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Abstract: Best estimate system thermal-hydraulic codes in the nuclear engineering community, e.g.,
TRACE, RELAP3D, CATHARE-3, etc., were extended with 3D coarse-mesh components to better
describe the 3D Thermal-Hydraulic (TH) phenomena taking place within the Reactor Pressure Vessel
(RPV) and the core. The RPV is usually shaped like a cylinder while the core is mostly a cube. Hence,
the TRACE code is equipped with a Cylindrical VESSEL and a Cartesian VESSEL. The former one
is to represent the RPV (including core), pressurizer, and steam generator. The latter one is more
appropriate to represent the core. The two components are connected by two Vessel-Junctions (VJ) at
the core inlet and outlet. Due to the different nodalization between the two VESSELs, the analyst
needs to do repetitive and error-prone work defining the cell-to-cell junctions and their TH parameters.
To facilitate this process, the Karlsruhe Institute of Technology (KIT) has developed an automatic
approach based on a mesh-constructing and field-mapping library, namely the MEDCoupling. These
new capabilities of TRACE are demonstrated by the analysis of the coolant mixing for an academic
case and the AP1000 reactor.

Keywords: TRACE; Cylindrical VESSEL; Cartesian VESSEL; automatic modeling; MEDCoupling

1. Introduction

The use of 3D Thermal-Hydraulic (TH) codes including system codes with 3D coarse
mesh (like TRACE [1] and RELAP5-3D [2]), 3D porous-media, quasi-3D subchannel, and
CFD codes for transient analysis of Nuclear Power Plants (NPP) is a tendency nowadays in
the nuclear community. Among them, TRACE (TRAC/RELAP Advanced Computational
Engine) is a best-estimate reactor system analysis code developed by the U.S. NRC for the
analysis of design basis accidents of light water reactors. The use of the coarse-mesh 3D
VESSEL components in TRACE is intended to be used to better describe the TH phenomena
in the primary circuit and the core of Light Water Reactors (LWR) or Small Modular Reactors
(SMR) during non-symmetrical transients, e.g., Main Steam Line Breaking (MSLB) accident,
boron dilution, etc., where 3D TH processes are important.

Usually, the flow behavior in the downcomer, the lower plenum, the reactor core, and
the upper plenum is treated as 3D flow using the Cylindrical VESSEL with coarse mesh in
TRACE. In recent years, a Cartesian 3D VESSEL was added to TRACE for better modeling
of the core. The two 3D VESSELs connect through plenty of PIPE components (as Junctions).
There, the PIPE positions (based on the spatial correspondence between the flow channels
of the two different VESSELs), as well as their thermal-hydraulic definitions, need to be
determined by the analyst. That information could be given either in the standard ASCII
input file or by defining the Vessel-Junction (VJ) components in the pre- and post-processor
SNAP [3]. The well-known French system TH code CATHARE has also applied a similar
approach which uses 3D Cylinder and Cartesian Vessels to model the RPV and core, from
version 3 [4].
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The connections of the two 3D Vessels usually require the specifications of the po-
sitional correspondence for dozens and hundreds of flow junctions including their flow
areas and the hydraulic diameters at the core inlet and outlet. CATHAE-3 uses its GUI-tool
GUITHARE [5] to handle this process [6,7]. In TRACE, this approach usually requires the
analyst to define those parameters manually. These operations are repetitive and error
prone. In addition, another drawback of this method is the poor accuracy since the calcula-
tion of TH parameters often involves irregular intersections of two channels, which hardly
can be managed manually.

Consequently, KIT started the development of an innovative multi-vessel coupling
approach that automatizes all operations involved in the vessel-coupling process, where
the VJ component is no longer needed. For it, we selected the mesh-constructing and
field-mapping MEDcoupling library [8] to take advantage of its automatic interpolation
functionalities of meshes and fields. This library plays a key role in specifying the spatial
correspondence of flow channels and calculating the necessary TH parameters. For this
purpose, the low-level data structure of TRACE was significantly restructured. This variant
of TRACE is an internal code of KIT at present. Nevertheless, its functional implementation
to the official release is possible.

In this paper, the Cylindrical VESSEL is hereinafter referred to as the CY-V while the
Cartesian VESSEL is referred to as CA-V.

Finally, it is worth mentioning that the multi-scale coupling approach for different
thermal-hydraulic codes is also being developed where system TH codes are being coupled
with the subchannel and with CFD codes for an improved description of 3D phenomena
inside the primary circuit and the core of NPPs. A recent overview paper summarized
these activities [9].

