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1 Introduction

Studies of top quarks are important for the exploration of the Standard Model (SM) and in
searches for its extensions. With a mass of more than 170GeV, the top quark is the heaviest
elementary particle of the SM and has an exceptionally strong coupling to the Higgs boson.
These special features of top quarks make it plausible that they play a particular role in
the underlying mechanism of electroweak symmetry breaking and may have significant
couplings to heavy New Physics.

The large top-quark mass is the reason behind its short lifetime which, in fact, is so
short that, once produced, top quarks decay before hadronising into mesons and baryons.
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This has many interesting consequences including the fact that the information about
top-quark polarisation is passed to its decay products offering an opportunity to study this
aspect of QCD without non-perturbative contamination.

At the LHC, top quarks are mainly produced in pairs via strong interactions. Theoretical
predictions for tt̄ pair production are very advanced and include next-to-leading-order (NLO)
QCD [1] and electroweak corrections [2], soft gluon resummation [3–7], and total and fully
differential next-to-next-to-leading-order (NNLO) QCD corrections [8–11] in the narrow-
width approximation.

Top quarks can also be produced via electroweak interactions; this mechanism is referred
to as single-top production. Interestingly, rates for single-top production at the LHC are
quite significant. In fact, the single-top quark production cross section is smaller than the
tt̄ production cross section by only about a factor of four. However, since the pp→ tt̄ cross
section at the LHC is large, of the order of a nanobarn, rates for single-top production turn
out to be very high as well. As a result, there is a well-developed experimental program
for studying single-top production at the LHC that focuses on inferring information about
the top-quark width [12], mass [13] and polarisation [14], as well as using this process to
constrain possible anomalous couplings in the tWb vertex [15–18]. Studies of single-top
production are also used to constrain the CKM matrix element Vtb, which has been measured
both at the Tevatron [19] and at the LHC [20]. Finally, single-top production can be used to
provide interesting probes of parton distribution functions (PDFs). For example, comparison
of single-top and single-anti-top production cross sections can be used to constrain ratios of
up- and down-quark distribution functions at fairly large values of Bjorken x [21–23].

Single top quarks are produced in hadron collisions in three distinct ways that are
conventionally referred to as channels. The t-channel production refers to a process where
a W boson is exchanged between two quark lines and a top quark is produced on one of
them as the result of the flavour-changing tWb interaction. The s-channel production refers
to a process where a virtual W boson is first created in the collisions of light quarks and
later decays into a top quark and an anti-bottom quark. The associated production refers
to a process where an off-shell bottom quark is produced and then decays into a top quark
and a W boson.

Among the three channels, t-channel production is responsible for about 70% of the
single-top production cross section. Because of that, this contribution has been carefully
scrutinised in the Standard Model. In particular, NLO QCD and NNLO QCD corrections to
t-channel single-top production were computed in refs. [24–29] and refs. [30–33], respectively.
Results for soft gluon resummation are known to next-to-leading-logarithmic accuracy [34].
In ref. [35] NLO effects of both QCD and electroweak origin were computed. Typically, the
inclusive cross section for single-top production changes by about 2–3 percent at next-to-
leading order1 and by 1–3 percent at next-to-next-to-leading order. The reason behind the
smallness of these corrections is the proximity of single-top production and deep-inelastic
scattering processes which means that a bulk of QCD corrections is absorbed into PDFs by

1For certain parton distribution functions, the NLO QCD corrections to single-top production cross
section can be more significant, see e.g. ref. [33].
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virtue of the fitting process. This proximity is destroyed if selection cuts are applied to the
final state that are not inclusive with respect to QCD radiation. Indeed, once this is done
both NLO and NNLO QCD corrections become larger and can reach O(10%) in certain
kinematic distributions [33].

It is interesting to remark that the above results [30–33] were obtained in the so-called
factorisation approximation that neglects the dynamical crosstalk between the two quark
lines. This was done for the following reason: although the two incoming or outgoing
quarks can interact by exchanging a gluon already at NLO, it is easy to see that such a
contribution does not affect the production cross section at this order because of colour
conservation. However, such non-factorisable corrections start contributing at NNLO but
they are colour-suppressed relative to factorisable contributions. Conversely, it was recently
argued [36] that these non-factorisable contributions could be enhanced by a factor π2

due to the Glauber phase [37, 38], which would compensate for the colour suppression. In
fact, explicit computations of non-factorisable corrections performed in ref. [36] for Higgs
production in weak boson fusion proved the existence of such an enhancement factor.

The non-factorisable contributions are quite peculiar. Indeed, they are ultraviolet finite
and thus do not require any renormalisation. In addition, as we will show later, they are
entirely Abelian, at least at NNLO, which implies a remarkable simplification in their
infrared structure. Moreover, they do not contain collinear singularities since, in physical
gauges, collinear singularities originate from the emission and absorption of a real or virtual
gluon by the same on-shell particle and for the non-factorisable corrections this is impossible
because of their definition. As a consequence, all infrared divergences that may appear in
non-factorisable corrections are of soft origin and, in dimensional regularisation, correspond
to at most double poles in the regulator.

We also expect that virtual effects play a more important role in non-factorisable
corrections than the real-emission contributions. This is because the enhancement of the
non-factorisable corrections by a Glauber phase is a virtual effect that, in principle, does
not require scattering to occur and, hence, remains present also at zero momentum transfer
where the cross section is the largest. Indeed, no scattering means no real radiation so we
expect that real-emission contributions are, naturally, less important.

Very recently, the two-loop non-factorisable contributions to single-top production were
computed in ref. [39]. The results of that reference are, however, not complete since two
additional contributions — double-real emissions and virtual corrections to the single-real
emission — are required to compute infrared-finite cross sections and kinematic distributions.
In this paper we complete the calculation of non-factorisable corrections to the single-top
production by computing the two remaining NNLO contributions and, for the first time,
provide physical results for non-factorisable corrections to this process.

The paper is organised as follows. In section 2 we introduce the notation and describe
the set-up of the calculation. We proceed in section 3 with the treatment of the infrared
singularities that affect both the real radiation and the virtual corrections. In section 4 we
briefly discuss the calculation of the real and virtual amplitudes. Phenomenological results
are reported in section 5. We conclude in section 6.
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Figure 1. Examples of diagrams contributing to NNLO QCD corrections to single-top production.
The diagram on the left is part of the factorisable corrections as the two quark lines interact solely
through the exchange of a colourless W boson. On the right, the quark lines are additionally
connected by the exchange of two gluons. We classify the latter as a non-factorisable diagram.

2 Colour decomposition of non-factorisable contributions and their sin-
gular limits

We mentioned in the introduction that non-factorisable contributions are, effectively, Abelian
and that this simplifies their calculation significantly. In this section we explain this point
in detail.

2.1 Elastic process

We start with the discussion of the colour decomposition of the relevant partonic processes.
Consider single-top production in the t-channel

1q + 2b → 3q′ + 4t , (2.1)

where by if we refer to a parton of type f with momentum pi. Since this process is mediated
by a W boson, there is no colour transfer between the two fermion lines. To make this
explicit, we use the colour-space formalism2 and write the Born amplitude as

〈c|M0(1q, 2b, 3q′ , 4t)〉 = δc3c1δc4c2 A0(1q, 2b, 3q′ , 4t) , (2.2)

where A0 is the colour-stripped amplitude.
In order to compute the NNLO QCD corrections to the process in eq. (2.1), we need

the expression for the corresponding one- and two-loop amplitudes. We begin with the
former and write it as

〈c|M1(1q, 2b, 3q′ , 4t)〉 = αs
2π
(
δc3c1δc4c2 A1(1q, 2b, 3q′ , 4t) + tac3c1t

a
c4c2 B1(1q, 2b, 3q′ , 4t)

)
,

(2.3)
where A1 describes emissions and absorptions of virtual gluons by the same fermion line
and B1 refers to a one-loop amplitude that describes interactions between light- and heavy-
fermion lines. Also, taij are matrix elements of the SU(3) generators and αs ≡ αs(µ) is the
renormalised strong coupling constant in the MS scheme (see appendix A for details). It is
this last amplitude that is of interest to us, as it contributes to non-factorisable corrections.

