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a b s t r a c t

Semi-autonomous control strategies for prosthetic hands provide a promising way to simplify and
improve the grasping process for the user by adopting techniques usually applied in robotic grasping.
Such strategies endow prosthetic hands with the ability to autonomously select and execute grasps
while keeping the user in the loop to intervene at any time for triggering, accepting or rejecting
decisions taken by the controller in an intuitive and easy way. In this paper, we present a semi-
autonomous control strategy that allows the user to perform fluent grasping of everyday objects
based on a single EMG channel and a multi-modal sensor system embedded in the hand for object
perception and autonomous grasp execution. We conduct a user study with 20 subjects to assess
the effectiveness and intuitiveness of our semi-autonomous control strategy and compare it to a
conventional electromyography-based control strategy. The results show that the workload is reduced
by 25.9% compared to conventional electromyographic control, the physical demand is reduced by
60% and the grasping process is accelerated by 19.4%.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
p

1. Introduction and related work

Recent advances in prosthetics and humanoid robotics have
ed to artificial hands with human-like appearance as well as
mproved dexterity and grasping abilities [1,2]. Therefore, simple
et reliable control strategies are needed to enable user to exploit
he hand’s dexterous grasping abilities to their full extent [3,4].
uch easy-to-use control aims at reducing the amount of atten-
ion a prosthesis user has to pay during the execution of a grasp.
raditionally, electrically actuated prostheses are controlled with
ignals captured by two EMG electrodes attached in the socket on
he user’s arm. Through contraction of the muscles in the forearm
he user can then sequentially control all degrees of freedom of
he prosthesis. While prosthetic hands get increasingly versatile,
ontrol of these added degrees of freedom is difficult with the
imited expressiveness provided by the EMG interface. Hence,
ong control signal sequences are needed to control prostheses
ith a multitude of functions. Besides the need for a long training
ime, the direct control of more than two degrees of freedom
DoF) with only two EMG electrodes results in a high cognitive
oad for the user while controlling their device [5]. Therefore, a
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simplification of the prosthetic control strategy for the user is
needed in order to reduce the user’s workload while operating
their device.

An active field of research is the classification of electromyogra-
hy (EMG) and mechanomyography (MMG) signals from multiple

sensors to improve upon the muscle activation control strate-
gies currently applied in commercial prostheses, as for example
proposed in [6–12]. A comprehensive survey of these techniques
can be found in [13]. However, acquiring fine-granular, continu-
ous and robust signals is challenging due to imperfect fitting of
the socket and changing skin surface conditions, such as sweat
and temperature [14]. Therefore, the emerging field of semi-
autonomous control concentrates on reducing the amount of
commands sent by the user to execute an action by incorporat-
ing environmental information extracted from additional sensor
modalities and predicting the user’s intention. These are espe-
cially interesting where the user’s stump condition does not
permit to capture feature-rich EMG signals. For this specific user
group, a prosthetic control should require as little direct EMG
commands as possible to mitigate the proneness to errors caused
by wrong or missing muscular signal detection.

The idea of partially automating prosthetic control has a long
history. For an early version of the Southampton Hand, pre-
defined grasps are adapted based on information from a gyro-
scope, force sensors and slip detection supporting the user during
grasping [15].

Došen et al. [16] design a semi-autonomous control scheme

based on a cognitive vision system for prosthetic grasping. With
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camera and a distance sensor mounted externally on the dorsal
ide of a prosthetic hand looking over the fingers, the object is
etected and its distance can be measured. Here, the user directly
ontrols the wrist rotation, while grasp type and hand aperture
re determined based on visual and distance information and a
et of if–then rules of a decision making system. While offering
ine different grasp types and apertures, the system achieved an
ccuracy of 84%. Grasping failures were attributed to errors of
he visual object detection. The work was extended to include the
rist rotation into the semi-autonomous control scheme, leaving
he user only responsible for triggering the grasping action [17].

Another approach using electrooculography and four sensors
laced around the eye to determine grasp affordances was pre-
ented by Hao et al. [18]. The user has to scan the object’s borders
ith the eyes and trigger the closing movement by EMG signals
s soon as the desired preshape is obtained. While grasping in
defined setup shows an object recognition rate of 86.2%, the

obustness regarding different object–eye distances remains to be
ssessed.
Markovic et al. [19] present a semi-autonomous control archi-

ecture that is based on augmented reality glasses. In contrast
o the approaches described above, the user stays in control of
he fine-tuning of the grasp. While a first preshape is adopted
ased on the visual information of the stereo camera system
ntegrated in the glasses, the user is still able to adjust the
rasp aperture by a proportional myoelectric controller according
o the transmitted feedback. In their following work [20], the
uthors use an inertial measurement unit (IMU) on the dorsal
ide of the palm and combine it with a stereo camera sys-
em mounted in the room as well as position and force sensors
mbedded into the prosthetic hand. Based on this multi-modal
ensor information, the wrist rotation and grasp preshape of a
rosthesis are controlled autonomously. The semi-autonomous
ontrol was compared to three manual control schemes with
ncreasing difficulty. Compared to a manual control of grasp type,
rist orientation and finger closing, the grasp execution was

aster with the semi-autonomous control.
An electrotactile human–machine interface is proposed by

onzalez-Vargas et al. to facilitate a bidirectional communica-
ion between a prosthesis controller and the user [21]. The user
ntention is detected by monitoring forearm motions with an
MU mounted in the prosthetic socket. This interface presents
ossible grasps to the user via electro-tactile stimulation and the
ser then acknowledges the desired grasp choice by generating a
ingle command signal. Although this method inherently includes
elays according to the required selection process, it proves to be
aster than direct proportional control of all individual degrees of
reedom for three out of four preshape options.

To assess the performance of different levels of autonomy
n prosthetic control regarding grasp success, subjective com-
lexity and satisfaction, several control schemes are applied to
he CyberHand [22]. The evaluation shows that less complex
ontrol schemes perform notably better in terms of perceived
atisfaction, required attention and difficulty. The authors also
oted that a full, individual control over all functionalities offered
y the prosthesis was seldom used by the subjects. The study
hereby supports the general merit of semi-autonomous control
echniques.