This paper briefly introduces the TRACE code emphasizing the functionalities of the
3D VESSEL components in Section 2. Then, the MEDcoupling library and the automatic
coupling approach based on it are described in Section 3. In Section 4, the new capability of
TRACE for multi-VESSEL coupling is demonstrated by the analysis of two coolant mixing
problems in the RPV of two different reactors, i.e., a generic four-loop PWR and the AP-1000
reactor. Finally, the conclusions and outlook are presented.

2. The TRACE Code
2.1. Basics of TRACE

TRACE is the best-estimate system thermal-hydraulic code of the U.S. Nuclear Regula-
tory Commission (NRC) for the analysis of design basis accidents of LWR. It solves a system
of six conservation equations in the two-fluid formulation for 1D and/or 3D single and/or
two-phase flow. There are two options available for the solution: the semi-implicit method
and the Stability-Enhancing Two-Step (SETS) method. Together with some essential closure
correlations, TRACE can describe the key phenomena inside pipes, valves, reactor pressure
vessels, pumps, steam generators, etc. Those structures in TRACE are represented as some
type of component, e.g., PIPE, VALVE, VESSEL, and PUMP. Among them, VESSEL is the
special 3D component with the capability to describe spatial thermal-hydraulics. It is used
mainly to represent the RPV. Nevertheless, it can also represent a steam generator or a
pressurizer. TRACE has two types of VESSEL. They are the 3D (r, θ, z) Cylindrical VESSEL–
CY-V (Figure 1a), and the 3D (x, y, z) Cartesian VESSEL–CA-V (Figure 1b). The former
normally simulates the whole RPV while the latter often models the core particularly. The
joint use of CY-V and CA-V can improve the prediction accuracy in the core area during
a system-scale simulation. Properly managing the coupling between the VESSELs needs
significant effort. Therefore, a separate section contributes the related illustration.
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which includes the RPV, the hot/cold legs, and the pumps. The coolant enters the RPV 
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Figure 2. The diagram of the primary circuit of AP1000. 

The TRACE model of the RPV includes a CY-V (for the RPV), a CA-V (for the core), 
and several additional components as the RPV inlets/outlets. Furthermore, as it was 
pointed out in the introduction, the two VESSEL components connect each other through 
the Vessel Junction (VJ) components. Figure 3 displays the overall configuration of the 
TRACE model, where the core is represented by the Cartesian VESSEL and the RPV by 
the Cylindrical one. 

As depicted in the figure, the RPV has four inlets and two outlets. Every two inlets 
and one outlet correspond to one primary loop (AP1000 has two primary loops). The two 
VJs connect the VESSELs at the core inlet and outlet, respectively. Their definition panel 
in SNAP is shown in Figure 4. In the upper part of the panel, users can view the axial 
cross-sections of the two VESSELs. The lower part is the parameterized definition win-
dow. Here, users must specify the spatial correspondence of the channels and the TH pa-
rameters (flow areas and hydraulic diameters) for each junction. Each VJ could consist of 
dozens or hundreds of such junctions. 

Figure 1. The CY-V (a) and CA-V (b) components.

2.2. Current Coupling between the Cylindrical and Cartesian VESSELs

In this section, we use the RPV of AP1000 to demonstrate the coupling rules between
CY-V and CA-V. Figure 2 exhibits the basic configurations of the AP1000 primary circuit,
which includes the RPV, the hot/cold legs, and the pumps. The coolant enters the RPV
through the four cold-legs. It heats up in the reactor and flows out of the RPV to the
two hot-legs. There are two primary loops. Each of them corresponds to one hot-leg and
two cold-legs.
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Figure 2. The diagram of the primary circuit of AP1000.

The TRACE model of the RPV includes a CY-V (for the RPV), a CA-V (for the core), and
several additional components as the RPV inlets/outlets. Furthermore, as it was pointed
out in the introduction, the two VESSEL components connect each other through the Vessel
Junction (VJ) components. Figure 3 displays the overall configuration of the TRACE model,
where the core is represented by the Cartesian VESSEL and the RPV by the Cylindrical one.

