off between communication bandwidth and the quality of the fusion result. This
approach is also extended to the fusion in hierarchical and fully decentralized sensor networks.

Chapter 5 – Learning Partial Knowledge: discusses systems where the complete or partial
reconstruction of cross-covariances is not possible. For example, this happens when sensor systems
have been bought from a third party distributor and therefore do not allow a later implementation
of reconstruction methods. However, when the behavior of the sensor system is known, it might
be possible to simulate the state estimation and fusion step and estimate the correlation between
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state estimates. First, this chapter discusses the natural constraints of correlation coefficients that
depend on each other to form a valid joint distribution. Afterward, approaches to estimate the
correlation from noisy observations of the state estimates are discussed and compared.

Chapter 6 – Exploiting Partial Knowledge: proposes methods to utilize learned partial knowl-
edge. The chapter investigates two different approaches. First, sets of correlation coefficients
obtained by full or partial reconstruction using systems with different parameterizations are
considered. Second, systems where the correlation is estimated, as discussed in the previous
chapter, are investigated. Several conservative methods that can use partial knowledge to improve
the fusion result are examined. Furthermore, a Gaussian mixture approach is proposed to use the
estimated correlation during the fusion step directly. Moreover, to retrieve partial information, the
necessary system design and identification approaches are presented. Finally, the analytic and the
simulation approach are evaluated using simple numerical examples.
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As discussed in Chapter 1, sensor networks often contain many distributed sensor nodes. The
centralized processing of measurement data is often infeasible as it requires constant communications
and high computational power of the central estimator. Therefore, the processing is distributed
to local estimators, exchanging local information with other nodes and fusing it to improve local
estimation. The process of distributed estimation can be divided into three phases. First, locally
available measurements are processed and combined with knowledge about the system behavior.
Afterward, local information is exchanged with the other nodes given a specific network topology.
Last, the information is gathered at a fusion center, or one of the sensor nodes, and fused. This
thesis focuses on the fusion of state estimates. However, the fusion of state estimates is only
possible if the correlation between estimation errors is known. Yet, there are many reasons why
correlations are either unknown or uncertain. This chapter lays out the theoretical foundation
for distributed estimation. Afterward, reasons and types of correlation uncertainty of estimation
errors are discussed. From this discussion, approaches to retrieve full or partial knowledge about
correlated estimation errors are derived, which motivates the rest of this dissertation.

2.1 Distributed State Estimation in Sensor Networks

This first section is concerned with the local estimation of a dynamic system’s state, where
measurements from the sensors are combined with a predicted estimate. Since one local node
only has a limited amount of information, data of several sensor nodes are necessary to obtain a
complete picture of the underlying process. Therefore, the local state estimates need to be sent
to one or several nodes. Furthermore, the utilized network topology plays an essential role in
the data flow in the sensor network. Hence, different network topologies are introduced, and the
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resulting implications for the data flow and the fusion are discussed. Last, this section introduces
the optimal fusion of state estimates and discusses sources of correlated estimation errors.

2.1.1 Local Estimation

It is assumed that the state xk ∈ Rnx of state dimension nx of a linear discrete-time and time-variant
stochastic dynamic system evolves over time by

xk = Ak xk−1 + wk with wk ∼ N (0,Qk), (2.1)

where k is the time index and Ak is the state transition matrix. The system is subject to zero-mean
white Gaussian system noise wk with noise dimension nw = nx and covariance matrix Qk. Many
real-world applications are also controlled by a system input uk and an input matrix Bk according
to xk = Ak xk−1 + Bk uk + wk, which is neglected here for simplicity.

The system state is observed by a network of L sensor nodes, where each node i employs a linear
observation model Ci

k using

zik = Ci
k xk + vik with vik ∼ N (0,Ri

k) . (2.2)

These measurements are affected by zero-mean white Gaussian system noise vik with measurement
noise covariance matrix Ri

k. It is assumed that measurement noises are mutually independent
and uncorrelated with the process noise. Each local sensor node i processes a state estimate x̂i
and a covariance matrix Pi = E[(x̂i − x)(x̂i − x)T]. A popular way to process the uncertain
knowledge about the system model, prior knowledge about the state, and noisy measurements into
a state estimate is the well-known Kalman filter [71]. The Kalman filter is widely used as it is
the Best Linear Unbiased Estimator (BLUE) and minimizes the mean squared estimation error.
The processing of the state estimate is divided into two parts. First, an a priori state estimate is
predicted using the system model (2.1)

x̂ik|k−1 = Akx̂k−1|k−1

and the predicted covariance is

Pi
k|k−1 = E

[
(x̂ik|k−1 − xk)(x̂ik|k−1 − xk)T

]
= AkPi

k−1|k−1AT
k + Qk . (2.3)

The predicted state estimate is then fused with the measurement zik obtained in node i during
the filtering step. This entails a linear combination of the predicted estimate and the innovation
according to

x̂ik|k = x̂ik|k−1 + Ki
k(zik −Ci

kx̂
i
k|k−1)

= (I−Ki
kCi

k)x̂ik|k−1 + Ki
kz
i
k .

Furthermore, the covariance after the measurement update is calculated by

Pi
k|k = (I−Ki

kCi
k)Pi

k|k−1(I−Ki
kCi

k)T + Ki
kRi

k(Ki
k)T . (2.4)
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2.1 Distributed State Estimation in Sensor Networks

(a) Centralized (b) Hierarchical (c) Decentralized

Figure 2.1: Different network topologies with sensor nodes (blue), nodes only dedicated to fusion
(green) and sensor nodes with fusion capabilities (blue and green).

The Kalman gain Ki
k is obtained by

Ki
k = Pi

k|k−1(Ci
k)T
(
Ci
kPi

k|k−1(Ci
k)T + Ri

k

)−1
, (2.5)

minimizing the covariance matrix Pi
k|k and providing an optimal combination. If several measure-

ments are available during a single time step, they can be incorporated sequentially by repeating
the filtering step for every measurement, or they can be incorporated block-wise [13, 102].

2.1.2 Communication between Sensor Nodes

In general, the cooperation of sensor nodes is beneficial for obtaining the bigger picture about
the underlying process and leads to more accurate and robust estimation results than a single
node could provide. Therefore, the communication between sensor nodes is essential for fulfilling
the objective of the sensor network. Moreover, the cooperation between nodes can benefit the
estimation of a single sensor node by providing supplementary information. For example, nodes
can only process a small subset of information, e.g., only angle but no distance information towards
a moving target. Then, the state is not fully observable, and therefore the local estimate diverges.
Knowledge from other sensor nodes can stabilize the local estimate and enable successful target
tracking. Furthermore, sensor nodes can lose the line of sight towards the target, e.g., when an
obstacle obstructs it. In conclusion, the communication of sensor nodes is an essential aspect of
sensor networks. Therefore, communication has to be robust. The path of the information flow
depends on the application, and it heavily influences the degree of correlation between estimation
errors. For the sake of clarity, it is assumed that the processing steps of the estimators are perfectly
synchronized and that there are no delays. It should be noted that these assumptions may be
violated in real-world applications and several authors have concerned themselves with addressing
the arising issues [55, 76, 135].

The following section discusses the information flow in different network topologies, namely
centralized fusion, hierarchical fusion, and decentralized fusion, which can be seen in Figure 2.1.
For the interested reader, the authors in [86, 109, 129] provide a detailed discussion about different
network architectures and algorithms of fusion in sensor networks. A helpful tool for the analysis
of the information flow in sensor networks is the information graph [35, 36]. In this section,
the illustration of the information graph slightly deviates from the existing body of literature
because an additional node for the prior information is introduced. Furthermore, no additional
nodes for communication transmission and reception are present. Therefore, it is assumed that
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(b) Centralized fusion with feedback.

Figure 2.2: Information graph for different fusion topologies, with and without feedback from
the fusion center.

estimators and fusion nodes can transmit and receive information. Moreover, feedback from the
fusion node back to the estimators is assumed in some cases, which is discussed in this section.
Arrows indicate the direction of the information flow, and the time index k increases from left to
right. The information graph includes a node for the sensors that generate measurements. The
local measurements are then processed by the local estimators as discussed in Section 2.1.1. The
estimators are initialized with prior knowledge in the beginning. This information can be the same
or different for all estimators. After the estimation is complete, the fusion node receives information
from the estimators and fuses it. Some of the basic ideas about different fusion topologies are
explained in the next section to give a short introduction that can be referred to later.

Centralized Fusion: is given when the sensor networks contain several sensor nodes that are
communicating their estimates to a dedicated fusion node where they are fused, as can be seen in
Figure 2.2. This is the simplest network topology for distributed estimation. Local estimators
might be initialized by common prior knowledge. Then, every estimator incorporates locally
available measurements into its state estimate. When the fusion step occurs, all local estimators
send their estimates to the fusion node. The fusion node collects and fuses the received information.
Afterward, the local estimator may carry on processing their state estimate (see Figure 2.2a), or
they might receive the result of the fusion step as feedback that is used to reinitialize the local
estimator (see Figure 2.2b). This feedback can also be called T2TF with memory. When the local
estimates are overwritten with the fusion result, the estimation errors are fully correlated. The
fusion with and without memory or feedback can have an interesting influence on the fusion result.
This is investigated in [129] for the optimal fusion and in [5] for the fusion with CI.

Hierarchical Fusion: does not seek to fuse all state estimates at a single dedicated fusion center,
but instead, several intermittent fusion steps are executed at several hops until a central fusion
node is reached. For example, nodes might be scattered over large distances in some sensor
networks. Therefore, communication with a central fusion node can be impossible if the nodes
have a limited communication range. A centralized structure of the sensor networks also does not
scale well when many sensor nodes are present since one node has to process information from
many sensor nodes. Therefore, it can be beneficial to calculate intermediate fusion results that
are passed on to the next hierarchical layer, as can be seen in Figure 2.3. When the last fusion
step is executed, the fused state estimates can be passed back through the layers to the individual
estimators as feedback. When the fusion step is executed with full knowledge about the correlated
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Figure 2.3: Information graph for hierarchical fusion with feedback.

estimation errors, the fusion result is optimal and identical to the fused estimate of the centralized
fusion.

Decentralized Fusion: is executed when sensor networks are employed without any hierarchy or
dedicated fusion center. As before, local sensor nodes execute their respective estimation tasks.
Often, these nodes work autonomously but need additional support from neighboring nodes to
increase accuracy and robustness, while the information from distant sensor nodes is less valuable
for the local estimation. In this case, the centralized or hierarchical network structure with
one or several dedicated fusion centers can be too rigid and demand too much communication
overhead. Every sensor node can serve as a fusion center in decentralized fusion networks, collect
information, and fuse state estimates, as can be seen in Figure 2.4. On the downside, this implies
that information from one sensor node can travel through the network and be reintroduced as
new information from other sensor nodes. These information loops can cause double-counting of
information that is very hard to trace back. When the network is fully connected (see Figure 2.4a),
local fusion steps yield the same fusion result as the centralized fusion of all state estimates because
all nodes have access to the complete information from other nodes. However, sensor networks
are usually not fully connected (see Figure 2.4b). Therefore, every sensor node has different local
information, which leads to partially correlated estimation errors.

2.1.3 Fusion of State Estimates

In the following section, the fusion of state estimates is discussed. For now, the problem is confined
to the fusion of only two state estimates that have been received from two sensor nodes i and j.
The fusion step can take place at an arbitrary time step k. In the following, the time index is
omitted for convenience. The fusion can be seen as a linear combination of the two state estimates
x̂i and x̂j using the fusion gains Fi and Fj . Thus, the fused estimate x̂f is

x̂f = Fix̂i + Fj x̂j , (2.6)
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(a) Decentralized fusion without feedback.
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(b) Decentralized fusion with only sparsely connected
sensor nodes.

Figure 2.4: Information graph for decentralized fusion topologies that are fully or only sparsely
connected.

which is an unbiased fusion result when Fi + Fj = I. Furthermore, the error covariance matrix Pf

is calculated by

Pf = E
[
(x̂f − x)(x̂f − x)T

]
= FiPi(Fi)T + FiPi,j(Fj)T + FjPj,i(Fi)T + FjPj(Fj)T

=
[
Fi Fj

]
J
[
Fi Fj

]T
. (2.7)

The matrix J denotes the joint covariance matrix, which can be written as

J =
[

Pi Pi,j

Pj,i Pj

]
. (2.8)

The matrices Pi and Pj stand for the covariances from the local estimators of nodes i and j.
The cross-covariance matrix Pi,j = E

[
(x̂i − x)(x̂j − x)T

]
characterizes the correlation between

the estimation errors of state estimates x̂i and x̂j . The fusion gains Fi and Fj are usually chosen
to minimize the fused covariance matrix Pf = E

[
(x̂f − x)(x̂f − x)T

]
. In this case, the fused state

estimate x̂f is referred to as the optimal fusion result. As discussed in [82], the fusion result can be
formulated as the Weighted Least Squares (WLS) estimate

x̂WLS = arg min
x

[
m̂−Hx

]TJ−1[m̂−Hx
]
, (2.9)

where m̂ =
[
(x̂i)T (x̂j)T

]T
is the joint state estimate. Finally, the matrix H =

[
I I

]T
determines

how the local states map into the global state. The solution to the WLS problem in (2.9) is the
gain matrix

F =
[
Fi Fj

]
= (HTJ−1H)−1HTJ−1 . (2.10)

The calculation of the fused covariance matrix is thus given by

Pf = (HTJ−1H)−1 . (2.11)

Finally, the fused estimate is calculated by

x̂f = Fm̂ = PfHTJ−1m̂ . (2.12)
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2.1 Distributed State Estimation in Sensor Networks

This fusion algorithm can also be generalized to the fusion of several state estimates [118]. The
resulting joint covariance matrix and joint state vector for a number of L sensor nodes is constructed
by

J =


P1 P1,2 . . . P1,L

P2,1 P2 . . .
...

...
... . . . ...

PL,1 . . . . . . PL

 , m̂ =


x̂1

x̂2

...
x̂L

 .

Furthermore, the mapping matrix is given by H =
[
I, I, . . . , I

]T
. The calculation of the fused

estimates is then identical to the formulas given by (2.11) and (2.12).

Correlated Estimation Errors: are a challenging aspect for the fusion of state estimates in
distributed estimation. The given algorithm for the fusion of state estimates can only be solved
if the joint covariance matrix J is known. As discussed, the entries on the diagonal of the joint
covariance matrices stem from the local estimators and are known. However, the entries on
the off-diagonal are the cross-covariances describing how the estimation errors of x̂i and x̂j are
correlated. As will be discussed in 2.2, these cross-covariances are usually unknown and depend
on different factors such as the initialization, the local processing, or the communication scheme.
Different sources of correlated estimation errors can be identified [102]:

• common prior information,
• common process noise, and
• common measurement information.

Common prior information occurs when the local estimators are initialized with the same knowledge
about the system, such as the same state and the same covariance matrix. Furthermore, the
underlying process observed by the local sensor nodes is affected by process noise. Therefore, the
local estimators incorporate the same common process noise into the prediction step. Hence, even
independently initialized nodes have correlated estimation errors when estimating the same system
state.

During the filtering step, local measurements are recursively incorporated into the state estimates
by linear combination. Furthermore, the individual measurements can be incorporated into several
other state estimates when local information is communicated through the network. If these
state estimates from other nodes are passed on, information can be looped back to its source,
thus resulting in double-counting of sensor data that causes additional correlations. The sources
of correlated estimation errors, therefore, also depend on the network topology. For example,
centralized and hierarchical fusion topologies usually contain correlations due to prior information
and common process noise, while decentralized sensor networks also contain information loops
that lead to double counting of measurement information.

Consequences of Correlated Estimation Errors for the Fusion Result: To demonstrate the
problem of correlated estimation errors, a short example is given as follows.

Example 1: Optimal and Suboptimal Fusion of State Estimates A system with two sensor
nodes A and B is considered. The sensor nodes estimate the state of a linear time-invariant system
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Figure 2.5: Comparison of different fusion methods, error ellipses and simulation.

model with A =
[
1, 1; 0, 1

]
and process noise covariance Q = I. Both estimates are initialized with

P0 = 5Q and x̂0 = 0 at time step k = 0. Furthermore, the sensor nodes use a linear measurement
model CA =

[
1, 0
]
and CB =

[
0, 1
]
and measurement covariance RA = RB = 50. The system

performs 10 processing steps and then the estimates are sent to a fusion center. For the performance
evaluation 1000 Monte Carlo Runs (MCR) are executed. After every fusion step, the fusion result
is communicated back to the estimates as feedback to reinitialize the local estimates. Afterward, the
local estimates continue their estimation.

Three fusion methods are compared in this example. The first method is the naïve fusion which
neglects the cross-correlation. The second is CI, which bounds all possible fused covariance
matrices and is guaranteed to provide results that never underestimate the uncertainty. Last,
the Bar-Shalom–Campo (BSC) formulas (Opt) are used with the actual cross-covariance matrix
that was calculated analytically. The estimation error is visualized in Figure 2.5a using the error
ellipse [49] of the fused covariance matrices. This short example shows that neglecting correlated
estimation errors leads to a covariance matrix that is smaller than the fused covariance matrix
using the actual correlation between estimation errors. Therefore, this naïve fusion approach
results in underestimation of the uncertainty. The CI approach on the other hand bounds all
possible fused covariance matrices. Yet, it is significantly larger than the optimal fusion result and
therefore overly conservative.

The performance of the fusion also can be evaluated using M MCR of the system. In this example,
the local estimators are reinitialized with the result of the fusion step (see Section 2.1.2 and
Figure 2.2b). Figure 2.5b shows the Mean Squared Error (MSE) of the fusion results. The optimal
fusion shows the lowest error, followed by CI and then naïve fusion. The credibility of the fused
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2.2 Correlation Uncertainty in Distributed Estimation

estimate is evaluated using the Averaged Normalized Estimation Error Squared (ANEES) [83],
where the ANEES of time step k and simulation run ` is defined as

ANEES(k) = 1
nxM

M∑
`=1

(
xk(`)− x̂fk(`)

)TPf(`)−1(xk(`)− x̂fk(`)) ,
with the system state xk, the fused estimate x̂f, and covariance matrix Pf of state dimension nx.
The ANEES indicates whether the estimated uncertainty fits the actual MSE of the fused estimate
and it is a measure often used in T2TF problems [14, 92]. When it is below 1, it suggests that
the uncertainty is overestimated, while it is underestimated for values above 1. Furthermore, a
confidence interval can be given. In this thesis, the 95% confidence interval is always plotted when
the ANEES is evaluated. Figure 2.5c shows that only the optimal fusion result is within the 95%
confidence interval, while CI is below (uncertainty is overestimated) and naïve fusion is above
(uncertainty is underestimated). Summarizing the findings from this smaller example, using the
actual correlation between estimation errors is advantageous as it yields the optimal fusion result,
neither over- or underestimating the uncertainty.

Optimal Fusion of State Estimates: is a term that is used several times in this thesis. In the
past, several authors have concerned themselves with the notion of optimality in distributed
estimation. However, depending on the aspect, optimal fusion can have a different meaning.
Whenever this thesis refers to optimal fusion, it means the optimal linear combination of state
estimates in the WLS sense [82] or the Maximum Likelihood (ML) sense [23]. Nonetheless, it
needs to be stressed that this is not equal to the Linear Minimum Mean Square Error (LMMSE)
sense in which a Kalman filter is optimal [102]. Fusion methods based on the information form,
e.g., IMF [131], can be optimal under certain assumptions in the same way a Kalman filter is
optimal. This thesis distinguishes between a central Kalman filter that receives all measurements
from the sensor nodes and processes them into an optimal state estimate in the LMMSE sense
and the optimal fusion of state estimates or tracks.

2.2 Correlation Uncertainty in Distributed Estimation

Correct fusion of state estimates is only possible when cross-covariances between state estimates
are known. The previous sections also discussed that the main reasons for correlated estimation
errors are common prior information and process noise, and shared measurement information.
However, even when the mechanisms behind correlated estimation errors are well established, there
are different reasons why these correlations are often unknown or uncertain in many practical
applications. This thesis considers the correlation of estimation errors in two forms: First,
cross-covariance matrices, and second, correlation coefficients referring to the normalization of
the cross-covariance matrix. Correlation coefficients are advantages because they only include
admissible values in the interval of [−1, 1]. Furthermore, when several correlation coefficients
are possible, this is referred to as sets of admissible correlation coefficients. Further explanation
about the correlation and its natural constraints is given in Chapter 5. However, only cross-
covariance matrices are considered to reconstruct correlated estimation errors, as they can be
directly calculated from the system model and covariance matrices and used to construct the joint
covariance matrix.
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Figure 2.6: Types of Correlation Uncertainty.

The first part of this section discusses different reasons for unknown or uncertain correlated
estimation errors. The reason for this lack of information determines how the missing knowledge
can be fully or partially recovered. Therefore, the following section discusses different approaches
to identify correlated estimation errors.

2.2.1 Reasons and Types of Correlation Uncertainty

The following section gives a systematic review of possible reasons and types of uncertainty about
correlated estimation errors [8]. The resulting uncertainty is categorized into continuous and
discrete correlation uncertainty.

Continuous Correlation Uncertainty: arises from uncertainties about the local estimators or the
fusion steps that result in a probability distribution of the correlation rather than discrete values,
as can be seen in Figure 2.6a. For example, this is the case when local sensor nodes are subject
to linearization, e.g., using the Extended Kalman Filter (EKF) or the Unscented Kalman Filter
(UKF). Then, the local linearization depends on the current state estimate, which affects the
measurement update and the correlation between estimates. Since a fusion center or other sensor
nodes do not know the local state, they also do not know the linearization point. Therefore,
the uncertainty of the correlation is continuous in this case because the uncertainty of the state
estimate is continuous as well.

Another reason for continuous correlation uncertainty can be model parameters that lie in a
continuous but bounded range. For example, the measurement covariance matrix might depend
on the current temperature, unknown to other sensor nodes. Alternatively, the exact measurement
covariance matrix is not known a priori but is determined during a calibration routine. Usually, the
range for the uncertain parameter can be specified, while the exact value is unknown. These model
parameters might also include the system matrix, the process noise, or the prior information. Last,
a reason for continuous correlation uncertainty can be due to the estimation of the correlation
that is subject to noise. The uncertainty can be reduced by taking more measurements to improve
the estimation process. However, in general, the resulting estimate will always be uncertain to
some degree.

Discrete Correlation Uncertainty: emerges whenever correlated estimation errors can have a
set of discrete value (see Figure 2.6b). As discussed for the continuous correlation uncertainty,
model parameters can be uncertain or in a bounded range. Since the distribution calculation
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2.2 Correlation Uncertainty in Distributed Estimation

is cumbersome, one could discretize the correlated estimation errors over a suitable grid, which
would result in a set of discrete values. A situation where discrete correlation uncertainty can
occur naturally is when the model parameters are known, but the number of processing steps until
the fusion step is executed are unknown. Because of the discrete fusion events, there are several
possible correlations. Other uncertain events are the number of local sensors, the number of nodes
that contributed to intermediate fusion results, the network topology, or if information or feedback
has been sent successfully.

2.2.2 Approaches for Correlation Retrieval

The previous section discussed different reasons and types of correlation uncertainty. This section
introduces two approaches that can be followed to obtain knowledge about correlated estimation
errors in distributed estimation. Whenever the true correlated estimation errors are available
or reconstructed, this is referred to as full knowledge. Furthermore, it is referred to as partial
knowledge whenever the correlated estimation errors are uncertain, or when there are sets of
possible correlated estimation errors. Some of the considerations of this section have been
proposed in [150]. First, this section introduces an analytic approach to fully or partially calculate
correlated estimation errors. Second, estimation of correlated estimation errors is discussed using
a simulation-based approach.

The Analytic Approach: can be applied in cases where knowledge about the system or the set of
possible system parameters can be used, e.g., varying fusion steps, prior information, system or
measurement models, uncertainty about the network connection, or topology. In these cases, the
cross-covariance matrix can be calculated analytically [11] for all possible combinations of system
parameters. If the number of system parameters is too high, a convenient grid of system models can
be used instead. This approach is applicable for many cases of continuous or discrete correlation
uncertainties. However, this approach requires the calculation of the cross-covariance matrix. The
calculation can be done in a centralized way, where the knowledge about the local estimators and
the fusion step is used to reconstruct the cross-covariance optimally. Unfortunately, this centralized
calculation requires much information and high update rates, infeasible in many sensor networks.
Therefore, distributed reconstruction, e.g., using samples [125] or square-root decompositions [110],
can be helpful. In some cases, not all of the knowledge necessary for the complete reconstruction is
available. Therefore, cross-covariances may be only partially reconstructed, which adds additional
uncertainty to the analytically calculated cross-covariances.