A semi-autonomous control scheme with a multi-electrode
ser interface is shown on the TASKA hand [23]. Using combined
orce and proximity sensing at the fingertips, the finger closing
otion and the grasp force applied to the object are controlled
utonomously. The user controls the grasping motion similar to a
ure multi-electrode manual control and the autonomous control
ystem is activated based on a threshold set on the decoded

uscle signals. This shared semi-autonomous control is shown

2

to increase the grasp precision and decrease the workload for the
user.

The use of cameras attached to a prosthetic hand has been
studied in literature, resulting in several approaches for process-
ing visual information for the application in semi-autonomous
prosthetic control. A pipeline architecture is used in the cogni-
tive vision system to derive object dimensions from the image
input [16]. A number of recently published object recognition
systems make use of neural networks and propose grasps based
on the recognized known objects [24–26].

Sensor modalities used in prosthetic control range from IMU
data [27] over stereo vision [20] to distance sensors [16,23]. A
survey on the sensorization of both robotic and prosthetic hands
can be found in [28]. In general, many semi-autonomous control
algorithms rely on sensory information not directly provided by
the prosthesis. Instead they require additional sensors attached to
the human body or installed in the environment. Grasp types for
different objects are usually designed manually. Furthermore, the
distinct degrees of freedom of the prosthetic hand are generally
actuated in succession starting with wrist and thumb positioning
followed by the final hand closure. This leads to a slower grasp
execution compared to simultaneous actuation of all degrees of
freedom of the prosthesis.

In this paper, we propose a novel, semi-autonomous con-
trol scheme for grasping with prosthetic hands and evaluate
its performance on an improved version of the KIT Prosthetic
Hand [29]. We consider the presented semi-autonomous con-
trol, that uses hand state estimation, object recognition and user
intention based on sensors and processing power directly in-
tegrated into the hand as the main contribution of our work.
The control scheme uses the sensor system integrated into the
prosthesis to extract relevant object information, select an ap-
propriate grasp and recognize the user’s intention. Except for
two EMG electrodes, no additional sensors are attached to the
human body or mounted in the environment. This allows to
execute grasping tasks including wrist rotation, finger and thumb
closing in a continuous manner based on only one user input
signal to trigger the grasp execution process. Feedback to the user
regarding automatically selected grasps is provided via a color
display embedded into the dorsal side of the prosthesis. The grasp
trajectories are generated from human grasping demonstrations
on known objects of daily life. By transferring autonomous robot
grasping functionalities to prosthetic hands, we aim to simplify
the grasp process for the user and reduce their workload through-
out the control of their hand. In contrast to the state-of-the-art,
the presented control scheme relies solely sensors and computing
power integrated into the prosthesis. This makes the system
applicable in daily life without the need for external sensors
attached to the user’s body or the environment. Control of the
prosthesis is facilitated by a single user input signal and an
IMU. The proposed control scheme is evaluated in a real world
experiment regarding grasp time and success as well as cognitive
burden for the user. The semi-autonomous control scheme is
compared to a traditional, fully user controlled approach as well
as a hybrid control scheme, that provides autonomous grasp
suggestions, while the hand closing is controlled manually by the
user. Both the hybrid and semi-autonomous control scheme are
developed and introduced in this work to assess the merit of
different levels of autonomy in prosthetic grasp control.

In Section 2 we briefly describe the used prosthetic hand
with its embedded sensor system, processing capabilities and
resource-aware image processing. Section 3 explains the hu-
man grasp database that is directly learned from human motion
recordings. The proposed semi-autonomous control is then de-
tailed in Section 4. Section 5 describes the experimental setup
used to evaluate the proposed control and Section 6 presents
the results of these experiments. The paper concludes with a
discussion of the semi-autonomous control and its experimental
evaluation.
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Fig. 1. Underactuated hand with two motors and ten degrees of freedom (DoF); a sensor system consisting of camera, distance sensor and IMU; a color display and
an embedded system for sensor data processing and control. In addition, the wrist rotation unit and user interface, which are integrated in a self-experience shaft
are shown.
2. The prosthetic hand and its grasping abilities

The semi-autonomous control scheme presented in this work
s implemented on the female KIT Prosthetic Hand which is based
n the prosthesis presented in [29]. In the following we de-
cribe the prosthesis mechanics and processing system, as well
s its sensor setup for completeness. In addition, the intelligent
unctionalities provided by the prosthesis are presented. These
nclude an object recognition with a camera in the palm of the
rosthesis based on previous work [26], as well as a new database
f human grasp motions and its transfer to the prosthetic hand.

.1. The mechatronics

For the implementation and evaluation of the semi-
utonomous control scheme, our female version of the pros-
hesis is used [29]. The system components of the prosthetic
and and shaft are shown in Fig. 1. The hand is driven by two
otors actuating the thumb and the four fingers, respectively as
hown in Fig. 2. A cascaded P-controller for position and velocity
ontrol is used to drive the motors. The hand has two degrees
f actuation (DoA) and ten degrees of freedom (DoF) with two
oints for flexion and extension in each finger. The fingers are
onnected to the motor by a force distributing mechanism based
n the TUAT/Karlsruhe mechanism that allows the fingers to wrap
round arbitrarily shaped objects as described in [30] and [31].
he prosthetic hand has been developed to be personalizable in
ize and grasping abilities. It is equipped with a multi-modal
ensor system that allows the realization of intelligent grasping
ehaviors that are easy-to-use and tailored to the user’s needs.
he prosthesis is sized according to the 50th percentile of fe-
ale hands conforming to the German Standard Specification

DIN 33402-2) and has a weight of 377 g. In a cylinder grasp
he prosthesis provides a grasp force of 24.2N. Besides relative
ncoders on both motors (IEH2-512, Faulhaber), an RGB camera
nd an IMU sensor (BNO055, Bosch Sensortec), the prosthesis also
omprises a distance sensor (VL53L1X, ST) embedded into the
alm. The camera and distance sensor are shown in gold in Fig. 2.
3

Fig. 2. Technical rendering of the prosthetic system with the hand and self-
experience shaft; the motors actuating the fingers (blue), thumb (red) and wrist
(green) as well as the distance sensor and camera (gold) are shown; the IMU is
mounted on the PCB in the back of the hand.

The developed algorithms for sensor data processing and con-
trol are running on an on-board embedded systemwith a 400MHz
ARM Microcontroller integrated into the prosthesis palm. This in-
tegration allows using the prosthesis in standalone mode without
the need for any external computing power, sensors or internet
connection.

