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Abstract

In solving global water challenges, such as the sustainable management and use of available
groundwater resources, finding new, efficient, and easily transferable modeling approaches is
crucial. Machine learning methods such as artificial neural networks (ANNs) are particularly
suitable for this purpose. They can autonomously learn and leverage relevant relationships
from larger data sets of suitable variables. After achieving major successes in several other
fields, ANNs and especially their subset of deep learning models are becoming more and more
successful in the hydrological sciences. This thesis investigates the use of ANNs to model
and predict hydrogeological time series. Four studies constitute the main part of this work
and demonstrate how ANNs can contribute to solving different problems in this research
domain.

Groundwater hydrograph clustering is useful for identifying spatial and temporal dynamic pat-
terns, which helps to characterize aquifer systems, identify influencing factors, and develop
effective groundwater management strategies. Therefore, in the first study, an unsuper-
vised clustering approach based on self-organizing maps is developed, capable of effectively
grouping heterogeneous hydrograph datasets based on time series dynamics. A feature-based
approach helps to robustly characterize hydrograph dynamics with variable data quality (e.g.,
data gaps or different periods). Using a data set of about 1800 weekly groundwater hydro-
graphs, the application of the developed approach is successfully demonstrated in the Upper
Rhine Graben area in Germany and France. Results show that groundwater dynamics are
influenced by a variety of factors that superimpose spatially and temporarily, and often are
hard to separate. Nevertheless, some clusters are clearly connected to specific external con-
trolling factors, such as intensive groundwater management in the northern part of the study
area.

Next, a detailed model comparison of different ANNs for groundwater level prediction tasks
follows. The study compares nonlinear autoregressive exogenous models (NARX), long short-
term memory networks (LSTM), and convolutional neural networks (CNN), each for both
sequence-to-value and sequence-to-sequence prediction tasks. Furthermore, the models use
only a few widely available and easy-to-measure meteorological input variables, which en-
sures the high transferability of the approach. All models show good predictive capabilities,
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however, NARX are, on average, the most precise ones, followed closely by CNNs, LSTMs
are last. For practical applications, CNNs appear best overall because they are less depen-
dent on the random network initialization than NARX and much faster to compute than
both recurrent alternatives. At the same time, they achieve high performance and can be
implemented flexibly.

The subject of the subsequent study is the development of groundwater levels in Germany
in the context of the climate crisis. Climate data from three climate scenarios (RCP2.6, 4.5,
and 8.5) form the basis to model the direct influence of climate on groundwater using a
CNN-based approach. Focusing on the direct influence means the study does not consider
indirect influencing factors that are highly uncertain in the future, such as anthropogenic
groundwater extractions or vegetation and land-use changes. While future developments
under the optimistic RCP2.6 and the intermediate RCP4.5 result in less pronounced and
fewer significant trends, the pessimistic RCP8.5 causes significantly declining groundwater
levels trends for most sites, revealing a spatial pattern of stronger decreases in the northern
and eastern part of Germany. The positive influence of mitigated greenhouse gas emissions
is evident in the results of RCP2.6. Still, groundwater levels decrease across Germany,
depending on the investigated climate model.

Finally, this thesis investigates ANNs for modeling karst spring discharge. Both the existing
CNN approach and a new 2D-model that allows for direct processing of spatially distributed
input data are deployed. The latter can potentially overcome the problem of limited meteoro-
logical data availability in karst catchment areas. Both approaches achieve accurate modeling
results in all three test areas and partly exceed the results of already existing approaches.
None of the approaches is superior in terms of accuracy. However, apart from a consider-
ably increased computation time, the data’s spatially, and temporally complete nature and
the associated number of available input variables are key benefits of the 2D-approach. The
2D-models learn relevant parts of the input data automatically, and a spatial input sensitivity
analysis demonstrates their usefulness to localize the position of karst catchments.
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Kurzfassung

Bei der Lösung globaler Herausforderungen, wie der nachhaltigen Bewirtschaftung und Nutz-
ung der verfügbaren Grundwasserressourcen, ist die Entwicklung neuer, effizienter und leicht
übertragbarer Modellierungsansätze von entscheidender Bedeutung. Hierfür bieten sich vor
allem künstliche neuronale Netze (KNN) an, die als Verfahren des maschinellen Lernens
selbstständig relevante Zusammenhänge aus größeren Datensätzen geeigneter Parameter
lernen und nutzen können. Die vorliegende Arbeit untersucht die Nutzung von KNN zu
Modellierung und Vorhersage von hydrogeologischen Zeitreihen. In vier Studien, die den
Hauptteil dieser Arbeit bilden, werden verschiedene Fragestellungen entwickelt und deren
Lösbarkeit mit Hilfe von KNN demonstriert.