2The colour-space formalism is reviewed in ref. [40].
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The B1 amplitude is ultraviolet-finite but infrared-divergent; the infrared divergence is
described by the following formula

B1(1q, 2b, 3q′ , 4t) = I1(ε) A0(1q, 2b, 3q′ , 4t) +B1,fin(1q, 2b, 3q′ , 4t) , (2.4)

where
I1(ε) ≡ I1(1q, 2b, 3q′ , 4t; ε) = 1

ε

[
log

(
p1 · p4 p2 · p3
p1 · p2 p3 · p4

)
+ 2πi

]
. (2.5)

We can write the two-loop amplitude in a similar manner. First, we define the non-
factorisable contribution to the amplitude as follows

〈c|M2(1q, 2b, 3q′ , 4t)〉 =
(
αs
2π

)2 (
. . .+ 1

2{t
a, tb}c3c1

1
2{t

a, tb}c4c2 B2(1q, 2b, 3q′ , 4t)
)
, (2.6)

where ellipses stand for factorisable contributions as well as contributions that vanish upon
interference with the tree-level amplitude, eq. (2.2). The non-factorisable amplitude B2 is
infrared-divergent; these divergences can be written in the following way

B2(1q, 2b, 3q′ , 4t) =− I2
1 (ε)
2 A0(1q, 2b, 3q′ , 4t) + I1(ε) B1(1q, 2b, 3q′ , 4t)

+B2,fin(1q, 2b, 3q′ , 4t) .
(2.7)

We stress that the finite contributions to B2 arise from the two last terms. Hence, to obtain
B2,fin in eq. (2.7), we require the one-loop amplitude B1 to O(ε).

To compute the cross section, we need a particular combination of these elastic ampli-
tudes. We require

|M1(1q, 2b, 3q′ , 4t)|2nf + 2Re
[
M∗0(1q, 2b, 3q′ , 4t)M2(1q, 2b, 3q′ , 4t)

]
nf

= N2 − 1
4

(
αs
2π

)2 [
− Re

[
I2

1 (ε)
]
|A0(1q, 2b, 3q′ , 4t)|2 + |B1(1q, 2b, 3q′ , 4t)|2

+ 2Re
[
I1(ε)A∗0(1q, 2b, 3q′ , 4t)B1(1q, 2b, 3q′ , 4t)

]
+ 2Re

[
A∗0(1q, 2b, 3q′ , 4t)B2,fin(1q, 2b, 3q′ , 4t)

] ]
,

(2.8)

where N = 3 is the number of colours. We can now manipulate eq. (2.8) to make all the
divergences explicit and expose terms that contribute through O(ε0). We obtain

|M1(1q, 2b, 3q′ , 4t)|2nf + 2Re
[
M∗0(1q, 2b, 3q′ , 4t)M2(1q, 2b, 3q′ , 4t)

]
nf

= N2 − 1
4

(
αs
2π

)2 [
2 (Re [I1(ε)])2 |A0(1q, 2b, 3q′ , 4t)|2 + |B1,fin(1q, 2b, 3q′ , 4t)|2

+ 4Re [I1(ε)] Re
[
A∗0(1q, 2b, 3q′ , 4t)B1,fin(1q, 2b, 3q′ , 4t)

]
+ 2Re

[
A∗0(1q, 2b, 3q′ , 4t)B2,fin(1q, 2b, 3q′ , 4t)

] ]
.

(2.9)

It follows that the first term contains a 1/ε2 divergence, the third a 1/ε divergence and the
remaining two terms are finite.
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2.2 Single-real emission contributions

Similarly, the tree-level amplitude for the single-emission process

1q + 2b → 3q′ + 4t + 5g , (2.10)

reads

〈c|M0(1q, 2b, 3q′ , 4t; 5g)〉 = gs,b

[
tc5
c3c1δc4c2A

L
0 (1q, 2b, 3q′ , 4t; 5g)

+ tc5
c4c2δc3c1A

H
0 (1q, 2b, 3q′ , 4t; 5g)

]
,

(2.11)

where AL0 and AH0 are colour-stripped amplitudes that describe gluon emission off the light-
and heavy-quark lines respectively. Here and in the following gs,b is the bare coupling
constant.3 The soft limits of these colour-ordered amplitudes are relevant for the construction
of subtraction terms. To describe them, we introduce the eikonal current

Jµ(i, j; k) = pµi
pi · pk

−
pµj

pj · pk
, (2.12)

and its contraction with the polarisation vector of a gluon with momentum k

εk,µJ
µ(i, j; k) = J(i, j; k, εk) . (2.13)

Then, we write

S5A
L
0 (1q, 2b, 3q′ , 4t; 5g) = J(3, 1; 5, ε5)A0(1q, 2b, 3q′ , 4t) ,

S5A
H
0 (1q, 2b, 3q′ , 4t; 5g) = J(4, 2; 5, ε5)A0(1q, 2b, 3q′ , 4t) .

(2.14)

Here we have introduced the operator Si, which extracts the leading singular behaviour in
the soft limit pi → 0 of the function it acts upon.

We will also need the one-loop contribution to the amplitude of the process in eq. (2.10).
Its colour decomposition reads

〈c|M1(1q, 2b, 3q′ , 4t; 5g)〉 = gs,b

(
αs
2π

)[
tc5
c3c1δc4c2 A

L
1 (5g) + tc5

c4c2δc3c1 A
H
1 (5g)

+ 1
2 {t

a, tc5}c3c1
tac4c2 B

sL
1 (5g) + 1

2 [ta, tc5 ]c3c1
tac4c2 B

aL
1 (5g)

+ 1
2 {t

a, tc5}c4c2
tac3c1 B

sH
1 (5g) + 1

2 [ta, tc5 ]c4c2
tac3c1 B

aH
1 (5g)

]
.

(2.15)

In eq. (2.15) we split the full amplitude into colour-stripped amplitudes that describe
emissions by light- and heavy-quark lines separately. For each of the quark lines, we have
also split the amplitudes into colour-symmetric and colour-antisymmetric parts, indicated
with superscripts s and a respectively. The colour-symmetric ones are purely Abelian and

3We stress that in this paper we have used αs to indicate the renormalised coupling constant and
suppressed its dependence on the scale µ, while gs,b is the bare coupling.
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the colour-antisymmetric ones are sensitive to the non-Abelian nature of QCD, including
contributions due to the gluon self-coupling. Note that we have suppressed the dependence
of the amplitudes A1 and B1 on the quark momenta but kept their dependences on the
final-state gluon momentum.

It is now straightforward to contract this amplitude with the tree-level amplitude of the
single-emission process given in eq. (2.11). Singling out the non-factorisable contributions,
we obtain

2Re
[
M∗0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)

]
nf

= g2
s,b

N2 − 1
4

(
αs
2π

)(
AL∗0 (5g)BsH

1 (5g) +AH∗0 (5g)BsL
1 (5g) + c.c.

)
.
(2.16)

It follows from the definition of the colour-stripped amplitudes in eq. (2.15) that non-
factorisable contributions are fully determined by Abelian amplitudes.

We are now able to discuss divergences and singular limits of non-factorisable amplitudes.
Infrared divergences of symmetric amplitudes BsL(H)

1 do not depend on the fact that an
additional gluon is emitted and, therefore, can still be described by the factor I1 shown in
eq. (2.5). We find

B
sL(H)
1 (1q, 2b, 3q′ , 4t; 5g) = I1(ε) AL(H)

0 (1q, 2b, 3q′ , 4t; 5g)+BsL(H)
1,fin (1q, 2b, 3q′ , 4t; 5g) . (2.17)

In addition to the infrared-divergent contribution to the one-loop, single-emission amplitude,
we require its soft limit. Again, thanks to the Abelian nature of the amplitudes that
contribute to non-factorisable corrections, we can write

S5B
sL
1 (1q, 2b, 3q′ , 4t; 5g) = J(3, 1; 5, ε5) B1(1q, 2b, 3q′ , 4t) ,

S5B
sH
1 (1q, 2b, 3q′ , 4t; 5g) = J(4, 2; 5, ε5) B1(1q, 2b, 3q′ , 4t) .

