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Abstract
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a
positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly)
reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity
of a graph or a graph class, and have interesting applications in structural and algorithmic graph
theory. Recently, Dvořák, McCarty, and Norin observed a natural volume-based upper bound for
the strong coloring numbers of intersection graphs of well-behaved objects in Rd, such as homothets
of a compact convex object, or comparable axis-aligned boxes.

In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes
of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring
numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a
surprising difference in terms of the dependence of the weak coloring numbers on the dimension
between touching graphs of balls (single-exponential) and hypercubes (double-exponential).
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1 Introduction

It is well known that if every subgraph of a graph G has average degree at most d, then
G is d-degenerate, that is, there exists a linear ordering of the vertices of G such that each
vertex has at most d neighbors that precede it in the ordering. Conversely, every subgraph
of a d-degenerate graph has average degree at most 2d. This fact is often used in design of
algorithms for sparse graphs, where a result is obtained by processing the vertices one by
one in the degeneracy ordering.

For algorithmic problems that involve interactions over larger distances, a stronger notion
of sparsity is needed. Such a notion of bounded expansion was developed by Nešetřil and
Ossona de Mendez [12] and can be formulated in terms of the dependence of the density of
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39:2 Weak Coloring Numbers of Intersection Graphs

wreachG,≺,3(v) sreachG,≺,3(v)

v

Figure 1 A vertex ordering ≺ of a graph G, and the sets wreachG,≺,k(v) and sreachG,≺,k(v) for
a vertex v and k = 3.

minors or topological minors that appear in the considered graphs on the depths of these
minors (we do not give a precise definition since it is somewhat technical and we do not
need it in this paper). As was shown by Zhu [15], there is also an equivalent degeneracy-like
characterization of bounded expansion, in terms of generalized coloring numbers, that is
weak and strong coloring numbers defined below. The generalized coloring numbers were
previously introduced by Kierstead and Yang [10] in the context of marking and coloring
games on graphs.

Given a linear ordering ≺ of the vertices of a graph G and an integer k ≥ 0, a vertex
u is weakly k-reachable from a vertex v if u ⪯ v and there exists a path in G from v to u

of length at most k with all internal vertices greater than u in ≺, and strongly k-reachable
if there exists such a path with all internal vertices greater than v in ≺; see Figure 1 for
an illustration. Let wreachG,≺,k(v) and sreachG,≺,k(v) denote the sets of vertices that are
weakly and strongly k-reachable from v, respectively. We define weak and strong coloring
numbers for a given ordering ≺ as

wcol≺,k(G) = max
v∈V (G)

| wreachG,≺,k(v)|

scol≺,k(G) = max
v∈V (G)

| sreachG,≺,k(v)|

The weak and strong coloring numbers of a graph are then obtained by minimizing over all
linear orderings of V (G).

wcolk(G) = min
≺

wcol≺,k(G)

scolk(G) = min
≺

scol≺,k(G)

Note that for k = 1, both wreachG,≺,1(v) \ {v} and sreachG,≺,1(v) \ {v} consist of the
neighbors of v that precede it in the ordering ≺, and thus scol1(G) = wcol1(G) coincide with
the coloring number of the graph G, equal to the degeneracy of G plus one.

1.1 Properties and applications of generalized coloring numbers
The following basic claims can be found for example in [12]. One can easily check that both
wcolk(G) and scolk(G) are non-decreasing in k and that scolk(G) ≤ wcolk(G) ≤ (scolk(G))k

for any positive integer k. Moreover, for every k ≥ |V (G)|, scolk(G) is equal to the treewidth
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of G and wcolk(G) is equal to the treedepth of G. A greedy coloring algorithm applied
along the corresponding vertex ordering shows that the chromatic number of G is at most
scol1(G) = wcol1(G), the acyclic chromatic number of G is at most scol2(G), and the star
chromatic number of G is at most wcol2(G).

Algorithmic applications of the generalized coloring numbers include for example:
Generating sparse neighborhood covers used in decision algorithms for problems expressible
in the first-order logic [8].
Constant-factor approximation for distance versions of domination number and indepen-
dence number [2], with further applications in fixed-parameter algorithms and kerneliza-
tion [5].
Practical algorithm for counting the number of appearances of fixed subgraphs [13].

As we mentioned before, Zhu [15] proved that generalized coloring numbers are bounded
exactly for graph classes with bounded expansion (which include planar graphs and more
generally all proper classes closed under taking minors or topological minors, graphs with
bounded maximum degree, graphs that can be drawn in the plane with a bounded number of
crossings per edge, intersection graphs of balls with bounded clique number, and many others).
More precisely, for any class G with bounded expansion, there exist functions fs

G and fw
G

such that for every graph G ∈ G and every positive integer k, we have scolk(G) ≤ fs
G(k) and

wcolk(G) ≤ fw
G (k). However, the general bounds arising from Zhu’s result are rather weak,

and since the time complexity of the aforementioned algorithms depends on the generalized
coloring numbers, we are interested in more precise bounds for specific graph classes.