As depicted in the figure, the RPV has four inlets and two outlets. Every two inlets
and one outlet correspond to one primary loop (AP1000 has two primary loops). The two
VJs connect the VESSELs at the core inlet and outlet, respectively. Their definition panel
in SNAP is shown in Figure 4. In the upper part of the panel, users can view the axial
cross-sections of the two VESSELs. The lower part is the parameterized definition window.
Here, users must specify the spatial correspondence of the channels and the TH parameters
(flow areas and hydraulic diameters) for each junction. Each VJ could consist of dozens or
hundreds of such junctions.
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Figure 4. The definition panel of VJ components in SNAP.

The determination or calculation of such parameters sometimes may be very difficult.
Take the AP1000 model as an example, the axial cross-sections of the CY-V and CA-V are
depicted in Figure 5a,c. By overlapping the two planes, the complicated cell intersections
become apparent, Figure 5b. It calls for careful attention to determine the contributions
from one cylindrical cell to one Cartesian cell, and vice versa. This is a significant workload
for the users. This is also the reason why the manual calculation of the hydraulic parameters
may be error prone.
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3. The Automatic Coupling Approach between the Cylindrical and Cartesian VESSELs
3.1. The MEDCoupling Library

The MEDCoupling is a built-in library of the SALOME platform. It is released follow-
ing the SALOME distribution rules. Nevertheless, it is also available as an independent
package. The MEDCoupling library is a kind of toolkit that gathers several powerful
functionalities around the input and output data of simulation codes (meshes and fields
mainly). It is an advanced Application Programming Interface (API) to deal with meshes
and fields in memory. The meshes and fields especially refer to the MED format. MED is a
broad concept that involves many derivational concepts, e.g., a data format, a library, an
API, etc. MEDCoupling is a sort of a logical subset of MED.

With some other sub-libraries, MEDCoupling can construct/modify, write/read
meshes and fields in MED format. Furthermore, it can interpolate or map two differ-
ent meshes to translate the fields between the meshes. This is the key feature that makes
the automated multi-vessel coupling possible in our case. The MEDCoupling library was
already implemented into TRACE to construct the 3D and 2D meshes of the CY-V (Figure 6,
left) [10]. This functionality is the base of the multi-scale coupled codes TRACE/SCF [11]
and TRACE/TrioCFD [12] where mesh/fields translation plays a key role. This paper
constructs the 3D and 2D meshes of the CA-V component (Figure 6, right, the AP1000
model). Based on these meshes, the new multi-vessel coupling technique is illustrated in
the following subchapters.
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surface mesh/2D mesh of CY-V, 2D mesh/3D body mesh/3D surface mesh of CA-V).

3.2. Mechanism of the Approach

The new multi-vessel coupling method is developed to release users from the heavy
workload of manually defining the VJ components. With this new method, the AP1000 case
demonstrated in Figure 3 now is simplified to Figure 7, where the VJ components are no
longer necessary. This is a fully automated method based on both high-level and low-level
mechanisms, which will be explained hereafter.

3.2.1. High-Level

The new version of TRACE at KIT now can be compiled in two modes: with or without
the advanced functionalities for VESSEL coupling. It was initially checked that the modified
TRACE version predicts the same results as the original one and no functionalities of the
original version deteriorate, with a couple of simple test cases.
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In the case of the extended TRACE version, the VESSEL components in the plant model
that represent the RPV are identified first, i.e., the VESSEL components that model other
structures, e.g., pressurizer, are ignored. If there is no VESSEL for RPV, the code runs in the
same manner as the original TRACE version. If there is only one CY-V representing the
RPV, the VESSEL-coupling logic is skipped and the functionalities for the post-processing
of the VESSEL are available. If a CY-V (for RPV) and a CA-V (for core) exist, the VESSEL-
coupling logic is activated. The key steps of this approach are illustrated in Figure 8
(AP1000 TRACE model).
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Figure 8. The main procedures during a multi-vessel coupling process.

Each step is characterized as follows:

(1) Identification of the VESSEL components representing an RPV, a core, and, e.g., a
pressurizer. The latter VESSEL will be ignored;

(2) Generation of 2D meshes by the MEDcoupling library for the components CY-V and
CA-V using the geometrical data;

(3) Identification of the core inlets and outlets. The flow area data at those interfaces
would be extracted from TRACE memory and written to the 2D meshes;

(4) Interpolation between the cylindrical and Cartesian 2D meshes. Construction of the
inter-junctions between the two VESSELs. The TH parameters of each junction are
computed and stored in the fields of the 2D meshes.