(2.18)

Hence,

S5
{

2Re
[
M∗0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)

]
nf

}
(2.19)

= −g2
s,b

N2 − 1
2

(
αs
2π

)
Eiknf(1q, 2b, 3q′ , 4t; 5g) 2Re

[
A∗0(1q, 2b, 3q′ , 4t) B1(1q, 2b, 3q′ , 4t)

]
,

where the eikonal factor reads

Eiknf(1q, 2b, 3q′ , 4t; kg) = Jµ(3, 1; k)Jµ(4, 2; k) =
∑
i∈[1,3]
j∈[2,4]

λij pi · pj
(pi · pk)(pj · pk)

, (2.20)

with λij = +1 if both i and j are either incoming or outgoing, and λij = −1 otherwise.

2.3 Double-real emission amplitudes

The double-emission process describes the radiation of two real gluons. We parametrise
this process as follows

1q + 2b → 3q′ + 4t + 5g + 6g , (2.21)

– 7 –
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and write the amplitude as

〈c|M0(1q, 2b, 3q′ , 4t; 5g, 6g)〉

= g2
s,b

[
1
2{t

c5 , tc6}c3c1δc4c2 A
sL
0 (5g, 6g) + 1

2[tc5 , tc6 ]c3c1δc4c2 A
aL
0 (5g, 6g)

+ 1
2{t

c5 , tc6}c4c2δc3c1 A
sH
0 (5g, 6g) + 1

2[tc5 , tc6 ]c4c2δc3c1 A
aH
0 (5g, 6g)

+ tc5
c3c1t

c6
c4c2 B

5L,6H
0 (5g, 6g) + tc6

c3c1t
c5
c4c2 B

6L,5H
0 (5g, 6g)

]
.

(2.22)

Similarly to eq. (2.15), we split the full amplitude into amplitudes for emissions by light- and
heavy-quark lines. However, there are additional contributions when one gluon is emitted
off the light-quark line and the other off the heavy-quark line. Again, the colour-symmetric
parts are purely Abelian and the colour-antisymmetric ones are present because of the
non-Abelian nature of QCD. Finally, we note that we have suppressed the dependence of
the colour-stripped amplitudes on the quark momenta.

It is straightforward to compute the non-factorisable contributions to the square of the
double-real emission amplitude shown in eq. (2.22). We account for contributions such that
each gluon is emitted and absorbed by a different quark line and find

∣∣M0(1q, 2b, 3q′ , 4t; 5g, 6g)
∣∣2
nf = g4

s,b

N2 − 1
4

×
(
AsL0 (5g, 6g)AsH∗0 (5g, 6g) +B5L,6H

0 (5g, 6g)B6L,5H∗
0 (5g, 6g) + c.c.

)
,

(2.23)

where the sum over colours has been performed and the sum over polarisations of all
final-state quarks and gluons is assumed.

It follows from eq. (2.23) that since the non-factorisable contributions depend on
particular combinations of colour-stripped amplitudes, they have peculiar properties. First,
these contributions only depend on the Abelian parts of the amplitudes. Second, since
only interference terms appear in eq. (2.23), there are no collinear singularities in the
non-factorisable contributions.

We will need the single-soft limit of the double-real emission amplitude. Considering
p6 → 0 as an example, we obtain the following soft limits of the colour-stripped amplitudes

S6B
5L,6H
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(4, 2; 6, ε6) AL0 (1q, 2b, 3q′ , 4t; 5g) ,

S6B
6L,5H
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(3, 1; 6, ε6) AH0 (1q, 2b, 3q′ , 4t; 5g) ,
S6A

sL
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(3, 1; 6, ε6) AL0 (1q, 2b, 3q′ , 4t; 5g) ,

S6A
sH
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(4, 2; 6, ε6) AH0 (1q, 2b, 3q′ , 4t; 5g) .

(2.24)

Hence,

S6
∣∣M0(1q, 2b, 3q′ , 4t; 5g, 6g)

∣∣2
nf = −g4

s,b

N2 − 1
2 Eiknf(1q, 2b, 3q′ , 4t; 6g)

×
[
AL0 (1q, 2b, 3q′ , 4t; 5g)AH∗0 (1q, 2b, 3q′ , 4t; 5g) + c.c.

]
.

(2.25)
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We also need the double-soft limits of the colour-stripped amplitudes. We make use of the
fact that in an Abelian theory soft limits of amplitudes fully factorise. Therefore, we obtain

S5S6B
5L,6H
0 (5g, 6g) = J(3, 1; 5, ε5) J(4, 2; 6, ε6)A0(1q, 2b, 3q′ , 4t) ,

S5S6B
6L,5H
0 (5g, 6g) = J(3, 1; 6, ε6) J(4, 2; 5, ε5)A0(1q, 2b, 3q′ , 4t) ,

S5S6A
sL
0 (5g, 6g) = J(3, 1; 6, ε6) J(3, 1; 5, ε5)A0(1q, 2b, 3q′ , 4t) ,

S5S6A
sH
0 (5g, 6g) = J(4, 2; 6, ε6) J(4, 2; 5, ε5)A0(1q, 2b, 3q′ , 4t) .

(2.26)

The double-soft limit of the non-factorisable contribution to the amplitude follows immedi-
ately. We find

S5S6
∣∣M0(1q, 2b, 3q′ , 4t; 5g, 6g)

∣∣2
nf = g4

s,b (N2 − 1) |A0(1q, 2b, 3q′ , 4t)|2

× Eiknf(1q, 2b, 3q′ , 4t; 5g) Eiknf(1q, 2b, 3q′ , 4t; 6g) .
(2.27)

3 Construction of the subtraction terms

We can use the results of the previous section to extract singularities from non-factorisable
contributions to single-top production. For the sake of definiteness, we focus on the total
cross section, but the described procedure applies verbatim to any infrared-safe observable.

3.1 Double-real cross section

We start by considering the process in eq. (2.21), which we will refer to as the double-real
contribution. To describe how the corresponding cross section can be computed, we make
use of the notation introduced in ref. [41] and define the function

F nf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
= N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

6∑
i=3

pi

)
×
∣∣M0

(
1q, 2b, 3q′ , 4t; 5g, 6g

) ∣∣2
nf .

(3.1)

Here dLips34 is the Lorentz-invariant phase space of the two final state fermions and N
includes spin and colour averaging factors, N = 1/(4N2). The total cross section can be
obtained by integrating over the phase space of the two gluons, 5g and 6g, and including
the appropriate symmetry factor. We write

2s · σnf
RR = 1

2!

∫
[dp5] [dp6]F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
≡
〈
F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
,

(3.2)

where s = 2p1 · p2 is the partonic centre-of-mass energy squared. The phase space element
[dp] is defined as in ref. [41] and reads

[dp] = dd−1p

(2π)d−12Ep
θ
(
Emax − Ep

)
, (3.3)
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where Emax is a parameter that should be equal to or greater than the maximal energy that
a final-state parton can reach according to momentum conservation. In the present paper
we use Emax =

√
s/2. The matrix element appearing in eq. (3.1) develops singularities when

at least one gluon becomes soft. As we have already mentioned, no collinear divergences
affect non-factorisable corrections since they are, essentially, the interference contributions.
In order to preserve the fully differential nature of the calculation, we need to regulate and
extract soft singularities without integrating over the resolved part of phase space. To do
so, we introduce the identity

〈
F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
=
〈
S5S6 F

nf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
+ 2

〈
S6 (I − S5)F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
(3.4)

+
〈
(I − S5) (I − S6)F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
.