To allow the inclusion of able-bodied subjects into the ex-
perimental evaluation of the semi-autonomous control strategy
developed in this work, a self-experience shaft was designed.
It is used to attach the prosthesis below the arm at the pal-
mar side of the human hand as depicted in Figs. 2 and 3. This
setup allows the execution of grasping actions by able-bodied
subjects under conditions comparable to amputated users. The
self-experience shaft is connected to the prosthesis by a quick
release fastener. The wrist is actuated by a motor providing a
pronation motion of 90° and a supination motion of 180°. Thereby
it is spanning the human range of motion of forearm pronation
and supination combined with passive shoulder rotation [32] and
[33]. The wrist rotation is also directly controlled by the on-
board embedded system of the prosthesis and similar to the hand
motors a P-controller is used for wrist motor control. The shaft
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Fig. 3. A subject wearing the self experience shaft and prosthesis.

further contains the battery, powering the hand–wrist system
as well as the two EMG electrodes (13E200, ottobock), which
are used to measure the excitation of wrist flexor and extensor
muscles. The EMG electrodes provide internal filtering of para-
sitic signals. They operate in a frequency bandwidth of 90Hz to
450Hz. The conditions of the EMG detection of muscular signals
is kept constant over all implemented control schemes.

2.2. Visual object recognition for prosthetic hands

To endow prosthetic hands with the ability to autonomously
perform parts of grasping tasks, we transfer a vision-based ap-
proach to grasping from robotics to the prosthetic application.
The robotic problem to select a suitable grasp on an object of
interest in an autonomous way can help to reduce the work-
load of the user in prosthetics. This is our motivation behind
integrating a camera in the prosthesis, i. e. to transfer our robot
grasping knowledge to prosthetics. Given an object of interest
that can be recognized with computer vision methods and an
object database of daily objects, the prosthesis should be able to
autonomously determine grasps and select the most appropriate
one. The execution of the chosen grasp is then triggered by
the user. A fundamental requirement to successfully recognize
objects, plan and select grasps is that all computations should
be performed in real-time on the in-hand integrated embedded
system.

To achieve this ability, we use a resource-aware visual recog-
nition system, which is based on a convolutional neural network
(CNN) running on the in-hand embedded system. It achieves a
recognition accuracy of 96.5% on 13 pre-trained objects from
a household environment. The recognition accuracy of the ob-
jects used in our evaluation is depicted in Fig. 4. This visual
object recognition system is described in detail in [26]. Here, we
give a very brief overview for completeness as the recognition
of objects in the scene is key and the first step of the semi-
autonomous control scheme. Within the presented controller, the
object recognition is triggered by the user via a single EMG signal.
A camera image is captured and processed by the recognition
system to identify the object in the field of view of the prosthesis.
Image processing and object detection are performed in 115ms.
The CNN outputs the recognition probability of all 13 objects
and the object with the highest recognition probability is chosen.
The number of 13 recognized objects provides a viable tradeoff
between recognition rate, memory consumption and processing
time based on the utilized microcontroller.

The focus of the visual object recognition as well as our semi-
autonomous control scheme is set on free-standing single objects.
While the CNN is capable of recognizing objects in front of vary-
ing multicolored backgrounds to some extent, the grasping of

objects in cluttered environments is out of the scope of our work.

4

Fig. 4. Accuracy of the visual object recognition; the detailed experimental
procedure and results are presented in [26].

3. Generating grasps from human demonstrations

In prosthetics, grasps must be stable, predictable and optically
unobtrusive. Humans achieve these goals intuitively in their ev-
eryday grasping activities. Human-like prosthesis grasps should
align with human expectations of hand behavior and therefore
enhance the predictability of a prosthetic hand. Hence, the tra-
jectories of our semi-autonomous grasp control are learned from
human demonstration. To this end, we created a grasp database
with predefined human grasps on 29 objects from a household
and workshop environment for the top and side grasps.

3.1. Data acquisition

To learn from a broad range of human grasp examples, a
kinematic study of 510 grasping motions was conducted, per-
formed by 5 healthy subjects (two female and three male) on 29
objects. Objects used in the study are chosen from the KIT Object
Database [34]2 and the YCB Object Set [35].3 The objects are
chosen to represent several primitive shapes as cylinders, boxes
and spheres, but also include more complex shapes like pitchers,
a banana and a bowl. While only a subset of 13 objects is used
for the semi-autonomous control scheme, we record a larger set
of objects in different sizes, weights and shapes to establish a
comprising grasp database. In a wider perspective this allows us
to derive human grasps for a wide range of objects and thereby
enables the personalization of the subset of grasps provided by a
semi-autonomous control to the needs of each specific user.

Throughout the grasp recordings, subjects wear a sensorized
data glove (CyberGlove III, CyberGloveSystems Inc.) measuring
22 joint angles of the human wrist, palm and fingers and an
IMU mounted on the back of the hand recording the hand ori-
entation. The data glove is calibrated by a procedure adapted
from Gracia-Ibáñez et al. [36]. Reference postures at defined
finger joint angles are taken by pressing against reference blocks.
Calibrated finger joint angles are calculated assuming a linear cor-
relation of the sensor readings. Isolated thumb motions involving
individual DOFs are measured additionally to identify the cross-
correlations between flexion, abduction and circumvention. For
the IMU calibration, the hand is positioned upright on the table
and a reference sample is used.

2 https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/.
3 http://www.ycbbenchmarks.com/.

https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
http://www.ycbbenchmarks.com/
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.2. Human grasp recordings

The participants performed the grasping procedure with their
ight hand. While one subject was left-handed, their motion data
howed no significant difference compared to the four right-
anded subjects. Participants were on average 24 years old and
he mean hand length from the wrist to the tip of the middle
inger was 18.5 cm. The study was carried out in accordance with
he recommendations of the ethical committee of the Karlsruhe
nstitute of Technology. The protocol was approved by this ethical
ommittee. All subjects gave written informed consent.
Throughout a recording session, the subject is seated comfort-

bly in front of a table. The medial side of the hand is placed
n the table and the thumb is abducted and opposed to the
ingers. Subjects are asked to move their hand to the object
ositioned 29 cm left of the hand, grasp and lift it naturally.
xcept for spheres and flat objects with a height below 40mm,
ll objects are grasped with two different approach directions
esulting in a top and a side grasp. To align with the functionality
f the prosthesis, the subjects are asked to perform opposition
rasps, allowing both power and precision postures. All grasps are
xecuted twice per subject. The recorded data is available in the
IT Whole Body Human Motion Database [37].4