It is worth noting that at present only one CY-V (for RPV) and one CA-V (for core) are
coupled automatically by this approach.
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3.2.2. Low-Level

By defining the VJ component in SNAP, users can establish the relationship between
the two VESSELs. This is the traditional way to handle the VESSEL coupling problem with
the original TRACE version. In this case, once the VJ component is defined, two bundles of
PIPE components are inserted into the TRACE input deck. They act as the junctions at the
core inlet and outlet between the two VESSELs. Those complementary PIPEs are processed
by the TRACE input routines as normal components, Figure 9.
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The final goal of the automatic VESSEL-coupling approach is to construct the two
bundles of PIPEs as well. However, they are constructed by the MEDCoupling library
automatically, and hence, no manual definition by the user, e.g., in SNAP is needed.
Another significant difference is the fact that the complementary PIPEs are not present in
the input deck. They are not normal components so they are not processed by TRACE’s
regular input routines. Instead, they are automatically generated after the input processing
because their construction depends on the geometries of the VESSELs. Furthermore, their
information is directly inserted into the memory and the TRACE data structure in the
runtime dynamically. Thus, a major modification of the TRACE source was necessary to
handle it.

4. Testing the Automatic VESSEL-Coupling Approach

The automatic VESSEL-coupling technique was tested with two coolant mixing cases.
One is performed in a generic four-loop PWR and the other in the AP1000 reactor.

4.1. The Coolant Mixing in a Four-Loop PWR

The TRACE model consists of an RPV represented by a CY-V, a core represented by a
CA-V, hot-legs, and cold-legs. The overall RPV height and radius are 12.245 and 1.7002 m.
It is discretized into 16 axial nodes, 4 azimuthal nodes, and 2 radial nodes. The reactor
has four hot-legs and four cold-legs symmetrically connected to the RPV. In this model,
the circuits are not considered. The Cartesian Vessel is subdivided into nine square fuel
assemblies arranged in a 3 × 3 matrix. Figure 10 shows the TRACE models for the RPV
and the core.

Four FILL and BREAK components are connected to a portion of the cold and hot
legs to define the boundary conditions of the problem, e.g., loops mass flow rate, coolant
temperature, and pressure. The coolant enters the cold legs, then flows into the downcomer
of the RPV and from there to the lower plenum where the flow changes direction and flows
upwards entering into the core bottom. The coolant flows through the core and enters the
upper plenum. Finally, it exits the RPV and flows into the BREAKs through the hot legs.
The core is modeled by the Cartesian VESSEL, which is connected to the RPV-axial face
Nr. 2 (core inlet) and the axial face Nr. 11 (core outlet). Hence, the core region in the CY-V
is blocked, i.e., no coolant flows through it. Please take Figure 9 as a reference. Once the
code is launched, the steps listed under Section 3.2.1 are performed sequentially. According
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to the VESSEL components configuration, 32 additional PIPEs (as Junctions connecting
the two VESSEL components) are constructed and inserted into the TRACE data structure
automatically. In total, 16 of them are at the core inlet plane and 16 are at the core outlet
plane. Figure 11 illustrates the quantitative distribution of the additional PIPEs from the
point of the CA-V (1 × 4 + 2 × 4 + 4 × 1 = 16).
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TRACE first runs a Steady-State (SS) simulation. During the SS, the inlet velocity at
loop1 is 15 m/s. Inlet velocities of the other three loops are identical to 10 m/s. The inlet
coolant temperature is 400 K. The outlet pressure is 15.55 MPa. After the SS, a TRACE
transient (TS) simulation is carried out. The total problem time is 50.0 s. The boundary
conditions for the transient are given in Table 1.

Table 1. The boundary conditions during the transient.

Inlet Velocity [m/s] Inlet Temperature [K] Outlet Pressure [MPa]

Time 0~50 s 0~35 s 35~50 s 0~50 s
Loop 1 15 400–500 500 15.55

Loop 2~4 10 400 15.55

The cold coolant and hot coolant first mix a little bit in the CY-V downcomer. Then,
the main mixing effect happens in the CY-V lower plenum. The coolant then flows from
the CY-V lower plenum to the CA-V core and there in the core some mixing would happen.
Next, the coolant flows out of the CA-V core and to the CY-V upper plenum. There the
final mixing takes place. Particularly for this testing case, what we are concerned about is
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whether the coolant can flow between the two VESSELs properly and whether the coolant
mixing effect behaves rationally in/between the two VESSELs.