The Simulation Approach: can be used when the system parameters are not known. Uncertainties
of the system, e.g., when nodes do not receive information from neighboring nodes, can, for example,
be modeled by uncertain initial conditions. When it is possible to model the behavior of the sensor
network, including the local estimation steps and the fusion, then several MCR of the complete
system can be executed. By simulating the local estimation step, including the measurements, the
estimation error can be calculated. Thus, the necessary partial knowledge can be estimated from
calculating the correlation between the errors of the simulated state estimates. The simulation
approach is feasible if the system behavior only depends on a known system input for which the
output can be learned. This approach requires methods to estimate the correlation coefficients
that describe the dependency between estimation errors. Since the estimation process is subject to
noise, the uncertainty of the estimate has to be evaluated and accounted for during the fusion step.
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2.3 Conclusions to Distributed Estimation

This chapter discussed the processing steps necessary for fusing local state estimates from distributed
sensor nodes. First, locally available measurements are processed by local estimators and then
communicated according to the given topology of the sensor network. Then, state estimates are
fused using a WLS approach. Last, the fusion result can be communicated to other sensor nodes
for subsequent fusion, e.g., in hierarchical network topologies, or used as feedback to reinitialize
local estimators with improved knowledge about the observed state. However, the estimation
errors of the local estimates are correlated due to common prior information, common process
noise, and shared measurement information. This correlation must be accounted for to ensure
credible fusion results that do not underestimate the estimate’s uncertainty.

Therefore, knowledge about correlated estimation errors is the key to performing an optimal fusion
of state estimates and vital for the accuracy and credibility of the fusion result. However, there
are different reasons why correlated estimation errors might be partially or fully unknown, leading
to continuous or discrete correlation uncertainty. Analytic or simulation-based approaches can be
adopted to retrieve knowledge about the correlation of estimation errors in distributed estimation.
Therefore, the following chapters investigate both analytic and simulation-based approaches to
obtain full or partial knowledge about correlated estimation errors to improve fusion results.
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The optimal fusion of state estimates requires the joint covariance matrix to be known. While the
covariances of the local estimators are known to the fusing node, the cross-covariance describing the
correlation between estimation errors is usually unavailable. However, when the processing steps
of the local estimators are known, then the cross-covariance can be calculated analytically [11].
A significant downside is that this centralized reconstruction of cross-covariances requires either
preexisting knowledge of the local estimators or constant communication of the local processing
steps.

This chapter focuses on different methods for the optimal reconstruction of cross-covariances in
distributed estimation. To allow a deeper insight into the reconstruction of cross-covariances, this
chapter starts by studying the analytic calculation in a centralized network with only one dedicated
fusion node. Then, this discussion forms the basis for deriving two distributed methods for the
track-keeping of cross-covariances based on deterministic samples and the square root decomposition
of correlated noise covariances. Finally, both methods are compared and further extended to
sensor networks with heterogeneous state representation and different network topologies.
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3.1 Optimal Centralized Reconstruction of Cross-covariances

As discussed, this section focuses on the fusion of state estimates in a single dedicated node. For
simplicity, this following discussion is limited to the estimates from only two sensor nodes i and j.
The state estimates are initialized with the same state x̂0 and covariance matrix P0 at time step
k = 0. Therefore, both estimates are fully correlated at the beginning of the estimation process
due to the common prior information, resulting in the cross-covariance Pi,j

0 = Pj,i
0 = P0.

Next, the prior state estimates are predicted by the local Kalman filters (see (2.3)) that incorporate
the process noise covariance Qk, resulting in the predicted cross-covariance

Pi,j
k|k−1 = E[(x̂ik|k−1 − xk)(x̂

j
k|k−1 − xk)T]

= E
[(

Akx̂
i
k−1|k−1 − (Akxk−1 + wk)

)(
Akx̂

j
k−1|k−1 − (Akxk−1 + wk)

)T]
= AkE

[(
x̂ik−1|k−1 − xk−1

)(
x̂jk−1|k−1 − xk−1

)T]AT
k + E

[
wk(wk)T

]
= AkPi,j

k−1|k−1A
T
k + Qk . (3.1)

Afterward, the cross-covariance is updated (see (2.4)) using the Kalman filter gain Kk (see (2.5))

Pi,j
k|k = E[(x̂ik|k − xk)(x̂

j
k|k − xk)T]

= E
[(
x̂ik|k−1 + Ki

k(zik −Ci
kx̂

i
k|k−1)− xk)

(
x̂jk|k−1 + Kj

k(z
j
k −Cj

kx̂
j
k|k−1)− xk

)T]
= E

[(
x̂ik|k−1+Ki

k(Ci
kxk+vk−Ci

kx̂
i
k|k−1)−xk)

(
x̂jk|k−1+Kj

k(C
j
kxk+vk−Cj

kx̂
j
k|k−1)−xk

)T]
=
(
I−Ki

kCi
k

)
E
[(
x̂ik|k−1 − xk

)(
x̂jk|k−1 − xk

)T](I−Kj
kC

j
k

)T + Ki
kE
[
vik(v

j
k)

T
]
(Kj

k)
T

= LikP
i,j
k|k−1(Ljk)

T , (3.2)

where Lik = I − Ki
kCi

k and E
[
vik(v

j
k)T
]

= 0 because the measurement noises are mutually
independent. This recursive calculation of the cross-covariance is repeated during every prediction
and filtering step of the Kalman filter. The newly incorporated process noise covariances during
the prediction step increase the correlation between the estimation errors, while the filtering step
reduces the correlation due to the multiplication with the matrix Lik = I−Ki

kCi
k.

This recursive calculation of the cross-covariance can also be rewritten explicitly by a sum of
covariances

Pi,j
k|k = Ti

0,kP0(Tj
0,k)

T +
k∑
τ=1

Ti
τ,kQτ (Tj

τ,k)
T , (3.3)

similarly derived in [130]. Here, τ is the processing step at which a new process noise covariance
matrix Qτ is included. The matrix Tτ,k denotes the individual matrix transformations that are a
result of the local Kalman filtering steps (3.1) and (3.2)

Ti
0,k =

k∏
`=1

Li`A` ,

Ti
τ,k =

( k∏
`=τ+1

Li`A`

)
Liτ .

22



3.2 Distributed Track-keeping of Cross-Covariances

When sensor networks contain many nodes, keeping track of these correlations can be cumbersome
and often infeasible as it requires full communication of all processing steps. Therefore, distributed
methods to keep track of cross-covariances are required. Furthermore, sharing the calculation
with the individual sensor nodes makes the track-keeping better scalable and does not burden the
fusion node with a high computational load.

3.2 Distributed Track-keeping of Cross-Covariances

A considerable amount of literature has been published on distributed track keeping and recon-
struction of cross-covariances in distributed estimation. The following section gives a brief review
of notable publications.

The authors in [37] study the correlation of estimation errors in the context of cooperative vehicle
localization. They use a generalization of the ensemble Kalman filter applied in the presence
of common past information shared between vehicles. The ensemble contains random samples
that represent the state estimate and the observation. The authors in [115] also propose to
use random samples but use them to represent estimation errors. The authors sample common
information in an identical fashion, using the same seed for the random samples in every sensor
node to obtain sets of correlated and uncorrelated samples. These samples are processed locally to
incorporate the local estimation step and then communicated for the fusion step to reconstruct
the joint covariance matrix. Because of the random samples, the reconstructed cross-covariance
asymptotically approaches the actual cross-covariance matrix with an increasing number of samples.

In [125], the authors propose a method that can optimally reconstruct the cross-covariance matrix
by using deterministic instead of random samples. They use the spherical simplex sampling
method [65] to create sets of correlated and uncorrelated samples that are then used to reconstruct
the cross-covariance matrices. The advantage of this approach is the reduced amount of samples
required for the reconstruction. Furthermore, by using deterministic samples, the cross-covariance
is identical to the analytically calculated one and does not require numerous random samples
that still only approximate the true cross-covariance. Finally, the authors in [110] propose a
method to reconstruct cross-covariances using square root decompositions of correlated estimation
errors. Like the reconstruction using deterministic samples, this reconstruction yields identical
cross-covariances to the analytic calculation. Moreover, it also requires only a limited amount of
communication bandwidth. This method is also appealing, as the authors also propose a bounding
scheme to alleviate the growing number of correlated noise terms. For completeness, a similar work
by [70] proposes a Kalman filter using a pure square root process for accounting for correlated or
colored noise. Here, a square root of set matrices that contains error covariance information is also
updated at time and measurement updates.

This brief review of the current state-of-the-art suggests that a deterministic reconstruction is a
promising approach for optimally calculating cross-covariances. Therefore, the following sections
investigate the reconstruction using the square root decompositions of correlated noise covariances
and the reconstruction using deterministic samples. Furthermore, many applications contain sensor
nodes with different state-space representations subject to arbitrary transformations. Therefore,
an extension keeping track of correlated estimation errors for local state estimates from different
state-space representations is introduced. Both approaches that are introduced in this chapter
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exploit the same underlying principle for the reconstruction but are limited to the reconstruction
in centralized sensor networks with a dedicated fusion center. Therefore, a suitable extension for
decentralized sensor networks is proposed for the introduced distributed track-keeping methods.

3.2.1 Reconstruction Based on Square Root Decomposition

First, the reconstruction using square root decompositions of correlated noise covariances is
investigated. The following considerations were published in [146] and further develop the previously
formulated ideas of [110]. The main idea is to decompose the correlated noise covariances
incorporated during the initialization and the prediction steps into a square root, e.g., using the
Cholesky decomposition. Then, every node updates and saves its history of processing steps in a
matrix containing all square root decompositions of common noise covariances. During the fusion
step, every node transmits its state estimate, covariance matrix, and square root matrix. The
square root matrix is then used to reconstruct the cross-covariances needed to construct the joint
covariance matrix. Then, this information is used to fuse the local estimates according to (2.11)
and (2.12).

The recursive formula of (3.3) can be reformulated as a square root decomposition of noise
covariances as

Pi,j
k|k = Ti

0,k
√

P0(
√

P0)T(Tj
0,k)

T +
k∑
τ=1

Ti
τ,k

√
Qτ (

√
Qτ )T(Tj

τ,k)
T

=
k∑
τ=0

Σi
τ,Q(Σj

τ,Q)T .

Here, the square root of covariances is achieved using the Cholesky decomposition. Each sensor
node stores its square root terms in the matrix

Sik,Q =
[
Σi

0,Q,Σi
1,Q, . . . ,Σi

k,Q

]
that includes all noise terms until the current time step k.

This calculation of the square root matrix can also be done recursively. At time step k = 0, it is
initialized with

Si0,Q = Σi
k,Q =

√
P0 .

Then, the matrix is propagated forward during the prediction step using the system model and a
new noise term Σi

k,Q =
√

Q is included. Afterward, the square root matrix is updated using the
gain matrix of the Kalman filter update Lik = I−Ki

kCi
k

Sik,Q = Lik
[
AkSik−1,Q , Σi

k,Q
]
. (3.4)

When the fusion step is reached, the cross-covariance matrix between node i and node j is
reconstructed by

Pi,j
k,Q =

k∑
τ=0

Σi
τ,Q(Σj

τ,Q)T = Sik,Q(Sjk,Q)T . (3.5)
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Figure 3.1: Comparison of different sampling schemes, created with the Nonlinear Estimation
Toolbox [124], 95% confidence interval on the covariance (black) and samples (blue).

Hence, the calculation of the square root matrix is rather straightforward. At every prediction
step, the square root matrix is predicted and a new decomposition of the process noise is included.
Then, the square root is updated during the measurement step, reducing the correlation of the
estimation errors. Because of the incorporation of new noise covariances, this square root matrix
will grow linearly over time.

3.2.2 Deterministic Sample-Based Reconstruction

The reconstruction of cross-covariances using deterministic instead of random samples was proposed
by [125]. In general, the sampling of the probability distribution is often used when nonlinear
transformations are applied to the system. Therefore, the prior probability distribution is sampled
and then transformed so the samples can capture the posterior distribution. The sampling scheme
depends on the probability distribution and the applied transformation. Random samples (see
Figure 3.1c) use randomized points of the probability distribution, which is often used in particle
filters [9] where nonlinearities are severe. Deterministic samples, on the other hand, e.g., the
spherical simplex sampling (see Figure 3.1a) or the UKF [68] sampling (see Figure 3.1b), use
strategically chosen points that capture specific characteristics of the distribution, e.g., the mean
and the covariance. These deterministic samples are suitable for reconstructing cross-covariances,
as transformations by the Kalman filter are assumed to be linear, so a limited number of samples
is sufficient to capture the posterior distribution correctly.

The idea behind the deterministic sampling for the reconstruction of cross-covariances is to
create identical sample sets for noise covariances that are correlated in every sensor node. These
sample sets are updated by the local Kalman filter steps of every sensor node. This allows the
reconstruction of cross-covariance during the fusion step based on the modifications applied to
the samples. The following section briefly reviews the key elements of this method using the
block-wise creation of deterministic samples as it was initially proposed in [125]. Afterward, a
sequential method for creating samples is discussed, where every noise covariance matrix is sampled
individually.
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The first step is to create an initial sample set {p}Mm=1 with pm ∈ RnM that contains a number of
M samples with sample weights ω having the following characteristics

M∑
m=1

ωm p
m = 0 ,

M∑
m=1

ωm p
m(pm)T = I . (3.6)

The dimension of the sample set nM depends on the dimension of the included noise covariances
and a user-defined time horizon T according to nM = nx + (T − 1)nw, where nx is the dimension
of state space and nw the dimension of the process noise. The number of samples M cannot
be reduced further as nM + 1 to represent a valid covariance matrix in nM dimensions [125].
The authors in [125] use the simple deterministic spherical simplex sampling method described
in [65]. It is beneficial because it requires a relatively small number of samples compared to other
sampling schemes. Furthermore, since samples have to be communicated to the fusion center, a
small number of samples is advantageous. However, other sampling methods can also be employed
as long as they share the same characteristics.

This initial sample set it then weighted with the following matrix containing the square root
decomposition of prior common information and common process noise covariances

D = blkdiag
(√

P0,
√

Q1, . . . ,
√

QT
)
. (3.7)

By weighting the sample set {p}Mm=1 with D, the sample set {d}Mm=1 is obtained according to

dmk = D pm , ∀m = 1, . . . ,M

=
[
(si,mk|k )T, (wmk+1)T , . . . , (wmk+T )T

]T
. (3.8)

This sample set includes one sample set {si,mk|k }Mm=1 to account for the common prior information
and a sample set {wk+τ}Mm=1 for every processing step k + τ accounting for the common process
noise until a user defined time horizon T , where 0 < τ ≤ T .

The sample sets are constructed so that multiplying samples that account for the same common
information yields the underlying cross-covariance

P0 =
M∑
m=1

ωm s
i,m
k|k
(
si,mk|k

)T
,

Qk+τ ′ =
M∑
m=1

ωm w
m
k+τ ′

(
wmk+τ ′

)T
,

while multiplying other samples that are uncorrelated to each other yields zero
M∑
m=1

ωm s
i,m
k|k
(
wmk+τ ′

)T =
M∑
m=1

ωm w
m
k+τ ′

(
wmk+τ ′′

)T = 0 .

Here, τ ′ and τ ′′ are arbitrary time steps where τ ′ 6= τ ′′. The correlations between estimation errors
are incorporated into the sample set by applying the transformations of the Kalman filtering steps
to the sample set. During the prediction step, the sample set {si,mk|k }Mm=1 that accounts for the
common prior information is propagated forward in time. Then the sample set referring to the
current process noise covariance is added, yielding

si,mk|k−1 = Ak s
i,m
k−1|k−1 + wmk , ∀m = 1, . . . ,M . (3.9)
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The sample set is then modified by the update step of the Kalman filter gain according to

si,mk|k = Lik s
i,m
k|k−1 , ∀m = 1, . . . ,M .

This processing of the sample set {si,mk|k }Mm=1 is done recursively until the time horizon T is reached.
The cross-covariance matrix Pi,j is reconstructed by multiplying the correlation samples of node i
and j

Pi,j
k =

M∑
m=1

ωm
(
si,mk|k − s̄

i
k|k
)(
sj,mk|k − s̄

j
k|k
)T
, (3.10)

where s̄ is the mean of the sample set {si,mk|k }Mm=1 since the processing of the samples, e.g., during
the update step, can lead to a nonzero sample mean.

Instead of creating the complete sample set until a user-defined time horizon T , it is also possible
to create samples whenever needed. The samples proposed in the initial publication of [125] used
weights as proposed for the spherical simplex sampling method. When more samples are needed,
the weights are changed and this requires rescaling the previously created samples. This results in
additional computational power, especially when many samples have already been created. We
found [152] that omitting the weights is possible since the processing by the local Kalman filters is
linear, and it is not critical to match the exact moments of the distribution.

3.2.3 Comparison Between the Square Root Decomposition and the Sample-Based
Reconstruction

The square root decomposition and the sample-based reconstruction are both suitable approaches
for tracking correlated estimation errors in distributed estimation. The underlying mechanism that
results in the reconstruction of the correct cross-covariance is very similar in both methods. The
construction of the deterministic samples also features the square root decomposition of correlated
noise terms that are combined when multiplying the samples.

Both methods are designed to keep track of processed common information until a user-defined
time horizon T . Therefore, the sample set or the square root matrix should include common prior
information and common process noise covariances of all processing steps until the next fusion
step is executed. When it is assumed that the processing starts at k = 0 and the fusion step is
k = kf, then the time horizon is T = kf + 1. For the square root decomposition, the dimension
of the square root matrix is n = nx × (nx + (T − 1)nw), where nx denotes the dimension of the
system state and nw the dimension of the process noise. However, for sample-based reconstruction,
the sampling method is important. As discussed before, the spherical simplex sampling requires
less samples than other sampling methods to capture the underlying distribution and still has the
required characteristics to create uncorrelated samples to other samples in the set. However, the
number of samples M = nx×nM = nx + (T − 1)nw + 1, meaning that the dimension of the sample
set is n = nx× (nx + (T − 1)nw + 1). Of course, other sampling methods, e.g., the UKF sampling,
require more samples, meaning that the square root matrix is always smaller than the sample set.

Another important factor to consider is the usability of the methods. The square root decomposition
is relatively easy to use as it only requires the computation of the Cholesky decomposition of
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the dependent noise term and the linear transformation of the matrix with the transformation
applied by the current processing step. Moreover, the new square root decompositions are only
appended to the matrix, meaning that the noise terms are in chronological order from the newest
to the oldest in the matrix. Because of the update step that requires the multiplication with
Lik = I − Ki

kCi
k < I, old correlated noise covariances loose their importance as they tend to

approach to zero. If the noise covariances are not significant to the reconstruction anymore, they
could be discarded and partially bounded, as will be discussed in Chapter 4. However, the use of
deterministic samples is less straightforward in comparison. The sample set is created to have
independent samples created for uncorrelated noise covariances. These samples are added to the
existing set containing the current correlation of estimation errors during the prediction step. This
procedure makes it cumbersome if not impossible to remove old samples when their correlated
noise covariances are almost zero. Furthermore, it is not possible to observe when old samples
are almost zero. A possible way to circumvent this problem is to create a sample set for every
processing step individually. Thus, new samples would not be added to the old samples but
appended to the sample set, similar to creating the square root matrix. Unfortunately, this would
result in significantly more samples and, therefore, increase bandwidth requirements.

Summarizing these findings, we found that the square root decomposition appears to be slightly
more intuitive and easier to use. Furthermore, it requires less data to be communicated, which is
especially important in sensor networks, where bandwidth requirements are essential.

Track-Keeping for Nonlinear Estimators is a crucial aspect to consider. Many real-world appli-
cations do not have linear measurement models, e.g., when observing the distance or angles towards
a moving target. Therefore, many applications require nonlinear filters. In order to keep track
of the cross-covariance matrix, it is necessary to identify the matrix L that alters the predicted
cross-covariance matrix during the measurement update in (3.2). This linear transformation can be
found for the Kalman filter, but also all of its derivatives, e.g., the EKF or the UKF or any other
regression Kalman filter [81]. The reconstruction of cross-covariances for nonlinear measurement
models has been done by [125, 145] successfully for the sample-based reconstruction. Based on
this investigation, [146, 148, 149] proposed a similar formulation for the square root decomposition
approach, also showing credible fusion results.

3.3 Track-Keeping for Different Local Coordinate Systems

Most research on the fusion of state estimates has been carried out for estimates with identical
state-space representation. However, some fusion problems do not apply to these assumptions.
With an increasing number of sensor nodes spatially distributed over a large area, the computation
of the complete state space can be challenging or even infeasible. However, in other cases, the
local estimation using a particular state-space representation can even be more reasonable, e.g.,
when linearization is avoided.

Two research directions can be distinguished. The first problem is often referred to as Heterogeneous
Track-to-Track Fusion (HT2TF) and describes problems where several tracks need to be fused.
However, these tracks have different state-space representations, e.g., euclidean or polar coordinates,
and there are often nonlinear transformations between state spaces. These transformations make
the track-keeping of correlated estimation errors very complicated. The second class of problems
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describes the fusion of state estimates with overlapping or unequal state-space representation,
which is often discussed for problems with large state spaces, e.g., the estimation of fine dust
distributions [84].

The following section briefly reviews notable state-of-the-art methods for the fusion of state
estimates from different local coordinate systems. Then, based on the current shortcomings of the
related work, the previously introduced methods for distributed track-keeping are extended to
state estimation problems with different local coordinate systems.

A Fusion of Heterogeneous State Estimates

In HT2TF problems, tracks from two or several moving targets that are subject to different
state-space representations need to be fused. Unfortunately, these systems usually use different
dynamic models, making the calculation of common information infeasible. The problem of HT2TF
was first introduced by [25] for the track association problem, where several tracks with different
state-space representations need to be checked whether they refer to the same moving target.
The authors examine several track association methods with different assumptions and propose
a robust track-to-track fusion method. In [137, 138], the authors propose a LMMSE and a ML
approach to handle the fusion of heterogeneous state estimates. The papers show that both
approaches can be successfully used to improve tracker performance and lead to comparable results
as a central Kalman filter. However, since the authors did not calculate the real cross-covariance
analytically, the fusion step is carried out by assuming the tracks are uncorrelated. The authors
also approximate the cross-correlation in a steady-state case, but the approach shows no significant
improvement.

Several papers propose the use of IMF, e.g., [90, 91, 135]. In [90], the authors explicitly model
the common process noise identically to account for the fact that trackers observe the same
target. The authors in [136] introduce an approach to calculate the cross-covariance matrix
between heterogeneous estimates analytically. To cope with the nonlinear transformation between
state-space representations, they propose to use the Jacobian to linearize the transformation.
Their results show that using the cross-covariance matrix improves the fused estimates. The paper
from [46] can be seen as a special case of HT2TF, where the local sensor nodes work in the full
state space, but for the fusion, only a subset of the state space that is globally most valuable to
the fusion is communicated. Therefore, the fusion of state estimates with state representation
subject to linear or nonlinear transformations is common in many practical applications. However,
the track-keeping of correlated estimation errors is complicated and usually infeasible in the
case of nonlinear transformations. Nevertheless, there are also many applications with linear
transformations, where track-keeping is possible and valuable for improving the fusion. Therefore,
the extension of distributed track-keeping methods to this kind of problem is worthwhile.

B Fusion of Partially Overlapping State Estimates

There is an increasing number of applications using many spatially distributed sensor nodes, e.g.,
to monitor large-scale phenomena like traffic, power systems, or economics [63]. In order to reduce
computational costs, there is a need to distribute computation to several instances. The authors
in [73, 16] discuss approaches to decompose the system model to allow for distributed Kalman
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filtering. As discussed before, many methods have been designed to fuse estimates of the same state
space, but they can often not be applied to problems with partially overlapping state estimates. A
similar problem is called partition-based state estimation [43], where linear constrained systems are
decomposed into smaller subsystems, but state estimates are not overlapping. In [43], the authors
propose three moving horizon estimation algorithms that solve an optimization problem that scales
with the number of states. In [123], a consensus method is proposed to fuse overlapping state
estimates, and an empirical method is proposed in [119]. The authors in [99] formulate the fusion
of partially overlapping state estimates as a WLS problem. However, because information about
the cross-covariance is not available, the authors use CI to fuse estimates with unknown correlation.
Furthermore, an approach using CI and a smoothing algorithm was proposed by [84, 85].