1.2 Bounds on generalized coloring numbers
Quite a bit is known about the maximum possible values of generalized coloring numbers of
many natural graph classes, as summarized in the following table:

Class scolk wcolk
treewidth ≤ t t + 1 [7]

(
k+t

t

)
[7]

outerplanar 3 Θ(k log k) [9]
planar Θ(k) [14] Ω(k2 log k) [9] O(k3) [14]
genus g O(gk) [14] O(gk + k3) [14]
no Kt minor O(t2k) [14] Ω(kt−2) [7] O(kt−1) [14]
no Kt topological minor Ω((t − 3)k/4) [6, attributed to Norin] tO(k) [7]

Moreover, Dvořák et al. [3] observed that in many classes of intersection graphs of
geometric objects in Rd, a non-increasing ordering of the objects according to their volume
easily implies that their strong coloring number is at most O(kd). The starting point of this
paper is the investigation of the same ordering from the perspective of the weak coloring
numbers.

1.3 Strong coloring numbers of intersection graphs
Let S be a finite set of subsets of Rd, which we call objects. The intersection graph of S is
the graph G with V (G) = S and with uv ∈ E(G) if and only if u ∩ v ̸= ∅. For an integer
t ≥ 1, we say that the set S is t-thin if every point of Rd is contained in the interior of at
most t objects from S; in the case t = 1, we say S is a touching representation of G. For
example, a famous result of Koebe [11] states that a graph is planar if and only if it has

SoCG 2022



39:4 Weak Coloring Numbers of Intersection Graphs

a touching representation by balls in R2. Another example can be found in [4], where it
is shown that the graphs in any proper minor-closed class have touching representation by
comparable axis-aligned boxes in bounded dimension. That is, by a set S of axis-aligned
boxes which has the additional property that for every u, v ∈ S, a translation of u is a subset
of v or vice versa. As observed in [3], there is a very natural way of bounding the strong
coloring numbers for thin intersection graphs of certain classes of objects by ordering the
vertices in a non-increasing order according to the size of the objects that represent the
vertices. Note that, by the definitions of the coloring numbers, if it is possible to show an
upper bound on the strong coloring number in this ordering (or any ordering) then it implies
an upper bound on the strong coloring number of the intersection graph. In particular, this
approach works in the case the objects in S are

scaled and translated copies of the same centrally symmetric compact convex object (this
includes intersection graphs of balls and of axis-aligned hypercubes); or
b-ball-like for some real number b ≥ 1, i.e., every v ∈ S is a compact convex set satisfying
vol(v) ≥ vol(B(diam(v)/2))/b, where B(a) is the ball in Rd of radius a, diam(v) is the
maximum distance between any two points of v, and vol(v) is the volume of v; or
comparable axis-aligned boxes.

As we are going to build on this argument, let us give a sketch of it. A linear ordering ≺
of a finite set of compact objects S is sizewise if for all u, v ∈ S such that u ≺ v, we have
diam(u) ≥ diam(v). Roughly, the idea behind the proof of the next lemma is that in a
sizewise ordering, the number of objects it is possible to strongly k-reach from a given object
v, is bounded by the maximum order of a t-thin system of objects of larger size which can be
placed in a scaled instance of v.

▶ Lemma 1. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. Let ≺ be a sizewise linear ordering of
S. For each integer k ≥ 1,
(a) if S consists of scaled and translated copies of the same centrally symmetric object, or if

S is a set of comparable axis-aligned boxes, then scol≺,k(G) ≤ t(2k + 1)d, and
(b) if S consists of b-ball-like objects for a real number b ≥ 1, then scol≺,k(G) ≤ bt(2k + 2)d.

Proof. Consider a vertex v ∈ V (G); we need to provide an upper bound on | sreachG,≺,k(v)|.
For any m ≥ 0, in case (a) let Bm(v) be the object obtained by scaling v by the factor of
2m+1, with the center p of v being the fixed point; i.e., Bm(v) = {p+(2m+1)(q −p) : q ∈ v}.
In case (b), let Bm(v) be a ball of radius (m + 1) diam(v) centered at an arbitrarily chosen
point of v.

For each u ∈ sreachG,≺,k(v), observe that u ∩ Bk−1(v) ̸= ∅, as u is joined to v through
a path with at most k − 1 internal vertices, each represented by an object smaller or
equal to v in size. In case (a), observe that there exists a translation u′ of v such that
u′ ⊆ u and u′ ∩ Bk−1(v) ̸= ∅. In case (b), let u′ be a scaled translation of u such that
u′ ⊆ u, u′ ∩ Bk−1(v) ̸= ∅, and diam(u′) = diam(v). Note that in the former case we have
vol(u′) = vol(v) = (2k + 1)−d vol(Bk(v)), and in the latter case we have

vol(u′) = diamd(v)
diamd(u)

vol(u) ≥ diamd(v)
b diamd(u)

vol(B(diam(u)/2))

= b−1 vol(B(diam(v)/2)) = b−1(2k + 2)−d vol(Bk(v)).
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In either case, observe that u′ ⊆ Bk(v), and since S is t-thin, we have∑
u∈sreachG,≺,k(v)

vol(u′) ≤ t vol(Bk(v)).

Therefore, | sreachG,≺,k(v)| ≤ t(2k + 1)d in case (a) and | sreachG,≺,k(v)| ≤ bt(2k + 2)d in
case (b). ◀

That is, the strong coloring numbers of these graph classes are polynomial in k, with a
uniform ordering of vertices that works for all values of k. For weak coloring numbers, a
general upper bound is as follows.