Figure 12 exhibits the qualitative distribution of the coolant temperature in the RPV
and the core at the end of the transient. It can be observed that the coolant temperature of
the cylindrical sectors of the CY-V corresponding to the loop-1 and of the Cartesian cells
linked to it are hotter than the one of the other sectors/cells.
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Figure 12. The coolant temperature distributions in the CY-V and CA-V (from left to right, from top
to bottom: 3D field/2D field at the core inlet/2D field at the core outlet of CY-V, 3D field/2D field at
the core inlet/2D field at the core outlet of CA-V).

The coolant temperature distribution at the core inlet demonstrates that the coolant
flows from the CY-V to the CA-V correctly. Similarly, the coolant temperature distribution
at the core outlet shows that the coolant flow from the CA-V to the CY-V is passed from
one VESSEL to the other properly. The roughly same temperature distribution at the CA-V
inlet and outlet planes indicates weak coolant mixing in the core. However, we can see an
obvious difference between the CY-V inlet and outlet planes. There at the CY-V outlet, the
hot part is cooler and the cold part is hotter than that at the CY-V inlet. This indicates a
considerable mixing in the core, which is not consistent with the conclusion from the CA-V
analysis. This phenomenon is due to a “mixing” when the coolant flows from the coarse
CY-V mesh to the fine CA-V mesh (from the lower plenum to the core) and then back to the
CY-V mesh (from core to upper plenum). The intersections between fields in the different
meshes introduce a sort of “averaging effect” into the system and thus cause a stronger
mixing effect in the CY-V than that in the CA-V. This effect is now under study at KIT.

Another phenomenon we can observe from the figure is that the colors of the outer
ring in the CY-V mesh intrude into the inner ring. These sorts of distortions are due to
MED meshing limitations. The appearance has no concern with the physical aspects.

Figures 13 and 14 exhibit the coolant temperature evolutions at the core inlet planes
of the two VESSELs. Each curve represents an individual sector/cell on the planes. The
former is for the CY-V (4 sectors) and the latter is for the CA-V (9 cells). The increase in
the coolant temperature at the core inlet of sectors 2 and 4 is due to the coolant mixing
taking place in the downcomer since these sectors are the neighbor sectors of sector 1
(hotter coolant).
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Keeping in mind the cell indexing of the Cartesian VESSEL in Figure 10, it can be
seen in Figure 14 that cell 9 is the hottest, cells 6 and 8 the second hottest, and cell 5 the
third hottest. The coolant temperature of cell 9 is similar to the CY-V sector 1 while the
coolant temperature of cells 6 and 8 are similar to sectors 2 and 4, see Figures 13 and 14. The
reason for it is the spatial correspondence of these cells and sectors which are automatically
mapped with the MEDcoupling library. The transfer of physical fields between the two
VESSELs is straightforward. On the contrary, cells 2/4/5/6/8 in the CA-V get the coolant
from multiple cells of the CY-V. Thus, some kind of “averaging” effect would happen in
those cells. Particularly, cells 6 and 8 of the CA-V mix the coolant from the hottest cell 1
and cell 2/4 of the CY-V. Therefore, their temperature curves in Figure 14 are in the middle
of cell 1 and cell 3/7. Similarly, cells 2 and 4 of the CA-V mix the coolant from the coldest
cell 3 and cell 4/2 of the CY-V. Therefore, their temperature curves in Figure 14 are in the
middle of cell 3 and cell 3/7. Cell 5 is special because its coolant is from all of the 4 cells
of CY-V.

Figures 15 and 16 show the coolant temperature evolutions at the core outlet planes of
the two VESSELs. Each curve represents an individual cell/sector on the planes. The former
is for the CA-V (9 cells) and the latter is for the CY-V (4 sectors). The minor difference
between Figures 14 and 16 indicates a weak coolant mixing effect in the core (by CA-V).
However, a similar “averaging” effect happens when the coolant flows from the nine cells
of CA-V to the four sectors of CY-V. The reason is that each of the four sectors in the CY-V
gets the coolant from multiple cells of the CA-V. Particularly, sector 1 mixes the coolant
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from cell 5/6/8/9. Sector 2 mixes the coolant from the cell 4/5/7/8. Sector 3 mixes the
coolant from the cell 1/2/4/5. Sector 4 mixes the coolant from the cell 2/3/5/6. Due to the
two “averaging” effects happening on the core inlet/outlet as well as the coolant mixing in
the core region, the temperature of the core flow-out coolant is more homogeneous than
the core flow-in coolant in the CY-V.
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In general, it can be stated that the coolant mixing in the downcomer is significant
while the one inside the core is moderate.