.3. Human data mapping

To transfer the human finger motions to the prosthetic hand,
n endpoint-based mapping approach is applied similar to the
pproaches in [38] and [39]. The human fingertip trajectory is
alculated from the joint angle measurements while the trajec-
ories of the prosthetic fingers are extracted from video data of
he hand closing at constant speed. While the thumb motion can
e directly transferred to the prosthetic thumb, the four fingers of
he prosthesis are driven by a single motor, which does not make
direct mapping possible. Thus, we develop a method to address
he transfer of demonstrated grasps to the prosthetic hand. For
ll grasp types used in our study, the middle finger is included
nd mostly centered in the second virtual finger opposing the
humb [40,41]. Therefore, the middle finger trajectory is chosen
s representative for the human finger motion.
The entire procedure of grasp transfer onto the prosthesis

iven an object and a grasp orientation (top/side) is listed in
lgorithm 1. The calculations are exemplarily shown for the
ingers, the implementation for thumb and wrist is similar. The al-
orithm has two parameters as input. The first parameter, Hobj :=

pi(t), li), is a set of tuples where pi(t) is the trajectory of the mid-
le finger of subject i for object obj. The parameter t indicates that
i(t) is a time-dependent data series. The second element in the
uple li is the length of the subject’s middle finger. This is needed
or the normalization of the trajectory over the different hand
imensions of the subjects. The second parameter pprosthesis(t) is
he measured trajectory of the middle finger of the prosthetic
and which is needed for the mapping.
The human fingertip trajectories are normalized to the length

f the prosthetic fingers (Algorithm 1, line 4). All motions on the
ame object and direction are additionally normalized regarding
he execution time (Algorithm 1, lines 5–8). The mean trajectory,
veraged over all human demonstrations (Algorithm 1, line 10),
s mapped to the prosthesis trajectory by a nearest neighbor
orrelation of all trajectory points (Algorithm 1, line 12). The
rist rotation is directly transferred from the human grasps to
he prosthetic device.

The grasp trajectories are discretized in steps of 100ms and
re executed on the prosthetic hand with 10Hz accordingly. The

4 https://motion-database.humanoids.kit.edu/.
5

Algorithm 1 Fingertip Trajectory Mapping
Require: Hobj, pprosthesis(t)
1: Pobj := ∅

2: tmax := 0
3: for all (pi(t), li) ∈ Hobj do
4: Pobj = Pobj ∪ normalize length(pi(t), li)
5: tmax = max (tmax,length(pi(t)))
6: P̂obj = ∅

7: for all p̃i(t) ∈ Pobj do
8: P̂obj = P̂obj ∪ normalize time(p̃i(t), tmax)
9: for τ := 0 to tmax do

0: pmean(τ ) :=
1

|̂Pobj|
·

∑
p̂i(t)∈̂Pobj

p̂i(τ )

1: for all τ do
2: pmapped(τ )

:= nearest neighbour(pmean(τ ), pprosthesis(t))
3: return pmapped(t)

execution of the low-level motor control causes an overall delay
of 295ms in the grasp execution. Taking into account the overall
execution time of a grasp being roughly 10 s, the response time
of the low-level motor control and the delay resulting from this
is therefore negligible.

The motor trajectories as well as the corresponding fingertip
trajectories of the prosthesis for a grasp on a pitcher are shown in
Fig. 5. The important characteristics of the grasps in the database
is their continuous representation as they are not defined by a
fixed wrist orientation, static preshaping aperture and grasp pose,
but instead, all degrees of freedom are controlled by continuous
trajectories describing the entire motion throughout both pre-
shaping and grasp acquisition. In contrast to a fixed hand closing
with predefined preshape aperture, these continuous trajectories
allow for different timing and closing order as well as interactions
of the fingers and the thumb with varying, synchronized closing
velocities. The third degree of freedom, namely the wrist orienta-
tion, is also described by a trajectory executed simultaneously to
the finger and thumb closing motions. While the global reorien-
tation of the hand according to the grasp orientation is performed
early in the preshaping phase, this wrist motion trajectory over
all grasp phases enables further adjustment in orientation to ease
the final grasp acquisition.

4. The semi-autonomous grasping controller

Based on the visual object recognition and the human grasp
database, we present a semi-autonomous control scheme for
prosthetic hands. The control scheme automates part of the
grasping process to reduce the cognitive burden of the user.
Simultaneously, the user can influence or stop the grasping pro-
cess at any time to keep in control of their prosthetic hand. The
control flow of the semi-autonomous control scheme, including
the usage of sensor information, object and grasp databases and
user commands is depicted in Fig. 6. An architectural diagram of
the semi-autonomous control scheme is also depicted in Fig. 7
and the finite state machine implementing the control scheme
is shown in Fig. 8. The sensory information acquired and used
throughout two grasp execution examples is shown in Figs. 9
and 10. Video 1 shows and explains the procedure of the semi-
autonomous control.5 The user triggers actions of the prosthesis
via muscle activations measured by a single EMG-channel. Status

5 https://www.youtube.com/watch?v=-N4xYqAs-6k.

https://motion-database.humanoids.kit.edu/
https://www.youtube.com/watch?v=-N4xYqAs-6k
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Fig. 5. Side grasp on the handle of a pitcher from the grasp database; the grasp is composed of trajectories for thumb and finger motor as well as a wrist rotation
trajectory (a), the corresponding fingertip trajectories of the hand are shown in (b) together with the hand’s rotation depicted as a circular trajectory.
Fig. 6. Steps of the semi-autonomous controller, beginning with the first step on the left. User input is explicitly provided through an EMG signal and an arm
rotation in the first two steps. Prior object knowledge in the object database is used for visual object recognition. Prior grasping knowledge in the grasp database
is used for intention recognition and grasp selection. In the last two steps the grasp trajectory is performed on the prosthesis. User intervention is possible at any
time.
information is presented to the user on the display at the back
of the hand. Once the object to be grasped is identified based on
visual information and object knowledge in the object database,
the user’s intention to grasp the object of interest is recognized
and an appropriate grasp from the grasp database is selected.
The recognized object and selected grasp type (top or side grasp)
are suggested to the user on the hand display. Both the object
and the selected grasp can be changed by the user. The hand
and wrist motion is triggered by the user via an EMG signal to
bring the hand in a suitable preshape for the selected object
and grasp. The wrist orientation with respect to the object is
actively maintained based on IMU sensor data to compensate
for unwanted orientation changes due to the reaching motion.
Once the prosthesis is close enough to the object, it automatically
closes the fingers based on the distance sensor information to
firmly grasp the object.