However, the current state of the art does not contain a systematic approach to calculate cross-
covariances in such systems and utilize them for fusion. Since the cross-covariance is usually
beneficial for the fusion step, the following section extends the distributed track-keeping of
correlated estimation errors to systems with partially overlapping state estimates.

3.3.1 Linearly Transformed State Spaces

Distributed track-keeping of correlated estimation errors enables the optimal fusion of state
estimates. This also applies to estimates subject to arbitrary transformations into states of equal
or lower dimensions. However, nonlinear transformations are problematic, as the calculation of
common information is challenging, which is further discussed in Section 3.3.2. Therefore, the
focus lies on linear transformations between state spaces that allow the WLS fusion of estimates, as
previously discussed. The following section discusses a general linear transformation between local
state spaces and the WLS fusion of local state estimates. Furthermore, a systematic approach to
reconstruct cross-covariances in systems with linearly transformed state spaces is derived. This is
the basis for extending the introduced square root decomposition and sample-based reconstruction
of cross-covariances. Finally, this section ends in a short evaluation example for a linear HT2TF
problem featuring three linear trackers in a subspace of the original state space. Some of the
content discussed in this section is also published in [151].

A States Estimates from Linearly Transformed State Spaces

The considered system is described by a linear time-invariant discrete system model similar to (2.1),
where the state space is observed by L sensor nodes

zik = Ci
g · (xk + tig) + vik , with vik ∼ N (0,Ri

k) .

Every sensor node i has a measurement model in the global state space with measurement matrix
Ci
g. It is assumed that measurements are subject to Gaussian distributed measurement noise vik

with covariance matrix Ri
k. Furthermore, tig describes a sensor-specific offset from the origin of

the global coordinate system to the origin Oi of the local coordinate system.

Instead of sending all measurements to a central processing unit, these measurements are processed
by a local Kalman filter in every sensor node. An example for a system with several distributed
trackers working in local state spaces can be seen in Figure 3.3. The local sensor nodes are
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G

(a) Transformation of two-dimensional Gaus-
sian into one-dimensional Gaussian.

G

(b) Transformation of samples in two-
dimensional space into one-dimensional space.

Figure 3.2: Transformation from a two-dimensional to a one-dimensional state space (adapted
from [151]).

estimating the state in a state space of the same or possibly smaller dimension nix ≤ nx. The
transformation from the global state space to the local state space is given by

xik = Gi · (xk + tig) = Gixk + ti , (3.11)

where the transformation Gi is a linear transformation from Rnx into the linear Euclidean subspace
Rnix . Since the local estimators use a different state-space representation, they employ a linearly
transformed model of the global measurement model according to

zik = Cixik + vik with vik ∼ N (0,Ri
k) , (3.12)

with local measurement model Ci. When the local state spaces are smaller than the global
state space, the linear transformation maps the Gaussian distribution to a lower-dimensional
Gaussian distribution. An example of such a linear transformation into a lower-dimensional state
space can be seen in Figure 3.2, where the global state space is two-dimensional, but the local
state space is one-dimensional. Therefore the two-dimensional Gaussian is transformed into a
one-dimensional Gaussian distribution. In the case of nonlinear transformations between state
spaces, the probability distribution might not be Gaussian anymore. This might require a different
design of local estimators or the fusion step.

B Fusion of States Estimates from Linearly Transformed State Spaces

The following section introduces the fusion of estimates from linearly transformed state spaces. The
most significant difference to the fusion of estimates from the same state space is that the linear
transformation must be considered during the fusion. First, the unbiased estimate is constructed
by

m̂i
k = x̂ik − ti = Gix̂k ,
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where the subtraction of ti removes the offset between the different coordinate systems that result
from (3.11). Afterward, the fusion can be formulated in the WLS sense

x̂WLS
k = arg min

x

[
m̂k −Gxk

]T
J−1
k

[
m̂k −Gxk

]
,

with joint state estimate m̂k =
[
(m̂i

k)T . . . (m̂L
k )T

]T
. The matrix G accounts for the known

transformations of global state space into the local state spaces

G =
[
(G1)T . . . [(GL)T

]T
.

Furthermore, the joint covariance matrix is defined as

Jk = E
[
(m̂k −Gxk)(m̂k −Gxk)T

]
.

This joint covariance matrix accounts for the correlation of the local state estimates. Since state
estimates from the local sensor nodes include common process noise and common prior information,
the cross-covariances on the off-diagonals are nonzero.

The solution to this WLS problem can be formulated similarly to BSC-formulas in (2.10) by
calculating a gain matrix

F =
(
GTJ−1

k G
)−1

GTJ−1
k .

Finally, the fusion rule for estimates from linearly transformed local state estimates is

x̂fk = Fm̂k = Pf
kGTJ−1

k m̂k ,

Pf
k =

(
GTJ−1

k G
)−1

.

Therefore, knowing the local linear transformations, the fusion rule is very similar to the standard
WLS fusion (see (2.12) and (2.11) ). However, to use it, cross-covariances are needed for the
construction of the joint covariance matrix. The following section will be concerned with the
reconstruction of the cross-covariances.

C Distributed Track-Keeping for Linearly Transformed State Spaces

In the following section the calculation of the cross-covariance matrix for linearly transformed
state-space representations is derived. It is assumed, that the local state estimate x̂i is propagated
during the prediction step using a local system model Ai = GiA(Gi)T. Then, the cross-covariance
after the prediction step between state estimates x̂i and x̂j is calculated by

Pi,j
k|k−1 = E

[
(Ai

kx̂
i
k−1|k−1 −Gixk)(A

j
kx̂

j −Gjxk)T
]

= E
[(

Ai
kx̂

i
k−1|k−1 −Gi(Akxk−1 + wk)

)(
Aj
kx̂

j
k−1|k−1 −Gj(Akxk−1 + wk)

)]
= Ai

kP
i,j
k−1|k−1(Aj

k)
T + GiQk(Gj)T .

Common process noise is determined by the parts of the state space that are affected by the same
process noise and same prior information. Therefore, the correlation of estimation errors now
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Figure 3.3: Problem sketch for a heterogeneous track-to-track fusion with three local filters
estimating linear subsystems of the global state space (from [151]).

depends on the local transformation Gi and Gj that determine how much of the process noise Qk

is shared. As before, the cross-covariance is updated during the local measurement updates

Pi,j
k|k = (I−Ki

kCi
k)P

i,j
k|k−1(I−Kj

kC
j
k)

T .

With exception to the newly incorporated local transformation matrices, this calculation of the
cross-covariance matrix is identical to the previously discussed approach. Therefore, the recursive
calculation can also be rewritten as a sum of square root decompositioned noise covariances

Pi,j
k|k = Ti

0,kGi
√

P0(
√

P0)T(Gj)T(Tj
0,k)

T +
k∑
τ=1

TA
τ,kGi

√
Qτ (

√
Qτ )T(Gj)T(Tj

τ,k)
T

=
k∑
τ=0

Σi
τ,Q(Σj

τ,Q)T ,

similar to Section 3.2.1. The only difference is that the mapping matrix G needs to be included
in the creation of the local square root matrices. Following this discussion, the extension of the
square root decomposition is as follows. At time step k = 0, the square root matrix is initialized
with

Si0,Q = Σi
k,Q = Gi

√
P0 .

This matrix is linearly transformed during the prediction step, and a new noise term Σi
k,Q = Gi

√
Q

is included. The matrix is then updated using the gain matrix of the Kalman filter update
Lik = I−Ki

kCi
k

Sik,Q = Lik
[
Ai
kSik−1,Q , Σi

k,Q
]
.

Thus, the remaining fusion algorithm is executed as described in Section 3.2.1.

D Extension to the Sample-Based Reconstruction

As discussed before, the common information depends on the common parts of the local state space
of node i and j. Therefore, state estimates contain dependent information where they are affected
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by the same process noise or common prior information, thus, contributing to the cross-covariance
matrix. This behavior of correlated and uncorrelated parts can be modeled by creating samples
that contain independent and dependent sections. This concept of correlated and uncorrelated
samples for fusion is also discussed in [115]. Here, the correlated and uncorrelated sampling is
achieved by the sampling scheme with the characteristics described in (3.6).

As before, a block diagonal matrix (see (3.7)) is created

Di = blkdiag
(
Gi
√

P0,Gi
√

Q1, . . . ,Gi
√

QT
)
.

However, this time it is extend with the mapping matrix Gi to account for the transformation
into the subspace of node i. Then, the local subspace sample set similar to (3.8) is obtained

di,mk = Dipm , ∀m = 1, . . . ,M

=
[
(si,mk|k )T, (wi,mk+1)T , . . . , (wi,mk+T )T

]T
.

Because of the local transformation, the process noise sample sets are not identical in every sensor
node. Therefore, every sensor node now has its own set of process noise samples that only correlate
with sample sets where the state estimates are affected by the same process noise and common
prior information depending on the local transformations. The number of samples M is equal to
the number of samples when sampling in the global state space, but the dimension of the local
sample sets are reduced to the dimension of the local state spaces nix and njx.

The idea of this construction is that only the local transformation matrices Gi and Gj determine
the common parts of the state spaces of the local estimators. The local sample sets are processed
through the local Kalman filter by the prediction step (3.9) and the measurement update (3.9).
When the fusion step occurs, the cross-covariance matrix can be calculated according to (3.10).

E Evaluation Using Tracking Example with Three Local Filter Estimating in Linear Subsystems of
the Global State Space

The following evaluation example is taken from [151]. This evaluation example shows that optimal
track-keeping of correlated estimation errors is possible in systems where every local tracker
only possesses incomplete local knowledge from a subspace. Furthermore, the proposed fusion
approach can fully construct a credible global estimate. We consider a target moving on a
two-dimensional plane where the motion can be described by a constant velocity model with
time constant ∆T = 0.1. Moreover, the position of the target in two dimensions is denoted by
ξ = [ξx, ξy]T and the translational velocity in two dimensions by ν = [νx, νy]T


ξx
ξy
νx
νy


k+1

=


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1



ξx
ξy
νx
νy


k

+ wk .
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Figure 3.4: Comparison of the trace of the fused covariance matrix (dashed) and actual mean
squared error for 1000 MCR (adapted from [151]).

The system is affected by additive white Gaussian noise wk with noise power q1 = 2, q2 = 0.5
according to

Q =


q1

1
3∆T 3 0 q1

1
2∆T 2 0

0 q2
1
3∆T 3 0 q2

1
2∆T 2

q1
1
2∆T 2 0 q1∆T 0
0 q2

1
2∆T 2 0 q2∆T

 .
The target is tracked by three local estimators that are arranged in an equilateral triangle (see
Figure 3.3). The local estimators only estimate a two dimensional subspace of the global state
space. Therefore, they only estimate the position and the velocity along a single axis that is the
x-axis of the original system rotated by an angle φi

φ1 = −π/3 , φ2 = π/3 , φ3 = −π .

The origins Oi of the new coordinate systems have an offset tig to the original euclidean coordinate
system according to

t1g =
[
−5 5 0 0

]T
, t2g =

[
5 −5 0 0

]T
, t3g =

[
0 5 0 0

]T
.

The linear transformation from the full state space to the sub state spaces can be described by
equation (3.11), where the linear transformation is given by

Gi =
[
cos(φi) − sin(φi) 0 0

0 0 cos(φi) − sin(φi)

]
.

Finally, the local measurement model is given by (3.12), where the measurements are drawn from
the global state space by equation (2.2)

Ci
g =

[
cos(φi) − sin(φi) 0 0

]
, Ci =

[
1 0

]
,
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with the local measurement noise matrices

R1 = 1 , R2 = 0.5 , R3 = 0.25 .

Every local tracker uses a local system model Ai = GiA(Gi)T that is a result of the linear
transformation Gi (see Section 3.3.1.C). This local models describes the motion of the target as a
constant velocity model, but in a one-dimensional space[

ξx
νx

]i
k+1

=
[
1 ∆T
0 1

] [
ξx
νx

]i
k

+ wi
k .

The proof that the model is still a constant velocity model but in lower-dimensional state space
and that process noise matrices of the local trackers are different from each other and depend on
the transformation was shown in [151].

In this example, the sample-based reconstruction method is used. Moreover, the sampling is
executed using UKF samples [68], but the sample in the center of the distribution has double the
weight of the other samples. The fusion step is carried out every 5th time step, which results in
a time horizon T = 6 for the sample set, which also includes the initial covariance matrix. The
fusion result is compared with the naïve fusion, which neglects the cross-covariance, and with
the optimal reconstruction that uses the recursive formula of (3.1) and (3.2) to reconstruct the
cross-covariance optimally. Finally, the fusion result is compared with the result of the central
Kalman filter that is given all measurements and estimates the state in the full state space.

Figure 3.4 shows the mean squared error of the fused state estimates and the trace of the fused
covariance matrix. The global Kalman filter yields the best results, which is expected since it
uses the measurements more efficiently then the optimal fusion. The optimal fusion and the
sample-based reconstruction yield the same results. Therefore, the distributed track-keeping is
identical to the centralized track-keeping as intended. The results also show that neglecting the
correlations leads to a higher error, as the naïve fusion is doing significantly worse than the other
methods. Furthermore, the estimated error of the fused covariance matrix of the global Kalman
filter (Figure 3.4d), the optimal fusion (Figure 3.4b) and the proposed approach (Figure 3.4c)
matches the actual error. Naïve fusion (Figure 3.4a) results in an overconfident covariance matrix
that does not match the real error and therefore leads to a noncredible tracker.

3.3.2 Overlapping State Estimates

A very similar problem to the fusion of state estimates from linearly transformed states-spaces is
the fusion of state estimates that are partially overlapping. This problem is also discussed in [147],
where the sample-based reconstruction was adopted and a more complicated evaluation example
was considered.

The idea is, that a large-scale phenomenon, e.g., a heat distribution, is estimated. Instead of
sending a vast amount of measurement data to a central Kalman filter, the estimation problem is
decomposed into smaller estimation problems that are solved in local Kalman filters. These local
estimators observe only a small subset of states, which results in state estimates that are partially
overlapping.
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Figure 3.5: Separation of the global state estimate into the two overlapping subsystems A and B
with state estimates (from [147]).

This section follow the WLS approach proposed in [99]. Two local sensor nodes A and B are given
with state estimates

x̂A =
[
(x̂A1)T, (x̂A2)T

]T
and x̂B =

[
(x̂B2)T (x̂B3)T

]T
that overlap at sections A2 and B2. A sketch of this problem is shown in Figure 3.5. Thus, the
global system (see equations (2.1) and (2.2)) is separated into subsystems so that the local system
model is rewritten as

xik = Ai
kxik−1 + wi

k with wi
k ∼ N

(
0,Qi

k

)
,

where the dimension of the local subsystem nix is smaller than the dimension nx of the global
system.

Each state estimate can be seen as an observation [99] with measurement matrix H (see equation
(2.11)), which determines how the local state estimates map into the global state space


xA1

xA2

xB2

xB3

 = Hx + x̃ , with H :=


I 0 0
0 I 0
0 I 0
0 0 I


}

HA}
HB

,

where the matrices HA and HB determine, which part of the state space are occupied by the local
state estimates x̂A and x̂B . Finally, the term x̃ denotes the measurement error and has covariance

J =
[

PA PA,B

PB,A PB

]
=


PA1 PA1,A2 PA1,B2 PA1,B3

PA2,A1 PA2 PA2,B2 PA2,B3

PB2,A1 PB2,A2 PB2 PB2,B3

PB3,A1 PB3,A2 PB3,B2 PB3


that is equivalent to the joint covariance matrix from equation (2.8). Therefore, the distributed
track keeping for the system with overlapping state estimates is similar to the linearly transformed
systems in the previous section. Here, the linear transformation is determined by the mapping
matrix H that describes how the local estimates merge into the global estimate.
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A Discussion

In theory, the separation of high-dimensional state space into smaller subsystems can be beneficial
as it helps to save computational power and communication bandwidth. However, it requires
some care during the design of the local estimators. The reason is that the process noise affects
the whole system, but applying an arbitrary transformation that maps the global system into
lower-dimensional state space cannot accurately model process noise in the local estimators.
Therefore, the uncertainty of the local estimates is underestimated, leading to estimates that are
not credible.

This problem is also discussed by the authors in [90]. Here, the authors state that the dimension of
the state spaces of the local estimates needs to be equal. Furthermore, there must be a one-to-one
mapping between the state spaces. Moreover, the same process noise needs to be incorporated
into the local estimates since all local trackers estimate the same target.

Unfortunately, this is not the case for many evaluation examples referred to when considering
overlapping state estimates or HT2TF problems. HT2TF applications usually consider an active
tracker that operates in a state space of full dimension and is then fused with an estimate of a
passive tracker that often works in a lower-dimensional space, e.g., only tracks the angle or angle
velocity [131, 136]. Therefore, the process noise is not identical in the active and the passive
tracker because of the information loss due to transformation. Hence, the state spaces cannot
be mapped one-to-one. In the overlapping estimation problem in [119, 99], the authors consider
the estimation of a heat distribution in a rod. Here, the process noise is modeled to affect the
complete rod. However, the same problems appear by cutting the rod into smaller sections, leading
to underestimating the uncertainty.

Another critical aspect is that the system models considered in the local estimators are often
nonlinear. Even if the trackers are affected by the same process noise, the process noise assumed
during the prediction step differs because of the nonlinear transformation that depends on the
current state. If the nonlinearities are not severe, the process noise could be assumed identical,
e.g., if the target is far away. With this knowledge, the square root decomposition could be used as
well. The sample-based reconstruction has the most impact if nonlinearities are severe. However,
this leads to the problem of state-dependent process noise. In applications where this is not a
problem, the sampling technique has to be adapted to catch the probability distribution after the
transformation, meaning that the sample size or the sampling scheme needs to be adapted.

B Evaluation Example for the Fusion of Overlapping State Estimates

The problem of transforming the global model into a lower-dimensional state-space model is
highlighted in the following section. First, it is shown that an insufficient separation of the system
model leads to inconsistent fused estimates. Furthermore, it is shown that the local estimation has
to be done in full state space in these cases. However, it is possible to fuse a smaller subset of the
local state space to obtain credible fusion results, and the correlation of estimation errors can be
tracked in a distributed fashion using the proposed approach.
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The state of a target moving on a straight line is estimated. The 1-dimensional constant velocity
model is

A =
[
1 ∆T
0 1

]
,

[
∆T 3

3
∆T 2

2
∆T 2

2 ∆T

]
, ∆T = 0.1 .

Two sensor nodes A and B are given, and every sensor node has a linear measurement model with
measurement covariance matrix according to

CA =
[
1 0
0 1

]
, R =

[
1 0
0 0.52

]
, CB =

[
1 0

]
, R = 0.052 .

Sensor node A measures both states and sensor node B only measures the first state estimate.
Therefore it is decided that node B only estimates the state it observes, and the estimate x̂A
is only fused with the first state of the estimate x̂B. A naïve separation of the state space is
conducted, where the new system and measurement model of node B is transformed to

AB = 1 , QB = ∆T 3

3 .

Because only the first state of x̂B is fused into x̂A the mapping matrices are given by

HA =
[
1 0
0 1

]
, HB =

[
1 0

]
.

The fusion is carried out at every 10th time step, and the fused estimate is used to reinitialize the
state estimate. In the case where the node only estimates the subspace of the state space, this
reinitialization step is

PB = HBPf(HB)T .

Correlated estimation errors are kept track of using the square root decomposition (SqRD)
approach. Figure 3.6a shows the MSE of the proposed fusion approach. All fusion methods result
in inconsistent estimates that diverge quickly. Even when node A observes two states and node B
does not even observe the state left out of the estimation, the separation of this system does not
yield functioning estimators.

In the light of the previous results, it is now assumed that the estimators work in full state space.
However, the fusion is still carried out with x̂A in full state space and x̂B fusing only its first state.
The track-keeping is still executed using SqRD, but the correlation is only needed for the first state
of x̂B. Thus, the square root matrix is transformed to the subspace before the communication by

SBk,Q := HBSBk,Q .

Then the cross-covariance matrix is reconstructed as already discussed in Section 3.2.1.

Figure 3.6b shows that the fusion result does not diverge when the local state estimation is
performed in full state space and then transformed afterward. It can also be seen that the SqRD
is identical to the result of the optimal centralized reconstruction and that the optimal fusion
yields the best fusion results. Figure 3.6c further shows that the optimal fusion result is consistent
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Figure 3.6: Comparison of fusion results for overlapping state estimates with estimation in
subspace and estimation in full state space.

and stays within the 90% confidence interval, while the fusion result of CI is conservative and the
naïve fusion result underestimates the error significantly.

The results of this sections show that the distribution in local state spaces has to be performed
carefully as process noise may affect the complete state space. Therefore, a naïve separation of
states can be problematic and will result in local estimators that are not credible. Moreover, the
local estimation needs to be performed in a sufficiently big state space to capture the complete
uncertainty of the system model.

3.3.3 Conclusion to Reconstruction of Cross-Covariances for Estimates from Different
Coordinate Systems

This section discussed the similarities between the fusion of partially overlapping state estimates
and the HT2TF problem. We derived an approach to linearly transform state estimates into
local state spaces with the same or lower dimensions than the global state space. The derived
method is used to keep track of correlated estimation errors using the square root decomposition
or the sample-based reconstruction of correlated noise covariances. Both methods are identical to
the centralized track-keeping of cross-covariances. The results also show that it requires proper
care to design distributed estimation applications with different local state-space representations.
Whenever the dimension of the system is reduced, the uncertainty of the global system might be
underestimated, leading to inconsistent local trackers and, therefore, inconsistent fusion results.

3.4 Fully Decentralized Track-Keeping of Cross-Covariances

Sensor networks often contain a large number of sensor nodes that can be spatially distributed over
large areas. However, energy storage and communication bandwidth are limited in many sensor
nodes, making it impossible to send all information to one central fusion node over a significant
distance. Instead, sensor nodes often send information over several hops until it finally reaches
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its destination point within the sensor network. In addition, there is no central fusion center in
some sensor networks, but instead, sensor nodes are autonomous and require only the support of
neighboring sensor nodes.

The following sections consider sensor networks without a single dedicated fusion center, which has
been discussed in Section 2.1.2. Instead, the fusion of state estimates is either done in a hierarchical
topology using intermediate fusion steps or in a fully decentralized network topology where every
sensor node can execute the fusion step independently. In these networks, the track-keeping of
correlated estimation errors depends on the information flow through the network, which is hard
to keep track of as no central node is present.

Many methods have been proposed for sensor networks with hierarchical or fully decentralized
network topologies. CI [67, 27, 111] is still widely used because it is guaranteed to stay consistent
for any possible correlation between the estimation errors. However, CI is often overly pessimistic
since the information that is passed through sensor nodes is usually not fully correlated. Moreover,
the local estimates include information exclusive to one sensor node, e.g., because it includes
measurements that are not shared with any other sensor node. Several approaches are based
on the information filter approach, e.g., the information graph [30] to keep track of previous
communication paths. The channel filter [57] can also use this knowledge to filter out previously
communicated information and, similarly, IMF [28, 131] works on the same principle. When the
fusion is executed at full rate, meaning that a fusion step is executed after every processing step,
these methods are optimal. Nevertheless, these approaches work only approximately because of
the incorporation of process noise or when the full rate is not fulfilled. However, these algorithms
perform well in many applications, e.g., if the process noise covariance matrix is relatively small.

Another class of algorithms aims to converge to a global estimate. These methods iteratively
exchange information between neighboring nodes until a consensus is reached. Example of such
methods are consensus on measurements [104], consensus on information [15, 105], or hybrid
approaches [17, 87]. Consensus methods can be regarded as suboptimal fusion rules [31] where
averaging the information does not represent the actual information in the network and does
not consider redundant information systematically. A similar method to consensus methods are
the diffusion methods [62, 22]. Diffusion methods are better suited for highly dynamic problems
because they do not wait until a consensus is reached [31].

