KIT | KIT-Bibliothek | Impressum | Datenschutz

Fast Crack Detection Using Convolutional Neural Network

Yang, J.; Lin, F.; Xiang, Yusheng 1; Katranuschkov, P.; Scherer, R. J.
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

To improve the efficiency and reduce the labour cost of the renovation process, this study presents a lightweight Convolutional Neural Network (CNN)-based architecture to extract crack-like features, such as cracks and joints. Moreover, Transfer Learning (TF) method was used to save training time while offering comparable prediction results. For three different objectives: 1) Detection of the concrete cracks; 2) Detection of natural stone cracks; 3) Differentiation between joints and cracks in natural stone; We built a natural stone dataset with joints and cracks information as complementary for the concrete benchmark dataset. As the results show, our model is demonstrated as an effective tool for industry use.


Volltext §
DOI: 10.5445/IR/1000149167
Veröffentlicht am 28.07.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2021
Sprache Englisch
Identifikator KITopen-ID: 1000149167
Umfang 10 S.
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page