4.1. User intention recognition and grasp selection

To start the grasping process, the user takes an image of
he desired object by a single muscle activation measured with
he EMG electrodes, as shown in the leftmost image of Fig. 6
nd at the first dashed line in Figs. 9 and 10. The in-hand ob-
ect recognition is run on this image which is recorded by the
amera in the palm of the hand. Using the object information
rovided by the object recognition module, the object database
s queried to retrieve detailed information about the given object
ncluding object properties and associated grasps. For each object,
he following object properties are stored in the database: the
6

three object dimensions, the weight of the object and its fragility.
Grasps associated with the objects are stored in the human grasp
database (see Section 3). Here, top and side grasps are associated
with most objects except flat objects and spheres that only permit
a top grasp.

Once the object is identified, the user is informed about the
result of the recognition by showing the object name on the
display. Based on the relation of the hand to the object, which
is estimated based on IMU data, a top or side grasp is automat-
ically proposed by the hand controller. The IMU measurements
for grasp orientation suggestion are updated with 100Hz. These
grasps are continuously updated by the user by rotating the
prosthesis. In the current implementation, a top grasp is selected
if the prosthesis is held horizontally, and a side grasp is selected
if the prosthesis is held at an angle of more than ±15°. The
proposed grasp and orientation are shown in different colors on
the display to ease the selection process for the user, as shown
in Fig. 6. The user intention, i. e. the target object to be grasped
and the way to grasp it (top or side grasp), together with the
object properties, is used to select, parametrize and execute the
grasp using the corresponding trajectories from the human grasp
database.

It is important to emphasize that the user is able to inter-
act with the hand during the entire process by confirming or
rejecting alternatives generated by the control scheme. If the
user is satisfied by the proposed grasp, she/he can confirm and
trigger the execution using one single EMG channel as marked
by the second dashed line in Fig. 9 and the third dashed line in
Fig. 10. The same EMG channel can be used to trigger the object
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Fig. 7. Architectural diagram of the semi-autonomous control including the control state machine, sensor and feedback interfaces, knowledge databases and the
prosthetic hand.
Fig. 8. Procedure of the semi-autonomous controller; throughout all grasp phases two explicit user signals are required and enhanced by implicit user input using
the exteroceptive sensor information; the user can interfere at any time.
recognition and to start the grasp execution. Otherwise, the user
is able to change the grasp direction by re-positioning their arm
relative to the object. In case of a wrong object classification,
the user can reject the proposed grasp by shaking the hand as
marked by the second dashed line in Fig. 10. Such movement is
recognized using the IMU. The control scheme always selects the
object with the next highest recognition probability. If the first
three proposed grasps are rejected by the user, the controller can
be restarted by requesting a new camera image for the object
recognition.
7

4.2. Preshape motion and grasp execution

Once a grasp is confirmed by the user, both hand and wrist
pregrasp trajectories are selected from the human grasp database
and executed as shown in Fig. 8. The pregrasp trajectory is ex-
ecuted while approaching the object to ensure feasible hand
orientation and finger aperture. The hand preshape motion and
the continuous wrist orientation are performed simultaneously.
At the end of the pregrasp trajectory, the wrist motion is nearly
finished as can be seen at the third dashed line in Fig. 9 and the
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Video 1. Video demonstrating the different aspects of the semi-autonomous control scheme.
Fig. 9. Sensory data throughout one grasp execution with the semi-autonomous control; the two user inputs can be clearly seen in the EMG signal, pregrasp and
grasp motion can be distinguished in the finger closure, the shaft rotation reflects the angle of the wrist throughout grasp execution and the final grasp is triggered
by a low measured distance to the object.
fourth dashed line in Fig. 10. The pregrasp and grasp poses are
pictured in Fig. 6 on the right.

Once the pregrasp motion is finished, the wrist is controlled to
maintain the preshape orientation relative to the gravity vector
using IMU sensor data, compensating rotations caused by the
user’s arm movements. Thereby, a correct hand orientation is en-
sured regardless of arm reconfiguration which might be required
to reach the object, adjust grasping distance or avoid obstacles.
In this way, compensatory motions of the shoulder should be
prevented as the user does not have to take the influence of their
approach movement into account.

With the distance sensor in the palm of the prosthesis, the
distance to the object is continuously measured. As soon as the
distance between prosthesis and object falls below a predefined
threshold and the prosthesis has reached the final posture of the
pregrasp, the grasp motion is triggered and the grasp trajectory
is executed. This is marked by the third dashed line in Fig. 9 and
the fourth dashed line in Fig. 10. Finally, a closing force is applied.
The amount of this force depends on the fragility and weight

defined by the object’s properties stored for each object in the

8

object database. Once the final grasp is completed, the object can
be lifted.

At any time the grasping process can be stopped and aborted
by a shaking movement of the prosthesis detected by the IMU as
described in Section 4.1. The semi-autonomous control scheme
focuses on the acquisition of a stable grasp. After the grasp is
completed, the user can lift, use the object as needed and re-
lease the object when such action is triggered by another muscle
activation signal measured by the EMG electrodes.

5. Experiment design

To assess the functionality, intuitiveness and complexity of the
proposed semi-autonomous control, a user study is performed
comparing it to a conventional sequential control approach. A
third control strategy with reduced autonomous functionality is
additionally included to assess the influence of increasing auton-
omy of the hand on user experience and find the optimal trade-off
between supporting functionality and user control. Hence, we

compare three control strategies, which are all operated by the
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Fig. 10. Sensory data of a grasp execution with initially wrong object recognition; a clear shaking of the hand can be seen in the wrist angle measurement issued
by the user to alter the object suggestion before starting the grasp.
user via a standard two channel EMG input. The two EMG chan-
nels are only used for a conventional sequential EMG control as a
baseline. The other two semi-autonomous control schemes only
need a single EMG input channel and signals from both electrodes
are therefore accepted equitably.