▶ Observation 2. For any graph G, a linear ordering ≺ of its vertices, and an integer k ≥ 1,

wcol≺,k(G) ≤
k∑

i=1
scol≺,i(G) wcol≺,k−i(G).

In particular, if there exists c > 1 such that scol≺,k(G) ≤ ck for every k ≥ 1, then
wcol≺,k(G) ≤ (2c)k for every k ≥ 1.

For graphs from the classes described in Lemma 1, we obtain an exponential bound on the weak
coloring numbers, more precisely wcolk(G) ≤

(
2t3d

)k in case (a) and wcolk(G) ≤
(
2bt4d

)k

in case (b).

2 Our results

Joret and Wood (see [6]) conjectured that every class of graphs with polynomial strong
coloring numbers also has polynomial weak coloring numbers (more precisely, this claim
is implied by their conjecture regarding weak coloring numbers of graphs of polynomial
expansion). This turns out not to be the case; Grohe et al. [7] showed that the class of graphs
obtained by subdividing all edges of each graph the number of times equal to its treewidth
has superpolynomial weak coloring numbers, while their strong coloring numbers are linear.
However, one could still expect this conjecture to hold for “natural” graph classes, and thus
we ask whether the weak coloring numbers are polynomial for the graph classes described in
Lemma 1. On the positive side, we obtain the following result.

▶ Theorem 3. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. Let ≺ be a sizewise linear ordering of
S. For each integer k ≥ 1:
(a) If S consists of scaled and translated copies of the same centrally symmetric object, then

wcol≺,k(G) ≤ t max(1, ⌈log2 k⌉)(4k − 1)d

(
k + t5d + 2

t5d + 2

)
.

(b) If S consists of b-ball-like objects for a real number b ≥ 1, then

wcol≺,k(G) ≤ tb max(1, ⌈log2 k⌉)(4k)d

(
k + tb6d + 2

tb6d + 2

)
.

Moreover, there exists k0 (depending only on d) such that if S consists of balls, then for every
k ≥ k0,

wcol≺,k(G) ≤ t max(1, ⌈log2 k⌉)(4k − 1)d

(
k + 2t + 2

2t + 2

)
.

SoCG 2022
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Asymptotically, the bounds in (a) and (b) in the above theorem are doubly exponential
in the dimension d and singly exponential in t (and b), and for fixed d and t, they depend on
k polynomially. Note that the bounds are for the full weak coloring numbers (minimized
over all orderings), not just with respect to the sizewise ordering. Theorem 3 is qualitatively
tight in several surprising aspects, summarized in the following result.

▶ Theorem 4. For every positive integer k:
(i) There exists a touching graph Fk of comparable axis-aligned boxes in R3 such that

wcol2k(Fk) ≥ 2k+1 − 1.
(ii) For every t, there exists a t-thin set of axis-aligned squares in R2 whose intersection

graph Hk,t satisfies wcol2k(Hk,t) ≥
(

k+t
t

)
.

(iii) For every d ≥ 1, the graph Hk,2d−1 can also be represented as a touching graph of
axis-aligned hypercubes in Rd+2.

That is:
(i) The class of touching graphs of comparable axis-aligned boxes in R3 has polynomial

strong coloring numbers by Lemma 1, but exponential weak coloring numbers by
Theorem 4(i). This provides a rather natural counterexample to the conjecture of Joret
and Wood.
Let us remark that touching graphs of rectangles in R2 are obtained from planar graphs
by adding crossing edges into faces of size four (when four of the boxes share corners),
and such graphs have polynomial weak coloring numbers (this follows e.g. from their
product structure [1]). Hence, the dimension three in the previous claim cannot be
decreased.

(ii) Lemma 1 shows that the strong coloring numbers depend linearly on the thinness t

of the representation, while the bounds on the weak coloring numbers in Theorem 3
contain t in the exponent. As shown in Theorem 4(ii), in dimension at least two this
cannot be avoided (if we want a bound which is not exponential in k) and Theorem 3
cannot be strengthened so that only the multiplicative constant would depend on t.
Let us also remark that t-thin intersection graphs of intervals in R are interval graphs
of clique number at most 2t. As was pointed to us by Gwenaël Joret, any interval graph
of clique number ω satisfies wcolk(G) ≤

(
ω+1

2
)
(k + 1), as shown by an ordering obtained

by placing first the vertices of a maximal system of pairwise disjoint cliques of size ω

and then recursively processing the remainder of the graph which has clique number
smaller than ω. Hence, the dimension two in the previous claim cannot be decreased.

(iii) In the case (a) of Theorem 3, and in particular for the touching graphs of axis-aligned
hypercubes, the exponent must be exponential in the dimension, in a contrast to the
case of touching graphs of balls.