Das Clustern von Ganglinien ist eine Möglichkeit räumliche und zeitliche Muster der Grund-
wasserdynamik zu erkennen. Dies ist wichtig um Aquifere zu charakterisieren, Einflussfak-
toren zu identifizieren und effektive Bewirtschaftungsmethoden zu entwickeln. Aus diesen
Gründen wird in der ersten Studie auf Basis von Self-Organizing Maps ein Clustering Ver-
fahren entwickelt, mit dessen Hilfe sich in heterogenen Datensätzen von Grundwassergan-
glinien solche mit ähnlicher Dynamik gruppieren lassen. Das Verfahren nutzt zur Charak-
terisierung der Grundwasserdynamik sogenannte Features, die auch die Verarbeitung von
Ganglinien mit variabler Datenqualität ermöglichen. Anhand eines Datensatzes von ca. 1800
wöchentlichen Ganglinien wird die Anwendung im Oberrheingraben in Deutschland und
Frankreich erfolgreich demonstriert. Eine Analyse der Clusterergebnisse zeigt, dass sich
externe Einflussfaktoren räumlich und zeitlich komplex überlagern und eine Trennung häufig
nicht möglich ist. Dennoch sind einige Cluster eindeutig auf externe Faktoren (z.B. Grund-
wasserbewirtschaftung) zurückzuführen.

Es folgt ein detaillierter Vergleich verschiedener KNN Modelle zur Grundwasserstandsvorher-
sage. Untersucht werden hierbei Nonlinear Autoregressive Models with Exogenous Inputs
(NARX), Long Short-Term Memory Networks (LSTM) und Convolutional Neural Networks
(CNN) sowohl jeweils für Einzelwert- als auch Sequenzvorhersagen. Als Eingangsdaten wer-
den nur wenige, aber dafür weithin verfügbare und leicht zu messende meteorologische Pa-
rameter verwendet, wodurch die breite Übertragbarkeit des Ansatzes gewährleistet ist. Es
zeigt sich, dass alle Modelltypen grundsätzlich gute Prognoseeigenschaften aufweisen und
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NARX hierbei in der Regel die präzisesten Vorhersagen treffen, dicht gefolgt von CNNs. Für
die praktische Anwendbarkeit zeigen CNNs insgesamt das größte Potenzial, da diese eine
geringere Abhängigkeit von der pseudorandomisierten Netzinitialisierung als NARX sowie
eine vielfach höhere Berechnungsgeschwindigkeit aufweisen als beide rekurrenten Alterna-
tiven. Dabei erreichen CNNs dennoch eine hohe Güte und sind gleichzeitig flexibel imple-
mentierbar. CNNs bilden daher die Grundlage für weitere untersuchte Fragestellungen.

Die nachfolgende Studie untersucht die Entwicklung der Grundwasserstände in Deutsch-
land im Kontext des Klimawandels. Hierfür werden auf Basis von CNNs und anhand von
Temperatur und Niederschlag aus drei Klimaszenarien (RCP2.6, 4.5 und 8.5) die zukünf-
tigen Grundwasserstände an 118 ausgewählten Messstellen in Deutschland modelliert und
der direkte Einfluss des zukünftigen Klimas abgeschätzt. Wichtige sekundäre Faktoren wie
anthropogene Einflüsse, werden jedoch nicht in die Simulationen mit einbezogen. Unter
RCP8.5 (pessimistisches Szenario) sind flächenhaft und ausgeprägt fallende Grundwasser-
stände zu erwarten, mit einem räumlichen Muster von stärkeren Abnahmen vor allem in
Nord- und Ostdeutschland. Ebenfalls abnehmende Trends zeigen die Ergebnisse für die opti-
mistischeren Szenarien RCP2.6 und RCP4.5, jedoch mit vergleichsweise wenig signifikanten
Veränderungen. Hier wird der positive Einfluss der verminderten Treibhausgasemissionen
deutlich, jedoch werden auch noch für das optimistischste Szenario RCP2.6 in einigen Pro-
jektionen deutschlandweit abnehmende Grundwasserstände festgestellt.