The first term corresponds to the double-soft limit, the second one to the single-soft limit.
The last term gives the hard contribution where all singularities are regulated. Note that
these terms are symmetric under the exchange of the two gluons due to the factorisation in
eq. (2.27) and the integration in eq. (3.1).

The fully regulated term can be computed numerically in four dimensions without
further ado. However, we still need to treat the soft-divergent terms. When soft operators
act on F nf

LM they impact both the squared matrix element and the momentum conserving
delta function in its definition. The latter becomes independent of the soft momenta.
The single- and double-soft limits of the double-real, non-factorisable matrix elements are
given in eqs. (2.25) and (2.27), respectively. In both cases, the matrix element factorises
into the universal structure Eiknf , defined in eq. (2.20), and a lower multiplicity matrix
element, which does not depend on the soft radiation. We can then integrate over the
unresolved momenta without affecting the kinematics of the resolved partons. We perform
this integration using dimensional regularisation, i.e. in d = 4− 2ε dimensions. To present
the result of the integration, we find it convenient to define the function

g2
s,b

∫
[dpk] Eiknf(1q, 2b, 3q′ , 4t; kg) ≡

αs
2π

(2Emax
µ

)−2ε
Knf(1q, 2b, 3q′ , 4t; ε) . (3.5)

The function Knf(ε) ≡ Knf(1q, 2b, 3q′ , 4t; ε) can be found in appendix B where it is computed
up to O(ε0) terms. We now extract the soft divergences and write

2s · σRR =
(
αs
2π

)2 N2 − 1
2N2

(2Emax
µ

)−4ε 〈
K2

nf(ε) FLM(1q, 2b, 3q′ , 4t)
〉

−
(
αs
2π

)
N2 − 1

2

(2Emax
µ

)−2ε 〈
Knf(ε) (I − S5) F̃ nf

LM(1q, 2b, 3q, 4t; 5g)
〉

+ 〈(I − S5)(I − S6) F nf
LM(1q, 2b, 3q′ , 4t; 5g, 6g)〉.

(3.6)

In the above equation we have introduced a function to describe the tree-level process,

FLM
(
1q, 2b, 3q′ , 4t

)
=N

∫
dLips34 (2π)d δ(d)(p1+p2−p3−p4

) ∣∣M0
(
1q, 2b, 3q′ , 4t

) ∣∣2. (3.7)
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We stress that in eq. (3.6) the function Knf(ε) appears inside angular brackets emphasising
its dependence on the kinematics of hard particles. We also introduced a non-factorisable,
single-gluon emission contribution F̃ nf

LM. The tilde stresses that this contribution is defined
in terms of colour-stripped amplitudes

F̃ nf
LM(1q, 2b, 3q, 4t; 5g) =N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

5∑
i=3

pi

)
× g2

s,b

(
AL∗0 (1q, 2b, 3q, 4t; 5g)AH0 (1q, 2b, 3q, 4t; 5g) + c.c.

)
.

(3.8)

This distinction is useful because such interference terms emerge from soft limits of higher-
multiplicity amplitudes, but otherwise do not contribute to non-factorisable corrections due
to colour conservation.

3.2 Real-virtual cross section

A similar calculation can be performed for the real-virtual contribution to the single-top
production cross section, which refers to the one-loop, non-factorisable corrections to the
process in eq. (2.10). By analogy with eq. (3.1), we define

F nf
LV
(
1q, 2b, 3q′ , 4t; 5g

)
=N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

5∑
i=3

pi

)

× 2Re
[
M∗0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)

]
nf
.

(3.9)

We obtain the real-virtual cross section by integrating F nf
LV over the phase space of the

gluon 5g. Again, thanks to the fact that the non-factorisable corrections are, effectively,
Abelian and no collinear singularities are present, we can extract all singularities related to
the emitted gluon by simply subtracting its soft limit. The real-virtual contribution reads

2s · σRV =
∫

[dp5]F nf
LV
(
1q, 2b, 3q′ , 4t; 5g

)
=
〈
S5F

nf
LV(1q, 2b, 3q′ , 4t; 5g)

〉
+
〈
(I − S5)F nf

LV(1q, 2b, 3q′ , 4t; 5g)
〉
. (3.10)

The first term is soft-divergent in the radiation phase space, and the corresponding sin-
gularities become manifest once the integration over [dp5] is performed. The second term
is soft-regulated. We notice that both contributions contain explicit poles in ε, stemming
fromM1 which appears in the definition of F nf

LV. We first analyse the soft-divergent term.
Using the results in eqs. (2.19) and (3.5) we extract and integrate the soft factor, which
multiplies a four-point, one-loop contribution. In order to make all divergences explicit, we
exploit eq. (2.4) and obtain〈

S5 F
nf
LV (1q, 2b, 3q′ , 4t; 5g)

〉
=

−
(
αs
2π

)2 N2 − 1
N2

(2Emax
µ

)−2ε 〈
Knf(ε) Re[I1(ε)]FLM(1q, 2b, 3q′ , 4t)

〉
−
(
αs
2π

)2 N2 − 1
2

(2Emax
µ

)−2ε 〈
Knf(ε) F̃ nf

LV,fin(1q, 2b, 3q′ , 4t)
〉
,

(3.11)
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where the last term is proportional to the finite remainder of the single-virtual correction
to the elastic process, eq. (2.1). In particular, we have introduced

F̃ nf
LV,fin(1q, 2b, 3q′ , 4t) = N

∫
dLips34 (2π)d δ(d)(p1 + p2 − p3 − p4

)
× 2Re

[
A∗0(1q, 2b, 3q′ , 4t)B1,fin(1q, 2b, 3q′ , 4t)

]
,

(3.12)

which is free of singularities, both explicit and implicit.
We now turn to the soft-regulated term in the second line of eq. (3.10). According to

eqs. (2.16) and (2.17), it only contains explicit poles and can be cast into the following form〈
(I − S5)F nf

LV(1q, 2b, 3q′ , 4t; 5g)
〉

=
(
αs
2π

)
N2 − 1

2
〈
Re[I1(ε)] (I − S5) F̃ nf

LM(1q, 2b, 3q′ , 4t; 5g)
〉

+
(
αs
2π

)
N2 − 1

4
〈
(I − S5) F̃ nf

LV,fin(1q, 2b, 3q′ , 4t; 5g)
〉
,

(3.13)

with F̃ nf
LM(1q, 2b, 3q′ , 4t; 5g) given in eq. (3.8). The last contribution in the above equation is

related to the finite remainder of the one-loop, five-point amplitude through the definition

F̃ nf
LV,fin(1q,2b,3q′ ,4t; 5g) =N

∫
dLips34 (2π)d δ(d)

(
p1 +p2−

5∑
i=3

pi

)

×g2
s,b

(
AL∗0 (1q,2b,3q′ ,4t; 5g)BsH

1,fin(1q,2b,3q′ ,4t; 5g)

+AH∗0 (1q,2b,3q′ ,4t; 5g)BsL
1,fin(1q,2b,3q′ ,4t; 5g)+c.c.

)
.

(3.14)

We note that the finite remainders BsL
1,fin and BsH

1,fin require a dedicated calculation that is
discussed in section 4.2.