3 Upper bounds

In order to prove Theorem 3 for all the classes at once, let us formulate an abstract graph
property P (f, a, e) on which the proof is based. For a graph G, a function r : V (G) → R+

and u, v ∈ V (G), let us define λr(u, v) as the minimum of
∑

x∈V (Q)\{u,v} r(x) over all paths
Q from u to v in G. For a function f : Z+

0 → Z+ and positive integers a and e, we say that
(G, r) has the property P (f, a, e) if

(i) for each v ∈ V (G) and integers s ≥ 1 and p ≥ 0, there are at most f(p) vertices
u ∈ V (G) such that r(u) ≥ sr(v) and λr(u, v) ≤ psr(v), and

(ii) for each v ∈ V (G) and each positive integer s, every sequence u1, u2, . . . of distinct
vertices of G such that λr(ui, v) ≤ sr(v) and r(ui) ≥ aisr(v) for each i has length at
most e.
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Let us remark that P (f, a, e) implies P (f, a′, e) for every a′ ≥ a, and (i) implies (ii) with
a = 1 and e = f(1). The following lemma is proved similarly to Lemma 1. In the lemma, for
the role of the function r, we use diam. Intuitively, part (i) says that the number of objects
with large diam that can be reached with a path with bounded diam from some object v is
bounded. Part (ii) says that the number of objects with an increasing diam that can reach
an object v with a path of bounded diam is also bounded.

▶ Lemma 5. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. For v ∈ V (G), let r(v) = diam(v).
(a) If S consists of scaled and translated copies of the same centrally symmetric object, then

(G, r) has the property P (p 7→ t(2p + 3)d, 1, t5d).
(b) If S consists of b-ball-like objects for b ≥ 1, then (G, r) has the property P (p 7→ tb(2p +

4)d, 1, tb6d).
(c) If S consists of balls, then there exists a such that (G, r) has the property P (p 7→

t(2p + 3)d, a, 2t).

Proof. Consider a vertex v ∈ V (G) and integers s ≥ 1 and p ≥ 0. For any m ≥ 0, in cases
(a) and (c) let Bm(v) be the object obtained by scaling v by the factor of 2m + 1, with the
center of v being the fixed point. In case (b), let Bm(v) be a ball of radius (m + 1) diam(v)
centered at an arbitrarily chosen point of v. Let U be the set of vertices u ∈ V (G) such that
r(u) ≥ sr(v) and λr(u, v) ≤ psr(v). Observe that for any u ∈ U , we have u∩Bps(v) ̸= ∅. Let
u′ be a scaled translation of u such that u′ ⊆ u, u′ ∩ Bps(v) ̸= ∅, and diam(u′) = s diam(v).
For each m ≥ 0, in cases (a) and (c), we have

vol(u′) = sd vol(v) =
(

s
2m+1

)d vol(Bm(v)),

and in case (b) we have

vol(u′) ≥ b−1sd vol(B(diam(v)/2)) = b−1(
s

2m+2
)d vol(Bm(v)).

In either case, we have u′ ⊆ B(p+1)s(v), and since S is t-thin, it follows that

|U | ≤ t
( 2(p+1)s+1

s

)d ≤ t(2p + 3)d

in cases (a) and (c), and

|U | ≤ tb
( 2(p+1)s+2

s

)d ≤ tb(2p + 4)d

in case (b). Hence, the part (i) of the property P (f, a, e) is verified, and by the observations
made before the lemma, this finishes the proof for the cases (a) and (b).

Let us now consider the part (ii) in case (c). Let Q be a half-space whose boundary
hyperplane touches Bs(v) and is otherwise disjoint from Bs(v). There exists l such that
vol(Q ∩ Bls(v)) ≥

( 1
2 − 1

6t

)
vol(Bls(v)); let us fix smallest such l. For a ≥ 1, let Ca be a ball

touching Bs(v) of radius as rad(v). I.e. Ca ⊆ Q. Note that

lim
a→∞

vol(Ca ∩ Bls(v))
vol(Bls(v)) = vol(Q ∩ Bls(v))

vol(Bls(v)) ,

and thus there exists a such that vol(Ca ∩ Bls(v)) ≥
( 1

2 − 1
5t

)
vol(Bls(v)); let us fix smallest

such a.

SoCG 2022



39:8 Weak Coloring Numbers of Intersection Graphs

Consider a sequence u1, u2, . . . , un of distinct vertices of G such that λr(ui, v) ≤ sr(v)
and r(ui) ≥ aisr(v) for each i. In particular, note that rad(ui) ≥ rad(Ca) for each i. From
the observation made in the first paragraph of the proof, we have ui ∩ Bs(v) ̸= ∅, and it
follows that

vol(ui ∩ Bls(v))
vol(Bls(v)) ≥ vol(Ca ∩ Bls(v))

vol(Bls(v)) ≥ 1
2 − 1

5t .

Since S is t-thin and n is an integer, this implies n ≤ 2t, verifying the part (ii) of the property
P (p 7→ t(2p + 3)d, a, 2t). ◀

To bound the weak coloring numbers, we need the following result about graphs of
bounded pathwidth which appears in a stronger form (for treewidth) in van den Heuvel et
al. [14]. For us, it is convenient to state the result as follows (without explicitly defining
pathwidth), and thus we include the proof for completeness. A path P = v1v2 . . . vm in a
graph G with a linear ordering ≺ of vertices is decreasing if v1 ≻ v2 ≻ · · · ≻ vm. For each
v ∈ V (G), we define decrG,≺,k(v) as the set of vertices reachable from v by decreasing paths
of length at most k.