Abschließend stehen Karstquellschüttungen im Fokus der Arbeit. Zur Modellierung werden
zum einen die vorhandenen CNN Ansätze herangezogen, zum anderen wird ein ebenfalls
auf CNNs basierender 2D-Ansatz entwickelt, der die direkte Verarbeitung von flächenhaften
Rasterdaten als Inputs erlaubt. Hierdurch lässt sich vielfach das Problem der ungenügenden
Datenverfügbarkeit von meteorologischen Eingabedaten im Einzugsgebiet lösen. Beide An-
sätze zeigen in allen Testgebieten sehr gute Ergebnisse und übertreffen teils die Ergebnisse
bereits existierender Modelle. Der direkte Vergleich zwischen herkömmlichem und flächen-
haftem Modellierungsansatz erlaubt kein abschließendes Urteil zur Überlegenheit einer der
beiden Ansätze hinsichtlich der Genauigkeit der Ergebnisse. Die räumliche und zeitliche
Vollständigkeit der Eingabedaten ist jedoch ein schwerwiegender Vorteil des flächenhaften
Ansatzes. Weiterhin zeigt der flächenhafte Ansatz Potenzial für die Lokalisierung und, bei
entsprechender Datenverfügbarkeit und Weiterentwicklung des Ansatzes, auch für die Ab-
grenzung von Quelleinzugsgebieten im Karst.
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Chapter I

Introduction and Overview

1 General Motivation

Groundwater (GW) is the major source of freshwater worldwide. At least half of the global
population uses groundwater for drinking water supplies (WWAP, 2015), and it constitutes a
substantial amount of global irrigation water (FAO, 2010). In the future, we will have to deal
with severe changes in water availability at all spatial and temporal scales, particularly due to
the climate crisis and its undoubted consequences. Already, four billion people experience wa-
ter scarcity for at least one month a year (Mekonnen and Hoekstra, 2016), and billions of peo-
ple worldwide do not have access to safely managed drinking water, according to the United
Nations (UN-ECOSOC, 2021). However, not only the climate crisis challenges water re-
sources. Global water consumption increased more than twice as much as population growth
in the 20th century, and other factors such as water pollution, degraded ecosystems, and lack
of policy cooperation further exacerbate the problem (UN-ECOSOC, 2021). There is an ur-
gent need to fundamentally transform the way we manage the Earth’s limited water resources
to overcome these problems (UN-Water, 2020). Modeling approaches in hydrogeology are
crucial in this regard, as they are necessary to develop sustainable freshwater management
strategies. From models, we can derive knowledge about hydrogeological systems’ quantita-
tive or qualitative state while using only pointwise observations, such as groundwater level
measurements in distinct wells. High-quality models are further essential to calculate usage
scenarios and make predictions of future developments on different time scales. Representing
complex real-world hydrogeological systems in physical numerical models is a common model-
ing strategy. However, it requires much effort due to the substantial knowledge about systems
properties necessary to parameterize the model. Alternative approaches such as lumped pa-
rameter models require less effort; however, finding an adequate simplification of the system
with an acceptable error still needs distinct domain knowledge. Both concepts thus lack trans-
ferability, and the benefits of finding new, efficient, and transferable modeling approaches
for the development of sustainable groundwater management actions are therefore obvious.
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Only little domain knowledge and system understanding is necessary to employ artificial neu-
ral networks (ANNs). They offer a promising alternative to above-mentioned approaches
because they learn from data alone and establish relevant relations automatically. ANNs
compose of layer-wise ordered and interconnected artificial neurons, mimicking the basic
functioning of the human nervous system. They represent a branch of machine learning
(ML), a term that is sometimes synonymously used for artificial intelligence (AI). However,
AI is a vaguely defined and even wider field, in which ML is only one aspect. Generally
described, ML is the process of pattern extraction from data (Goodfellow et al., 2016). The
data representation for such pattern extraction comprises many pieces of information called
features. One common approach is to apply human knowledge to design or extract such fea-
tures for the successful application of ML algorithms (feature engineering). For many tasks,
which are intuitive and straightforward to humans, such as speaking and understanding a
language, this poses an incredibly complex challenge because the underlying knowledge is
hard to describe in a formal way (Goodfellow et al., 2016). The solution is to apply repre-
sentation learning (also called feature learning), which means that ML algorithms not only
learn to process existing representations but also learn to automatically extract the features
from the data necessary to build such representation (Bengio et al., 2014) (Figure I.1). To
perform representation learning, we can use ANNs with multiple layers, known as deep learn-
ing (DL) models. We can think of depth roughly regarding the number of layers in an ANN,
meaning there are shallow (very few layers) and deep (many layers) ANNs. However, there
is no distinct definition of what number of layers or what depth qualifies a model as deep
(e.g., Arnold and Tilton, 2019; Schmidhuber, 2015).