These methods either try to approximate the correlated information using bounds, or they try to
identify and fuse only new information. However, none of these methods uses the actual cross-
covariance for the optimal fusion. The reason is that keeping track of correlated estimation errors
is cumbersome in these networks. However, the reconstruction of cross-covariance is advantageous,
as it allows optimal fusion with consistent fusion results that are generally more accurate and do
not over- or underestimate the uncertainty. Therefore, this section proposes an extension to the
distributed track-keeping using samples and square roots to allow fusion in fully decentralized
networks. First, track-keeping for hierarchical fusion is investigated. Afterward, a solution for fully
decentralized network topologies that are subject to information loops is proposed.
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Figure 3.7: Two decentralized network topologies, sensor nodes in blue and fusion nodes in green.

3.4.1 Optimal Reconstruction for Hierarchical Network Topologies

In hierarchical fusion topologies, a subset of sensor nodes fuses their estimates and that fused
estimate is passed on to the hierarchically next layer, where it is subsequently fused with other
state estimates again. This process is repeated until the hierarchically highest fusion node is
reached. Because of the intermediate fusion steps, the correlation of estimation errors changes
constantly. Therefore, this information must be incorporated in the additional information used to
reconstruct the cross-covariances to allow correct reconstruction.

The network topology depicted in Figure 3.7a is assumed, where three sensor nodes i, j and l are
present. First, node i fuses its estimate with an estimate received from node j by using fusion
formulas (2.6) and (2.7). The required cross-covariance matrices Pi,j = (Pj,i)T are obtained by
the square root decomposition, i.e., by using (3.5). Afterward, the intermediate fusion result x̂f,
that contains information from node i and j, is fused with the state estimate from node l.

The cross-covariance accounting for the correlation of estimation errors between x̂f and x̂l is
constructed by

Pf,l = E[(x̂f − x)(x̂l − x)T]
= E[(Fi x̂i + Fj x̂j − x)(x̂l − x)T]
= Fi Pi,l + Fj Pj,l .

The dependencies Pi,l and Pj,l are given by the corresponding square root decompositions, i.e.,

Pi,l = SiQ
(
SlQ
)T and Pj,l = SjQ

(
SlQ
)T
,

where the fused square root decomposition for the reconstruction of Pf,l has the form

Sf
Q = FiSiQ + FjSjQ , (3.13)

Therefore, the cross-covariance matrix Pf,l = Sf
Q(SlQ)T can be reconstructed for any node l. The

same approach can be used to achieve hierarchical fusion using the sample-based reconstruction.
Here, a sample set {sf}Mm=1 is constructed

sf,m = Fisi,m + Fjsj,m , ∀m = 1, . . . ,M .
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The hierarchical fusion is vital for many network topologies, including fully decentralized ones, as
intermediate fusion steps also occur there. Therefore, the knowledge from this section helps to
extend the framework to other topologies as well.

3.4.2 Optimal Reconstruction for Fully Decentralized Network Topologies

Fusion in decentralized network topologies is very challenging because there is no hierarchy to
ensure the track-keeping of information. Furthermore, information loops frequently occur that
are hard to keep track of. However, many networks are decentralized by design, as they are more
robust, scalable, and can be better adapted to different tasks. Moreover, decentralized sensor
networks can have sensor nodes that are autonomous and therefore only take care of their task.
Therefore, decentralized sensor networks require a robust and versatile method to keep track of
correlated estimation errors in a distributed fashion that accounts for previously incorporated
information.

In decentralized sensor networks, sensor nodes also suffer from correlated estimation errors due to
common prior information and process noise, resulting from estimating the same target. However,
because of information loops, previously incorporated measurements are also shared and can be
reintroduced to a node, leading to correlated measurement information. The network topology
depicted in Figure 3.7b is assumed, where two sensor nodes i, j are present, but the result of the
fusion step is fused again with the estimate of node i. The cross-covariance between the fused
estimate and the estimate of node i is

Pf,i = E
[
(x̂f − x)(x̂i − x)T

]
= E[(Fi x̂i + Fj x̂j − x)(x̂i − x)T]
= Fi Pi,i + Fj Pj,i .

The cross-covariance Pj,i can be calculated as discussed in section 3.4.1. The other cross-covariance
matrix in this equation denoted Pi,i is the correlation of the estimate x̂i with itself. This covariance
matrix can be calculated according to

Pi
k|k = E

[
(x̂ik|k − xk)(x̂ik|k − xk)T

]
= E

[(
x̂ik|k−1 + Ki

ky
i
k
− xk

)(
x̂ik|k−1 + Ki

ky
i
k
− xk

)T]
= E

[(
x̂ik|k−1 + Ki

k(zik −Ci
kx̂

i
k|k−1))

(
x̂ik|k−1 + Ki

k(zik −Ci
kx̂

i
k|k−1)

)T]
=
(
I−Ki

kCi
k

)
E
[(
x̂ik|k−1 − xk

)(
x̂ik|k−1 − xk

)T](I−Ki
kC

j
k

)T + Ki
kE
[
vik(vik)T

]
(Ki

k)T

= LikPi
k|k−1(Lik)T + Ki

kRi
k(Ki

k)T .

The difference between the previously discussed calculation of the cross-covariance matrix to the
calculation of the covariance matrix is the occurrence of the measurement covariance matrix Ri

k

that is now also a possibly correlated covariance matrix. Therefore, additionally, the square root
matrix has to keep track of correlated measurement information.

Consequently, a new square root matrix containing the measurement noise covariances is constructed

Sik,Ri =
[
Σi

1,Ri ,Σi
2,Ri , . . . ,Σi

k,Ri

]
.
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This square root matrix is initialized at time step k = 1 with

Si1,Ri = Σi
1,Ri = Ki

1

√
Ri

1 ,

where Ri
1 is the measurement covariance matrix of the first measurement (2.2) at time step 1

of node i, and where the matrix Ki
1 is the Kalman gain used in this measurement update. This

square root matrix is updated recursively whenever a new measurement is available at node i, and
a new entry is appended to the matrix according to

Sik,Ri =
[
LikAkSik−1,Ri , Σi

k,Ri

]
(3.14)

with
Σi
k,Ri = Ki

k

√
Ri
k .

In decentralized sensor networks, two nodes that want to fuse their estimates need to communicate
all locally processed square root matrices: one for the common prior information and common
process noise, and one for every sensor node, including itself, that they previously received
information from. While the square root matrices for the common prior information and common
process noise can be merged during the fusion step as explained in Section 3.4.1, the matrices that
account for measurement information need to be kept separate of each other in order to trace back
possible sources of double counting. When sensor node i receives an estimate from node j, it also
has to keep and manage the matrix Sjk,Ri that is the corresponding matrix (3.14) from node j.
The own and the received square root matrices are updated similarly to (3.13) by

Sf
Ri = FiSiRi + FjSjRi ,

Sf
Rj = FiSiRj + FjSjRj .

The bookkeeping of the received SjRi which accounts for measurements taken by sensor node j
resembles (3.14), but differs because it is filled with zeros during further processing according to

Sjk,Ri =
[
LkAkSjk−1,Ri , 0

]
, (3.15)

to account for the fact that the measurement noise affecting node j is uncorrelated with the
estimates at node i for the following time steps.

The square root matrix SiRi can be used in a later fusion step to reconstruct the cross-covariances
stemming from the previous fusion step by

Pi,j
R = SiRi(SjRi)T + SiRj (SjRj )T , (3.16)

where SjRi is the common information with node i that has been tracked in node j. Therefore,
SiRj is the corresponding square root matrix to (3.15) that was generated by node j when it
received information from i. The reconstructed cross-covariance matrix (3.16) has to be combined
with Pi,j

Q = SiQ(SiQ)T representing the common process noise. Finally, this results in the full
cross-covariance matrix

Pi,j = Pi,j
Q + Pi,j

R ,

thus, allowing the fusion of state estimates using (2.12) and (2.11).

This approach is applicable to extend the sample-based reconstruction of correlated estimation
errors in decentralized network topologies. In this case, an additional sample set for every sensor
node is needed to keep track of correlated measurement noise. However, this would result in a
enormous amount of samples.
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3.4.3 Conclusion to Fully Decentralized Track-Keeping of Cross-Covariances

The previous sections proposed an extension of the square root decomposition to keep track of
correlated estimation errors in hierarchical and fully decentralized sensor networks. This extension
can also be generalized to the sample-based reconstruction. For hierarchical fusion, the samples or
square root matrices can be merged using the fusion gains, whereas, for decentralized sensor net-
works, additional track-keeping of measurement noise covariances is necessary. Furthermore, these
square root matrices or sample sets accounting for double counting of measurement information
cannot be merged but must stay separate for every sensor node. Therefore, the number of tracked
components proliferates over time. However, this prohibitive in many applications with limited
bandwidth.

3.5 Conclusions to Full Reconstruction of Cross-Covariances

This chapter introduced two methods for distributed track-keeping of correlation estimation errors.
The first method uses deterministic samples to sample correlated noise covariances, while the
second one calculates the square root decompositions of correlated noise covariances. Since the
underlying principle of both methods is the same, they can be used interchangeably. However, the
square root decomposition appears to be more intuitive and manageable while also requiring less
data to be communicated.

Furthermore, this chapter proposed an extension of these methods to keep track of correlated
estimation errors even when local estimators use different state-space representations or when
correlations are hard to track due to complicated network topologies with information loops.
However, the results show that special care has to be taken when separating a global system
model into smaller subspaces that are estimated, as this can lead to inconsistent local estimators.
A suitable approach to circumvent this problem is to execute the fusion in a sufficiently big, in
the worst case the full, state space. When only a subspace of the state space should be fused,
then dimensionality reduction can be executed before the communication. It can also be applied
to the proposed track-keeping methods, allowing correct reconstruction of the cross-covariance.
However, reducing dimensionality is essential to decrease computational costs, and further research
is required to find suitable separation techniques to obtain lower-dimensional subspaces.

The extension to network topologies without a central fusion node shows that tracking correlated
estimation errors using deterministic samples or square root decompositions of correlated noise
covariances is also possible. When hierarchical fusion occurs, samples or square root matrices
are merged using the fusion gain. However, this merging is impossible for square root matrices
that account for the measurement information. The downside of these track-keeping methods
is the growing amount of computational complexity and bandwidth requirements. In order to
optimally reconstruct the cross-covariances, all correlated estimation errors need to be included
in the additional information for fusion. Since a new correlated noise term is incorporated at
every step, the tracked information’s size grows linearly over time. This growth of additional data
is prohibitive in many distributed estimation tasks, where computational power and bandwidth
are limited. Moreover, old correlated estimation errors tend to approach zero because of the
measurement update and are, therefore, less important for the reconstruction. This motivates the
extension proposed in the following chapter to reduce the amount of tracked information.
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As discussed in Chapter 1, sensor networks often have limited energy and communication bandwidth.
Therefore, the limitation of communicated knowledge in networks is vital to the longevity and
functionality of the sensor network. The previous chapter introduced two methods for keeping
track of correlated estimation errors in distributed estimation using either deterministic samples
or square root decompositions of correlated noise covariances. As seen in the last chapter, this
additional knowledge about the correlated estimation errors is advantageous for the fusion since it
obtains optimal fusion results. However, the bandwidth requirements grow over time because both
methods need to keep track of every newly incorporated correlated noise covariance. Furthermore,
old noise covariances converge to zero because of the measurement update. Therefore, they
contribute less to the reconstruction of the cross-covariance matrix and produce a significant
communication overhead.

The following chapter proposes the limitation of this additional knowledge by utilizing a sliding
window approach. The subsequent extension results in a trade-off between additional knowledge and
bandwidth requirements. Moreover, since decentralized sensor networks produce more correlated
noise covariance that cannot be reduced easily, an extension is proposed for the fusion in hierarchical
and decentralized sensor networks.

4.1 Related Work

In the following section, a sliding window approach is proposed. Therefore, correlated estimation
errors are not fully but only partially tracked and reconstructed. This partial reconstruction
leads to uncertain correlated estimation errors that need to be accounted for during the fusion
step. Several approaches have been proposed to address the unknown dependencies between
estimation errors. A common method is obtaining an upper bound for the correlation between
estimation errors. This bounding technique yields suboptimal fusion results compared to using the
actual cross-covariance for fusion. The most frequently used approach is Covariance Intersection
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(CI), which was already mentioned several times in this thesis. CI proposes a family of upper
bounds [67, 132]. Assuming two sensor nodes i and j are given, then the joint covariance matrix is
constructed as

J =
[

Pi Pi,j

Pj,i Pj

]
≤
[

1
ωPi 0
0 1

1−ωPj

]
,

where the weight ω is chosen to minimize the fused covariance matrix. CI is guaranteed to produce
credible fusion results even when estimation errors are fully correlated and the authors in [111] show
that CI is the optimal bounding algorithm. Many authors provide a detailed view on CI [26, 27],
propose improved parameterization [2, 106, 113] or methods to further tighten the bound [1].
While CI makes no assumptions about the correlation and always yields credible results, it is
often too conservative. The reason for this is that state estimates provided by the local estimators
usually do not have fully correlated estimation errors, since the fusion is only beneficial if sensor
nodes provide new and, therefore, uncorrelated information.

Therefore, several authors propose suboptimal fusion methods that make certain assumptions
about the correlation between estimation errors. Often, it is assumed that estimates contain a
correlated and an uncorrelated part. As we have seen from the previous chapter, it is possible to
reconstruct correlated estimation errors. If the reconstruction is only carried out partially, there is
still knowledge that can be exploited. It can be assumed that the joint covariance matrix can be
split in a correlated and an uncorrelated part [69], which leads to a more generalized notation of CI
also called Split Covariance Intersection (SCI). Even more in general, this can also be formulated
as a joint covariance matrix, where one part has known correlation and the other has unknown
correlation [133]

J = Jk︸︷︷︸
known

+ Ju︸︷︷︸
unknown

.

This separation is a practical approach to solving the problem of partial reconstruction. The
known part of the joint covariance Jk corresponds to the covariances from the local estimators
and the partially reconstructed cross-covariances, as previously proposed in Chapter 3. On the
other hand, the unknown part Ju belongs to correlated estimation errors that are not tracked and
therefore need to be bounded.

4.2 Partial Reconstruction of Cross-Covariances

This section is concerned with the partial reconstruction of cross-covariances, but only focuses on
the track-keeping of correlated estimation errors using the square root decomposition of correlated
noise covariances. The motivation for this limitation is that older entries in the square root matrix
are easier to identify and discard, as discussed in Section 3.2.3. First, a sliding window approach
is proposed for the fusion of state estimates in centralized network topologies with one dedicated
fusion center, as proposed in [146]. Afterward, the proposed bounding technique is generalized
to arbitrary network topologies that include hierarchical and decentralized fusion as proposed
in [148, 149].

48



4.2 Partial Reconstruction of Cross-Covariances

4.2.1 Reducing the Amount of Tracked Information

The following section proposes an approach to limit the correlated noise covariances contained in
the square root matrix to a user-defined time horizon TQ. The section begins by introducing a
sliding window approach to limit the number of tracked components in the square root matrix to
better understand the implications of incorrectly tracked correlated estimation errors. However,
the disadvantage of this approach is that without accounting for all correlated estimation errors,
the reconstructed cross-covariance is not big enough and leads to noncredible fused estimates. The
results motivate the need for the bounding technique that is introduced in the following section.

A Discarding Correlated Estimation Errors

In the following section, only a limited number of noise covariances is kept in the square root
matrix SiQ of sensor node i. For this limitation, the square root matrix is divided into two parts

SiQ =
[
SiTQ ,S

i
ΩQ

]
,

where SiTQ is a moving horizon square root decomposition matrix

SiTQ =
[
Σi
k−T +1,Q,Σi

k−T +2,Q, . . . ,Σi
k,Q

]
,

that includes only noise covariances referring to process noise and common prior information up to
a limited time horizon T = TQ. The matrix SiΩQ

includes all the other noise covariances referring
to process noise and common prior information. This exclusion of correlated noise covariances
results in a cross-covariance term smaller than the actual cross-covariance matrix. Therefore, the
uncertainty of the fused estimate is underestimated. The following example visualizes this problem
by using error ellipses of covariances.

Example 2: Discarding Correlated Estimation Errors

The system from Example 1 is considered again. However, this time the square root decomposition
(SqRD) is also used with three different parameterizations of the time horizon TQ
• TQ = 1, only includes the last processing step,
• TQ = 5, includes 5 processing steps, and
• TQ = 10, includes all processing steps, but does not include the common prior information.

Figure 4.1a depicts the error ellipses of the local covariance PA and PB as well as the fused
covariance matrix after k = 10 time steps.

The remaining information not included in the square root matrix is discarded and not bounded.
Figure 4.1a clearly shows, that the smaller the time horizon, the closer the error ellipse of the
fused estimate is to the the naïve fusion result. Furthermore, the ellipses are always smaller than
the error ellipse of optimal fusion, meaning that the fusion always underestimates the uncertainty.

49



Chapter 4. Partial Reconstruction of Cross-Covariances

−10 −5 0 5 10

−10

−5

0

5

10

x1

x
2 PA

PB

POpt

PNäıve
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Figure 4.1: Comparison of error ellipses for several fusion results using the square-root
decomposition with and without bounding (adapted from [146]).

B Creating a Residual for Discarded Correlated Estimation Errors

To prevent the underestimation of uncertainty, an additional residual term ΩQ is kept. It is
recursively calculated and includes all noise terms SiΩQ

that are excluded from the matrix SiQ. At
time step k = 0, the residual is initialized with

Si0,ΩQ
= 0 .

Afterward, the square root matrix is processed as proposed previously and concatenated with the
newest entries until the time horizon TQ is reached. When the time horizon is reached, the oldest
noise terms from the square root decomposition matrix are excluded and added to the residual

Ωi
k,Q = Ωi

k−1,Q + Σi
k−T ,Q(Σi

k−T ,Q)T

= SiΩQ

(
SiΩQ

)T
. (4.1)

This exclusion of noise covariances from the square root matrix can be seen as a shifting operation,
which can be described mathematically as multiplying the matrix SiTQ with a shift matrix U

Sik−1,TQ := Sik−1,TQU .

The matrix U that shifts all entries n′w positions to the left is constructed by

U =
[
0n′

x×n′

In′×n′

]
,

(n′x, n′) =
{
n′x = 0, n′ = nwτ, if τ ≤ TQ
n′x = nx, n

′ = nwTQ, if τ > TQ
,
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where nx denotes the dimension of the system state space, and nw is the dimension of the process
noise covariance matrix. This operation results in the cancellation of the first noise covariance in
the matrix. A new correlated noise covariance can be concatenated (see equation (3.4)) by

Sik,TQ = Lik
[
AkSik−1,TQ ,Σ

i
k,Q
]
.

During the local filtering, the residual is updated by the prediction step

Ωi
k|k−1,Q = AkΩi

k−1|k−1,QAT
k

and during the measurement update

Ωi
k|k,Q = LikΩi

k|k−1,Q(Lik)T .

This concludes the recursive calculation of the residual. This residual now requires a bounding
method that constructs a tight bound.

C Partial Bounding of Discarded Correlated Estimation Errors

The previous section proposed to keep track of correlated estimation errors by using a sliding window
approach. Therefore, the cross-covariance matrix Pi,j

T includes all correlated noise covariances
until the user-defined time horizon T = TQ. Furthermore, a residual ΩQ is obtained to bound the
remaining correlated estimation errors. In the following section, a fusion rule is formulated that
can use the partially reconstructed cross-covariance and the obtained residual to obtain credible
fusion results.

First, the optimal joint covariance matrix is considered

J =
[

Pi Pi,j

Pj,i Pj

]
.

However, the cross-covariance Pi,j is now only partially recovered. Therefore, the joint covariance
matrix is formulated as follows

J =
[

Pi Pi,j
T + Pi,j

Ω
Pj,i
T + Pj,i

Ω Pj

]
,

where the cross-covariances Pi,j is divided into two parts. The first part Pi,j
T is reconstructed using

Pi,j
T = SiTQ(SjTQ)T ,

while the second part Pi,j
Ω denotes the correlated noise covariances that are not kept track of and

are, therefore, unknown.

The joint covariance matrix can be decomposed further by

J =
[

Pi Pi,j
T

Pj,i
T Pj

]
−
[
Pi

Ω 0
0 Pj

Ω

]
+
[
Pi

Ω Pi,j
Ω

Pj,i
Ω Pj

Ω

]
︸ ︷︷ ︸

JΩ

.
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Looking at (4.1), it can be found that

Pi
Ω = SiΩQ

(
SiΩQ

)T = ΩQ ,

which is identical to the previously obtained residual Ωi
Q.

The entries on the block main diagonal of JΩQ are obtained by using the covariances from the
local estimators. Sine the cross-covariances on the off-diagonals can not be reconstructed anymore,
the aim is to find a bound for the correlations according to[ 1

ωi
Ωi

Q 0
0 1

ωj
Ωj

Q

]
≥
[
Ωi

Q Pi,j
Ω

Pj,i
Ω Ωj

Q

]
.

However, it is only possible to find a bound if the residual JΩQ is a valid cross-covariance matrix.
The matrix JΩQ can be calculated by

JΩ =
[
SiΩQ

SjΩQ

] [
SiΩQ

SjΩQ

]T
,

where A(A)T ≥ 0. It follows that JΩQ is a valid cross-covariance matrix and can be bounded.
Finally, the bounded joint covariance matrix is defined by

J̃ =
[
Pi −Ωi

Q Pi,j
TQ

Pj,i
TQ Pj −Ωj

Q

]
+
[ 1
ωi

Ωi
Q 0

0 1
ωj

Ωj
Q

]
. (4.2)

This joint covariance matrix can also be formulated for an arbitrary number of L sensor nodes

J̃ =


P1 −Ω1

Q P1,2
T . . . P1,L

T

P2,1
T P2 −Ω2

Q . . .
...

...
... . . . ...

PL,1
T . . . . . . PL −ΩL

Q

+


1
ω1

Ω1
Q 0 . . . 0

0 1
ω2

Ω2
Q . . . 0

...
... . . . ...

0 0 . . . 1
ωL

ΩL
Q

 .

The weighting factor ω can be found by minimizing the fused covariance matrix according to
formula (2.11). Alternatively, an approximate solutions such as the one proposed by [96, 110] can
be used. While this approximation is suboptimal, it is simple to implement and has fast execution
time. The weighting factor can be calculated by

ωi =
1/ tr(Ωi

Q)
1/ tr(Ωi

Q) + 1/ tr(Ωj
Q)

.

Then the fusion gain (see (2.10)) is

Fj =
(
Pi + 1− ωi

ωi
Ωi

Q −Pi,j
TQ
)(

Pi + 1− ωi
ωi

Ωi
Q + Pj + −ωi

1− ωi
Ωj

Q −Pi,j
TQ −Pj,i

TQ
)−1

.

The fused covariance and fused state can be calculated according to equations (2.11) and (2.12).
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Figure 4.2: Comparison of CI, naïve fusion, optimal fusion using an infinite time horizon (Opt),
square root decomposition-based fusion with time horizon T without bounding (SqRDT ) and with
bounding (SqRDT ,b) for the linear example [149].

Example 3: Bounding Discarded Correlated Estimation Errors

The same system as discussed in Example 2 is assumed. Futher, the proposed SqRD with time
horizon of TQ = 1 (only includes the last processing step), TQ = 5 (includes 5 processing steps),
and TQ = 10 (includes all processing steps, but does not include the common prior information) is
used. This time, the correlated noise covariances that are not included in the square root matrix,
are collected in a residual term and bounded.

The error ellipses of the fused covariances using the proposed bounding method are depicted in
Figure 4.1b. It can be observed that the smaller the time horizon, the closer the error ellipse of
the fused estimate is to the fusion result using CI. Furthermore, the error ellipses of the fusion
with residual are always larger than the error ellipse of the optimal fusion but significantly smaller
than the fusion result of CI. Summarizing, these results indicate that the utilization of the tracked
correlated noise covariances is beneficial to the fusion result and that the bounding of residual
terms ensures the credibility of the fusion result.