▶ Lemma 6. Let k and w be non-negative integers. Let ≺ be a linear ordering of the vertices
of a graph G. If for every x ∈ V (G), at most w vertices y ≺ x have a neighbor y′ ⪰ x, then
| decrG,≺,k(v)| ≤

(
k+w

w

)
for every v ∈ V (G).

Proof. Without loss of generality, we assume that if yy′ ∈ E(G) and y ≺ y′, then y is also
adjacent to all vertices x such that y ≺ x ≺ y′. Indeed, adding such an edge yx does not
violate the assumptions and can only increase | decrG,≺,k(v)|.

The proof is by induction on k +w. Note that | decrG,≺,0(v)| = 1, and thus we can assume
k ≥ 1. If no neighbor of v is smaller than v, then | decrG,≺,k(v)| = 1, and thus the claim of
the lemma holds. Hence, we can assume v has such a neighbor, and in particular w ≥ 1. Let
z be the smallest neighbor of v. Let G′ be the subgraph of G induced by the vertices greater
than z and smaller or equal to v. Since z is adjacent to all the vertices of G′, then for each
x ∈ V (G′), at most w − 1 vertices y ≺ x of G′ have a neighbor y′ ⪰ x in G′.

Consider now a vertex u ∈ decrG,≺,k(v), and let Q be a decreasing path of length at most
k from v to u. If z ≺ u, then Q is also a decreasing path in G′, and thus u ∈ decrG′,≺,k(v).
Note that | decrG′,≺,k(v)| ≤

(
k+w−1

w−1
)

by the induction hypothesis. If u ≺ z, consider the
edge u′z′ of Q such that u′ ≺ z and z ⪯ z′. Note that u′ is not adjacent to v by the
minimality of z, and thus z′ ≠ v. Moreover, by the assumption made in the first paragraph,
u′z ∈ E(G). Hence, u is reachable from v by the decreasing path of length at most k starting
with vzu′ and continuing along Q, and thus u ∈ decrG,≺,k−1(z). If u = z, then we also have
u ∈ decrG,≺,k−1(z). By the induction hypothesis, we have | decrG,≺,k−1(z)| ≤

(
k+w−1

w

)
.

Therefore,

| decrG,≺,k(v)| = | decrG′,≺,k(v)| + | decrG,≺,k−1(z)|

≤
(

k + w − 1
w − 1

)
+

(
k + w − 1

w

)
=

(
k + w

w

)
. ◀

We use the following corollary, obtained by applying Lemma 6 to the graph obtained by
contracting each interval to a single vertex.

▶ Corollary 7. Let w, k, and m be non-negative integers. Let ≺ be a linear ordering of
vertices of a graph H, and let I = {Li : i = 0, 1, . . .} be a partition of V (H) into consecutive
intervals in this ordering, where for every i < j, u ∈ Li, and v ∈ Lj, we have u ≻ v (note
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the reverse ordering of the indices). Suppose that for each i ≥ 0, we have |Li| ≤ m and there
are at most w indices j > i such that a vertex of Lj has a neighbor in L0 ∪ L1 ∪ · · · ∪ Li.
Then | decrH,≺,k(v)| ≤ m

(
k+w

w

)
for each v ∈ V (H).

Theorem 3 now follows from Lemma 5 and the following theorem.

▶ Theorem 8. Let f : Z+
0 → Z+ be a function and let a and e be positive integers. For a

graph G and a function r : V (G) → R+, let ≺ be a linear ordering of V (G) such that if u ≺ v,
then r(u) ≥ r(v). If (G, r) has the property P (f, a, e), then

wcol≺,k(G) ≤ max(1, ⌈log2 k⌉)f(2k − 2)
(

k + e + 2
e + 2

)
for every integer k ≥ a.

Proof. Consider any integer k ≥ a and a vertex v ∈ V (G); we are going to bound the number
of vertices weakly k-reachable from v. Note that for k = 1, wreachG,≺,1(v) consists of the
vertices x ∈ V (G) such that r(x) ≥ r(v) and λr(v, x) = 0, and thus | wreachG,≺,1 | ≤ f(0)
by the part (i) of the property P (f, a, e) with s = 1 and p = 0. Hence, we can assume that
k ≥ 2.

Let H be the graph with the vertex set wreachG,≺,k(v), such that for x, y ∈ V (H) with
x ≺ y, we have xy ∈ E(H) if and only if there exists a path Q of length at most k in G from
v to x such that y ∈ V (Q) and all the internal vertices of the subpath of Q between x and y

are greater than y. Let ℓ(xy) denote the minimum length of the subpath between x and y

over all paths Q satisfying these conditions. Observe that, by the definition of V (H) and
ℓ(xy), for every edge e′ of H, there exists a decreasing path D from v in H containing the
edge e′ such that

∑
e∈E(D) ℓ(e) ≤ k. Moreover, V (H) = decrH,≺,k(v).