Data

Features
Human

Intervention ML Result

DL Result

F1 F2 F3 F4 F5 F6 …

Fx Fy Fz Fx+z Fa Fb …

Feature Engineering

Feature Learning

Figure I.1: Classical ML approach of feature engineering using human knowledge versus DL approach
of feature learning in multiple ANN layers.

Feature learning in deep models means that complex representations are learned as a com-
position of more basic and abstract representations (Goodfellow et al., 2016). For example,
DL models learn to recognize a human face in terms of edges, corners, contours, and specific
parts (e.g., eyes) rather than in its totality. Usually, the number of layers within a network
corresponds to the level of abstraction (Goodfellow et al., 2016). Based on these concepts,
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DL is able to tackle real-world problems with unmatched flexibility and accuracy, which is
a major reason why DL has fundamentally transformed how we live and interact with each
other or machines in the last years, be it in our personal or professional lives. Prominent
day-to-day examples may be natural language processing (NLP) and the resulting advances
in speech recognition or intelligent product recommendations in online shopping and media
streaming. Generally, it should be challenging to identify any branch of technology that ML
or ANNs do not yet influence.

In recent years, the amount and variety of available data in the natural sciences have become
increasingly large, which is both an opportunity and a challenge at once (Shen, 2018a).
The number of sensors in our environment is growing immensely, and at the same time,
they provide ever more accurate and higher-resolved data. Also, more and better spatially
distributed data are available, such as from Copernicus, the European Union’s earth ob-
servation program (European Union, 2022). This applies especially to meteorology, which
has particular relevance for new possibilities in hydrogeological modeling by better repre-
senting major driving forces in the groundwater domain. Above all, access to data has
improved considerably in recent years. Many scientists and institutions now follow the idea
of open data, which increases the exchange of data and makes more and more data openly
accessible. However, conventional models are often limited in their capability of incorpo-
rating large amounts of data and thus cannot fully profit from these developments. Such
limited capability can either originate from a limitation in knowledge or model capability
(Shen, 2018b). Furthermore, they heavily depend on human expertise for individual cali-
bration and customization or preliminary feature extraction from data. Thus, while stick-
ing exclusively to such approaches, we might not even be aware that we underutilize the
newly available data, as we have no idea what abstract information could be additionally
extracted from large data sets (Shen, 2018a; Shen et al., 2018). ANNs are generally capa-
ble of processing such large amounts of data without the need for explicit formulations of
variable relations, while often even being able to generalize the gained knowledge to new
instances successfully. When it comes to information extraction from raw data, represen-
tation learning in DL models can be applied, a substantial advantage compared to other
ML methods (even shallow ANNs). Given these abilities, ANNs in general, and DL mod-
els in particular, are well suited to model complex real-world systems using the available
data.

One drawback of ANNs is that they are usually considered black-boxes. Despite all recent
developments in explainable AI (XAI), which aims for interpretability and understanding of
AI models, the guideline remains that ANNs are particularly suitable as long as a mere input-
output relation is of interest. There are generally two approaches to increase trust in such
a black-box decision. One is to understand the model’s decisions, which is the goal of XAI
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methods. Understanding decisions is crucial because (i) ANNs can learn (physically) wrong
or undesired relations, and (ii) we know that ANNs (in this context usually DL models) can
be tricked by so-called adversarial attacks, which are smallest changes of the input data
leading to erroneous results (Szegedy et al., 2014). Adversarial attacks are a known issue
and active area of research, for example, in computer vision. It is worth noticing that XAI
in general still faces fundamental problems as to whom a model should be explainable and
how. For example, many XAI methods may be helpful for AI researchers but not for users
whose expertise comes from another field (see, e.g., Gerlings et al., 2022, for examples in
healthcare). Besides XAI methods, another way to increase trust is to incorporate additional
knowledge to ensure the model does things for the right reasons. Usually such knowledge
are constraints, e.g., laws of physics, which is also known as inductive bias (Mitchell, 1980).
Generally speaking this term describes constraints that allow for prioritizing one solution over
another. The major challenge here is to improve the solution search without diminishing
the model performance by introducing constraints that are too strong (Battaglia et al.,
2018).