D Evaluation

The following evaluation example was taken from [148] and uses the system description as discussed
in Examples 1 and 2. Several fusion methods are evaluated to highlight the performance of the
proposed SqRD method using different parameterizations of the time horizon TQ. The fusion
results are compared with the naïve fusion, which ignores the correlations between the sensor
nodes and CI. Furthermore, the fusion result is also compared with the optimally reconstructed
cross-covariance (see Section 3.2.1), where time horizon TQ is equal to the fusion step size plus
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Method Abbreviation Parameterization Number of Additional Data Packages
SiQ Ωi Sum

(n2
x × TQ) (n2

x)
SqRD1 TQ = 1 4× 1 = 4 0 4
SqRD1,b TQ = 1 4× 1 = 4 4 8
SqRD5 TQ = 5 4× 5 = 20 0 20
SqRD5,b TQ = 5 4× 5 = 20 4 24
SqRD10 TQ = 10 4× 10 = 40 0 40
SqRD10,b TQ = 10 4× 10 = 40 4 44
SqRDOpt TQ = 11 4× 11 = 44 0 44

Table 4.1: Number of additional data packages sent by a single node i that are necessary for
the reconstruction using SqRD, for the evaluation example of centralized fusion with two sensor
nodes, every data package accounts for one entry of a matrix.

one to incorporate all correlated noise covariances. Just like in Example 2, the proposed SqRD is
used with a time horizon of TQ = 1 (only includes the last processing step), TQ = 5 (includes 5
processing steps), and TQ = 10 (includes all processing steps, but does not include the common
prior information). The evaluation compares the proposed SqRD with bounding of residual terms
(SqRDT ,b) and without (SqRDT ).

Figure 4.2a shows the Mean Squared Error (MSE) over 1000 Monte Carlo Runs (MCR)s. The
optimal fusion result obtained with the proposed method, including all noise terms, is the method
that performs the best, while the naïve fusion is the method that performs the worst. The results
show that the SqRD performs better the larger the time horizon while discarding correlation
information instead of bounding worsens the performance. The credibility of the fused methods is
evaluated in Figure 4.2b using the ANEES. CI is the most conservative method with the lowest
ANEES, while the naïve fusion is the method with the highest ANEES. The SqRD without
bounding is located between the optimal fusion result and the naïve fusion result, meaning that
the uncertainty is underestimated to some degree. However, the SqRD with bounding is located
close to the optimal fusion result but lies between the optimal fusion result and the fusion result
of CI. These results suggest that the fusion without bounding produces noncredible and the fusion
with bounding produces credible fusion results.

Table 4.1 shows the additional information a single sensor node i has to send to the fusion center
depending on the parameterization of SqRD. Each entry of a matrix is counted as a data package.
The square root matrix SiQ includes the Cholesky decomposition of the common prior information
and the common process noise. Both noise covariances have the same dimension nx = nw = 2,
where nx is the dimension of the state and nw is the dimension of the process noise. Therefore
each entry of the square root matrix has the size n2

x = 4. The residual Ωi has the size n2
x = 4 as

well. The table shows that the amount of data packages increases with the time horizon TQ. For
completion, the table also shows how much additional data is caused by using the SqRD for the
optimal reconstruction (SqRDOpt). While the number of data packages is identical to SqRD10,b,
it produces better results and would be preferable. However, SqRD1,b and SqRD5,b require less
additional data, while still producing credible fusion results.
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4.2.2 Extension to Fully Decentralized Network Topologies

Reducing communication bandwidth is an especially challenging task in networks without a
dedicated fusion center. In centralized network topologies, the additional knowledge to perform the
reconstruction can be reset after the fusion by reinitialization. Then, the common prior information
is identical to the fused estimate, and the track keeping of correlated noise covariances can start
from the beginning. However, decentralized network topologies do not allow for this reinitialization
because the information is further passed on after the fusion step and cannot be reset. Therefore,
additionally tracked information, e.g., in the form of the square root matrix, has to be reduced but
further communicated. Furthermore, information that is only partially known, e.g., in the form of
the residual, must also be communicated further and altered to incorporate previous fusion steps.

The following section proposes the partial reconstruction and subsequent bounding of correlated
estimation errors in sensor networks without a central processing unit. As before, the hierarchical
fusion of state estimates is extended first, as it is also a basis for the correlation in fully decentralized
sensor networks. Afterward, the partial track keeping of correlated measurement information is
proposed. Since the decomposition of measurement information can cause a significant communi-
cation overhead, this section proposes to keep track of uncorrelated measurement information to
exploit known independence. Finally, this section closes with two evaluation examples, showing
that the proposed partial reconstruction is beneficial in decentralized sensor networks.

A Hierarchical Fusion

The optimal reconstruction of cross-covariances in sensor networks with a hierarchical structure has
been introduced in Section 3.4.1. As discussed there, the local square root matrices of two sensor
nodes i and j are linearly combined using the fusion gains Fi and Fj . The resulting square root
matrix then contains the appropriate square root decomposition for the correlated noise covariances
of the fused estimate and can be used to reconstruct the cross-covariance matrix with any other
sensor node. The local square root matrices of node i and j are shortened until a user-defined
time horizon TQ. As a result of this limitation of the square root matrix, two local residual terms
Ωi

Q and Ωj
Q are calculated that contain the information that is not explicitly tracked for the

reconstruction. During the fusion step, these residuals now have to be linearly combined using
the fusion gains. Because the fusion step includes a bounding technique, the weight ω has to be
included as well. Thus, the residual becomes

Ωf
Q = 1

ω
FiΩi

Q(Fi)T + 1
1− ωFjΩj

Q(Fj)T

≥ FiΩi
Q(Fi)T + FiΩi,j

Q (Fj)T + FjΩj,i
Q (Fi)T + FjΩj

Q(Fj)T .

This is a bound, since any information about Ωj,i
Q has been discarded. The derived fusion of square

roots and their residual terms serves as a basis for the fusion in fully decentralized sensor networks.

B Decentralized Fusion

As discussed in Section 3.4.2, the reconstruction of cross-covariances in fully decentralized sensor
networks requires the additional track keeping of correlated measurement noise covariances.
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Therefore, an additional square root matrix of the measurement noise covariances has to be stored
and processed. Since these square root matrices cannot be merged during the fusion step like
those for common prior information and common process noise, they tend to proliferate fast. As a
result, the reduction of tracked measurement information is vital in many applications.

Following the concept introduced before, the number of covariances included in the square root
matrix SiRi =

[
STR ,SΩR

]
can be reduced to a user-defined time horizon TR

SiTR =
[
Σi
k−T +1,Ri ,Σi

k−T +2,Ri , . . . ,Σi
k,Ri

]
.

This time horizon for correlated measurement information has to be identical to the time horizon
TQ for common process noise and common prior information. According to the previous approach,
the excluded correlated noise terms are collected in a residual covariance ΩR. When the fusion
step is executed, the residuals are fused by calculating the linear combination using the fusion
gains Ωi

Q and Ωj
Q and the weighting factor ω. Hence, the fused residual is calculated according to

Ωf
R = 1

ω
FiΩi

R(Fi)T + 1
1− ωFjΩj

R(Fj)T .

When the fusion step is executed using (4.2), the residuals accounting for the process noise and
the common prior information ΩQ and the residual for correlated measurement information Ωi

R
have to be combined

Ωi = Ωi
Q + Ωi

R (4.3)

to bound all correlated noise covariance that are not explicitly tracked. While the partial recon-
struction of correlated measurement covariances reduces the bandwidth requirements significantly,
it still requires a significant amount of additional information. Furthermore, as discussed before,
local estimates are usually not fully correlated since the fusion is only beneficial when local nodes
provide new and, therefore, uncorrelated measurement information. For that reason, the following
section explores the track keeping of uncorrelated measurements.

C Keeping Track of Uncorrelated Measurements

The treatment of correlated estimation errors due to double counting of measurement information
can be simplified. Instead of explicitly keeping track of correlated measurement information to
reconstruct cross-covariances, uncorrelated measurements can be tracked. The motivation for this
approach is that local state estimates usually contain measurements that are exclusively known
to the local sensor nodes and have not been shared with other sensor nodes before. Therefore,
these measurements are uncorrelated, which can be exploited during the fusion step. The local
covariance matrix of node i is rewritten

Pi = Pi
Q,T + Pi

Q,Ω + Pi
R ,

where Pi
Q,T accounts for the part of the local covariance matrix referring to common prior

information and common process noise that can be reconstructed, while Pi
Q,Ω is referring to the

part that is not tracked and thus is collected in the residual Ωi
Q. Furthermore, Pi

R represents
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measurement information that is possibly correlated. This term referring to possibly correlated
measurement information can further be separated into a correlated and an uncorrelated part

Pi
R = Pi,+

R︸︷︷︸
correlated

+ Pi,−
R︸︷︷︸

uncorrelated

.

Measurements that have not been shared with other sensor nodes can be assumed uncorrelated.
Therefore, only the covariance Pi,+

R that refers to possibly correlated measurements has to be
bounded to ensure credible fusion results. While it is cumbersome to keep track of correlated noise
covariances, it is easy to keep track of measurement information that has not been shared yet.
The uncorrelated measurement noise residual Pi,−

R can be calculated recursively. It is created at
time step k = 1 when the first measurement is incorporated in the local estimate

Pi,−
k,R = Ki

kRi
k(Ki

k)T .

Afterward, it is updated during the prediction step and a new measurement noise covariance is
added when the next measurement is incorporated

Pi,−
k,R = LikAkPi,−

k−1,R(Ak)T(Lik)T + Ki
kRi

k(Ki
k)T .

To ensure that the assumption of uncorrelated measurement noise is correct, Pi,−
R needs to be

reset to Pi,−
R = 0 as soon as the local estimate of i is shared with other sensor nodes. Finally, the

residual accounting for possibly correlated measurement information is calculated by

Ωi
R = Pi − SiTQ(SiTQ)T −ΩQ −Pi,−

R .

This residual Ωi
R is combined with the residual for common prior information and common process

noise (see (4.3)) and then used in the fusion rule (4.2). The proposed extension for the partial
reconstruction of cross-covariances for the fusion in fully decentralized sensor networks is evaluated
in the following section. First, a small example featuring two sensor nodes is evaluated. Afterward,
a ring topology is assumed. Both evaluation examples are also featured in [148, 151].

D Evaluation of a Decentralized Example with Two Sensor Nodes

The first evaluation example is used to highlight the performance of the proposed partial re-
construction of cross-covariances using only two sensor nodes A and B that frequently exchange
information. The system description is identical to the one in Examples 1 and 2. The data
exchange between the two nodes is performed as follows

1. both sensor nodes execute a local filter update,
2. node A sends its local information to node B,
3. node B fuses information according to the selected fusion method and reinitializes its local

state and covariance matrix with new fused information,
4. both sensor nodes execute a local filter update,
5. node B sends its local information to node A,
6. node A fuses information according to the selected fusion method and reinitializes its local

state and covariance matrix with new fused information,
7. both nodes repeat the processing from the beginning.
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Figure 4.3: Comparison of the fusion results of different algorithms (adapted from [149]).

Figure 4.3 shows the MSE of different fusion methods after executing 1000 MCRs. The MSE
of the naïve fusion, which neglects the cross-covariance completely, immediately diverges. The
optimal track-keeping for a centralized fusion that reinitializes the local estimates after every
fusion (Opt) shows the lowest MSE. The proposed square-root decomposition SqRD is shown
in several different configurations to highlight how the bounding affects the fusion result. The
time horizon for the square-root matrix accounting for common process noise and common prior
information is chosen as TQ = 5. The SqRD without bounding (SqRDno) shows a relatively high
MSE, because it does not account for older process noise covariance or any correlation due to
measurement noise. The bounding of process noise (SqRDQb) performs slightly better, but also
does not account for possibly correlated measurements. CI performs better than SqRDno and
SqRDQb but its performance is limited because it cannot exploit uncorrelated information. The
proposed algorithm with partial bounding of measurement noise (SqRDRbp (see Section 4.2.2.C)),
shows better performance than CI. Finally, the SqRD using partial track-keeping of measurement
information with time horizon TR = 5 (SqRDRb1) and TR = 2 (SqRDRb2) is evaluated. SqRDRb1
shows a lower MSE compared to all other methods, while the SqRD using a smaller time horizon
SqRDRb2 is comparable to the performance of CI.

Figure 4.3 evaluates the credibility of the fused estimates using the ANEES. Fusion using the
naïve approach diverges very fast and is therefore not included in the plot. CI on the other hand,
is overly conservative and even far below the 95% confidence interval. The methods without
bounding (SqRDno and SqRDQb) are noncredible since they do not appropriately approximate
the uncertainty. The algorithm with partial bounding (SqRDRbp) is close to one, meaning that
the actual MSE of the fused results matches the fused covariance matrix. Finally, the proposed
methods using a limited time horizon to keep track of correlated measurement noise SqRDRb1
and SqRDRb2 are very close to the optimal fusion result but are slightly more conservative,

58



4.2 Partial Reconstruction of Cross-Covariances

Method Abbreviation Parameterization Number of Additional Data Packages
(and Reference) SiQ SiRA , SiRB Ωi Sum

(n2
x × TQ) (L× nxnv × TR) (n2

x)
SqRDno (Sec. 4.2.1.A) TQ = 5 4× 5 = 20 0 0 20
SqRDQb (Sec. 4.2.1.C) TQ = 5 4× 5 = 20 0 4 24
SqRDRbp (Sec. 4.2.2.C) TQ = 5 4× 5 = 20 0 4 24
SqRDRb1 (Sec. 4.2.2.B) TQ = 5, TR = 5 4× 2 = 20 2× 2× 5 = 20 4 44
SqRDRb2 (Sec. 4.2.2.B) TQ = 5, TR = 2 4× 5 = 20 2× 2× 2 = 8 4 32

Table 4.2: Number of additional data packages sent by a single node i that are necessary for the
reconstruction using SqRD, for the evaluation example of decentralized fusion with two sensor
nodes, every data package accounts for one entry of a matrix.

whereas SqRDRb2 shows similar performance to the proposed method with the partial bounding
of correlated measurement errors (SqRDRbp).

Table 4.2 shows the amount of additional data that every sensor node i has to process and
communicate to the other node. As opposed to Table 4.1, the sensor nodes do not just process
a square root matrix SiQ and a residual Ωi, but also a square root matrix for every sensor of
the L = 2 nodes in the network. This results in two additional matrices SiRA and SiRB . At the
beginning of the processing, nodes A and B have not shared information. Therefore, before the
nodes communicated the first time, node i only processes its matrix SiRi . However, the nodes
receive the corresponding matrix from the other node as soon as information is shared. Each
additional entry to keep track of correlated measurement noise in SiRA and SiRB has the dimension
nxnv = 2, where nx is the dimension of the state and nv is the dimension of the measurement
noise. All residual terms that are produced are added into one residual before communication (see
(4.3)). Therefore, the size of the residual is constant for all parameterizations of SqRD.

E Evaluating the Consensus between States

An important task in sensor networks is finding a global consensus between sensor nodes and
it is predominantly solved by consensus methods. However, many consensus methods are only
suboptimal fusion methods [31] and do not use knowledge about correlated estimation errors. The
section shows, that the correlation of estimation errors is not just important for the credibility
of the fused estimates, but it also speeds up convergence of the local state estimates towards a
global consensus. To evaluate the convergence, the Averaged Consensus Estimate Error (ACEE),
similarly defined in [87], is defined as

ACEE(k) = 1
L

L∑
i=1

(
x̂ik − x̄k

)
, x̄k = 1

L

L∑
i=1

x̂ik ,

where L is the number of sensor nodes and x̄k is the mean of all local estimates at time step k. This
measure indicates the degree of consensus among estimates from all nodes in the network. Ideally,
it should converge to zero, meaning that the state estimates in all sensor nodes are identical.
A network of ten sensor nodes with ring topology (see Figure 4.4a) is considered. The system
description is similar to the one in Example 2, but the measurement covariances are reduced to
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(a) Ring Topology, where blue nodes use one measure-
ment model and red nodes use the other. 10 20 30 40 50
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Figure 4.4: Visualization of a ring topology and comparison of consensus between estimates
using different fusion methods (adapted from [149]).

RA = 0.2 and RB = 0.02, which is chosen for stability reasons. As can be seen in Figure 4.4a, the
sensor nodes alternate between the measurement model of node A and node B. The sensor nodes
first perform ten filtering steps independently and then communicate their local information to
their neighbors multiple times.

For the evaluation, the fusion results of several consensus algorithms are compared as well, namely
consensus on measurements [104] (ConsM), consensus on information [105] (ConsI) and hybrid
consensus method called DHIWCF [87] that performs a consensus on measurement on the first
iteration and a consensus on information afterwards. Consensus on information is performed
using Metropolis weights. However, it should be noted that many consensus algorithms have
been proposed in recent years and that the utilized algorithms may not be best tailored to the
considered problem.

Figure 4.4b shows the convergence rate of the state estimates using the ACEE. CI and naïve
fusion show very similar convergence rates. Surprisingly, all considered consensus methods
converge slightly slower, while the hybrid consensus algorithm DHIWCF lies between consensus
on measurements and consensus on information. Keeping track of all measurements (SqRDOpt),
however, leads to the fastest convergence, followed by the SqRD with a time horizon TR = 3
(SqRDRb1), and using a time horizon TR = 1. These results suggest that even a small time horizon
for keeping track of correlated measurement noise causes significant performance difference. The
time horizon of the square root matrix keeping track of the process noise is TQ = 11, meaning
that in this evaluation example, process noise and common prior information are fully tracked.

Figure 4.5a shows the MSE of the fused estimates averaged over all local estimates. The optimal
track keeping of correlated noise covariances (SqRDOpt) achieves the lowest MSE of all fusion

60



4.2 Partial Reconstruction of Cross-Covariances

10 20 30 40 50
0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Consensus Iterations l

M
S
E

(a) MSE.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

95% confidence region

Consensus Iterations l

A
N
E
E
S

(b) ANEES.

Figure 4.5: Evaluation results for fusion in ring topology performing several consensus steps
(adapted from [149]).

methods, except the consensus methods, and almost approaches the result of the centralized
optimal fusion result. SqRD with a smaller time horizon SqRDRb1 and SqRDRb2 performs well
but converges more slowly. Consensus on Information (ConsI) does not show any performance
improvements in comparison to the other fusion methods. On the other hand, consensus on
measurement converges slightly slower but outperforms all other methods after 22 time steps.
The hybrid method DHIWCF shows slightly lower performance than consensus on measurements.
Overall, consensus on measurement and DHIWCF reach a lower average MSE because the utilization
of measurement information is more effective than the fusion of state estimates.

The credibility of the fused estimates is shown in Figure 4.5b, using the ANEES averaged over
all sensor nodes. The ANEES is close to the optimal fusion result for SqRDRb1, SqRDOpt, and
SqRDRb2. Furthermore, the fusion method that bounds the correlated measurement noise partially
(SqRDRbp) is close to CI, which are both relatively conservative and outside of the 95% confidence
interval. Consensus on information (ConsI) shows similar performance as CI but performs slightly
worse because it was implemented using Metropolis weights that do not minimize the trace or the
determinant. The performance of consensus on measurements (ConsM) depends on the correction
weights to mitigate the averaging of measurements [17]. Here, the correction weight is chosen as
2 in the first consensus step when only two measurements are available. Then, the correction
weight is incremented by one in every consensus step until 10 to account for the ten measurements
once a consensus is reached. Because of these averaging characteristics, the ANEES rises as
some measurements have higher weights than others during the averaging, as this leads to double
counting of measurements and therefore noncredibility. When the consensus is approached, the
ANEES converges towards 1. Therefore, as soon as the consensus is fully reached, the method is
optimal. DHIWCF shows slightly less conservative results than CI and reaches a relatively low

61



Chapter 4. Partial Reconstruction of Cross-Covariances

Method Abbreviation Parameterization Number of Additional Data Packages
(and Reference) SiQ SiR1 , . . . ,SiRL Ωi Sum

(n2
x × TQ) (L× nxnv × TR) (n2

x)
SqRDOpt (Sec. 3.4.2) TQ = 11, TR = 10 4× 11 = 44 10× 2× 10 = 200 0 244
SqRDRbp (Sec. 4.2.2.C) TQ = 11 4× 11 = 44 0 4 48
SqRDRb1 (Sec. 4.2.2.B) TQ = 11, TR = 3 4× 11 = 44 10× 2× 3 = 60 4 108
SqRDRb2 (Sec. 4.2.2.B) TQ = 11, TR = 1 4× 11 = 44 10× 2× 1 = 20 4 68

Table 4.3: Number of additional data packages sent by a single node i that are necessary for the
reconstruction using SqRD, for evaluation example of consensus in a hierarchical network, every
data package accounts for one entry of a matrix.

MSE while still achieving credible results. However,the best trade-off between convergence rate,
mean squared error, and credibility can be achieved using the proposed SqRD method.

Finally, the amount of additional data packages communicated by every sensor node i with its
neighboring node is listed in Table 4.3. While SqRDOpt shows accurate and credible fusion results,
it produces an enormous amount of additional data. On the other hand, the methods with a limited
time horizon TR show very similar results while requiring fewer data. However, the track-keeping
in decentralized sensor networks with many sensor nodes produces a lot of additional data.

4.3 Conclusions to Partial Reconstruction of Cross-Covariances

In this chapter, we proposed a sliding window approach to keep track of a limited amount of
correlated estimation errors and partially reconstruct cross-covariances. By doing so, bandwidth
requirements for the communication of additional knowledge are lowered. In addition, not explicitly
tracked correlated noise covariances are collected in a residual term and bounded to ensure credible
results. The resulting method can be tailored to design a trade-off between the credibility of the
fusion result and the accuracy of the fused estimate. The evaluation examples also show that the
track-keeping of correlated measurement noise is crucial to ensure fast convergence to a global
consensus.

Unfortunately, the proposed framework still comes with a heavy burden on the communication
bandwidth. However, many applications contain cyclic processes, e.g., the fusion step is executed
every couple of time steps, and the local processing is relatively steady. Therefore, the proposed
methods for track-keeping could be used to find patterns in the correlation of estimation errors
during processing. Consequently, the full or partial reconstruction of cross-covariances could
only serve as a tool to retrieve information and learn from it. The inferred partial knowledge
about the cross-covariances can then be used, instead of the reconstruction methods, to fuse state
estimates and obtain credible fusion results. Nevertheless, learning of correlated estimation errors
can have pitfalls because of the special constraints cross-covariances or correlations have due to
the semi-definiteness of the joint covariance matrix. Therefore, the next chapter investigates the
learning of correlated estimation errors. Furthermore, an analytic approach for the learning of
cross-correlations is proposed in Chapter 6 that relies on the proposed full or partial reconstruction
methods.
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The last two chapters proposed methods to fully or partially reconstruct cross-covariances for
the fusion of state estimates from distributed sensor nodes. However, there are applications
where the reconstruction is impossible, as no prior knowledge about the local estimators or
the fusion is known. Furthermore, the sensor nodes might not be able to keep track of their
estimation steps locally. When sensor systems are purchased and run third-party software, the
implementation usually cannot be extended with additional track-keeping methods. Therefore,
the proposed track-keeping methods of the previous chapters cannot be applied. Moreover, some
sensor nodes might come with a tiny processing unit, and the local track-keeping using square
roots or deterministic samples is computationally expensive. Therefore, the proposed methods
might not run on small-scale systems with minimal computational power or memory storage.

This chapter proposes an approach for the estimation of correlations between estimation errors
in distributed estimation tasks. For this estimation, the following chapter considers correlation
matrices containing several correlation coefficients instead of the cross-covariance matrices since
this is more intuitive and allows a deeper insight into the dependencies. The most pressing problem
for the estimation task is that the correlation coefficients lie in a convex shape that results in a
positive definite joint covariance matrix. Since the correlation coefficients cannot lie outside these
natural bounds, their probability distribution also has to stay within them. First, this chapter
discusses the cross-correlation matrix and its shape to understand the constraints the estimation
task has to account for. Afterward, two methods for the estimation of correlated estimation errors
are proposed and evaluated.

5.1 The Cross-Correlation Matrix

The previous section used cross-covariance matrices to measure the dependency between estimation
errors. Using the cross-covariance for the fusion is beneficial since it can be calculated directly

63



Chapter 5. Learning Partial Knowledge about Correlation

from known noise covariances and system parameters and construct the joint covariance matrix.
However, the cross-covariance depends on the covariances of the local estimators. Therefore, it
does not provide an intuitive assessment of the degree of dependency. On the other hand, the
correlation matrix normalizes the cross-covariance matrix so that the local covariances do not
have to be considered anymore. Therefore, the correlation matrix containing several correlation
coefficients is a more intuitive way to measure the dependency between estimation errors.