For i ≥ 0, let Li consist of the vertices x ∈ V (H) such that kir(v) ≤ r(x) < ki+1r(v); in
particular, v ∈ L0. Let c = ⌈log2 k⌉ and further partition Li into Li,1, . . . , Li,c, where Li,b

consists of the vertices x ∈ Li with 2b−1kir(v) ≤ r(x) < 2bkir(v) for b = 1, . . . , c. Consider
any vertex x ∈ Li,b. Since x is weakly k-reachable from v and r(x) < 2bkir(v), we have
λr(v, x) < (k − 1)2bkir(v). Moreover, r(x) ≥ 2b−1kir(v), and thus by the part (i) of the
property P (f, a, e) with s = 2b−1ki and p = 2(k − 1), we conclude |Li,b| ≤ f(2k − 2) for each
b ∈ {1, . . . , c}. Hence, we have |Li| = |Li,1| + · · · + |Li,c| ≤ cf(2k − 2) = ⌈log2 k⌉f(2k − 2).

Let j−1 < j0 < j1 < · · · < jw−2 be all indices such that j−1 > i and for each m ∈
{−1, . . . , w − 2}, a vertex um ∈ Lj,m has a neighbor ym ∈ L0 ∪ · · · ∪ Li for each m. For
m = 1, . . . , w − 2, since there exists a decreasing path D from v containing the edge umym

such that
∑

e∈E(D) ℓ(e) ≤ k, there exists a path Q in G from v to um of length at most k

such that r(x) ≤ r(ym) < ki+1r(v) for every internal vertex x of Q. Consequently, we have
λr(v, um) ≤ (k − 1)ki+1r(v) ≤ sr(v) for s = ki+2. Moreover, note that jm ≥ i + 2 + m, and
thus r(um) ≥ ki+2+mr(v) ≥ amsr(v). By part (ii) of the property P (f, a, e), we conclude
that w ≤ e + 2.

Hence, Corollary 7 implies that

| wreachG,≺,k(v)| = | decrH,≺,k(v)| ≤ ⌈log2 k⌉f(2k − 2)
(

k + e + 2
e + 2

)
for each v ∈ V (G). ◀
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AH,≺,3 :H :

v1 v2 v3

v1 v3 v2

Figure 2 The graph AH,≺,3 depicted in two ways, the first respecting the ordering and the second
is easier to translate into a geometric setting.

4 Lower bounds

It is relatively easy to construct intersection graphs with large weak coloring numbers with
respect to a fixed ordering. The following construction (illustrated in Figure 2) enables us to
turn such graphs into graphs that have large weak coloring numbers with respect to every
ordering. Let H be a graph and ≺ a linear ordering of its vertices. Let v1 ≺ · · · ≺ vn be
the vertices of H. Let m be a positive integer and let T be the complete rooted m-ary tree
of depth n − 1. For i ∈ {1, . . . , n}, let T (vi) be the set of vertices of T at distance exactly
i − 1 from the root. The graph AH,≺,m has vertex set V (T ), with vertices x ∈ T (vi) and
y ∈ T (vj) adjacent if and only if i ̸= j, vivj ∈ E(H), and x is an ancestor of y in T or vice
versa. We say that T is the scaffolding of AH,≺,m.

▶ Lemma 9. Let k and m be positive integers. Let H be a graph and ≺ a linear ordering of
its vertices. Suppose that for each v ∈ V (H), the graph H[{u ∈ V (H) : v ⪯ u}] is connected
and has diameter at most k. Then

wcolk(AH,≺,m) ≥ min
(
m, wcol≺,k(H)

)
.

Proof. Consider any linear ordering ◁ of the vertices of AH,≺,m. Let T be the scaffolding of
AH,≺,m and suppose first that there exists a non-leaf vertex z ∈ V (T ) such that all children
z1, . . . , zm of z in T are smaller than z in the ordering ◁. For i = 1, . . . , m, let Ai be the
subgraph of AH,≺,m induced by z, zi, and all descendants of zi in T . Let v be the vertex of
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AH,≺,3 :H :

Figure 3 Representation of the graphs H and AH,≺,3 in Figure 2 as intersection graphs of
intervals and squares.

H such that z ∈ T (v); since the graph H[{u ∈ V (H) : v ⪯ u}] has diameter at most k, every
vertex of Ai is at distance at most k from z. Since zi ◁ z, we conclude that a vertex of Ai

distinct from z is weakly k-reachable from z. Since this is the case for each i ∈ {1, . . . , m}
and the subgraphs A1, . . . , Am intersect only in z, it follows that

wcol◁,k(AH,≺,m) ≥ | wreachAH,≺,m,◁,k(z)| ≥ m.

Hence, we can assume that each non-leaf vertex z of T has a child which is greater than z

in the ordering ◁. Consequently, T contains a path u1u2 . . . un from the root to a leaf such
that u1 ◁ · · · ◁ un. The subgraph A of AH,≺,m induced by {u1, . . . , un} with ordering ◁ is
isomorphic to H with ordering ≺, and thus

wcol◁,k(AH,≺,m) ≥ wcol◁,k(A) = wcol≺,k(H). ◀

Moreover, assuming H has a sufficiently generic representation by comparable axis-aligned
boxes, we can also find such a representation for AH,≺,m. Given an axis-aligned box v in
Rd and i ∈ {1, . . . , d}, let ℓi(v) denote the length of v in the i-th coordinate. We say that
a sequence v1, . . . , vn of axis-aligned boxes is m-shrinking if ℓd(vi) > mℓd(vi+1) holds for
1 ≤ i ≤ n − 1. See Figure 3 for an illustration of the following construction.