• Conventional Sequential Control (CSC) This sequential con-
trol approach allows either the wrist rotation or the opening
and closing of thumb and fingers simultaneously with a
fixed coordination. The two available electrode signals are
thereby mapped to the two rotation directions or the open-
ing and closing of the hand respectively. To switch between
wrist rotation and hand control, both EMG electrodes have
to be addressed simultaneously by a co-contraction of both
muscles. This control approach is common in commercial
hand prosthetics (see [42–45]) and represents the baseline
for the comparison of our method.

• Semi-Autonomous Control (SAC) The semi-autonomous
control applies our approach described in Section 4, in-
cluding object recognition based on the visual information,
predefined grasp trajectories learned from human demon-
strations and automatic hand closing based on a distance
sensor located at the base of the thumb. All user commands,
namely the start of the object recognition and the confirma-
tion of a grasp proposed by the control scheme of the hand,
can be generated by contracting either one or both of the
muscles to which EMG electrodes are attached. Therefore
the user can issue control commands with the EMG signals
that are easiest to generate for them. Aborting the current
action is always possible by a fast and short shake of the
prosthesis.

• Semi-Autonomous Preshape (SAP) Since the final hand
closing is crucial for grasp success, this third control strategy
allows an individual timing of the hand closing motion by
the user. The preshape of the hand and the preparing wrist
orientation are executed similar to the SAC strategy. The
maximum grasping force in this mode is also set as in SAC
9

based on the information in the object database and human
grasp database. However, hand closing is not triggered au-
tomatically based on the hand–object distance, but instead
actively controlled by the user. While the first two control
inputs similar to the SAC strategy can be triggered by any
muscle activation, hand closing is controlled by contracting
the flexor muscles as in the CSC strategy. As long as the user
sends an EMG signal, the hand closes along the trajectory
from the human grasp database. If the EMG signal is paused,
the execution of the trajectory is paused as well, until a EMG
signal is received again and the trajectory is continued.

5.1. Setup and procedure

The user study is performed with 20 able-bodied subjects
wearing the prosthesis connected via the self-experience shaft
on their right arm as depicted in Fig. 3. From the nine female
and eleven male subjects, ten had a background in robotics, five
had no technical background. None of the subjects had experience
with hand prosthetics or EMG control. The study was carried out
in accordance with the recommendations of the ethical commit-
tee of the Karlsruhe Institute of Technology. The protocol was
approved by this ethical committee and all subjects gave written
informed consent.

The EMG electrodes are positioned for each subject individ-
ually and the electrode sensitivity is adjusted to maximize the
signal quality. Electrode configurations are then kept fixed over
the entire study session. During the experiment, the subject is
positioned in a comfortable standing position in front of a table.
A subset of the objects contained in the human grasp database
is used for this user study. Ten different objects, chosen from
a household environment, are successively placed on the table
in front of the subject. The objects are depicted in Fig. 11. All
three control strategies are evaluated consecutively in random-
ized order. Each control strategy is explained to the subjects by
the experimenters. Subjects are given one minute prior to the
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Fig. 11. The objects used in the user study.

valuation to familiarize with the control and practice with an
leventh object not included in the evaluation. To begin each
rasp, the prosthesis is positioned 13 cm to the front right of
he object. An example for this experimental setup is depicted
n Fig. 3. For each control strategy the subject is asked to grasp
ll objects from the top first, then from the side if the object
llows a side grasp, resulting in 16 grasps in total. If a grasp fails
n the first grasp attempt, it can be repeated once. If a grasp
ails again in the second attempt, the experiment is continued
ith the next grasp. The failed grasp is then excluded from the
uantitative measurement of grasp time and muscle activation,
ut is still taken into account by the subjects in the evaluation of
ontrol perception and workload. Each subject performs all three
ontrol strategies. The study is conducted with a counterbalanced
rossover design of the control strategies. This means that the
rder of control strategies in the experiments is randomized with
similar number of participants starting with each control strat-
gy. Additionally, the order of objects is randomized in between
ubjects but kept constant for all three control strategies in one
ubject.

.2. Data acquisition

To assess the performance of the semi-autonomous control
cheme, several metrics are acquired in the user study. The grasp
xecution time is applied as metric for the grasp efficiency. There-
ore, the time starting at the beginning of the grasp until lifting
he object is recorded. As the quality of the object recognition is
ot a central part of the presented semi-autonomous control, the
ime required to discard wrong object recognitions is assessed in-
ividually. To quantify the required amount of physical effort, the
MG activation signal over the duration of the grasping process
s recorded as a quantitative metric.

To assess complexity, success and user impression of each
ontrol strategy, a subjective questionnaire is collected. It pro-
ides the workload as measured by the NASA task load index
NASA TLX) [46]. In our evaluation we aim to compare the work-
oad of the different control schemes in each subject. Therefore,
e apply the metric of the raw TLX and directly calculate the
nweighted average of the sub-scale ratings provided by the
ubjects. Compared to the individual weighting of sub-scales this
10
method has been found to be more sensitive [47]. The question-
naire is extended by several questions to quantify intuitiveness of
the control, feeling of control and perception of feedback in the
same style as the questions of the workload index. Furthermore,
open questions on the subject’s impression and preferences are
asked.

6. Results

The proportion of users preferring each control strategy is
depicted in Fig. 12. Of all participants, 65.2% preferred the SAC
control compared to the two other strategies. The results of
the evaluating questionnaire and the recorded EMG signals are
depicted in Fig. 13. The reported preference of the SAC control
strategy is also visible in the control intuitiveness as shown
in Fig. 13(a). All plots show the shape of the kernel density
function around the data points. The median is marked as a
white dot, while the gray line denotes the range between the
25th and 75th percentile of the data. The colored points denote
the answers/measurements of individual subjects. The horizon-
tal distribution of data points is merely for visualization pur-
poses. Throughout the trials of each control scheme, no significant
learning was observed from the subjects.

6.1. Workload and control intuitiveness

The workload index of both SAP and SAC is significantly lower
than for CSC (Friedman’s Anova < 0.05), as depicted in Fig. 13(b).
The Friedman’s Anova is a non-parametric statistical test to mea-
sure the differences between two groups. The NASA Task Load
Index [46] ranges between 1 and 20 with higher numbers repre-
senting an increasing overall task load. With a median of 11.3
the workload index of CSC is almost twice as high as for SAC
with 6.2 and almost one third higher than for SAP with 8.6. In
the following all results except the NASA TLX from the subjective
questionnaire are converted from the scale between 0 and 20 to
percent.