The joint covariance matrix J of a p dimensional joint space is defined as [42]

J =


σ2

1 . . . σ2
1p

...
...

σ2
p1 . . . σ2

p

 ,
with cross-covariance σ2

ij = E
[
(x̃i)(x̃j)T

]
and variance σ2

i = E
[
(x̃i)(x̃i)T

]
, where x̃ is the estimation

error. Furthermore, the joint correlation matrix X is defined as

X =


1 %12 . . . %1p

%21 1
...

... . . . ...
%p1 . . . . . . 1

 , (5.1)

which is the normalization of the joint covariance matrix J. Both, the joint covariance matrix
and the joint cross-correlation matrix are symmetric and positive semidefinite. Every correlation
coefficient on the off-diagonals of the correlation matrix can be calculated by

%ij = σij√
σi · σj

.

Hence, every correlation coefficient has natural bounds −1 ≤ % ≤ 1. While this normalization
of the joint covariance matrix can be used as well for the estimation of correlation coefficients,
another possible normalized version of the joint covariance matrix using the cross-correlation
matrix Λ can be defined by

J =
[
Si 0
0 Sj

] [
I Λ

ΛT I

]
︸ ︷︷ ︸

XΛ

[
Si 0
0 Sj

]T
, (5.2)

where Si and Sj are obtained by the Cholesky decompositions of the covariances Pi and Pj . The
correlation matrix Λ satisfies the natural bound

ΛΛT ≤ I .

The advantage of the decomposition in (5.2), in comparison to the normalized joint covariance
matrix (5.1), is that it results in a smaller set of correlation coefficients that need to be estimated.
Furthermore, the cross-correlation included in the local covariances of the state estimates is not
included in the correlation matrix Λ. This is beneficial, since the correlations within the local
covariances are given by the estimators and do not have to be learned.

The following section discusses, why the number of correlation coefficients that need to be estimated
matters. While individual correlation coefficients can lie within their natural bounds [−1, 1], the
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Figure 5.1: Convex Shapes of different correlation matrices in R2.

correlation matrix X has to be positive semi-definite to be a valid joint covariance matrix.
Therefore, not all combinations of the correlation coefficients are possible. The interdependency
between individual correlation coefficients and the parameterization of the correlation matrix is
also discussed in [45, 64, 80, 117]. In order to properly learn and exploit correlations between
estimation errors, the constraint of the correlation matrix have to be taken into account. In the
simplest form, the correlation matrix with two correlation coefficients can be written as follows

XΛ =
[

I Λ
ΛT 1

]
=

 1 0 %zx
0 1 %zy

%zx %zy 1

 .
In order for the correlation matrix X to be positive semidefinite, the determinant has to bigger or
equal to zero, resulting in

det(X) = 1− %2
zx − %2

zy ≥ 0 ,

describing the shape of a circle that can be seen in Figure 5.1. However, if the normalized covariance
matrix instead is defined by

X =

 1 %yx %zx
%yx 1 %zy

%zx %zy 1

 ,
then the constraint for the correlation matrix changes to

det(X) = 1− %2
yx − %2

zx − %2
zy + 2%yx%zx%zy ≥ 0 ,

describing an ellipse for which the correlation coefficient %yx determines how it is tilted. Figure 5.1
shows such an ellipse for %yx = 0.5 and %yx = 0.9. Therefore, by using the normalized joint
covariance to calculate the correlation matrix, an additional correlation coefficient %yx is introduced
because of the local covariance matrix. Then, this local covariance influences the constraints of the
two correlation coefficients that are estimated. By using the correlation matrix XΛ instead, the
influence of this local covariance matrix is excluded and the estimation is subject to less constraints
that need to be taken care of.
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(a) Sphere. (b) Elliptical tetrahedron. (c) Elliptical octahedron.

Figure 5.2: Convex Shapes of different correlation matrices in R3.

It is also possible to plot this convex shape of the correlation matrix depending on all three
correlation coefficients. The result, called elliptical tetrahedron in [117], can be seen in Figure 5.2b.
The plot shows the convex shape for 1 ≤ %yx ≤ 1, where every %yx results in a different ellipse.
Plotting the shape of different correlation matrices can be complicated because the number of
components grows very fast, making it hard to plot them. However, there are two more correlation
matrices that can be visualized in this context. The first one is

X =
[

I Λ
ΛT 1

]
=


1 0 0 %x
0 1 0 %y
0 0 1 %z

%x %y %z 1

 ,
where the constraint is determined by

det(X) = 1− %2
x − %2

y − %2
z ≥ 0 .

The resulting convex shape is a sphere in R3 and can be seen in Figure 5.2a. Finally, the last
correlation matrix that is visualized is

X =
[

I Λ
ΛT I

]
=


1 0 %x 0
0 1 %y %z

%x %y 1 0
0 %z 0 1

 ,
which results in the plot in Figure 5.2c. This shape is comparable to the one in [117] which is
referred to as an elliptical octahedron, though the authors use a different parameterization of the
correlation matrix.

The gist of this detailed discussion of correlation matrices and their shapes is to show that they
are rather complex and learning needs to be done to not violate these constraints. It also becomes
apparent that the uncertainty about the correlation coefficients has to lie within these constraints
as well and is, therefore, not Gaussian distributed. In order to improve the fusion of state estimates,
correlation coefficients are needed that are smaller than these constraints. The resulting smaller
subset can be used to bound possible cross-covariances.
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5.2 Estimation of Uncertain Correlations

Section 2.2.2 discussed different approaches to retrieve information about correlated estimation
errors in distributed estimation. The described analytic approach leads to the full or partial
reconstruction of cross-covariances and can be conducted as proposed in Chapter 3. However,
as discussed in the beginning of this chapter, not every system is able to support this analytic
approach. Therefore, the other strategy that could be taken is to use a simulation-based approach,
where several MCRs of the complete system including local estimation and the fusion step are
executed. Then, the correlation of estimation errors can be estimated from the simulated state
estimates and the simulated system state.

The following section proposes estimation approaches for correlated estimation errors. First, usage
of the sample correlation coefficient is proposed, as published in [150]. Afterward, an estimation
approach using a particle filter is proposed. The following discussion shows, that particles are
suitable to incorporate the natural constraints of the correlation coefficients and converge faster
towards the true values.

5.2.1 Sample Correlation

The sample correlation coefficient is a method to statistically measure the Pearson correlation
coefficient based on a number of observations. Let εi(n) denote the estimation error of the ν-th
element of the state at the n-th MCR

εi(n) = eTν
(
xk(n)− x̂ik|k(n)

)
,

where x is the realization of the system state and eν is the ν-th column of the identity matrix I
of the corresponding dimension. The element index n and the time index k are dropped in εi(n)
for convenience. Using the samples of the errors of the i-th and j-th state estimates, the sample
variances or sample covariances are calculated by

si = 1
N

N∑
n=1

[εi(n)]2 , sj = 1
N

N∑
n=1

[εj(n)]2 , si,j = 1
N

N∑
n=1

εi(n)εj(n) .

The sample variances and covariances then can be used to obtain the sample correlation coefficient

ci,j = si,j√
si sj

.

It should be noted, that the sample correlation estimates the entries of the normalized joint
covariance matrix X.

Since the observations εi are noisy, the estimated sample correlation ci,j is uncertain. This
uncertainty of the estimated correlation coefficient has to be accounted for during the fusion to
ensure credible fusion results. However, the uncertainty of the sample correlation is rather difficult
to calculate. The probability distribution of the correlation becomes extremely skewed towards
the natural bounds of the correlation coefficients. Fisher [44], proposed to use a z-transformation
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Figure 5.3: Comparison of the Fisher z-transform (red) with the simple Gaussian approximation
of [19](green).

for a single sample correlation c, where z = 1
2 ln

(
1+c
1−c

)
= arctanh(c). For the sample correlation c

it approximately holds that

z ∼ N
(1

2 ln
(1 + c

1− c
)
,

1
N − 3

)
.

Therefore, the z-transformation can approximate the probability distribution of the sample
correlation coefficient by a Gaussian distribution. This can be used by means of a confidence
interval, e.g., z ± 1.96 1√

N−3 . The inverse transformation is given by c = e2z−1
e2z+1 = tanh(z). The

limits of the confidence intervals can be treated as bounds of the correlation and used for the
fusion as will be explained in Chapter 6. For large values of N , the probability distribution of the
sample correlation coefficient is almost identical to a Gaussian ditribution [19] with the variance

σ2
i,j =

(
1− (ci,j)2)2
N − 2 . (5.3)

This approximation is visualized for a different number of observations in Figure 5.3. While (5.3)
is simpler for the specification of confidence intervals, it leads to a probability mass outside of the
admissible area of the correlation coefficients. The Fisher z-transform does not suffer from this
problem, but it leads to a probability distribution that is skewed to one direction. In both cases,
using the Fisher z-transformation or the approximation from [19], only a single sample correlation
coefficient is assumed, and no higher-dimensional approximations are given.

The sample correlation estimates only a single Pearson correlation coefficient. This is a significant
downside, as it means that the sample correlation is agnostic to the other correlation coefficients
and does not ensure a positive semidefinite joint covariance matrix. As discussed in Section 5.1,
several correlation coefficients are dependent on each other to ensure a positive semidefinite joint
covariance matrix. Therefore, the sample correlation estimation can result in estimates that violate
the constraints of the correlation matrix X, e.g., with a small number of observations or when the
actual correlation is close to the edge of the constraint. Therefore, the following section proposes
a method that is sensitive to the natural constraints of the correlation matrix. Furthermore,
it is possible to freely choose the parameterization of the correlation matrix, using either the
coefficients from the normalized joint covariance matrix X or the partial correlation matrix XΛ.
The proposed approach can also account for the skewness of the uncertainty distribution of the
estimated correlation.
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5.2.2 Bayesian Estimation of the Correlation Matrix

The estimation of the correlation coefficients is a nonlinear estimation task. Hence, a linear filter,
e.g., the Kalman filter, cannot be used. Therefore, the problem of nonlinear filtering [116] can be
formulated as follows. It is assumed that the parameterization of the joint correlation matrix is
equal to (5.2) and that the correlation matrix Λ is static. Since it does not change over time, no
model of the time evolution is necessary, and the prediction step of the filter is omitted. However,
depending on the application, a state transition model to predict the correlation changes over time
can be beneficial. The aim is to estimate a set of parameters λ = [ρ1, . . . , ρn% ]T of a correlation
matrix Λ(λ), where n% is the number of the correlation coefficients that form the correlation space
Rn% . It is assumed that there is a prior probability density function (pdf) on the parameters p0(λ).
Using Bayes rule, the aim is to estimate the posterior pdf p(λ |Y) of the parameter set given
observations Y = [y1, . . . , yN ] where N is the number of observations. Therefore the update of the
prior pdf is calculated as

p(λ |Y) = L(Y |λ) p0(λ)∫
L(Y |λ) p0(λ) dλ , (5.4)

where L(Y |λ) is the likelihood of the observation. This likelihood function has to be chosen
so that correlation coefficients that best fit the observations have a higher likelihood than other
correlation coefficients. The following section is concerned with the formulation of a likelihood
function that fits this criteria.

A The Likelihood Function for the Correlation Matrix

In order to estimate the correlation, the conditional likelihood that a parameter vector λ describes
the correlated estimation errors is calculated. Consequently, a likelihood function is used to
evaluate whether the sampled correlations fit the observed data. To estimate the correlation, the
estimation errors have to be calculated first. Then, these estimation errors serve as observations for
which the likelihood of the sampled correlations is evaluated. The likelihood of a single observation
of the joint state vector m̂n =

[
(x̂i)T, (x̂j)T

]T
with a Gaussian distribution is

f(m̂n |λ) = 1
c

exp
(
− 1

2(m̂n −Hx)T
(
J(Λ(λ))

)−1(m̂n −Hx)
)

c = (2π)N/2
√

det(J(Λ(λ))) ,

where H is the mapping matrix, which determines how the local state estimates are mapped
into the global state estimate (see (2.9)), and c is the normalization constant. Furthermore,
J(Λ(λ)) denotes the joint covariance matrix of m̂, which is a function of the correlation matrix
Λ(λ) that is characterized by a parameter vector λ. The vector x is the realization of the state.
Therefore, m̂n −Hx denotes the estimation error of the n-th observation. The likelihood L of all
N observations is

L(m̂1 . . . m̂N |λ) = f(m̂1 |λ) . . . f(m̂N |λ) .
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Therefore the likelihood for the Gaussian distribution is

L(m̂1 . . . m̂N |λ) = 1
c

exp
(
− 1

2

N∑
n=1

(m̂n −Hx)T
(
J(Λ(λ))

)−1(m̂n −Hx)
)
.

It is also possible to use the log likelihood function instead, as it is monotonically related to the
likelihood function. The joint covariance matrix can be constructed using the correlation matrix
according to (5.2). Therefore, the estimation aims to find a parameter vector λ that has the
highest likelihood.

The update in (5.4) using this likelihood function is unfortunately not easy to obtain, because
it requires solving a complicated integral. A suitable solution are Monte Carlo integration
methods since they are not subject to Gaussian constraints and have favorable convergence
properties [40, 116].

B Sequential Importance Sampling for Correlation Estimation

The estimation of a set of correlation coefficients is similar to the estimation of system parameters,
for which several approaches have been published [89]. However, as discussed earlier, the analytic
calculation of the correlation is not feasible, and therefore a Monte Carlo integration method is
adopted. The idea is to use several particles that approximate the posterior pdf of the correlation
coefficients based on several observations. Importance sampling is a popular example of such a
method. However, it is not suitable for recursive estimation in its simplest form [40], which would
mean that all observations have to be taken in advance and the estimation is done on the complete
data. Therefore, Sequential Importance Sampling (SIS) is adopted.

First, a set of random samples {λ}Mm=1 consisting of M particles with weights {ω}Mm=1 subject
to
∑N
n=1 ωn = 1 is drawn from a proposal distribution π(λ), e.g., a uniform distribution. Then,

the local estimators execute their individual filtering steps to obtain state estimates that are
correlated, as discussed in Section 2.1.3. Afterward, the estimation errors are calculated using the
state estimates and the realization of the true state of the system. Last, for every particle λm a
joint covariance matrix J(Λ(λm)) is created and used to evaluate the likelihood function. The
likelihood function increases the weight of the particles that are more likely to originate from the
correct joint distribution.

Since this reweighing of the particles leads to particle impoverishment, the effective sample size
Meff is used

Meff =
(∑M

m=1 ωm
)2∑M

m=1(ωm)2
.

IfMeff falls below a thresholdMthr = M/2, then importance resampling [121] is applied to resample
the particle set. This resampling technique discards low-weight particles and resamples existing
samples several times depending on their importance weight. However, to improve the sampling of
the distribution, the particles have to be roughened [40, 54]. Therefore, Gaussian white noise with
the variance σjitter = KE

N is applied to every resampled particle, where E is the difference between
the maximum and the minimum values of the particle component and K is a constant turning
parameter (we used K = 2). When resampling, one must ensure that the roughened samples do
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Figure 5.4: Example of Sampling a uniform distribution of a correlation matrix with two
correlation coefficients, initial samples (gray) and samples that fit within the constraints (blue).

not violate the constraint for admissible correlation matrices. Therefore when roughening, the
particles need to be checked if the correlation matrix is admissible. If the particle is not admissible,
the roughening has to be removed and applied to the initial particle again until the particle is
admissible.

C Prior Knowledge on the Correlation Matrix

As described in the previous section, the SIS approach requires the usage of a prior proposal density
π(λ0). In the case of estimating the correlation of estimation errors, there is usually no known
prior on the correlation matrix Λ other than the natural constraint of the correlation coefficients.
Therefore, a uniform distribution on all possible correlation coefficients is a suitable way to include
prior knowledge. Because of the natural constraints of the correlation matrix, such a uniform
distribution cannot easily be constructed. Therefore, a grid sampling method is proposed, where
an initial set of particles containing M0 number of particles in the Rn% space (see Figure 5.4) is
generated. Afterward, the constraint on the correlation matrix is applied to reject all particles for
which the joint covariance matrix is not positive semi-definite. Last, all particles are assigned the
same weight ωm = 1/M , where M is the number of particles that fulfill the constraint.

This approach is straightforward and results in an almost uniform distribution. Nevertheless,
depending on the constraint, it is unclear how many particles survive this rejection process,
resulting in an odd number of particles. If a certain number of particles is needed, the sampling
could be repeated with a different number of prior particles, or the user could calculate the correct
number of necessary particles in advance. For the estimation of correlation coefficients, other
priors than the uniform prior have been proposed [48]. Different priors could either be achieved by
different sampling schemes or different weighting of the proposed particles, which could increase
the weight for correlation coefficients that are known to be more probable. We tried using different
priors with a one-dimensional correlation estimation problem but found that the uniform prior
performed well in all experiments. Another possible sampling method could be to use Fibonacci
grids [50, 128], which would result in a prior particle set with interesting geometrical properties.
However, depending on the constraint, a suitable Fibonacci grid might be complicated to create.
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Figure 5.5: Particle distribution (blue) of the proposed filter at different number of observations
N , true correlation coefficients (marked with black x) and sample correlation (green).

D Evaluation Estimating a two-dimensional Correlation Matrix

The following section evaluates the proposed methods to estimate the correlation of estimation
errors from two local estimators. Let the joint correlation matrix be given by

XΛ =
[

I Λ
ΛT 1

]
,

where the covariance matrices of the local trackers are PA = [4, 1; 1, 1] and PB = 1, and the
correlation matrix Λ fulfills the constraint ΛΛT ≤ I. For this example, the correlation matrix Λ
consists of two correlation coefficients ρ1 and ρ2, which lie in a circular shape in R2 as discussed in
Section 5.1. The ground truth of the correlation matrix is Λ = [0.68, 0.68]T, which is close to the
outer edge of the natural constraint.

Figure 5.5 shows the estimated point cloud at a different number of observations. The point cloud
of the particle filter converges towards the true value of the correlation coefficients. Furthermore,
the particle cloud can successfully capture the skewness of the probability distribution. The plot
also shows the estimated sample correlation coefficient. Since the sample correlation coefficient is
calculated without awareness of the semi-definiteness of the joint covariance matrix, it happens
to lie outside of the admissible values when a small number of observations are available. The
proposed particle filtering method does not suffer from this problem due to constraints on the
particle set and works well with few observations. However, the particle filter requires more
computational effort than the sample correlation depending on the number of particles.
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Figure 5.6: Comparison of the sample correlation with the proposed particle filter.

In the following section, the performance of the sample correlation estimation is compared to the
proposed particle filtering approach. For this evaluation, an experiment with N = 100 observations
and MCR = 200 is conducted. Furthermore, the particle filter is used with M = 250 (PF20),
M = 1666 (PF50) and M = 6796 (PF100) particles. Figure 5.6a shows the MSE of the experiment.
For the particle filters, the mean of the particle set is calculated. The plot shows that the MSE of
the particle filters decreases faster than the MSE of the sample correlation. It also shows that more
particles result in a better estimation result, although the difference between PF50 and PF100 is
insignificant. Furthermore, in Figure 5.6b the credibility of the estimators is evaluated using the
ANEES. Since the ANEES requires a covariance matrix, estimates have to be approximated by a
Gaussian. In the case of the sample correlation coefficient, the Gaussian approximation of (5.3)
is used. For the particle filter, the covariance is calculated from the weighted set of particles.
Especially in the beginning with a small number of observations, the uncertainty of the sample
correlation is not well approximated, while the particle filters show good results. Again, the
number of particles plays a vital role as more particles approximate the uncertainty better and lie
within better confidence intervals. The evaluation shows that the proposed particle filter approach
shows good performance, both in error and credibility.

5.3 Conclusions to Learning Partial Knowledge about Correlation

This chapter provided a detailed discussion about estimating the correlation coefficients that
describe the correlation between estimation errors. Two methods were proposed to estimate the
correlation. First, the sample correlation was introduced as an easy way to estimate individual
correlation coefficients. The method is well suited to estimate the correlation. However, when only
a few observations are available, the probability distribution of sample correlation cannot easily be
obtained. Furthermore, since the sample correlation estimates single correlation coefficients, it

73



Chapter 5. Learning Partial Knowledge about Correlation

cannot ensure that the set of coefficients results in a positive semi-definite joint covariance matrix.
The second approach introduced is a SIS approach that uses several particles to represent the
posterior distribution of the estimated correlation coefficients. This approach allows a flexible
parameterization of the correlation matrix and ensures a positive semi-definite joint covariance by
using the known constraints of the correlation. Furthermore, the evaluation shows that the particle
method is more robust and accurate than the samples correlation coefficient and works well with
few observations. It should be noted, that the improved performance might be caused by the
particle approach using a model for the estimation and utilizing a prior, while the sample correlation
uses only measurements for the estimation. However, the particle approach is computationally
expensive, depending on the number of particles. Both results are promising approaches to
estimate the correlation of estimation errors. However, this chapter has been limited to examples
where the estimates are drawn from a known joint distribution. The results will be applied to a
simulation-based approach in the next chapter.
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As discussed in Chapter 2, there are many reasons why correlations between estimation errors are
unknown in many applications. In all cases, unsure or missing knowledge about local processing
steps, communication, or the fusion is present. These uncertainties require assumptions that lead to
suboptimal fusion results. Based on these previous discussions, this dissertation proposed methods
to fully or partially reconstruct cross-covariances that can be used for optimal or suboptimal fusion.
Furthermore, Chapter 5 proposed methods to estimate correlations between estimation errors from
simulated data. Both approaches are now used as a toolbox to retrieve partial knowledge about
correlated estimation errors from sensor networks. Chapter 2 introduced two possible methods to
retrieve this partial knowledge, namely an analytic and a simulation approach. During the analytic
approach, cross-covariances for a set of possible models are fully or partially reconstructed and
normalized to obtain the correlation matrix. During the simulation approach, simulated data of the
local estimation steps and the fusion are used to estimate the correlation of the estimation errors.
The analytic and the simulation approach result is a set of admissible correlation coefficients that
can be exploited during the fusion step.

This chapter proposes solutions for an analytic and a simulation approach. In order to use
this knowledge, this chapter begins by investigating suitable bounding methods from the state
of the art. Furthermore, a Gaussian Mixture (GM) approach is proposed to utilize retrieved
partial knowledge. Afterward, methods to properly parameterize the utilized bounding methods
using partial knowledge from the analytic or the simulation approach are proposed. Last, this
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Figure 6.1: Workflow for learning sets of correlation coefficients for two sensor nodes A and B
using the analytic approach.

chapter ends with two evaluation examples summarizing the proposed approaches and highlighting
advantages and pitfalls.

6.1 Methods for Information Retrieval

The aim of this chapter is to obtain sets of correlation coefficients that characterize the correlation
of estimation errors from distributed sensor nodes. Therefore, the following section proposes
suitable experiments that are designed to obtain these sets of correlation coefficients. First, the
section considers the analytic approach, where the full or partial reconstruction methods from
Chapters 3 and 4 are used. Afterward, a suitable setup for the simulation approach is proposed
that enables the estimation methods proposed in Chapter 5.

As discussed in Chapter 2, the correlation between estimation errors depends on many factors. For
example, system parameters such as system and measurement models, noise covariances for the
process, and measurements can change over time and introduce uncertainty about the correlation.
Furthermore, the number of sensor nodes, the network topology, and even the method used for the
fusion change the correlation. When many parameters can vary, the sets of correlation coefficients
could be massive and therefore result in a bound that is not tight and offers only a minimal
improvement over conservative fusion methods. Therefore, a suitable set of input parameters to
the system is required for which the resulting correlation of estimation errors is learned. Here, the
Markov assumption about the system can be utilized. Hence, the output of the local estimators
and the correlation between estimation errors only depend on the local estimators’ input. In
linear systems that are not dependent on the measurements, the input determining the correlation
between estimation errors is the initialization of the system with the initial covariance matrix P0.
Therefore, the set of correlation coefficients is learned with a specific initial covariance matrix.
This knowledge can then be applied whenever this initial covariance is used. Since the initial
covariance is usually not the same during every initialization step, this approach requires learning
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Figure 6.2: Workflow for learning sets of correlation coefficients for two sensor nodes A and B
using the simulation approach.

sets of correlation coefficients for different initial covariances. Furthermore, since this number of
covariances could be enormous, it is necessary to use a suitable grid of initial covariances and
interpolate between them using an appropriate distance measure, e.g., [47].