4.2. The Coolant Mixing in the AP1000 Reactor

The configuration of the reactor and nodalization of the model were previously illus-
trated in Sections 2.2 and 3. The RPV is represented by a CY-V and the core by a CA-V. The
CY-V is nodalized to 8 azimuthal sectors and 2 radial rings while the CA-V is nodalized to
15 × 15 = 165 cells (each cell represents 1 fuel assembly), among which, 68 are dummy cells
and 157 are real cells. Figure 17 only presents the real cells. Consequently, 456 additional
PIPEs (as Junctions connecting the two VESSEL components) are constructed and inserted
into the TRACE data structure automatically by the approach presented here. In total,
228 (1 × 96 + 2 × 56 + 3 × 4 + 8 × 1 = 228, Figure 17) of them are at the core inlet plane
and 228 are at the core outlet plane. Figure 17 illustrates the quantitative distribution of
the additional PIPEs from the point of the CA-V (for example, the yellow 8 means this cell
connects to 8 CY-V sectors via 8 additional PIPEs as Junctions). Figure 17 gives the CY-V
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mesh as well. There, the sector indexes, the location of the loops, and the hot/cold legs are
shown: the cold-legs (vessel inlet) of loop1 correspond to sectors 4 and 6 while the cold-legs
of loop2 correspond to sectors 2 and 8. The hot-legs of loop1 and loop2 correspond to
sectors 5 and 1.
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Figure 17. The quantitative distribution of the additional PIPEs at the core inlet/outlet planes of the
AP1000 reactor.

First of all, a steady-state (SS) TRACE simulation is performed for an inlet mass
flow rate of 3567 kg/s and coolant temperature of 553.7 K per loop (fixed as boundary
conditions at the four FILL components). The outlet pressure is 15.45 MPa and is defined
in the BREAK components. Afterward, a transient (TS) simulation is completed with the
boundary conditions given in Table 2. The transient lasts for 50 s.

Table 2. The boundary conditions during the transient on the AP1000 reactor.

Inlet Mass Flow [kg/s] Inlet Temperature [K] Outlet Pressure [MPa]

Time 0~50 s 0~50 s 0~50 s
Loop 1 3658.0 453.7 15.45
Loop 2 3658.0 553.7 15.45

The transient is defined by decreasing the coolant temperature of the loop-1 from
553.7 to 543.7 K at the transient beginning. As a consequence, a coolant mixing will take
place in the CY-V downcomer, in the CY-V lower plenum and the mixing pattern will
be propagated to the CA-V core. After the final mixing in the CY-V upper plenum, the
coolant will flow out of the RPV. The main question is to check if the automatic VESSEL-
coupling is working properly for a coolant mixing problem. Figure 18 exhibits the coolant
temperature distributions in both the CY-V (top) and the CA-V (bottom) as shown by the
new post-processing capability implemented in TRACE. It can be observed that the coolant
temperature field of the loop-1 corresponding part in the CY-V and CA-V meshes is cooler
than other parts. Particularly, the coolant temperature distribution at the core inlets implies
that the coolant temperature was correctly transferred from the CY-V to the CA-V by the
automatic VESSEL-coupling approach. The same conclusion can be drawn for the coolant
temperature distribution at the core outlets.
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The coolant temperature evolution at the core inlet and outlet of the CY-V are plotted
in Figures 19 and 20, see Figure 17 for sector indexes. The coolant mixing in the downcomer
and lower plenum can be observed if we examine the coolant temperature evolutions of
sectors 3 and 7 which are the results of the coolant mixing between the coolant of the sectors
2 and 4 and the sectors 8 and 6.

This mixing pattern propagates from the CY-V lower plenum to the CA-V core at the
core inlet and from the CA-V core to the CY-V upper plenum at the core outlet, where
the mixing continues to happen in a moderate manner leading to a small reduction in the
coolant temperature of the sectors 1, 2, and 8 at the core outlet compared to the ones at the
core inlet. Contrary to it, the coolant temperature of sectors 4, 5, and 6 increases slightly at
the core outlet compared to the core values at the core inlet.
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In Figure 21, 16 representative cells of the CA-V are selected for the discussion of
results from the CA-V side. To compare with the CY-V, 8 cells do not intersect with the CY-V
sectors and their coolant comes from individual sectors. Eight cells intersect with the CY-V
sectors and their coolant comes from two sectors. There, the correspondence of the CA-V
cells with the CY-V sectors (and with the two loops) can be observed. The 16 representative
cells are divided into two groups: the hot-part (loop2) and the cold-part (loop1).
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Figure 21. The AP1000 selected cells (assemblies in CA-V) whose coolant temperature evolutions
are studied.