▶ Lemma 10. Let d, t and m be positive integers. Let S be a t-thin finite set of comparable
axis-aligned boxes in Rd and let H be the intersection graph of S. Let T be the scaffolding
of AH,≺,m. Let ≺ be a sizewise linear ordering of S and let v1, . . . , vn be the sequence of
vertices of H in this order. If this sequence is m-shrinking, then AH,≺,m is the intersection
graph of a t-thin set of comparable axis-aligned boxes in Rd+1, where for v ∈ V (H) and
u ∈ T (v), u is the product of v with an interval of length ℓd(v).

Proof. Let ε > 0 be small enough so that ℓd(vi) ≥ m(ℓd(vi+1) + ε) holds for 1 ≤ i ≤ n − 1.
For each non-leaf vertex z of T , assign labels 0, . . . , m − 1 to the edges from z to the children
of z in any order; let l(e) denote the label assigned to the edge e. For a vertex y of T , if
y1y2 . . . yc is the path in T from the root to y, then let l(y) = (l(y1y2), l(y2y3), . . . , l(yc−1yc)).
Note that y is an ancestor of a vertex x in T if and only if l(y) is a prefix of l(x). Let
s(y) =

∑c−1
i=1 (l(y))i(ℓd(vi+1) + ε), and let I(y) be the interval [s(y), s(y) + ℓd(vc)]. Observe

that if y is an ancestor of a vertex x in T , then I(x) ⊂ I(y), and if x is neither an ancestor
nor a descendant of y in T , then I(x) ∩ I(y) = ∅.
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s

F ′k−1F ′k−1

=
s

F ′k

scaled (m+ 1)× horizontally

scaled a lot horizontally

Figure 4 The construction from Lemma 12.

Hence, letting each vertex y at distance c − 1 from the root of T be represented by the
box vc × I(y) in Rd+1, we obtain a t-thin intersection representation of AH,≺,m as described
in the statement of the lemma. ◀

To verify the assumptions of Lemma 9, the following concept is useful. Let ≺ be a linear
ordering of vertices of a graph G. A decreasing spanning tree is a spanning tree T of G rooted
in the maximum vertex such that any path in T starting in the root is decreasing.

▶ Lemma 11. Let k ≥ 0 be an integer. Let ≺ be a linear ordering of vertices of a graph G.
If G has a decreasing spanning tree T of depth at most k, then wcol≺,k(G) = |V (G)|, and for
each v ∈ V (G), the graph G[{u ∈ V (H) : v ⪯ u}] is connected and has diameter at most 2k.

Proof. Let z be the maximum vertex of G. Since T is decreasing and has depth at most
k, we have wcol≺,k(G) ≥ | wreachG,≺,k(z)| = |V (G)|. Moreover, for each v ∈ V (G), letting
Cv = {u ∈ V (H) : v ⪯ u}, observe that for each x ∈ Cv, all ancestors of x also belong to Cv.
Hence, T [Cv] is a spanning tree of G[Cv] of depth at most k, and thus G[Cv] is connected
and has diameter at most 2k. ◀

We now find some basic graphs to which we can apply the construction.

▶ Lemma 12. For all integers k ≥ 0 and m ≥ 1, there exists a graph F ′
k with 2k+1 −1 vertices

represented as the touching graph of an m-shrinking sequence of comparable axis-aligned
rectangles in R2, such that F ′

k has a spanning tree of depth at most k decreasing in the
sizewise ordering.

Proof. We proceed by induction on k. For each k, we construct a representation of F ′
k

where the last vertex is represented by a unit square s and the rest of the representation is
contained in the lower left quadrant starting from the middle of the upper side of s. The
second coordinate (relevant for the definition of an m-shrinking sequence) is the horizontal
one. In the vertical coordinate, all rectangles have length 1. See Figure 4 for an illustration
of the construction.

The graph F ′
0 is a single vertex represented by s. For k ≥ 1, to obtain a representation of

F ′
k, we scale the representation of F ′

k−1 in the horizontal direction by the factor of m + 1
and place it so that its upper right corner is the middle of the lower side of s. Then we add
another copy of a representation of F ′

k−1, scaled in the horizontal direction so that all its
rectangles are more than m times longer than the already placed ones and so that when we
place its upper right corner at the upper left corner of s, their interiors are disjoint from the
already placed rectangles.

Observe that F ′
k contains a spanning complete binary tree of depth k rooted in s, with

the vertices along each path from the root increasing in size, and thus decreasing in the
sizewise ordering. ◀
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=
H ′k−1,t (scaled)H ′k,t

H ′k,t−1

Figure 5 The construction from Lemma 13.

▶ Lemma 13. For all integers k ≥ 0 and m, t ≥ 1, there exists a graph H ′
k,t with

(
k+t

t

)
vertices represented by a t-thin m-shrinking sequence of intervals in R, such that H ′

k,t has a
spanning tree of depth at most k decreasing in the sizewise ordering. Furthermore, H ′

k,t is
properly (t + 1)-colorable.

Proof. We construct a representation of H ′
k,t with the additional property that the right

end of the smallest interval is the strictly rightmost point of the whole representation. See
Figure 5 for an illustration of the construction.