Figure 6.1 shows a possible solution for the analytic approach. When only linear system models are
considered, then the simulation of the dynamic system is not necessary because the parameterization
of the local estimators does not depend on measurements. Therefore, the correlation between
estimation errors only depends on the local models used by the estimators and the initial covariance
matrix. This setup is used to fully or partially reconstruct the cross-covariances between the local
estimators. For this reconstruction, either a centralized approach or one of the proposed distributed
reconstruction methods based on deterministic samples or the square-root decomposition (see
Chapters 3 and 4) can be used. This has to be executed for the complete set of possible system
models. If this set is too big, a grid of possible models can be used for the reconstruction. If the
cross-covariances are fully reconstructed, then the result is a set of discrete correlation coefficients.
However, when the cross-covariance is only partially reconstructed until a user-defined time horizon
T , the result is a cross-covariance PA,B

T and a residual term Ω. Therefore, the normalization yields
a set of correlation coefficients with an additional uncertainty. The analytic approach can be used
as an offline approach to determine a set of admissible correlation coefficients using a known set of
system models. It can also be used while fully or partially reconstructing cross-covariances in a
sensor network application to determine the set of correlation coefficients online. The resulting
learned correlation can then be used for the fusion instead of further pursuing the reconstruction
approach.

While the complete simulation of the local estimators and the fusion step is not required for the
analytic approach, it is necessary for the simulation approach. An example for such a setup is
shown in Figure 6.2. The Markov assumption of the system is also applied to the simulation
approach. Therefore, the local estimators are initialized with a specific initial covariance for which
the correlation of estimation errors is learned. Then the full system including the system model,
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the measurements, the local estimators and the fusion is simulated to obtain local estimates. These
can be used to obtain the estimation errors and estimate their correlation. Suitable methods,
namely the sample correlation and a particle filtering approach, have been previously introduced
in Chapter 5 and are now utilized for the fusion. While the simulation approach can obtain sets of
correlated estimation errors online, the setup requires the knowledge of the estimation errors that
are usually only available in an offline calibration or simulation routine.

Both methods generate sets of correlation coefficients that need to be accounted for during the
fusion step. The next section introduces two different strategies to exploit partial knowledge in
the form of sets of correlation coefficients. The first strategy is the use of bounds that obtain a
conservative approximation of the uncertainty. Furthermore, suitable methods from the current
state of the art are reviewed. The second strategy is to use the sets of correlation coefficients
directly using a GM approach.

6.2 Methods to Exploit Partial Knowledge

The following section proposes two approaches to exploit partial knowledge in distributed estimation
using known sets of correlation coefficients. The first part of this section is concerned with bounding
methods that exploit specific properties of the partial knowledge learned previously. These methods
provide a conservative approximation of the uncertainty and are guaranteed to provide credible
results. In the second part of this section, a novel GM approach is introduced. This approach can
directly use the learned sets of correlation coefficients without bounding, making the fusion result
less conservative.

6.2.1 Bounding Methods Using Partial Knowledge

In order to exploit the partial knowledge from the analytic or the simulation approach, the usage of
upper bounds for the fusion is a reasonable and well-established choice. The following section is an
extended version of the discussion in [150]. Chapter 4 already gave a brief introduction to bounding
methods for which CI is the most prominent one. For CI it is assumed that every correlation
coefficient in the correlation matrix Λ may lie within their natural bounds −1 ≤ % ≤ 1. However,
correlation coefficients are usually smaller than these natural bounds due to the uncorrelated
measurement information that the local sensor nodes provide. Therefore, assuming that estimates
are fully correlated leads to overly pessimistic estimates that overestimate the uncertainty.

The authors in [7] propose a new general parameterization which was derived from [6, 108, 133]

JΛ =
[

Pi D + ΨiΛ(Ψj)T
DT + ΨjΛT(Ψi)T Pj

]
,

where the matrix Λ fulfills the condition

∀Λ, I ≥ ΛΛT : Pi ≥ (D + ΨiΛ(Ψj)T)(Pj)−1(D + ΨiΛ(Ψj)T)T .

The centering matrix D is the middle of admissible values on the cross-covariance Pi,j and the
product ΨiΨj is the radius. Therefore the cross-covariance matrix Pi,j is

Pi,j ∈ {D + ΨiΛ(Ψj)T | I ≥ ΛΛT} .
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Figure 6.3: CI under constraints, possible joint covariance matrices (gray).

Furthermore, the authors in [7] propose a family of upper bounds

J̃Λ =
[
Pi + µΨi(Ψi)T D

DT Pj + 1
µΨj(Ψj)T

]
, (6.1)

where 0 ≤ µ ≤ ∞ is a positive scalar value that is chosen so to minimize the fused covariance
matrix.

A special case of this bound was previously proposed by [108] and simultaneously by [59] in a
similar form. [108] proposes a joint covariance matrix

J =
[

Pi Pi,j

Pj,i Pj

]
≤
[
(1 + κρ)Pi D

D
(
1 + ρ

κ

)
Pj

]
, (6.2)

where κ > 0 is an inflation factor that is optimized so to minimize the trace of the fused covariance
matrix. The scalar value ρ is the biggest singular value of the correlation matrix and fulfills[

Pi,j −D
]T

(Pi)−1
[
Pi,j −D

]
≤ ρ2Pj .

The matrix D is a centering matrix that can be chosen so that ρ is minimal. In the following
discussion of this chapter, this is referred to as CI with scalar parameter and asymmetric constraint.
It is also possible to choose the centering matrix as D = 0, referred to as a symmetric constraint.
In comparison to the more general bound, Ψi and Ψj are fractions of the covariances Pi and Pj ,
e.g., αPi = Ψi(Ψi)T and αPj = Ψj(Ψj)T with any value of 0 ≤ α ≤ 1 [7, 66]. The difference of
CI and CI with symmetric and asymmetric constraints is illustrated in Example 4. The authors
in [134, 66] also consider such a scalar parameter to exploit partial knowledge in distributed
estimation.

Example 4: CI bound with scalar parameter and symmetric or asymmetric con-
straints

A normalized joint covariance matrix of two state estimates x̂A and x̂B is assumed to be

J =
[
SA 0
0 SB

] [
1 Λ

ΛT 1

] [
SA 0
0 SB

]
,

79



Chapter 6. Exploiting Partial Knowledge about Correlation

where SA = SB = 1. Thus, the correlation matrix Λ, which needs to fulfill ΛΛT ≤ 1 only includes
a single scalar value %. In Figure 6.3a it is assumed that the correlation coefficient lies in its
natural constraint −1 ≤ % ≤ 1. All possible correlation coefficients result in a rectangular shape
of the joint covariance that is fully bounded by CI. In Figure 6.3b, the correlation coefficient is
reduced to −0.5 ≤ % ≤ 0.5. The resulting area of the joint covariance matrix is not rectangular
anymore and does not include extreme correlations. Therefore, CI is not tight around the joint
covariances, while the symmetric CI bound using ρ = 0.5 and D = 0 is a much tighter bound.
Finally, the correlation is reduced to 0 ≤ % ≤ 0.5 in Figure 6.3c. Both CI and symmetric CI are
not tight. However, the asymmetric CI is tight when ρ = 0.25 and D = 0.25 are chosen.

The general bound (6.1) and the special case using a scalar value (6.2) are promising candidates
to tightly bound sets of correlation coefficients. They require the identification of centering
matrices and either scaling matrices or scalar values for the bounds that can be obtained from
the analytic or the simulation approach. However, these bounding methods, although tight, still
result in conservative approximations of the uncertainty. Therefore, the next section proposes a
GM approach to directly use sets of correlation coefficients.

6.2.2 A Gaussian Mixture Approach to Fusion

The following section proposes a fusion rule that uses sets of correlations coefficients that represent
the correlation of estimation errors. These sets can also be seen as uncertain correlation coefficients,
which can be seen as a probability distribution over the joint probability distribution. Bayesian
estimation with uncertain correlation coefficients of joint probability density functions is also
considered by the authors in [75]. There, Type 2 densities are defined as parameterized density
functions over the state space, whose parameters are described by a density function. The authors
in [112] used a set theoretic approach to deal with uncertain correlation coefficients in distributed
estimation. Here, it was assumed that no knowledge about the correlation is available, which
results in a uniform distribution for the correlation between its natural bounds. The fusion
result is a GM, containing all possible solutions of the fusion given the uniformly distributed
correlation coefficients. The mean and the covariance of the fused estimate are obtained by moment
matching. Furthermore, the results are used to improve the bounds of CI. This approach seems
promising. However, the lack of information that motivates a uniform distribution is not a problem
anymore, because the analytic or the simulation approach provide additional information that can
be exploited. These sets of correlation coefficients are considered in the following to propose a GM
approach that is less conservative than the bounds proposed in the previous section.

A Problem Formulation

Two estimates x̂i and x̂j are supposed to be fused into an estimate x̂f with covariance Pf. The
correlations between the estimation errors of x̂i and x̂j are partially known and the joint covariance
matrix is denoted by

J =
[

Pi Pi,j

Pj,i Pj

]
.
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The cross-covariance matrix can be calculated by

Pi,j = SiΛ(Sj)T ,

where Si and Sj denote the Cholesky decompositions of the local covariances Pi and Pj . Further-
more, the matrix Λ describes the correlation of estimation errors of x̂i and x̂j and it contains several
correlation coefficients that can be listed in a parameter vector vec(Λ) = λ = [%1, . . . , %n% ]T, where
n% is the number of correlation coefficients included in the correlation matrix. If the correlation
matrix Λ is known, then the fusion can be executed according to Bar-Shalom–Campo (BSC)
formulas (see (2.10)).

However, the correlation is only partially known. It is assumed that the parameter vector λ
contains random variables from a stochastic process and that those correlation coefficients have
an arbitrary pdf. The aim is to calculate the pdf of the fused estimate f(xf) depending on the
correlation coefficient

f(xf) =
∫
f(xf, λ) dλ =

∫
f(xf |λ)f(λ) dλ (6.3)

with the density of the fusion result depending on the correlation coefficient f(xf |λ) = f(x̂f,Pf |λ).
To solve this equation, (6.3) needs to be marginalized. Since this is not possible in closed form,
the result can be approximated with one Gaussian or a mixture.

The authors in [112] assumed to be agnostic about the correlation coefficient. Since there is
no knowledge about the correlation given, the correlation coefficients lie in the interval between
[−1, 1]. However, partial knowledge is now available and can be used to expand this GM approach.
It is assumed that a set of correlation coefficients {λ}Mm=1 is sampled from the distribution of
the correlation. For example, this distribution could be directly obtained from the particle filter
proposed in Chapter 5. For the fusion result, a GM is obtained

f(xf) =
∫
f(xf, λ) dλ =

∫
f(xf |λ)f(λ) dλ

=
M∑
m=1

ωm · f(xf |λm) ,

with
∑M
m=1 ωm = 1 and M mixture components. The weights of the mixture components are

calculated using

S = Pi + Pj −Pi,j −Pj,i

ωm = 1√
2S

exp
(
− 1

2
(x̂i − x̂j)2

S

)
.

Therefore, for every λm a fusion result using the BSC formulas (see Figure 6.4) is generated. An
illustration for this approach is given in the following example.

Example 5: Fusion of Two One-dimensional State Estimates Using Gaussian Mixtures
Two one-dimensional state estimates from node A and B are given by x̂A = 1, x̂B = −4, PA = 1,
PB = 4. Furthermore, it is assumed that the set of possible correlation coefficients contains M = 25
evenly spaced correlation coefficients from %min = −0.95 to %max = 0.95.

For every correlation coefficient, a fusion result is calculated as can be seen in Figure 6.4b. Moreover,
it is possible to plot the superposition of the realizations of the joint covariance matrix with every
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Figure 6.4: Visualization of the joint density, the mixture components and the resulting fused
density using the GM approach.

correlation coefficient, which can be seen in Figure 6.4a. This joint probability distribution is not
Gaussian distributed anymore [59]. The fusion is equivalent to a cut through this joint probability
distribution on the diagonal [97]. It can be seen that the resulting GM density (see Figure 6.4c) of
realizations of the fusion with the correlation coefficients is also not Gaussian. Furthermore, it is
tilted towards the negative correlation coefficient, introducing a bias towards negative correlations.

B Discussion

Several aspects of this GM approach have to be taken into consideration. The first problem that
can arise is that there is no or very uncertain knowledge about the correlation between estimation
errors. Whenever there is only little knowledge to exploit, then the fusion result can become biased
due to negative correlation coefficients that have a strong influence on the GM. At the same time,
the positive correlation has a minor impact. Using partial knowledge about the correlation reduces
the bias, as extreme correlation coefficients are usually not included, and the uncertainty of the
correlation is also reduced.

The second problem is that there is a true correlation between estimation errors for that the fusion
result can be calculated optimally. While the mixture includes the correct fusion result, all other
fusion results are incorrect to some degree. Thus, the mixture can be seen as several hypotheses
about the correlation matrix. When the mixture is used to reinitialize the local estimators, these
hypotheses can be tested whether they are consistent with the local observations. Therefore, the
hypothesis tree can be pruned until the true correlation matrix is found.

However, processing the complete mixture in the local estimators can be cumbersome or infea-
sible because of limited bandwidth or local computational power. Thus, the mixture could be
approximated by a single Gaussian. This mixture reduction can be problematic because it does
not catch the true density or its moments. Because of the shape of the density (see Figure 6.4),
the resulting Gaussian can underestimate the uncertainty and might therefore lead to noncredible
local estimators. A possible approach to reduce the risk of underestimating the uncertainty is to

82



6.2 Methods to Exploit Partial Knowledge

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x̂ = 0.693

P = 1.199

x

f
(x
)

(a) BSC for every mixture compo-
nent individually.

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x̂ = 1.535

P = 1.1

x

f
(x
)

(b) Average the fusion gains and
solve the BSC formulas.

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x̂ = 1.179

P = 1.024

x

f
(x
)

(c) Average joint covariance matrix,
then solve the BSC formulas.

Figure 6.5: Comparison of different weighting techniques for the GM approach, mixture
components (gray) and approximation using single Gaussian (colored).

approximate the GM not by one but a few Gaussian using a clustering algorithm, e.g., Expectation
Maximization [38, 51]. Another way could be to reduce the GM as late as possible, e.g., before
communicating with the fusion center again. Then, the hypothesis tree is already pruned, and
only a couple of mixture components remain, making the approximation much more credible.

The last problem considered is the calculation of the fusion gain. Previously it was only discussed
that the BSC formulas are applied. However, there are several solutions to finding the fusion gain:

1. solve the BSC formulas for every mixture component individually,
2. calculate the fusion weights for every component individually, then average the fusion gains

and solve BSC formulas with the averaged fusion gain, or
3. calculate the average joint covariance matrix, then solve BSC formulas with the fusion gain

for the average joint covariance matrix.

These approaches for the fusion lead to very different fusion results as can be seen in the following
example.

Example 6: GM Approach using Different Methods to Calculate the Fusion Gain

Again, two one-dimensional state estimates with PA = 1, PB = 4, x̂A = 1, x̂B = −4 are to be
fused. It is assumed that the set of possible correlation coefficients contains M = 8 evenly spaced
correlation coefficients from %min = 0.2 to %max = 0.9.

Figure 6.5 shows the mixture components and the fusion result approximated by a single Gaussian
using moment matching. Solving the BSC formulas for every component leads to bigger variance,
while the smallest variance results from the weighting of the average joint covariance. Since a
big concern is that the uncertainty might be underestimated, the element-wise solving of the
BSC-formulas seems to be more reasonable. In the following section, an experiment to evaluate
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Figure 6.6: Evaluation of the GM approach with different number of particles.

the performance of the proposed GM approach with different parameterization is conducted and
the results are compared to other fusion methods.

C Evaluation

For the evaluation of the proposed GM approach, the simulation from Section 5.2.2.D is used,
where the proposed particle filter approach was utilized to estimate the correlation matrix with
the true values Λ = [0.68, 0.68]T. The particle filter is used in two configurations, with M = 284
(GM1) and M = 1224 (GM2) particles. The estimation of the correlation is run for N = 1000
observations. In the first part of this evaluation, the GM approach uses the particle filters directly
to solve the BSC formulas for every sample from the estimated correlation matrix. Therefore, the
GM includes 284, or 1224, mixture components, respectively. In order to compare the mixture
with the other fusion methods, the mixture is approximated by a single Gaussian using moment
matching. The fusion results are compared with the naïve fusion, CI, and the optimal fusion (BSC)
using the true correlation matrix. The fusion step is only evaluated at certain time steps closer
together at the beginning and sparser later on. Random samples from the true joint covariance
are drawn and fused with the competing fusion methods. Furthermore, 1000 MCRs are executed
for every fusion step.

Figure 6.6a shows the MSE of the fused estimates. The x-axis is shown on a logarithmic scale
to better visualize the uneven spacing of the fusion steps. The later the fusion step occurs, the
more observations have been used to estimate the particle set and the better the estimate of the
correlation. While naïve fusion and CI show slightly higher MSE than the optimal fusion, the GM
approach is indistinguishable to the optimal fusion result after about N = 10. Figure 6.6b evaluates
the credibility of the fusion result using the ANEES. CI is rather conservative and outside of the
95% confidence interval, and naïve fusion is also mostly outside of the 95% confidence interval.
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Figure 6.7: Evaluation of the GM approach using different calculation methods of the fusion
gain.

Nevertheless, the GM approach is very close to CI in the beginning and then approaches the result
of the optimal fusion that it is almost identical to after a while. The number of particles seems to
have no significant influence on the quality of the fusion result. Overall, the GM approach shows
excellent fusion results and seems to be a reasonable choice for the fusion. It is convenient since it
can directly use the estimated point cloud from the correlation estimator for the fusion. Next, the
different methods for calculating the fusion gain are evaluated. This time, all GM methods use
M = 284 particles. However, the approach was used in the following configurations:

• solve BSC formulas for every mixture component individually (GM1),
• calculate the fusion weights for every component individually, then average the fusion gains
and solve BSC formulas with the averaged fusion gain (GM2) and
• calculate the average joint covariance matrix, then solve BSC formulas with the fusion gain
for the average joint covariance matrix (GM3).

The MSE in Figure 6.6a is higher for the methods with averaging of weights of the joint covariance
matrix then for the element-wise solving of the BSC formulas. However, the methods are also
significantly less conservative (see Figure 6.6b) with small number of observations.

To summarize, the proposed GM approach shows good performance. The approach tends to be
more conservative when the uncertainty of the correlation estimate is high. However, as soon
as the uncertainty decreases significantly, the performance is close to the optimal fusion. The
weighting scheme seems to have a high impact on the fusion result. The element-wise solution of
the BSC formulas seems to be more conservative but also results in smaller errors. Future research
is necessary to investigate whether this approach is practical in real-life applications. Furthermore,
the GM approach is only applied to the fusion step. Therefore, it is still unclear how the local
estimators can further process the result and how this influences the correlation estimate.
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Figure 6.8: Visualization of full and partial analytic calculation of the cross-correlation, actual
cross-correlation (black cross), reconstructed set of cross-correlations (blue).

6.3 Parameter Identification for Design of Conservative Bounds

Section 6.1 discussed how sets of correlation coefficients can be generated by simulation or
reconstruction. Section 6.2 proposed different approaches to utilize these sets of correlation
coefficients for the fusion, where the first approach is the use of bounding techniques. Two possible
bounding approaches have been identified that are promising candidates for exploiting sets of
correlation coefficients. The first approach, which uses a family of bounds as proposed in [7] requires
a centering matrix and, additionally, two scaling matrices Ψi and Ψj . The second bounding
method proposed by [108] only needs a scalar parameter ρ and a centering matrix D, and is a
special case of the more general bound. However, the missing link is the parameterization of these
bounding methods since they require specific matrices or scalar parameters to be extracted from the
set of correlation coefficients. The following section proposes strategies to extract these parameters
from the set of correlation coefficients to use them during the fusion. Moreover, the analytic and
the simulation approach require different approaches since their sets correspond to different levels
of information. For simplicity, the discussion is limited to the parameter identification for sets of
correlation coefficients that contain only two correlation coefficients and therefore lie in R2 since
this is easier to visualize.

6.3.1 Designing Bounds for the Analytic Approach

The analytic approach obtains sets of cross-covariances. To transform these to correlation coef-
ficients, they have to be normalized. A suitable decomposition of the system is given in (5.2),
resulting in a correlation matrix Λ. If the reconstruction is only partially executed, then an
additional residual term that represents the uncertainty of the cross-covariance matrix is generated.
When this residual is used, a joint covariance of the form

J =
[

Pi Pi,j
T + ΩiΛ(Ωj)T

Pj,i
T + ΩjΛT(Ωi)T Pj

]
, ΛΛT ≤ I
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Figure 6.9: Fitting of bounding circles and ellipses for the analytic approach with full and partial
reconstruction, actual cross-correlation (black cross), reconstructed set of cross-correlations (blue).

is constructed. This is a joint covariance of the same form as in (6.1). Therefore Pi,j
T is equal to

the center matrix D and Ωi(Ωj)T is the radius of an ellipse. Hence, the data from the analytic
approach contains correlation coefficients for fully reconstructed normalized cross-covariances and
sets of correlation coefficients for partially reconstructed normalized cross-covariances and their
residual term. Hence, the set of correlation coefficients is mix of data, especially when a fixed
time horizon allows full reconstruction for some models and partial reconstruction for others. The
following example visualizes this problem of full and partial reconstruction and the resulting sets
of correlation coefficients for different parameterizations of the time horizon.

Example 7: Cross-Correlation Sets for Full and Partial Reconstruction

Two sensor node A and B are estimating the state of a discrete-time time-invariant linear stochastic
system with

A=
[
1 ∆T
0 1

]
, Q=

[
∆T 3

3
∆T 2

2
∆T 2

2 ∆T

]
, ∆T =1 .

Both senor nodes use a linear measurement model with measurement matrices CA = CB = I
and measurement covariances RA = diag(52, 12) and RB = diag(22, 12). Node A sends only its
first state x̂A1 and the belonging variance PA

11 and node B sends the full state estimate x̂B and
covariance PB to the fusion center. It is assumed that the fusion could be executed somewhere
between the 1st or 10th time step. The reconstructing of the cross-covariance matrix is executed
using the square-root decomposition as discussed in Chapter 3. Furthermore, the time horizon is
limited to T = 5 and T = 1 to create a residual term as discussed in Chapter 4.

Figure 6.8 shows the reconstruction of the cross-correlation, which is obtained by normalizing the
reconstructed set of cross-covariance matrices. The plot on the left shows the full reconstruction
of the cross-covariances. The middle and the right plot show the partial reconstruction It can be
observed that the smaller the time horizon, the bigger the surrounding ellipse that contains the
set of possible correlation coefficients.

The set of correlation coefficients caused by the partial reconstruction can also be replaced by
a set of correlation coefficients that form the bounding ellipse. To reduce the amount of data,
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one could only save the data points of the convex hull, making the parameter identification for
the bounding faster. In the analytic approach, a set of possible correlation matrices is generated.
Furthermore, it is assumed that every set of correlation matrices is possible and could theoretically
occur. Therefore, the full set needs to be bounded. The following paragraphs propose methods to
calculate bounding ellipses or circles that enclose the set of possible correlation coefficients.

Designing Bounds with Matrices Ψ and Centering Matrix D: When the correlation matrix
only contains two correlation coefficients, then the set of correlation coefficients describes an ellipse
in R2 of the form

EΘ,µ{λ ∈ R2 : (λ− µ)TΘ−1(λ− µ)} ,

where λ = vec(Λ) and where µ = vec(M) is the center of the ellipse. This center can be calculated
by normalizing a centering matrix M = (Si)−1D

(
(Sj)−1)T. Furthermore, the covariance matrix is

Θ = Φi(Φi)TΦj(Φj)T, where Φ is the normalized scaling matrix is Φ = (Si)−1Ψ
(
(Sj)−1)T. A set

of correlation matrices was obtained from the analytic approach

{λ}Mm=1 = [λ1, . . . , λM ] .