3.3 Double-virtual cross section

In the previous sections we constructed subtraction terms for the double-real and the
real-virtual contributions to the cross section, σRR and σRV respectively. These subtraction
terms were integrated over the unresolved phase space resulting in 1/ε poles. Moreover,
we isolated the divergent part of the real-virtual amplitude and made all the singularities
affecting this contribution explicit. These ε poles have to cancel against ε poles in the
double-virtual contributions, which follow from eq. (2.9). The double-virtual cross section
can be written as

2s ·σVV =
〈
F nf

LVV(1q,2b,3q′ ,4t)
〉

=N
∫

dLips34 (2π)d δ(d)
(
p1 +p2−p3−p4

)
×
{∣∣M1(1q,2b,3q′ ,4t)

∣∣2
nf +2Re

[
M∗0(1q,2b,3q′ ,4t)M2((1q,2b,3q′ ,4t)

]
nf

}
=
(
αs
2π

)2 N2−1
4

[ 2
N2

〈(
Re[I1(ε)]

)2
FLM(1q,2b,3q′ ,4t)

〉
+2

〈
Re[I1(ε)] F̃ nf

LV,fin(1q,2b,3q′ ,4t)
〉
+
〈
F̃ nf

VV,fin(1q,2b,3q′ ,4t)
〉]
,

(3.15)
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where the first term in the square brackets collects all 1/ε2 poles, the second contribution
only contains 1/ε poles, while the last term is finite. We note that F̃ nf

LV,fin is defined in
eq. (3.12) and that F̃ nf

VV,fin reads

F̃ nf
VV,fin(1q, 2b, 3q′ , 4t) = N

∫
dLips34 (2π)d δ(d)(p1 + p2 − p3 − p4

)
×
{ ∣∣B1,fin(1q, 2b, 3q′ , 4t)

∣∣2 + 2Re
[
A∗0(1q, 2b, 3q′ , 4t)B2,fin(1q, 2b, 3q′ , 4t)

]}
.

(3.16)

3.4 Pole cancellation

To obtain a manifestly finite expression for the non-factorisable contribution to the total
cross section we need to sum the results in eqs. (3.6), (3.11), (3.13) and (3.15). It is
convenient to write this sum as the combination of three different terms corresponding to
final states with different resolved multiplicities. We write

σnf = σ
(2g)
nf + σ

(1g)
nf + σ

(0g)
nf , (3.17)

where
2s · σ(2g)

nf =
〈
(I − S5)(I − S6)F nf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
(3.18)

is the fully regulated double-real emission contribution. It can be directly implemented in a
numerical program. In order to present the single-real emission contribution, σ(1g)

nf , and the
elastic contribution, σ(0g)

nf , we introduce the following function

W(1q, 2b, 3q′ , 4t) =
(2Emax

µ

)−2ε
Knf(1q, 2b, 3q′ , 4t; ε)− Re[I1(1q, 2b, 3q′ , 4t; ε)] . (3.19)

We point out that W does not contain any ε pole. In fact, the first term in the ε-expansion
of Knf describes a soft, wide-angle emission and assumes a simple form

Knf(1q, 2b, 3q′ , 4t; ε) = 1
ε

log
(
p1 · p4 p2 · p3
p1 · p2 p3 · p4

)
+O(ε0) . (3.20)

Such a pole is cancelled by the singularities arising from single-virtual corrections. In
particular, using eq. (2.5), we find

Knf(1q, 2b, 3q′ , 4t; ε)− Re
[
I1(1q, 2b, 3q′ , 4t; ε)

]
= O(ε0) . (3.21)

The single-real emission contribution, which corresponds to the sum of eq. (3.13) and the
second term in eq. (3.6), is then equal to

2s · σ(1g)
nf = −

(
αs
2π

)
N2 − 1

2
〈
W(1q, 2b, 3q′ , 4t)(I − S5)F̃ nf

LM(1q, 2b, 3q′ , 4t; 5g)
〉

+
(
αs
2π

)
N2 − 1

4
〈
(I − S5)F̃ nf

LV,fin(1q, 2b, 3q′ , 4t; 5g)
〉
.

(3.22)
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It is free of both explicit and implicit singularities. Finally, the finite, elastic contribution
becomes

2s · σ(0g)
nf =

(
αs
2π

)2 N2 − 1
2N2

〈
W2(1q, 2b, 3q′ , 4t)FLM(1q, 2b, 3q′ , 4t)

〉
−
(
αs
2π

)2 N2 − 1
2

〈
W(1q, 2b, 3q′ , 4t) F̃ nf

LV,fin(1q, 2b, 3q′ , 4t)
〉

+
(
αs
2π

)2 N2 − 1
4

〈
F̃ nf

VV,fin(1q, 2b, 3q′ , 4t)
〉
.

(3.23)

As a final remark in this section, it is worth noting that in the entire procedure described
here, the only amplitude which must be expanded to O(ε) is B1(1q, 2b, 3q′ , 4t) as it is needed
to extract the two-loop finite remainder B2,fin(1q, 2b, 3q′ , 4t) in eq. (2.7).

4 Amplitude calculation

In this section we discuss the calculation of the amplitudes needed to compute the non-
factorisable cross-section defined in eq. (3.17). The obtention of the three tree-level ampli-
tudes is shortly described, followed by the one- and two-loop amplitudes.

4.1 Tree-level amplitudes

To compute real-emission amplitudes we generate the relevant diagrams with QGRAF [42]
and process them in FORM [43, 44]. As single-top production is facilitated by the exchange
of a W boson, all massless quarks that appear in these amplitudes are left-handed. This
can be seen at the diagram level by using the anti-commutativity of γ5 to move the spin
projectors PL = 1

2(1− γ5) from the W vertices to the incoming massless fermions. Using
standard bracket notation from spinor helicity formalism,4 we write

PL u(pi) = uL(pi) = |i] , for light-like pi. (4.1)

This fixes the helicity of the three massless external fermions, while the outgoing massive
top quark can be both left- and right-handed. By decomposing the momentum of the top
quark into two massless momenta

p4 = p[4 + m2
t

2n · p4
n , (4.2)

the massive Dirac-conjugate spinor can be written as

ūL(p4) =
〈
4[|+ mt

[n4[]
[n| and ūR(p4) = [4[|+ mt〈

n4[
〉〈n| . (4.3)

With these definitions we can write tree-level helicity amplitudes as

A0(1Lq , 2Lb , 3Lq′ , 4Lt ) = g2
W

t−m2
W

〈
34[
〉
[21] ,

A0(1Lq , 2Lb , 3Lq′ , 4Rt ) = g2
W

t−m2
W

mt〈
n4[

〉〈3n〉[21] ,
(4.4)

4For a review of spinor-helicity formalism, see e.g. ref. [45]. For the case of massive fermions, see also
ref. [46].
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q q′

b t

g

W

q q′

b t

g

W

Figure 2. Examples of diagrams contributing to amplitudes BsL
1 (5g) (left) and BsH

1 (5g) (right) as
defined through colour decomposition in eq. (2.15).

where t = (p1 − p3)2 and gW = 2mW /v is the weak coupling constant defined through the
W boson mass, mW , and the Higgs field vacuum expectation value, v. By choosing n = p3,
we can force the latter amplitude to vanish; this, in turn yields more compact results for
higher-multiplicity amplitudes. The tree-level amplitudes have been cross-checked against
MadGraph5_aMC@NLO [47].

4.2 Loop amplitudes

We computed the non-factorisable four-point, one-loop amplitude B1(1q, 2b, 3q′ , 4t) defined
in eq. (2.3), in an earlier paper [39]. This amplitude enters the present calculation in both
the real-virtual and double-virtual cross sections, see eqs. (3.10) and (3.15) respectively. We
note that O(ε) terms are only required for the latter for which we use the results obtained
numerically for a fixed grid of phase space points in ref. [39]. For the real-virtual contribution,
amplitudes through O(ε0) are needed. To evaluate them, we rely on QCDLoops [48, 49] for
efficient and precise computation of one-loop integrals.

The real-virtual contribution to the cross section also depends on the one-loop, five-
point amplitude M1(1q, 2b, 3q′ , 4t; 5g) defined in eq. (2.15). The relevant colour-stripped
amplitudes involve a gluon exchange between the fermion lines as well as a gluon emission.
The non-factorisable contribution to the cross section comes from interference between
diagrams where the final-state gluon is emitted and absorbed by different fermion lines.
Diagrams with a non-Abelian gluon vertex do not contribute to the cross section due to
colour conservation, cf. eq. (2.16). For a straightforward extraction of the non-factorisable
contribution, we calculate amplitudes for gluon emission from each of the two quark lines
separately, BsL

1 and BsH
1 . In figure 2 we present example diagrams for these two amplitudes.