We proceed by the induction on k + t. If k = 0, the representation of H ′
k,t consists of a

single unit interval. If t = 1, then the representation consists of an m-shrinking sequence of
k + 1 intervals intersecting only in endpoints. Hence, suppose that k ≥ 1 and t ≥ 2. Then
the representation consists of the representation A of H ′

k,t−1 and of the representation B

of H ′
k−1,t scaled so that all its intervals are more than m times longer than all intervals in

A and so that when we place the rightmost point of B slightly to the left of the rightmost
point of A, only the smallest interval of B intersects all intervals of A.

Observe that H ′
k,t has a spanning tree of depth k rooted in the smallest vertex, with the

vertices along each path from the root increasing in size, and thus decreasing in the sizewise
ordering. Finally, note that H ′

k,t is an interval graph with clique number at most t + 1. Since
interval graphs are perfect, H ′

k,t is properly (t + 1)-colorable. ◀

As a final ingredient, we note that we can trade thinness for dimension.

▶ Lemma 14. For a positive integer d, let S = {v1, . . . , vn} be a finite set of hypercubes
in Rd, and let G be the intersection graph of S. For any set Y ⊆ {1, . . . , n}, there exists a
set {u1, . . . , un} of hypercubes in Rd+1 whose intersection graph is isomorphic to G via the
isomorphism mapping ui to vi for each i, such that

for 1 ≤ i < j ≤ n, if vi and vj have disjoint interiors, then ui and uj have disjoint
interiors, and
for i ∈ Y and j ∈ {1, . . . , n} \ Y , the hypercubes ui and uj have disjoint interiors.

Proof. For i ∈ Y , we set ui = vi×[0, ℓ1(vi)]. For i ∈ {1, . . . , n}\Y , we set ui = vi×[0, −ℓ1(vi)].
Note that the intersection of the representation with the hyperplane defined by the last
coordinate being 0 is equal to S, and thus indeed the intersection graph of S′ is isomorphic
to G as described. ◀

▶ Corollary 15. Let c ≥ 0 and d ≥ 1 be integers. If G is a graph of chromatic number at most
2c representable as an intersection graph of hypercubes in Rd, then G is also representable as
a touching graph of hypercubes in Rd+c.

Proof. Let V (G) = {v1, . . . , vn}, and let φ : V (G) → {0, 1}c be a proper coloring of G. By
repeatedly applying Lemma 14 for sets Y1, . . . , Yc, where Yb = {i ∈ {1, . . . , n} : φ(vi)b = 0}
for b ∈ {1, . . . , c}, we obtain a representation of G as an intersection graph of hypercubes
u1, . . . , un in Rd+c with the property that for 1 ≤ i < j ≤ n, if φ(vi) ̸= φ(vj), then ui
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and uj have disjoint interiors. If φ(vi) = φ(vj), then since φ is a proper coloring, we have
vivj ̸∈ E(G), and thus the hypercubes ui and uj are disjoint. Consequently, the hypercubes
u1, . . . , un have pairwise disjoint interiors. ◀

We are now ready to give the lower bounds.

Proof of Theorem 4. We prove each point separately:
(i) Let F ′

k be the graph obtained in Lemma 12, represented as a touching graph of an
m-shrinking sequence of axis-aligned rectangles for m = 2k+1 − 1. Let ≺ be the sizewise
ordering of F ′

k. By Lemma 11, we have wcol≺,k(F ′
k) = |V (F ′

k)| = 2k+1 − 1. Letting
Fk = AF ′

k
,≺,m, Lemma 9 implies wcol2k(Fk) ≥ 2k+1 − 1. Moreover, by Lemma 10, Fk

is a touching graph of comparable axis-aligned boxes in R3.
(ii) Let H ′

k,t be the graph obtained in Lemma 13, represented as the intersection graph
of a t-thin m-shrinking sequence of intervals for m =

(
k+t

t

)
. Let ≺ be the sizewise

ordering of H ′
k,t. By Lemma 11, we have wcol≺,k(H ′

k,t) = |V (H ′
k,t)| =

(
k+t

t

)
. Letting

Hk,t = AH′
k,t

,≺,m, Lemma 9 implies wcol2k(Hk,t) ≥
(

k+t
t

)
. Moreover, by Lemma 10,

Hk,t is the intersection graph of a t-thin set of axis-aligned squares in R2.
(iii) Recall that by Lemma 13, the graph H ′

k,2d−1 is properly 2d-colorable. Let T be the
scaffolding of Hk,2d−1. For each v ∈ V (H ′

k,2d−1), we can assign the color of v to all
vertices in T (v), obtaining a proper coloring of Hk,2d−1 by 2d colors. Corollary 15
implies that Hk,2d−1 can be represented as a touching graph of axis-aligned hypercubes
in Rd+2. ◀

5 Conclusions

In this paper we have provided upper bounds on the weak coloring number of t-thin
intersection graphs of d-dimensional objects of different kinds. Our bounds are qualitatively
tight in several aspects. We would like to mention a few open questions, beyond improving
the proven upper and lower bounds:

What is the asymptotic behavior of the k-th weak coloring numbers of planar graphs? It
is known to be O(k3) [14] and Ω(k2 log k) [9].
What is the asymptotic behavior of the k-th strong coloring numbers of touching graphs
of unit balls in Rd? It is known to be O(kd−1) and Ω(kd/2).
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