ANNs were already used to model hydrogeological time series since the ’90s, when for ex-
ample Johannet et al. (1994) first implemented a neural network to simulate karst spring
discharge. Shortly after, Maier (1995) comprehensively demonstrated the modeling of mul-
tivariate water quality time series and also provided an extensive literature review on other
related ANN applications from the early ’90s, such as water demand forecasting. Since
then, the number of publications and applications of ML in hydrogeology increased ever
stronger; however, specifically, the application of ANNs rather took part gradually, which
has dramatically changed in the last years. The success of DL methods in various disci-
plines, the growing amount of available data, and the widely accessible computational power
caused the application of ANNs to reach the mainstream of worldwide research efforts in the
water-related sciences. Older (shallow) model architectures like feedforward neural networks
(FFN)/multilayer perceptrons (MLP) and simpler forms of recurrent neural networks (RNN)
were the commonly applied methods for many years and still have many adequate applica-
tions. However, DL approaches such as long short-term memory networks (LSTM) (Hochre-
iter and Schmidhuber, 1997), convolutional neural networks (CNN) (LeCun et al., 2015)
and other successful model architectures from various disciplines are now far more popular
and more frequently used. A quite recent literature review on applications in groundwater
level (GWL) modeling is provided by Rajaee et al. (2019); Shen (2018a) and Shen et al.
(2018) give a broader overview on DL and its relevance for water resources scientists. A
short overview of the historical background of ANNs in general, follows in the subsequent
section.
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2 Historical Background and Important Concepts

2.1 ANN History

Neurosciences are still considered an important source of inspiration for some DL researchers
today (Goodfellow et al., 2016) and were even more essential in the beginning of ANN history,
which is generally considered to start in the 1940s. At the time, McCulloch and Pitts (1943)
translated the concept of neurons from neuro- to computer sciences and showed that the
so-called McCulloch-Pitts-Neuron could basically compute any logical function. However,
automated learning was not yet possible until, at the end of this decade, Hebb (1949) intro-
duced the foundation for modern learning algorithms using dynamic instead of static weights
to connect neurons (Hebbian learning). In the late 1950s, the perceptron model by Rosen-
blatt (1958) enabled first practical pattern recognition applications, as it was able to learn to
distinguish between different categories of input data. Subsequently, ANN research stagnated
for more than a decade and was even sometimes considered a dead-end (Hagan et al., 2014),
which marked the end of the first period of flourishing ANN research. Some difficulties, such
as the lack of computational power, seemed to be overcome in the 1980s, the starting point
of the second period of ANN research making great strides. Probably most important was
the development of the backpropagation training algorithm by several researchers, gaining
broad attention by the work of Rumelhart et al. (1986). Goodfellow et al. (2016) refer to this
second period as the connectionism and describe its basic idea as the belief that a network
of interconnected simpler computational units would be able to achieve intelligent behavior.
During this time, Fukushima and Miyake (1982) developed the Neocognitron, the predeces-
sor of convolutional neural networks, a popular DL model architecture of the present. In the
early 1990s, researchers formulated major problems with time series forecasting, such as the
vanishing and exploding-gradient-problems (Bengio et al., 1994; Hochreiter, 1991). This led
to the development of another very popular DL architecture of today, namely long short-
term memories (Hochreiter and Schmidhuber, 1997), which can overcome some of these
problems. Despite all achievements, this second period of success in ANN research ended in
the mid-1990s, when other ML models such as kernel machines and graphical models solved
important tasks. At the same time, ANN research did not fulfill its own ambitious goals, for-
mulated primarily by companies seeking to attract investors (Goodfellow et al., 2016). The
third and still lasting period of successful AI research may have started in 2006 with some
algorithmic advances according to Goodfellow et al. (2016); however, 2012 marks a more vis-
ible breakthrough of DL models. Krizhevsky et al. (2012) won the annual ImageNet contest
(ILSVRC) using CNNs for image classification with a dramatically reduced error compared
to earlier models. Since then, various competitions have been won, and different DL models
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have achieved many unseen successes. Two of them attracted particular public attention
because they were highly unexpected and came significantly earlier than anyone predicted.
Both were achieved by the DL research team of Google (DeepMind). The first was in 2017
when DeepMind’s AlphaGo beat the best Go-Players at the time (Silver et al., 2017), which
was considered particularly difficult due to the large possibility of moves in the game and
its highly complex strategies. The second breakthrough was DeepMind’s AlphaFold, which
already had won the protein folding contest CASP (Critical Assessment of Techniques for
Protein Structure Prediction) in 2018. However, in 2020 AlphaFold tremendously outper-
formed earlier approaches and all competitors in such a way that some even considered the
protein folding problem solved in some sense (Callaway, 2020; Jumper et al., 2021). Some
important, and nowadays popular model architectures (e.g., LSTM) and algorithms originate
from the ’90s. The successes of DL in more recent times were then finally possible for the
increasing amount of available data and the availability of computing resources to apply large
models, such as training models on GPUs (graphics processing units), high-speed network
connectivity, and infrastructure for distributed computing (Goodfellow et al., 2016).