A total of 24 diagrams contribute to BsL
1 and BsH

1 . We generate them with QGRAF and
process using FORM. We restrict external momenta to four dimensions, while loop momenta
are considered to be d-dimensional. Hence, the amplitude contains chains of Dirac matrices
with d-dimensional indices between four-dimensional spinors. The extra-dimensional part
can be extracted by decomposing the matrices in four- and (−2ε)-dimensional parts,
γµ = γµ̄ + γµ̃. Indices with bars are restricted to four dimensions and indices with tilde are
(−2ε)-dimensional. Spinor chains involving indices living in extra-dimensional space are
projected on to tensors consisting solely of metric tensors restricted to the (−2ε)-dimensional
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subspace. As an example, we write

ut(p4)γµγνub(p2) = ut(p4)γµ̄γν̄ub(p2) + gµ̃ν̃ ut(p4)ub(p2) . (4.5)

After this procedure is applied, all spinor chains involve objects with four-dimensional indices
so that helicity amplitudes can be computed straightforwardly. As we already mentioned,
due to the W boson vertex all massless fermions are left-handed, hence there is a total
of four helicity configurations. The step of dimension splitting and helicity configuration
projection is handled by the FORM library spinney [50].

At this stage BsL
1 and BsH

1 can be written as linear combinations of Feynman integrals,
I, weighted by coefficients c. We write

BsX
1 =

∑
i

3∑
r=0

cX5,i,r(ε) I5,i[kµ1 · · · kµr ] +
∑
i

2∑
r=0

cX4,i,r(ε) I4,i[kµ1 · · · kµr ] , (4.6)

whereX = L,H and index i labels the integral topology. The coefficients acquire dependence
on space-time dimension because of the dimension-splitting procedure described above. For
brevity, we have suppressed their dependence on kinematic invariants, four-dimensional
spinor structures, and the electroweak coupling. The integrals In,i include pentagons (n = 5)
of up to rank 3 and boxes (n = 4) of up to rank 2. We write

In,i[kµ1 · · · kµr ] =
∫ ddk

(2π)d

∏r
j=1 k

µj∏n
l=1Di,l

, (4.7)

where Di,l = (k − qi,l)2 −m2
i,l and the qi,l are given by sums of external momenta. The

propagator masses mi,k are zero, mt, or mW .
The most complicated integrals in eq. (4.6) are tensor pentagon integrals of rank 3. We

reduce them to boxes of rank 2 and scalar pentagons by expanding the integrand numerator
using the van Neerven-Vermaseren (vNV) basis [51]. We note that up to rank 3, pentagon
integrals are free of rational terms [52] and the expansion of the loop momentum in four
dimensions is sufficient to obtain correct results in the d→ 4 limit. Hence, we expand the
loop momentum as

kµ =
4∑
i=1

(k · qi) vµi , (4.8)

where we have used the fact that scalar products of vNV basis vectors vi and propagator
momenta qj satisfy vi · qj = δij . The scalar products (k · qi) can be written in terms of
kinematic invariants and inverse propagators. We also note that v2

i 6= 0. Applying this
procedure, we obtain

BsX
1 =

∑
i

c̃X5,i,0(ε) I5,i +
∑
i

2∑
r=0

c̃X4,i,r(ε) I4,i[kµ1 · · · kµr ]

+
∑
i

1∑
r=0

c̃X3,i,r(ε) I3,i[kµ1 · · · kµr ] +
∑
i

c̃X2,i,0(ε) I2,i ,

(4.9)
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where we introduced the shorthand notation In,i[1] ≡ In,i. At this stage we are left with
scalar pentagon integrals and tensor integrals with at most four propagators. Up to finite
order in ε, scalar pentagon integrals can be rewritten as boxes [53]. The rest of the
calculation employs the Passarino-Veltman reduction [54] that allows us to express the
amplitude through scalar integrals. We obtain

BsX
1 =

∑
i

ĉX4,i(ε) I4,i +
∑
i

ĉX3,i(ε) I3,i +
∑
i

ĉX2,i(ε) I2,i +O(ε) . (4.10)

After reduction the amplitude can be written in terms of 109 scalar box, triangle, and
bubble integrals. By switching to a basis with finite box integrals, the complexity of the
integral coefficients reduces drastically. We construct this basis following the ideas presented
in ref. [55]. As an example of this basis change, we consider one of the box integrals

I4,1 =
∫ ddk

(2π)d
1

k2(k − p1)2(k − p1 − p2)2(k − p1 − p2 + p5)2 , (4.11)

that is infrared-divergent and the leading divergence is the second-degree ε pole. These
singularities develop when one of the propagators goes on shell, for example when k → 0 or
k → p1.

We can regulate these singularities by introducing an appropriate numerator in the
integrand. A suitable numerator insertion vanishes in the limits where the propagators that
develop singularities go on shell. For the integral in eq. (4.11) we use the following insertion

tr
(
(−/p1)(/k − /p1)(/k − /p1 − /p2)(/p5)

)
= −s12 (s12 + s15 − s34) + (s12 + s15 − s34) k2

− (s12 − s34) (k − p1)2 + (s12 + s15) (k − p1 − p2)2 − s12 (k − p1 − p2 + p5)2 .
(4.12)

We introduced /p = γµpµ, as well as the usual Mandelstam variables sij = (pi + λijpj)2 with
λij = 1 if the partons i and j are both incoming or outgoing and λij = −1 otherwise. With
this, we define the finite box integral

F4,1 =
∫ ddk

(2π)d
tr
(
(−/p1)(/k − /p1)(/k − /p1 − /p2)(/p5)

)
k2(k − p1)2(k − p1 − p2)2(k − p1 − p2 + p5)2 = O(ε0) . (4.13)

It is clear from eq. (4.12) that the finite box is a linear combination of the divergent box and
four triangle integrals. Replacing all divergent boxes in the integral basis with their finite
counter-parts therefore changes the triangle coefficients while leaving the box coefficients
unchanged (up to an overall kinematic factor). Hence, we obtain

BsX
1 =

∑
i

c̄X4,i F4,i +
∑
i

c̄X3,i I3,i +
∑
i

ĉX2,i(ε) I2,i +O(ε) . (4.14)

We note that the most complicated coefficients in the amplitude appear in front of
the finite box integrals. However, since these integrals are finite we can set ε→ 0 in their
coefficients. Furthermore, since in this basis ε−2 poles only appear in triangle integrals,
their coefficients must be simple. In fact, after the procedure described above is applied, the
triangle integral coefficients either become independent of space-time dimension or simply
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vanish. We note that due to the fact that the amplitude that we compute is UV-finite, the
sum of bubble integrals is finite as well.

One of the challenges in computing the real-virtual contribution to the cross section
is that we need to compute the amplitude in the limit when the emitted gluon is soft.
To improve numerical stability in the evaluation of the amplitudes, we write the integral
coefficients in terms of the kinematic invariants

s12, s23, δ1 = s34 − s12, δ2 = s45 −m2
t , δ3 = s15 . (4.15)

In the limit where the emitted gluon goes soft, p5 → 0, the δ-variables vanish. Because of
that, large cancellations in the integral coefficients can be avoided.

We have checked the real-virtual amplitude in several ways. First, we compared its ε
poles with expectations shown in eq. (2.17). We have also checked the factorisation in the
limit where the emitted gluon goes soft, cf. eq. (2.19).

As a final remark, we note that the two-loop amplitude which is needed for the double-
virtual contribution was computed in a previous paper [39]. We used those results for
the q b→ q′ t channel and obtained the contribution of the q b→ q′ t channel through the
crossing symmetry, p1 ↔ −p3. We note that no additional master integrals are required
since after crossing the amplitude can be mapped back to the basis of master integrals using
integration-by-parts identities.

5 Results

In this section we discuss the phenomenology of the non-factorisable corrections to single-top
production at the LHC. Our starting point is the conventional formula for the differential
cross section

dσpp→X+t =
∑
i,j

∫
dx1 dx2 fi(x1, µF ) fj(x2, µF ) dσ̂ij→X+t (x1, x2) , (5.1)

where we sum over partons that participate in the hard scattering.
We take the CKM matrix to be an identity matrix and work in the five-flavour scheme.