Figures 22 and 23 show the coolant temperature evolutions of the hot-part and cold-
part cells at the CA-V core inlet plane. Cells 1, 3, 5, 7, 9, 11, 13, and 15 have approximately
identical trends as the corresponding sectors in the CY-V (1–8). Whereas some small
differences can be observed due to the slight coolant mixing in the first level of the CA-V.
Cells 2, 4, 6, 8, 10, 12, 14, and 16 are the CA-V cells that intersect with two CY-V sectors.
The coolants from the two CY-V sectors mix when they flow into those CA-V cells. The
mixing effect is inferred from Figures 22 and 23, where the curves of the intersected CA-V
cells located between their corresponding CY-V cells are exhibited.
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Figures 24 and 25 give the coolant temperature evolution of the representative CA-V
cells (Figure 21) at the core outlet. Most of the curves are approximately identical to that of
the same cells at the core inlet except for cells 15, 4, 6, and 7. Thus, we can tell that the coolant
mixing in the CA-V is relatively weak. At the core outlet plane, the coolant flows from CA-V
to CY-V. There, each CY-V cell connects to a set of multiple CA-V cells. Compared with
Figure 20, we can see a good agreement between the two distributions at the core outlets of
the two VESSELs. If you look at sector 1 in the CY-V and cells 16, 1, and 2 in the CA-V, for
example, the coolant temperature of sector 1 is slightly lower than the hottest cell 1 because
colder coolant from boundary cells 2 and 16 contributes to sector 1 as well.

Energies 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 22. Evolution of the coolant temperature distribution at the core inlet of the AP1000 reactor 
CA-V hot-part (cell index is from Figure 21). 

 
Figure 23. Evolution of the coolant temperature distribution at the core inlet of the AP1000 reactor 
CA-V cold-part (cell index is from Figure 21). 

Figures 24 and 25 give the coolant temperature evolution of the representative CA-V 
cells (Figure 21) at the core outlet. Most of the curves are approximately identical to that 
of the same cells at the core inlet except for cells 15, 4, 6, and 7. Thus, we can tell that the 
coolant mixing in the CA-V is relatively weak. At the core outlet plane, the coolant flows 
from CA-V to CY-V. There, each CY-V cell connects to a set of multiple CA-V cells. Com-
pared with Figure 20, we can see a good agreement between the two distributions at the 
core outlets of the two VESSELs. If you look at sector 1 in the CY-V and cells 16, 1, and 2 
in the CA-V, for example, the coolant temperature of sector 1 is slightly lower than the 
hottest cell 1 because colder coolant from boundary cells 2 and 16 contributes to sector 1 
as well. 

 
Figure 24. Evolution of the coolant temperature distribution at the core outlet of the AP1000 reactor 
CA-V hot-part (cell index is from Figure 21). 
Figure 24. Evolution of the coolant temperature distribution at the core outlet of the AP1000 reactor
CA-V hot-part (cell index is from Figure 21).



Energies 2022, 15, 4384 16 of 18Energies 2022, 15, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 25. Evolution of the coolant temperature distribution at the core outlet of the AP1000 reactor 
CA-V cold-part (cell index is from Figure 21). 

According to the analysis of the coolant mixing on the previous academic reactor, it 
can be inferred that the physical mixing and the “averaging effect” should both play a role 
in the AP1000 reactor when the coolant flows via the path of “CY-V to CA-V to CY-V”, 
because the meshes of the two VESSELs differ in spatial resolution and cell arrangement. 
Figure 26 plots the coolant temperature profile at the core inlet and outlet of the AP1000 
CY-V and CA-V. There, the data points, as well as the theta coordinates are the ones of the 
CY-V sectors and the indexed CA-V cells that were given in Figure 21. The left subplot 
gives the field from CY-V, while the right gives the field from CA-V. For both subplots, 
the orange curve and block represent the field at the core inlet, while dark green repre-
sents the field at the core outlet. 