The high workload index of CSC is mainly caused by a high
physical demand of 85% in median and a high required effort
of 75%. A significant reduction (Friedman’s Anova < 0.05) is
achieved with the SAC for the median of both the physical de-
mand to 25% and the effort to 40%. Also for SAP the physical
demand is notably decreased to 47.5% in the median compared
to the common baseline of CSC. The amount of required effort and
physical demand is visualized in Fig. 13(c) and (d).

The observed physical demand is clearly reflected in the use
of EMG control signals. The EMG electrodes supply a filtered out-
put voltage correlated to the muscle activation signal. Fig. 13(e)
shows the average EMG activation calculated by integrating the
EMG voltage of both electrodes over the grasp trial and normaliz-
ing it according to the grasp execution time. While grasping with
CSC requires a median electrode activation of 203.7mV, in SAC
only 69.4mV is recorded. This clearly shows the lower muscle
contraction due to the introduced autonomous functionality. In
CSC, an EMG electrode activation is recognized three times more
frequently than in SAC, proving that the reduction of muscle
contraction is mainly caused by reducing the number and length
of necessary user inputs. As the reported intuitiveness shows,
this input reduction can be achieved without a loss of trust
into the device. Besides, subjects did not report any statistically
significant difference in their feeling of control between CSC with
a median of 60% and SAC with 62.5% as shown in Fig. 13(f).
As expected, SAP has a higher average electrode activation than
SAC. Nevertheless SAP still results in a significantly lower median
muscle activity of 111.2mV compared to CSC with 203.7mV.
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Fig. 12. Control strategy preference of the 20 participants of the user study.
Fig. 13. Outcomes of the user study: (a) intuitiveness of the control reported by the subjects, (b) workload according to the NASA Task Load Index [46], (c) effort
put into the grasp execution, (d) physical demand of the control strategy, (e) mean muscle contraction signal over the entire recording and both EMG electrodes
and (f) feeling of control reported by the subjects; all graphs show the data points together with the kernel density function, the median is marked by a white dot
and the gray line marks the section between the first and third quartile.
For CSC, ten subjects stated that the switching of control
odes between hand and wrist motion was tedious, hinting
t the co-contraction and mode switching as one of the major
ources causing the high workload. One subject stated that the
rasping in SAC did not require attention and three subjects
escribed hand closing in SAP to be very intuitive. The mean
ntuitiveness for SAC increased by 30% in the median compared
11
to CSC. As shown in Fig. 13(a), all three control strategies have an
intuitiveness median of more than 50%, with SAC being most in-
tuitive with a median of 85%. In addition, a quarter of participants
reported the SAC to be very intuitive when asked to describe their
impression of the presented control in their own words in the
questionnaire.
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Fig. 14. Time required to execute the grasps on all ten objects and the overall
grasp execution time in the three evaluated control strategies; the colored bar
denotes the first to third quartile of the grasp time with the median marked by
a solid line, a black line marks the data range excluding outliers; the depicted
grasp times exclude the time spent on wrong object classifications.

6.2. Grasp execution time and grasp success

The grasp execution time was measured as the time needed
o reach the object, grasp and lift it off the table surface. The
edian execution time over all subjects and objects is 9.8 s for

CSC, 9.7 s for SAP and 8.4 s for SAC. For the remainder of the
evaluation, the time spent on wrong classifications by the object
recognition will not be considered as the quality of the object
recognition is not a central part of this work. Excluding this leads
to a reduction of the median execution time to 7.9 s for SAC and
9.2 s for SAP. While the time required for grasping is very long
compared to humans grasping with their able hand, it is still
fast compared to the commercially used conventional sequential
control scheme CSC. Considering that the naive subjects had only
one minute of training prior to the experiments, the grasp time
of 9.8 s measured for CSC is well within the range observed in
literature with the same control scheme [20].

A significant difference in the overall time required for a
grasp is only notable between SAC and the other two control
strategies SAP and CSC, respectively. The grasp execution time in
SAC is 19.4% faster compared to CSC. A quarter of the subjects
specifically mentioned the SAC to be perceived as very fast. This
was mainly ascribed to the automatic hand closing which was
perceived as very helpful. The grasp execution time for all individ-
ual grasps is depicted in Fig. 14 showing the median with a solid
line and a box from the first to the third quartile of measured
grasping times. Overall, it can be seen that CSC has a notably
larger variance than SAP and SAC. Large and bulky objects like
the football, the bowl or the canned meat are grasped from the
top at a similar speed with all three control strategies. The merit
of the autonomous coordination of all degrees of freedom of the
hand becomes mainly apparent in objects which need a precise
grasping strategy like the top grasps on the fizzies and chips.
This is also evident for grasps that demand a large wrist rotation
compared to the starting pose like the side grasps on the fizzies
and the canned meat.

Furthermore, the time required for object detection, intention
recognition and the control interaction with the user in SAC and
SAP is assessed individually. The object detection time is mea-
sured from the EMG activation command issued by the user, until
the correct object is recognized and presented on the display.
It therefore includes the time for potential misclassification. The
object detection required an average time of 1.6 s. The time for
intention recognition is measured from the moment of correct
12
Fig. 15. Attempts needed to achieve a successful grasp on all ten objects and
the overall number of grasp attempts in the three evaluated control strategies.

object detection until the correct grasp direction is suggested, in-
cluding the time needed to rotate the hand, if the grasp direction
is inferred incorrectly. The intention recognition took on average
0.7 s. From the moment, object and grasp direction are presented
correctly until the grasping start issued by a user EMG command,
the interaction time is measured. This includes the time the user
needs to read and check the grasp suggestion before confirming
it. The interaction time amounts to 1.3 s on average.

Taking into account the time needed for wrong object recogni-
tion, the grasp execution time depends strongly on the quality of
the object recognition. Over all grasps performed in SAC and SAP,
subjects were on average 41.6% faster, if the object was classified
correctly in the first attempt. A correct intention recognition and
hence a correct suggestion of the grasp direction sped up the
grasping time by 7.0%.