The top quark in the final state is produced in the collisions of a bottom quark from a
proton and a virtual W boson. Overall, the cross section in eq. (5.1) receives contributions
from processes with i(j) = b and j(i) = u, c, d̄, s̄.

We consider proton-proton collisions at 13TeV and use the PDF set CT14 in the
computation. We obtain the leading-order cross sections and distributions using the leading-
order PDFs CT14_lo and the NNLO non-factorisable contribution using the CT14_nnlo
PDF set. The strong coupling constant is provided by the CT14_nnlo PDF set; numerically
it evaluates to αs(mZ) = 0.118. As the input parameters, we use the vacuum expectation
value of the Higgs field, v = 246.2 GeV, the mass of the W boson, mW = 80.379GeV, and
the pole mass of the top quark, mt = 173.0GeV.

The non-factorisable NNLO QCD correction to the single-top production cross section
is found to be

σpp→X+t
1 pb = 117.96 + 0.26

(
αs(µR)
0.108

)2
, (5.2)
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where the first term on the right-hand side is the LO cross section and the second is the
NNLO non-factorisable correction.5 To compute the cross sections shown in eq. (5.2), we
have set the factorisation scale to µF = mt.

We note however, that since the non-factorisable contributions are absent at NLO
due to colour conservation, we do not have any indication of an optimal scale choice. To
emphasise this point, we have left the dependence on the renormalisation scale explicit in
eq. (5.2). We note that the value of the strong coupling constant used there, αs = 0.108,
corresponds to µR = mt and for this choice of the scale the non-factorisable correction is
about 0.2% of the LO cross section.

However, it is unclear whether µR,F = mt is the right choice for the scales. Indeed, a
typical momentum transfer in t-channel single-top production is ∼ 40 GeV since this is the
value for which the top-quark transverse momentum distribution is maximal. If we choose
µR = 40 GeV, the non-factorisable corrections to the leading-order cross section become
0.35%. We note that this result is in line with the recently published finite part of the
virtual contribution [39], which was found to be around 0.5% for the same scale choice.

In what follows, we take µF = µR ≡ µ, choose µ = mt as the central scale and
estimate the scale uncertainty by increasing and decreasing µ by a factor of 2. As we
already mentioned, even if we do not consider this choice to be optimal, it does facilitate a
comparison with the literature, as it was used in several studies of factorisable corrections to
single-top production [30, 33]. In addition for a more realistic assessment of the magnitude
of non-factorisable corrections, we also show their impact for µ = 40 GeV.

We first present results for the top-quark transverse momentum distribution, see
figure 3. It follows that non-factorisable corrections are pt⊥-dependent; they are relatively
small and negative at low values of the transverse momentum, vanish at pt⊥ ∼ O(50 GeV)
and reach O(2%) at pt⊥ ∼ 200GeV. This behaviour is compatible with the fact that
virtual contributions are negative in the same pt⊥ interval [39] and, as we explained in
the introduction, virtual contributions to non-factorisable corrections are expected to be
dominant. We note that shapes of factorisable and non-factorisable corrections to the pt⊥
distribution are similar but, typically, the factorisable ones are larger by a factor between
3 and 10, (see figure 11 in ref. [33]). However, it follows from the same figure, that the
factorisable corrections vanish around pt⊥ ∼ 30 GeV whereas the non-factorisable ones vanish
around pt⊥ ∼ 50 GeV. Hence, the non-factorisable corrections are, in fact, comparable to
the factorisable ones in the region around the maximum of the pt⊥ distribution.

In table 1 we report the LO cross sections and the corresponding NNLO corrections for
different cuts on the minimal top-quark transverse momentum. We fixed the factorisation
scale to µF = mt and inspect different renormalisation scales. For µR = mt, we notice that,
while the LO cross section decreases by O(11%) if the pt⊥ cut increases from 0 to 60GeV,
the non-factorisable contribution to the cross section increases by O(8%). To understand
the relative importance of factorisable and non-factorisable NNLO corrections, we note
that factorisable corrections were computed to be about −0.7% of the NLO cross section

5We stress one more time that the LO cross section in eq. (5.2) is computed with the LO PDFs and the
NNLO correction is computed with the NNLO PDFs.
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Figure 3. Distribution of the top-quark transverse momentum. The LO distribution is marked
with a blue, solid line, while the red, dashed line corresponds to our predictions for the LO+NNLO
distribution at µ = mt. The scale is variated between µ = mt/2 and µ = 2mt. The green, dotted line
corresponds to the scale µ = 40GeV. The lower pane shows the ratio of non-factorisable corrections
to the LO distribution. See text for further details.

µR = mt µR = 40 GeV
pt,cut
⊥ σLO (pb) σnf

NNLO (pb) δNNLO [%] σnf
NNLO (pb) δNNLO [%]

0GeV 118.01 0.26−0.04
+0.06 0.22−0.04

+0.05 0.40 0.34

20GeV 115.09 0.26−0.04
+0.06 0.23−0.04

+0.05 0.41 0.36

40GeV 109.56 0.27−0.05
+0.06 0.25−0.04

+0.06 0.43 0.39

60GeV 104.63 0.28−0.05
+0.06 0.26−0.04

+0.06 0.43 0.41

Table 1. Dependence of the non-factorisable corrections on the top-quark transverse momentum.
The factorisation scale is fixed to µF = mt. In the third column, the non-factorisable cross sections
are evaluated at µR = mt with sub- and super-scripts indicating the scale variation, mt/2 and 2mt

respectively. The penultimate column describes the non-factorisable corrections at µR = 40 GeV.
For each scale choice, we report the relative impact, δNNLO, of the non-factorisable contributions
with respect to the LO cross section.
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(a) Distribution of the top-quark rapidity.
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(b) Distribution of the leading-jet rapidity.

Figure 4. Distributions of the absolute value of the top-quark rapidity (left) and of the leading-
jet rapidity (right). LO distributions are marked with a blue, solid line, while red, dashed lines
correspond to our predictions for LO+NNLO distributions at µ = mt. The scale is variated between
µ = mt/2 and µ = 2mt. The green, dotted line corresponds to the scale µ = 40GeV. Lower panes
show the ratio of non-factorisable corrections to LO distributions. See text for further details.

for similar choices of scales and parton distribution functions (see table 7 in ref. [33]).6

If we compare this result with the fourth column of table 1 we conclude that the impact
of non-factorisable corrections is smaller than, but quite comparable to, the factorisable
corrections. At µR = 40 GeV, the NNLO non-factorisable corrections increase by O(8%) by
imposing a lower cut of 60 GeV on the transverse momentum of the top quark.

The top-quark rapidity distribution is shown in the left pane of figure 4. The (relative)
non-factorisable corrections are fairly flat in the interval |yt| < 2.5 and change the leading-
order rapidity distribution by O(0.25%). For larger rapidity values, the corrections decrease
rapidly and change sign at |yt| ∼ 3. It follows from ref. [33] that the factorisable corrections
to the top-quark rapidity distribution change the sign earlier, at around |yt| = 1.2. Again, for
such rapidity values, the non-factorisable and factorisable corrections are quite comparable.

We turn to the analysis of the impact of non-factorisable corrections on jet observables
in single-top production. We use the kt-algorithm [56] to define jets. Jets are required to
have transverse momenta larger than 30 GeV and a radius R = 0.4.

In figure 4(b) we show the impact of non-factorisable corrections on the leading-jet
rapidity distribution. The correction is about 0.5% at small rapidities, |yjet| < 2. Similar
to the case of the top-quark rapidity distribution, the correction to leading-jet rapidity
decreases and changes sign at around |yjet| ∼ 3.5.