2.2 Important Concepts and Prerequisites

The following section briefly introduces a few selected ML/ANN principles and concepts to
provide an adequate context for the following chapters and better distinguish their contri-
butions from another. However, the reader should already be familiar with ML basics such
as learning algorithms, gradient-based optimization, over-/underfitting of models, hyperpa-
rameters, or regularization techniques. This list is not exhaustive, and it lies beyond the
scope of this thesis to provide all fundamentals and prerequisites of ML and ANN modeling.
Covering all these aspects would be worth several books on its own, and the interested reader
is referred to renowned works such as Goodfellow et al. (2016), Bishop (2006), or Murphy
(2012).

Time Series

Time series comprise data points that have a specific temporal order. Usually, time series
exhibit autocorrelation, which means that successive points are related to each other (Hynd-
man and Athanasopoulos, 2021). On the one hand, this is an advantage because additional
information is available for modeling besides the raw values of the data points. On the
other hand, this also makes modeling much more complex since the temporal relationship
within the data points and between different variables (e.g., input and output) needs to be
considered.
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Time series usually exhibit various properties. These include, for example, trend, seasonality,
(irregular) cyclical behavior, or utterly irregular behavior (Hyndman and Athanasopoulos,
2021). Usually, ML methods can only handle stationary time series, i.e., constant mean and
variance over time. Therefore, they must not show any trend, seasonality, or other cyclical
behavior. This also applies to ANN modeling; however, if adequately designed and trained,
ANNs can handle seasonality, especially if they contain an implicit or explicit memory to
remember dependencies over time, such as RNNs do.

Basic Functioning of Neural Networks

The basic computation units of ANNs are called nodes, or neurons, in reference to their
source of inspiration, the human nervous system. Neurons receive inputs from (i) one or
several other neurons and (ii) a bias term. They compute their sum and apply a (mostly)
nonlinear activation function. Typical nonlinear functions are displayed in Figure I.2, whereby
the rectified linear unit (ReLU) is among the most popular functions currently. However, a
wide range of modifications (such as leaky ReLU) and alternative activation functions exist.

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
sigmoid function

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0
hyperbolic tangent

−10 −5 0 5 10

0

2

4

6

8

10
ReLU

ReLU
leaky ReLU

Figure I.2: Examples of nonlinear activation functions of neurons within ANNs.

Typically, neurons are ordered in layers (dense layers) and connected to the neurons in
previous and subsequent layers but usually not to same-layer neurons. Each connection
has a weight, which is modified during the learning process. A typical learning algorithm,
s.a., Backpropagation (Rumelhart et al., 1986), applies the following simplified scheme in a
supervised setting (see also subsequent section):

1. Forward Pass: propagate an input pattern through the network and compute an output.

2. Calculate error between output and ground truth.

3. Backward Pass: adjust connection weights and node biases to minimize the error.

4. Repeat
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During the backward pass the algorithm computes derivatives to determine how much a
model parameter needs to change in order to minimize the error. One can imagine this as
a multidimensional error surface, where the algorithm computes the slope and seeks to step
downwards to reach a (hopefully global) error minimum. We can decide how large the steps
on that error surface are by adjusting a learning algorithm’s (initial) learning rate. Choosing
an appropriate learning rate is essential not to skip error minima (steps are too large), get
stuck in local error minima (steps are too small) or slow down training unnecessarily on error
surface plateaus (steps are too small). Therefore, the learning rate is usually adaptive, and
the user chooses an appropriate initial value.