Looking at the grasp success for the 16 different grasps re-
veals that subjects were overall comparably effective in grasping
objects with SAC and SAP. The attempts needed to successfully
perform the different grasps with each control scheme are shown
in Fig. 15. In total four of the 16 grasps in the conducted ex-
periment could be executed successfully in the first trial by all
participants in CSC while there were five grasps without failure
in SAC and eight in SAP. Although SAP proves to be the most
effective control strategy on this basis, participants preferred
SAC. In addition, half of them commented on SAC being easy
to control. A reason for this discrepancy might be found in the
difficulties of SAP for specific cases, especially the top grasp on
a package of fizzy tablets which can be clearly seen in Fig. 15.
As these have a small diameter, an accurate hand positioning
is important. Keeping the exact hand position while performing
a muscle contraction to close the hand was difficult for many
subjects. On this specific grasp subjects needed on average 2.1
grasp attempts to successfully lift the object.

Due to this reason, object slip occurred more often in SAP than
in both SAC and CSC. No object was knocked over in SAC, while
this happened once in SAP and twice in CSC. Additionally, in CSC
subjects were frequently struggling with undesired wrist rotation
during grasping, which in one case caused the grasp attempt to
fail entirely. This is directly prevented by the semi-autonomous
control schemes, since the tedious and unreliable switching be-
tween wrist rotation and hand closing is not required. Finally,
the grasp force control of SAC fully prevents grasp failures due to
insufficient grasp force, which occurred five times in CSC and six
times in SAP. In addition we observed that some subjects crushed
the fragile bandaid package in CSC by applying too much grasp

force, which was prevented by the control in SAP and SAC.
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The quality of neither the object recognition nor the intention
recognition had a significant influence on grasp success. The
difference in grasp success rate over all grasps in SAC and SAP
was 0.2% with a successful object recognition compared to cases
where several object suggestions were needed. Comparing an
instantly correct intention recognition with cases where the user
had to correct the suggested grasp orientation by slightly rotating
the prosthetic hand, grasp success varies by 0.4%.

7. Discussion and conclusion

In this work we propose a semi-autonomous control scheme
that automatically chooses and executes a grasp trajectory and
wrist orientation based on visual object recognition. With a single
EMG channel, a starting command invokes a CNN for object
recognition on an image from the camera in the palm of the hand.
The object identity is then presented to the user together with the
approach direction from the top or side. The approach direction
can be changed via the IMU by slightly tilting the forearm. If the
user is satisfied with the suggested object and approach direction
on the display, a single EMG command starts the execution of a
coordinated trajectory of fingers, thumb and wrist to form a pre-
shape. The wrist orientation is continuously adapted relative to
the gravity vector to compensate for orientation changes during
the reaching motion. As soon as the hand reaches the object, the
grasp is triggered by a signal from the distance sensor. The hand
closes with a predefined maximum grasp force dependent on the
object. All necessary sensors are embedded into the prosthesis
and the control scheme is running on the embedded system
inside the palm, eliminating the need for external sensors and
devices. Grasp trajectories for the objects are learned from human
demonstration. The whole control scheme can be operated using
a single EMG channel and motion input sensed by the IMU.

Compared to a conventional, sequential EMG control our semi-
autonomous control requires less than half the amount in average
EMG activation and the physical demand is rated 70.6% lower
in the median. Together with an increase of the intuitiveness
by 30%, this causes a significant reduction of the workload by
25.9%. As a consequence, the prosthesis user has to concentrate
less on the performance of a stable grasp. In addition, this re-
duced workload allows for faster grasping especially for thin and
delicate objects. The naïve subjects achieved a median grasping
time of 7.9 s with the semi autonomous control. This lies well
within the range of semi-autonomous control schemes presented
in literature [16,20] and is notably faster than the baseline con-
ventional sequential control both in our evaluation as well as
in literature [20]. At the same time, the feeling of control is
comparable to the conventional sequential control as the user is
able to intervene at any moment.

Due to the required object detection, the presented control is
limited to known objects and is currently meant for frequently
used objects. In a setup phase, the user could take images of
frequently used objects with the prosthesis, which then can be
used to train the object detection. The training could for example
be accomplished by uploading the images to a smartphone or
PC via Bluetooth where the object detection is trained and its
result written back to the prosthesis. After the object detection
is adapted, the user would then be able to use the proposed
control with her/his personalized set of objects. This means that
the semi-autonomous control can be personalized to the specific
objects a user frequently grasps with her/his prosthetic hand. It
thereby complements the common, manual control to reduce the
cognitive burden on the user in situations which are encountered
repetitively in daily life. While the amount of objects in this work
is fixed to 13 due to the limitations of the used microcontroller,
the use of FPGAs can greatly increase memory and computing
power for vision applications [48–50].
13
In comparison to the related work presented in Section 1,
the strength of our control scheme is that it relies only on on-
board components and does not require any external sensors or
computation resources. To our best knowledge, it is the first semi-
autonomous control that operates entirely on the prosthetic hand.
Several previous works choose a grasp preshape based on the
object’s overall shape and are therefore able to give grasp sugges-
tions also for unknown objects with the use of external sensors
and computing resources [16,18,20]. Others present sophisticated
object classification for a significantly larger set of objects, again
making use of external computation power [24,25]. However,
extensive sensor setups and external computing resources restrict
the flexibility in using prosthetic hand in everyday activities.
Our semi-autonomous control system is therefore developed to
overcome such limitations and pave the way towards the next
generation of prosthetic hands that integrate the sensors and
computing power to facilitate a symbiotic interaction with the
user. Furthermore, our approach does not only provide an auto-
matic grasp preshape, as usually proposed in semi-autonomous
control. It additionally provides hand closing trajectories, so that
the user does not need to worry about the timing and velocity
of finger and thumb closing. To the best of our knowledge, our
semi-autonomous control is also the first scheme that allows
simultaneous wrist orientation and hand closing. These simul-
taneous motions are beneficial to increase overall grasp speed
and to adapt the hand orientation to further optimize the grasp
acquisition especially for thin objects.

In the future we plan to further analyze the workload dis-
tribution in our semi-autonomous control by conducting a psy-
chological study. Thereby we aim to get a fine-granular picture
of the workload distribution over the entire grasping task and
to identify parts of the control that benefit most from further
improvement. In addition we plan to extend our work by the in-
clusion of additional haptic sensor modalities to allow for closed-
loop grasp force control. In this case the grasping force saved in
the object database would serve as an initial control target that
is then updated based on normal and shear forces as well as slip
detection. This would enable the prosthesis to react to changes
in the object, for example while pouring liquid out of a grasped
bottle, which is currently not modeled by the static grasping force
saved in the object database. The integration of an additional
object pose estimation based on the camera images would make
it possible to dynamically adapt the grasp to tilted objects.
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