KIT | KIT-Bibliothek | Impressum | Datenschutz

In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus

Oyama, Linda B. ; Olleik, Hamza; Teixeira, Ana Carolina Nery; Guidini, Matheus M.; Pickup, James A.; Hui, Brandon Yeo Pei; Vidal, Nicolas; Cookson, Alan R.; Vallin, Hannah; Wilkinson, Toby; Bazzolli, Denise M. S.; Richards, Jennifer; Wootton, Mandy; Mikut, Ralf ORCID iD icon 1; Hilpert, Kai; Maresca, Marc; Perrier, Josette; Hess, Matthias; Mantovani, Hilario C.; ... mehr

Abstract (englisch):

Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections.


Verlagsausgabe §
DOI: 10.5445/IR/1000149183
Veröffentlicht am 29.07.2022
Originalveröffentlichung
DOI: 10.1038/s41522-022-00320-0
Scopus
Zitationen: 18
Web of Science
Zitationen: 17
Dimensions
Zitationen: 23
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2055-5008
KITopen-ID: 1000149183
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in npj Biofilms and Microbiomes
Verlag Nature Research
Band 8
Heft 1
Seiten Artikel-Nr.: 58
Vorab online veröffentlicht am 14.07.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page