We can see an obvious shrinkage of the hot part (between the lines 1–2 and 8–1) and 
an expansion of the cold part (between the lines 3–4 and 6–7) when comparing the tem-
perature profile at the CY-V core outlet to that at the CY-V core inlet. The more eccentric 
the block is on this radar map, the more inhomogeneously the temperature field distrib-
utes at the core inlet or outlet planes. 

Globally, the temperature band at the outlet moves closer to the center, which indi-
cates a flatter coolant temperature distribution at the core outlet. However, this sort of 
shrinkage, expansion, and movement is not that noticeable in Figure 26 (right). This leads 
to the conclusion that the coolant mixing in the CA-V is weak (consistent with the analysis 
in Figures 22–25). Thus, we can conclude that the “averaging effect” contributes to the 
temperature flatting that is observed in Figure 26 (left). This effect is still under study at 
present. Nevertheless, the result from the AP1000 reactor demonstrates the adequacy and 
efficiency of the automatic VESSEL-coupling approach presented and discussed here. 

 
Figure 26. The coolant temperature profile at the core inlet and outlet of the AP1000 CY-V and CA-
V (data from the CY-V_sectors and indexed CA-V_cells in Figure 21). 
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According to the analysis of the coolant mixing on the previous academic reactor, it
can be inferred that the physical mixing and the “averaging effect” should both play a role
in the AP1000 reactor when the coolant flows via the path of “CY-V to CA-V to CY-V”,
because the meshes of the two VESSELs differ in spatial resolution and cell arrangement.
Figure 26 plots the coolant temperature profile at the core inlet and outlet of the AP1000
CY-V and CA-V. There, the data points, as well as the theta coordinates are the ones of the
CY-V sectors and the indexed CA-V cells that were given in Figure 21. The left subplot
gives the field from CY-V, while the right gives the field from CA-V. For both subplots, the
orange curve and block represent the field at the core inlet, while dark green represents the
field at the core outlet.
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Figure 26. The coolant temperature profile at the core inlet and outlet of the AP1000 CY-V and CA-V
(data from the CY-V_sectors and indexed CA-V_cells in Figure 21).

We can see an obvious shrinkage of the hot part (between the lines 1–2 and 8–1) and an
expansion of the cold part (between the lines 3–4 and 6–7) when comparing the temperature
profile at the CY-V core outlet to that at the CY-V core inlet. The more eccentric the block is
on this radar map, the more inhomogeneously the temperature field distributes at the core
inlet or outlet planes.

Globally, the temperature band at the outlet moves closer to the center, which indicates
a flatter coolant temperature distribution at the core outlet. However, this sort of shrinkage,
expansion, and movement is not that noticeable in Figure 26 (right). This leads to the
conclusion that the coolant mixing in the CA-V is weak (consistent with the analysis
in Figures 22–25). Thus, we can conclude that the “averaging effect” contributes to the
temperature flatting that is observed in Figure 26 (left). This effect is still under study at
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present. Nevertheless, the result from the AP1000 reactor demonstrates the adequacy and
efficiency of the automatic VESSEL-coupling approach presented and discussed here.

5. Conclusions

The paper discussed the development of an innovative method for the automatic
coupling of two different 3D components of the TRACE code, i.e., the Cylindrical VESSEL
(CY-V) and Cartesian VESSEL (CA-V) for the improved simulation of the 3D phenomena
in the core and Reactor Pressure Vessel (RPV) of a Nuclear Power Plant (NPP). Thanks to
the functionalities of the MEDcoupling library, the users do not need to manually define
the numerous junctions of the VESSEL-Junction (VJ) component in SNAP to connect the
core inlet and outlet of the CA-V core with the CA-V RPV. Aside from the automation
functionality, the Junction definition and the calculation of relevant Thermal-Hydraulic
(TH) parameters are more precise using this approach. The new capabilities of TRACE
were demonstrated by analyzing two coolant mixing problems in the RPV of a generic
four-loop Light Water Reactor (LWR) and the AP-1000 reactor. The results indicate the
mixing inside the downcomer and core. The quantitative evolution of the mixing pattern
shows that the mixing inside the core is less than the one in the downcomer and that the
developed approach works fine. Last but not least, the predictions demonstrated that the
data transfer at the core inlet and outlet between the two VESSELs is working properly. In
future investigations, the root causes for the “averaging effect” due to the mesh differences
will be investigated. Furthermore, the existence of more than one VESSEL to represent the
RPV, e.g., of a Small Modular Reactor (SMR), will be implemented.
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