The aim is to minimize the area of the ellipse, e.g., by minimizing the trace of the covariance Θ

arg min
Θ,µ

det(Θ)

s.t. (λm − µ)TΘ−1(λm − µ) ≤ 1 , ∀m = 1, . . . ,M .

There are several publications concerned with this problem of finding the optimal ellipse or ellipsoid
with the minimum area or volume [78, 126]. Here, the Matlab implementation from [93] and
their documentation is used. The center of the ellipse µ is relatively easy to find. However, the
matrices Ψi and Ψj are not unique, as already discussed in [7]. There are a number of possible
combinations of Ψi and Ψj that correspond to the same set of correlation coefficients. There are
relatively little constraints to the search. The number of rows has to correspond to the sizes of Pi

and Pj and Ψi and Ψj need to have full column-rank. In the case of the ellipse, the parameter
identification can be designed as follows. If the dimension of Ψi is 1 and the dimension of Ψj is 2,
then matrix Ψi :=

√
1/β and Ψj :=

√
βΘ, where β is an arbitrary scaling factor.

Designing Bound with Scalar Value ρ and Centering Matrix D: The identification of the scalar
value ρ is also discussed in [108]. The aim is to minimize the biggest singular value of the set of
correlation matrices [134]. Therefore, a normalized centering matrix M is required that leads to a
center of the ellipse µ = vec(M)

Eρ,µ{λ ∈ R2 : (λ− µ)T(ρ2I)−1(λ− µ)}

that minimizes the biggest singular value ρ. In the case where a correlation matrix with two
coefficients is assumed, the ellipse is reduced to a circle in R2 with center µ and radius ρ, where
the scalar value ρ ≤ 1. The optimization problem can be posed like this

arg min
ρ,µ

(
max
ρ

(
svd(λm − µ)

))
.

The problem can even be simplified by assuming a symmetric constraint of the bound. Then, the
centering matrix D = 0 and the aim is to only find the biggest singular value, which can be done
without any optimization. Figure 6.9 shows the proposed bounds for the Example 7.
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6.3.2 Designing Bounds for the Simulation Approach

For the analytic approach, a set of correlation coefficients is obtained that do not represent a
pdf, but rather possible outcomes of the estimation process that all, theoretically, can occur.
Therefore, the complete set needs to be bounded. However, during the simulation approach, a
set of correlation coefficients is obtained representing a probability distribution of correlation
coefficients, e.g., a particle cloud. Then, a confidence interval has to be generated to bound this
distribution that includes a certain probability mass. The higher the probability mass included,
the more conservative the fusion result.

Designing Bound with Matrices Ψ and Centering Matrix D: Let {λ}Mm=1 be a set ofM particles
obtained from the simulation approach with a belonging set of weights {ω}Mm=1. The mean of the
particle set can be calculated according to

λ̄ =
M∑
m=1

ωmλm .

This particle mean λ̄ is assumed to include the parameters of the normalized centering matrix M
with λ̄ = vec(M). Furthermore, the covariance of the particle set is calculated

P =
M∑
m=1

ωm
(
λm − λ̄

)(
λm − λ̄

)T
.

Then, assuming a Gaussian distribution, the bounding ellipse is calculated using an appropriate
confidence interval, e.g., the 95% confidence interval

Θ = 1.962 P .

From this ellipse, the matrices Ψi and Ψj can be calculated as proposed in 6.3.1.

Designing Bound with Scalar Value ρ and Centering Matrix D: For the calculation of the
scalar value ρ, the biggest singular value of the covariance P =

∑M
m=1 ωm

(
λm − λ̄

)(
λm − λ̄

)T has
to be computed. Then, assuming a Gaussian distribution, an appropriate confidence interval is
chosen, e.g., the 95% confidence interval, to calculate

ρ = 1.96
√

max(svd(P)) .

If the centering matrix is chosen as D = 0, then the covariance is calculated without using the
mean of the particle set according to P =

∑M
m=1 ωm

(
λm
)(
λm
)T. Again, the 95% confidence interval

is computed to obtain the biggest singular value. When the uncertainty of the particle set is big,
then there are cases where the scalar value ρ can be bigger than 1. However, it makes sense to limit
the value to 1, since bigger values are not admissible and lead to overbounding of the uncertainty.

A particle cloud from the simulation approach (see Section 5.2.2.D) is considered for different
number of observations. The results of the proposed bounding approach are shown in Figure 6.10.
Because the particle cloud is close to the natural constraint of the correlation, the ellipse using
the scaling matrices is a smaller bound around the particles than the bounds using scalar values.
Furthermore, using the centering matrix unequal to zero is advantageous, resulting in a smaller
bound. When the symmetric constraint is chosen, there is no improvement compared to CI. The

89



Chapter 6. Exploiting Partial Knowledge about Correlation

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

%1,1

%
1
,2

CIρ,0

CIρ,M

CIΨ,M

(a) N = 5.

0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

%1,1

%
1
,2

(b) N = 25.

0.6 0.65 0.7 0.75 0.8
0.6

0.65

0.7

0.75

0.8

%1,1

%
1
,2

(c) N = 100.

Figure 6.10: Fitting of bounding circles and ellipses for the simulation approach.

plots also show that the bounded area becomes smaller the more observations are available. Last,
it can be seen that these bounding techniques lead to bounds that can lie outside of the admissible
values and this is much more likely with the bounding techniques using scalar values.

6.3.3 Discussion

The decomposition to obtain the scaling matrices Ψ for the bound proposed in [7] is not unique. In
the case that only two correlation coefficients are within the correlation matrix, this is unproblematic
since the upper bound calculation uses a scalar value that cancels out the parameterization of
the matrices. However, this might not be the case in higher-dimensional problems where n% > 2.
Furthermore, in higher-dimensional cases, the bound is not an ellipse but a more complicated
shape (as discussed in Chapter 5). Therefore, further research is necessary to find appropriate
optimization techniques for the scaling matrices and the centering matrix. However, the bound
using the scalar value does not suffer from this problem, and the proposed bounding technique can
easily be generalized to higher-dimensional problems. Another problem that becomes apparent in
Figure 6.10 is that the derived bounds may include correlation coefficients that are not admissible
since they are outside of the constraints. While mathematically perfectly fine, these correlation
coefficients could lead to overly conservative fusion results. Further research is necessary to
investigate the degree of performance loss.

6.4 Evaluation

The following section evaluates the analytic and the simulation approach. Both evaluation examples
assume the same system, where two sensor nodes A and B estimate the state of a discrete-time
time-invariant linear stochastic system with

A=
[
1 ∆T
0 1

]
, Q=0.1

[
∆T 3

3
∆T 2

2
∆T 2

2 ∆T

]
, ∆T =0.1 .
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Figure 6.11: Estimated correlation coefficients λ1,1 and λ1,2 (blue) and the estimated 95%
confidence interval % (gray) with increasing number of training covariances compared to the
analytically calculated correlation coefficients %1,1 and %1,2 (red) for a single training covariance.

Both senor nodes use a linear measurement model with measurement matrices CA = CB = I,
where the observations are corrupted by additive white Gaussian noise with covariances

RA=diag(52, 12) , RB =diag(0.52, 0.52) .

Node A sends only its first state x̂A1 and the belonging variance PA
11 to the fusion center, while

node B sends the full state estimate x̂B and covariance PB.

6.4.1 Evaluation of the Simulation Approach

First, the simulation approach is evaluated where the correlation matrix is learned using several
MCRs of the complete system, including the local estimators and the fusion step. The used setup
is also proposed in [150], where the use of the sample correlation is evaluated. Here, the correlation
is estimated using the particle approach from Chapter 5 and then the bounds proposed in 6.3.2
are used for the fusion. It is assumed that the employed local system and measurement models
are unknown to the fusion center, but static. The correlation of the state estimates is estimated
based on the output of the local estimators and the estimation error.

A Learning Correlations for Single Initial Covariance

First, the correlation between estimation errors is estimated by drawing several observations
using only a single known initial covariance matrix P0. Therefore, the Kalman filters of the local
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Figure 6.12: Comparison of fusion results using the simulation approach for learning of bounds
for one initial covariance matrix using different fusion methods, 50 MCRs, moving average over
the last 200 values.

sensor nodes are initialized with the same initial covariance matrix P0 = [1, 0.5; 0.5, 1]. As already
discussed in (5.2), the joint covariance matrix is given by

J =
[
SA 0
0 SB

] [
1 Λ

ΛT I

] [
SA 0
0 SB

]T
,

where SA is the square-root of the variance PA
11 and SB is the Cholesky decomposition of PB.

The correlation matrix Λ = [%1,1, %1,2] contains two correlation coefficients that describe how the
two state estimates are correlated. Figure 6.11 compares the estimated and the true correlation
coefficients. Furthermore, the 95% confidence interval is plotted. While the uncertainty is large
initially, the estimation improves with a growing number of observations and converges towards
the actual value.

When no or only a few observations are available to the estimator, no knowledge about the fusion
is available to the fusion center and, therefore, CI is used. The performance of the fusion with
different fusion methods is shown in 6.12. Overall, all methods using learned partial knowledge
show better performance than the standard CI. The GM approach converges very fast towards the
optimal fusion result. The bounding methods using scalar values (CIρ,M) and bounding with the
scaling matrices Ψ (CIΨ,M) also converge fast. However, their difference is insignificant, meaning
that the uncertainty of the correlation estimate is not very elliptical and cannot be exploited.
Furthermore, both bounds are still relatively conservative compared to the proposed GM approach,
which is almost optimal.
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Figure 6.13: Comparison of fusion results using the analytic approach for learning of bounds for
one initial covariance matrix using different fusion methods, 10000 MCRs.

6.4.2 Evaluation of the Analytic Approach

The following section evaluates the analytic approach using the previously proposed system design.
However, it is now assumed that the fusion step does not occur after the first processing step
but may occur randomly between k = 1 and k = 10. The set of cross-correlation matrices is
reconstructed fully, using the square-root decomposition as proposed in Chapter 3, and then
normalized. Then, the bounding of the set of correlation coefficients is executed using the methods
proposed in section 6.3.1. This calculation of the bounding parameters using the set of correlation
coefficients is done offline. Then the derived bounds are used in a simulation with 1000 MCRs,
where the fusion step is chosen randomly.

A Learning Correlations for Single Initial Covariance

First, the evaluation is executed for a single initial covariance matrix P0 = p[1, 0.5; 0.5, 1], where
the scaling factor p = 0.1. Figure 6.12 shows the performance of the fusion using different methods
depending on the time step when the fusion was executed. As before, the naïve fusion, CI and the
optimal fusion using the known cross-covariance that is reconstructed during the simulation are
compared as well to give a baseline for the performance. Figure 6.13a shows that the bounding with
a scalar value and zero centering matrix (CIρ,0) performs the worst with CI following, which was
surprising. The bounding with the scaling matrices CIΨ,M performs best after the optimal fusion
method, followed by the bound using the scalar value and centering matrix (CIρ,M), which also
performed well. Furthermore, Figure 6.13b shows that the elliptical bound is the least conservative
bounding method, followed by the two bounding methods with scalar values.
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Figure 6.14: Learned bounding ellipses for different scaled initial covariance matrices over the
scaling factor p.

B Learning Correlations for Several Initial Covariances

Now, the evaluation is extended to the learning over several initial covariances. It is assumed that
the scaling factor p is randomly chosen between pmin = 0.01 and pmax = 0.1. The cross-correlation
is reconstructed fully for 20 equally distributed values between pmin = 0.01 and pmax = 0.1. These
correlation sets are used to learn the bounding parameters with a specific scaling value p. The
bounding ellipses or circles over the scaling parameter p for the different kinds of bounds are
depicted in Figure 6.14. The bounds for scalar values ρ are relatively large, where the bounds
for a zero centering matrix M = 0 are the largest. In comparison, the bounding ellipses (see
Figure 6.14c) are very small and cover a small area. Also, they do not violate the bounds of the
correlation coefficients, unlike the bound with the scalar value and a nonzero centering matrix.

When executing the simulation, the current scaling factor of the initial covariance matrix is
extracted. Then, the database is searched for bounds with the closest entries for the scaling value.
Finally, the new bound is calculated by interpolating between the bounding parameters based on
the distance to the current scaling factor. The results from 6.15 show again that the bounding
with a scalar value and zero centering matrix (CIρ,0) performs the worst with CI following. The
bounding with the scaling matrices CIΨ,M performs best after the optimal fusion method. It is
also the least conservative bounding technique, followed by the bound using a scalar value and
centering matrix (CIρ,M), which also performs well. In general, the learned bounds are rather
conservative because of the large spread of possible sets of correlation matrices. This shows that
the partial knowledge improves the fusion, but the more information is available, the better the
fusion result becomes.

6.5 Conclusions to Exploiting Partial Knowledge about
Correlation

This chapter explored different methods to exploit partial knowledge consisting of sets of correlation
coefficients. These learned sets were retrieved either from full or partial analytic reconstruction
or estimated from simulation, and a suitable system design for both approaches was proposed.
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Figure 6.15: Comparison of fusion results using the analytic approach for learning of bounds for
several scaled initial covariance matrices using different fusion methods, 10000 MCRs.

Two main strategies were introduced to account for these sets of correlation coefficients. First,
suitable bounding methods were introduced. Two promising methods that achieve tight bounds
were chosen from the current state of the art and applied to the considered problem. The necessary
parameterization for the bounds was directly calculated from the sets of correlation coefficients.
Since bounding methods tend to overestimate the uncertainty of the fused estimate, a GM approach
was proposed that can use the sets of correlation coefficients directly.

Several interesting findings result from this chapter. First, the GM approach shows an almost
optimal performance when the utilized set of correlation coefficients has a small uncertainty. It
is also a suitable approach to directly use the estimated correlation using the proposed particle
approach from Chapter 5. Proper bounds can be learned either by analytic or by simulation
approach. However, when bounding sets of correlation coefficients, the natural constraints of the
correlation can be violated when the bounded correlation coefficient also includes values that
are not admissible. This violation of constraints is less likely to occur when using the bounding
technique with scaling matrices Ψ compared to using a single scalar value ρ. This overbounding
seems to affect the fusion result negatively and leads to overly conservative fusion results, but future
research is necessary to investigate this behavior. The bounding technique with scaling matrices Ψ
seems to have more advantages in the analytic approach than in the simulation approach because
the bound on the estimated correlation coefficient is more a circle than an ellipse, limiting its
advantage. Combinations of the simulation and the analytic approach are possible, e.g., one could
simulate several possible sets of systems and then use the analytic approach on the resulting data.
The proposed methods can be adapted to a wide range of systems with missing knowledge about
correlated estimation errors, and future research should seek to apply these methods to practical
applications.
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CHAPTER
7

Conclusions and Future Research

Distributed estimation is an important task of many sensor networks. While the local processing of
measurements allows for a decentralized network topology that leads to more robust, scalable and
modular applications, many distributed estimation applications suffer from correlated estimation
errors that prevent proper fusion of locally processed state estimates. Neglecting correlated
estimation errors or assuming overly conservative bounds can have negative impacts on the quality
of the fusion results.

7.1 Key Contributions

This thesis focused on the retrieval of full or partial knowledge about correlated estimation errors
in distributed estimation. The key contributions of this thesis and their implications are discussed
in the following.

Full and Partial Reconstruction of Cross-Covariances: This thesis investigated two previously
proposed approaches for reconstructing cross-covariances using deterministic samples and square
root decompositions of correlated noise covariances. Based on the square root decomposition
technique, a recursive track-keeping method using a matrix including square root decompositions
until a user-defined time horizon was proposed. The track-keeping of correlated estimation
errors suffers from a growing number of noise covariances that need to be stored, processed, and
communicated. To alleviate bandwidth restrictions, a moving horizon approach was proposed to
keep track of a limited number of correlated noise terms. This partial reconstruction of cross-
covariances is possible due to the bounding of the residual term. Both methods are suitable
to optimally reconstruct cross-covariances in linear systems. The methods were extended to
reconstruct cross-covariances in systems with heterogeneous state-space representations subject to
linear transformations. It has been shown that the design of the systems has to be done with care
to derive credible local trackers and reconstruct cross-covariances that can be used in the fusion
step. A significant contribution is the generalization of the reconstruction to decentralized sensor
networks that is valuable for many sensor networks. It was shown that track-keeping of correlated
estimation errors outperforms many other fusion methods and leads to a high convergence rate
towards a global consensus.

It was found that the square root decomposition is the most suitable approach for the distributed
track-keeping in sensor networks as it is easy to implement and use. Furthermore, it is more
straight-forward to discard old information that does not contribute to the cross-covariance as
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much as newer information using a sliding window approach. This technique offers a flexible
trade-off between the communication requirements and the quality of the fusion result. The
performance can be tuned by adjusting the user-defined time horizons for correlated common prior
information and process noise, and correlated measurement information. On the other hand, the
reconstruction using deterministic samples is more complicated but might be better suited for
nonlinear transformations between different state-space representations of the local estimators.
However, nonlinear transformations between state-space representations pose several challenges,
and future research is necessary to identify common information and fuse estimates correctly.

Retrieving Partial Knowledge about Correlated Estimation Errors: In some systems, the re-
construction of cross-covariances is impossible, e.g., because the system parameters of the local
estimators are unknown. This could be the case when the system runs third-party software or
when the local computational power is not sufficient to run the proposed reconstruction algorithms.
In this case, a simulation-based approach was proposed that simulates the complete system,
including local estimators and the fusion step. This information is used to estimate the correlation
between estimation errors. An essential aspect of this estimation is that the correlation coefficients
have a specific range of values that depends on other correlation coefficients to ensure that the
joint covariance matrix is positive semi-definite. Therefore, we proposed to use either the sample
correlation coefficient that estimates correlations independent of other correlation coefficients or to
use a particle filter approach to maximize the likelihood function of the correlation and that can
take the whole joint covariance matrix into account. Both approaches show good performance,
where the sample correlation is less computationally demanding, but the particle approach better
handles the natural constraints of correlation coefficients.

Exploiting Partial Knowledge about Correlated Estimation Errors: The full or partial analytic
reconstruction and the proposed estimation of correlation coefficients can be used as a toolbox to
retrieve partial knowledge about correlated estimation errors from sensor networks. We proposed
two possible methods to retrieve this partial knowledge: an analytic and a simulation approach.
Cross-covariances for admissible models are fully or partially reconstructed and normalized to
obtain the correlation matrix during the analytic approach. During the simulation approach,
simulated data of the local estimation steps and the fusion is used to estimate the correlation from
the estimation errors. The result is a set of admissible correlation coefficients that are exploited
for the fusion step. Therefore, we proposed a suitable system design for the simulation and the
analytic approach.

We proposed suitable bounding methods and a Gaussian mixture (GM) approach to exploit these
sets of correlation coefficients. The GM approach can use the particles from the SIS approach
directly and shows almost optimal fusion results when the uncertainty of the set of correlation
coefficients is small. However, this approach needs further investigation if it is credible in all
circumstances. Moreover, it should be investigated how to further process the mixture in the local
estimators and derive the resulting implications for the next fusion step. We show a data-driven
approach to identify the parameters for the bounding methods from either the simulation or the
analytic approach and evaluated both approaches using a low dimensional example with only
two correlation coefficients. The results show that it is beneficial to use the proposed methods
to exploit learned partial knowledge during the fusion step. Some open questions remain for
parameter identification, especially for higher-dimensional problems. We proposed learning for
a limited set of system inputs by only considering the initial covariance for a linear estimator.

98



7.2 Relevance

Figure 7.1: Example of a sensor network with different heterogeneous information sources, sensor
nodes and connections between them in red.

However, many applications have arbitrary inputs, e.g., when the fusion result is used as feedback
to the local estimators, and many systems also contain nonlinearities in system or measurement
models. Therefore, further research is required to find if the proposed approach can still be used
in these cases and how learning can be done efficiently.

7.2 Relevance

Fusing state estimates with correlated estimation errors is present in many research fields, such as
target tracking or indoor localization. The fusion of state estimates is an essential part of many
sensor networks and will even gain relevance in the coming years as more and more sensors and
autonomous systems are employed. Because of the increased computational power, many systems
will fulfill parts of their tasks autonomously but exchange local data with neighboring nodes to
improve their local knowledge. This results in more decentralized systems containing correlated
estimation errors that need to be addressed. An example for such a system is depicted in Figure 7.1.
In maritime applications, vessels and ground stations exchange heterogeneous information, e.g.,
using the Automatic Identification System (AIS) to exchange static and dynamic information
about the navigation of vessels, but also radar, active and passive sonar, or camera data [18]. This
exchange of information is also subject to correlated estimation errors and challenging because of
the decentralized nature of these systems. The methods from this thesis could be used by engineers
working with or developing applications using distributed estimation and serve as building blocks
to address correlated estimation errors. Depending on the application, the source of correlated
estimation errors, and the provided bandwidth, users can choose a method to retrieve knowledge
about correlated estimation errors either by reconstruction or by simulation and then use the
proposed fusion methods to ensure credible fusion results.

7.3 Future Work

While this thesis answered several important research questions, it also shed light on other and
sometimes entirely new essential aspects that need further investigation. Therefore, three follow-up
research questions are listed here that we feel are worth considering in the future.

Cooperative Localization: Correlated estimation errors also appear in applications, where a team
of mobile robots use relative measurements with respect to each other to update their position.
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These relative measurements can be helpful in environments where there are few or sporadic
landmarks [74]. Jointly estimating the pose of all team members increases the accuracy of the
entire team. The sporadic access to precise localization information (e.g., landmarks) benefits
the localization of all robots. This global performance increase is possible due to the coupling
between local estimates created through the joint state estimation process. Unfortunately, robots
share local information possibly several times, and the communication paths are hard to keep
track of. However, precise estimation is only possible if correlations between local estimation
errors are known. Existing approaches often use CI to account for unknown correlated estimation
errors [20, 79, 88], or require certain assumptions on the network topology or the communication
scheme [74]. However, the local estimates of each mobile robot are never fully correlated which
makes CI not beneficial. Furthermore, using assumptions about the network or the communication
is infeasible because requirements for communication cannot be met in all circumstances. Therefore,
the square root decomposition technique could be applied to keep track of correlations without
requirements for communication. This allows for fully decentralized estimation while optimally
keeping track of all possible sources of correlated estimation errors. In addition, the sliding window
approach to partially bound correlated estimation errors can help reduce bandwidth requirements.

Compression of Data to Reduce Bandwidth Requirements: Chapters 3 and 4 were concerned
with the full and partial reconstruction of cross-covariances, where the partial reconstruction was
motivated by the limited amount of communication bandwidth usually available to sensor networks.
However, to reduce bandwidth requirements, data can be compressed, e.g., using quantization, to
reduce the amount of additional information. Compression algorithms are often applied before
transmitting data between sensor nodes [127] since data is digitally transmitted by a data package
of a specific size. Therefore, data have a certain precision. This is an interesting aspect as
this leads to imprecision in the reconstruction of cross-covariances, leading to underestimating
correlated estimation errors. Moreover, to use the technique fully, it is necessary to investigate
how compression influences the quality of the reconstruction. In [52, 53] quantization of data was
investigated for CI, which could be a good starting point for further research.

Nonlinear Fusion of State Estimates: Especially tracking problems often feature local estimators
employing nonlinear system or measurement models. Local estimation errors are often correlated
due to common process noise. However, when the process noise model is nonlinear, every local
tracker incorporates different process noise covariances depending on the current local state estimate.
This complicates the identification of common process noise. Therefore, the reconstruction of
correlated estimation errors is unclear. Yet, it is crucial to investigate how the local nonlinearities
affect the correlation of estimation errors and how common information can be identified and
reconstructed. Another problem are nonlinear transformations into local coordinate systems, as it
is often the case in Heterogeneous Track-to-Track Fusion (HT2TF) problems. The result can be a
joint probability density that is possibly non-Gaussian. Therefore nonlinear fusion methods are
needed requiring further research. Tracking applications might also contain non-Gaussian local
estimates, e.g., Gaussian mixtures. Last, there are applications where the state representation
lies on special manifolds, e.g., for directional estimation. There, the fusion of state estimates is
challenging because of correlated estimation errors that may lie on a special manifold [107] or at
least need special treatment of correlated estimation errors based on the underlying manifold.
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