In figure 5 we show the transverse momentum distribution of the leading jet (left pane)
and the distribution of the sum of the top and jets’ transverse momenta,

H⊥ = pt⊥ +
njet∑
i=1

p jet,i
⊥ . (5.3)

6Computations in ref. [33] were performed for proton-proton collisions at 14TeV.
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Figure 5. Distributions of the leading-jet transverse momentum (left) and of sum of transverse
momenta H defined in eq. (5.3) (right). LO distributions are marked with a blue, solid line, while
red, dashed lines correspond to our predictions for LO+NNLO distributions at µ = mt. The scale
is variated between µ = mt/2 and µ = 2mt. The green, dotted line corresponds to the scale
µ = 40GeV. Lower panes show the ratio of non-factorisable corrections to LO distributions. See
text for further details.

In eq. (5.3) njet is the number of reconstructed jets in an event. The corrections to the
leading-jet transverse momentum distributions change sign around 50 GeV, are negative
for smaller p jet

⊥ values and grow to about 1.2 percent at p jet
⊥ ∼ 140 GeV. The distribution

of the sum of transverse momenta H is affected by the non-factorisable corrections in a
similar way.

6 Conclusions

In this paper we have computed the non-factorisable corrections to t-channel single-top
production at the LHC. This contribution, being colour-suppressed and computationally
challenging, was neglected in all the previous studies of NNLO QCD corrections to single-top
production in spite of the recent indication that a peculiar enhancement of such corrections
due to remnants of the Glauber phase is possible [36].

We have shown how to overcome the technical challenges related to the computation of
virtual, non-factorisable corrections in ref. [39]. In this paper we completed the calculation
of these corrections by including double-real and real-virtual contributions required to obtain
the infrared-finite cross section. We have discussed the calculation of the relevant tree- and
one-loop amplitudes needed for the computation of non-factorisable corrections. Because of
the large number of mass scales that appear in the computation of one-loop amplitudes
required for the real-virtual non-factorisable contribution, its reduction to master integrals,
and its stable and efficient numerical evaluation turn out to be non-trivial. We discussed
how to address these problems and pointed out that it is beneficial to choose infrared-finite
combinations of boxes and triangles as master integrals.
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We have explicitly shown that the non-factorisable corrections are not affected by the
non-Abelian nature of QCD and are free of collinear singularities. We have constructed
subtraction terms that make the cancellation of infra-red singularities in arbitrary infrared-
safe observables explicit.

We have studied a number of kinematic distributions relevant for the single-top pro-
duction process as well as the inclusive cross section. We have found that non-factorisable
corrections are smaller than, but quite comparable to, the factorisable ones. Since the
choice of the proper renormalisation scale in the non-factorisable corrections is an open
issue, the actual magnitude of these corrections is uncertain. We estimate that they can
reach O(0.4%) in case of the inclusive cross section and O(1 − 2%) for some kinematic
distributions. Another interesting point is that for many distributions the non-factorisable
corrections do not reduce to an overall renormalisation of the leading-order distributions.
Thus, if a percent-level precision in single-top studies can be reached, the non-factorisable
effects will have to be taken into account.
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A Renormalisation

Since the non-factorisable NLO QCD corrections vanish due to colour conservation, there is
no UV divergences at NNLO. Nevertheless, the coupling is renormalised in MS scheme to
zeroth order in perturbative QCD

g2
s,b

4π ≡ α
bare
s = µ2εSε αs (µ) , (A.1)

where Sε = exp (εγE) /(4π)ε and γE ≈ 0.57721 is the Euler-Mascheroni constant.

B Integrated counterterms

In this section we describe the calculation of the single-soft integrated counterterms. As
explained in the main body of the paper, it is important for treating the infrared singularities
that originate from the real radiation. We have previously defined the function Knf(ε)
through the following integral

g2
s,b

∫
[dpk] Eiknf(1q, 2b, 3q′ , 4t; kg) = αs

2π

(2Emax
µ

)−2ε
Knf(1q, 2b, 3q′ , 4t; ε) . (B.1)

Again, we stress that the coupling gs,b appearing on the left-hand side of eq. (B.1) is the
bare coupling constant, while on the right-hand side αs is the coupling renormalised at
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the scale µ. The latter is obtained by using the prescription in appendix A. Moreover, we
have defined

Eiknf(1q,2b,3q′ ,4t;kg) =
∑
i∈[1,3]
j∈[2,4]

λij pi ·pj
(pi ·pk) (pj ·pk)

= p1 ·p2
p1 ·pk p2 ·pk

− p1 ·p4
p1 ·pk p4 ·pk

− p2 ·p3
p2 ·pk p3 ·pk

+ p3 ·p4
p3 ·pk p4 ·pk

.

(B.2)

We note that the above expression involves two different structures: eikonal factors that
depend on the four-momenta of two massless partons, and eikonal factors that depend
on the four-momenta of one massive and one massless parton. The integration over the
unresolved radiation is different in the two cases.

Before proceeding with the details of the calculation, we quote the final result in order
to highlight its simplicity. The result reads

Knf(1q, 2b, 3q′ , 4t; ε) = 1
ε

log
(
p1 · p4 p2 · p3
p1 · p2 p3 · p4

)
− 1

2 log2
(
ρ23
2

)
+ 1

2 log2
(
ρ12
2

)
− log

(
ρ14

1− β

)
log

(
ρ14

1 + β

)
+ log

(
ρ34

1− β

)
log

(
ρ34

1 + β

)
+ Li2

(
1− ρ12

2

)
− Li2

(
1− ρ23

2

)
− Li2

(
1− ρ14

1− β

)
− Li2

(
1− ρ14

1 + β

)
+ Li2

(
1− ρ34

1− β

)
+ Li2

(
1− ρ34

1 + β

)
+O(ε) ,

(B.3)

where β =
√

1−m2
t /E

2
4 and ρij = pi ·pj/(EiEj). To simplify the discussion, it is convenient

to define a function IΩ that contains all the information about integration over angles of
the emitted gluon. We write

g2
s,b

∫
[dpk]

pi · pj
(pi · pk) (pj · pk)

= αs
2π

(2Emax
µ

)−2ε eε γE Γ(1− ε)
Γ(1− 2ε)

(
− 1

2ε

)
×
∫

d cos θ dφ
π

(
sin θ sinφ

)−2ε p̂i · p̂4
p̂i · p̂k p̂4 · p̂k

= αs
2π

(2Emax
µ

)−2ε eε γE Γ(1− ε)
Γ(1− 2ε)

(
− 1

2ε

)
IΩ,

(B.4)

where p̂ = p/Ep. We present the results for the functions IΩ for the three relevant
cases below.

B.1 One massive and one massless emitter — arbitrary angle

We consider the case when one emitter is massless, p2
i = 0, and the other is massive, p2

4 = m2
t .

The function IΩ reads

IΩ = −1
ε

+ I(0) + ε I(1) +O
(
ε2
)
, (B.5)
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where the different terms reads

I(0) = 2 log
(
E4 ρi4
mt

)
,

I(1) = − 2
[1

4 log2
(1− β

1 + β

)
+ log

(
ρi4

1 + β

)
log

(
ρi4

1− β

)
+ Li2

(
1− ρi4

1 + β

)
+ Li2

(
1− ρi4

1− β

)]
.

(B.6)

The explicit expressions for I(0) and I(1) agree with the results in ref. [58].

B.2 One massive and one massless emitter — back-to-back kinematics

The previous result simplifies when the two emitters are back-to-back. We consider the case
of one massless and one massive emitter, p2

i = 0 and p2
4 = m2

t , in the case when ~pi + ~p4 = 0.
The function IΩ reads

IΩ = 2−4εB

(1
2 − ε,

1
2 − ε

)
(B.7)

×
[
B (−ε, 1− ε) + 2β

1 + β

Γ2 (1− ε)
Γ (2− 2ε) 2F1

(
1, 1− ε, 2− 2ε, 2β

1 + β

)]
. (B.8)

B.3 Two massless emitters — arbitrary angles

When the two emitters are massless, the result reads (see e.g. ref. [41])

IΩ = −1
ε
ρij 2F1

(
1, 1, 1− ε, 1− ρij

2

)
. (B.9)
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