Supervised, Unsupervised, and Reinforcement Learning

ML research generally distinguished two fundamentally different learning techniques for a
long time. Supervised learning (SL) uses labeled or target data to learn from. This means
that ground truth is available to calculate and back-propagate an error during the model’s
training, which allows updating the model weights according to a loss function. In simple
words, a teacher tells the model what’s the right thing to do in a certain situation. Typical
tasks based on SL are classification and regression. In contrast, unsupervised learning (UL)
occurs in the absence of ground truth or human feedback. Here, the model learns to extract
patterns from the data, solely using some kind of unsupervised criteria (e.g., compactness).
However, the model does not know what to do with the found patterns and cannot evaluate
their correctness. Usually, UL models aim to find a low(er)-dimensional representation of the
input data, with possible applications ranging from density estimation, distribution sampling,
or denoising to clustering (Goodfellow et al., 2016).

In 1998, Sutton and Barto (1998) introduced a third technique: reinforcement learning (RL).
Models learn from being rewarded for correct decisions during trial and error actions. RL is
argued to be the most similar to the way humans learn and has enabled most of the greatest
successes in recent years, such as AlphaGo. RL is currently mostly limited to domains with
vast amounts of training data (e.g., robotics) and is not part of this thesis.

Feedforward and Recurrent Models

Feedforward neural networks represent one of the earliest and most fundamental forms of
ANNs. Many other architectures can be considered to be specific modifications or extensions
of FFNs (e.g., CNNs) (Goodfellow et al., 2016). The most common form of FFNs is the
multilayer perceptron. FFNs generally aim to find a function that maps any input to the
corresponding output. Their name originates from how information flows through the net-
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work, namely layer-wise forward, always from input to output layer (Figure I.3). FFNs can
contain any number of hidden layers between the input and output layer, which is also the
criterion mentioned above to distinguish between shallow and deep neural networks. They
are further capable of tackling various modeling tasks, such as classification and regression.
FFNs usually cope with temporal modeling using lagged or moving-window inputs to capture
temporal dependencies between input and output variables.

Recurrent neural networks distinguish from FFNs by allowing information flow not only for-
ward but also lateral and backward, depending on the exact structure of the RNN. These
flow directions are achieved by implementing recurrent (or feedback) connections (Figure I.3),
such that an RNN becomes internally aware of representations of previous time steps. This
awareness means they possess a memory, which makes them particularly well suited for
modeling temporal dependencies in time series. However, RNNs generally suffer from the
vanishing and exploding gradient problems, which means that backpropagation learning fails
over a larger number of time steps, and RNNs cannot remember long-term dependencies in
the data (Bengio et al., 1994). A distinct RNN, however, which technically can remember
information from an infinite number of time steps, is the LSTM, proposed by Hochreiter
and Schmidhuber (1997). It applies gating mechanisms and an internal state to prevent
information from vanishing. Another well-known model using this gating technique is the
gated recurrent unit (GRU) introduced by Cho et al. (2014).

Both FFNs and RNNs are usually applied in a SL setting (as in this thesis) but can also
be part of RL approaches. Figure I.3 illustrates the differences between FFNs and RNNs
through visualization of the respective directions of information flow in both types. For the
sake of simplicity, discrete connections between neurons are not drawn.

…

…

[…]

…

…

IL

HL HL

OL

forward flow of information (FFN)

lateral and backward flow of information (RNN)

Figure I.3: Layered structure of a MLP with one input (IL), several hidden (HL) and one output layer
(OL). Circles indicate single neurons, solid arrows illustrate forward flow of information in
FFNs, dotted arrows illustrate possible additional flow directions in RNNs.

9



Chapter I: Introduction and Overview

3 Outline

This thesis investigates different applications of ANNs, mainly in the groundwater domain,
with a special focus on forecasting groundwater level time series on different time scales. In
particular, the subsequent chapters will address the following research questions (RQs):

RQ1 How can we use unsupervised ANNs to group heterogeneous datasets of GW hydro-
graphs based on their dynamics, and what can we learn from the resulting patterns?

RQ2 What are adequate model architectures to model and predict GWL time series, and
what are their properties?

RQ3 Is it possible to perform reasonable short-term predictions of GWLs with ANNs without
any future input data?

RQ4 What amount of data are necessary to build an ANN model for GWL prediction with
reasonable performance?

RQ5 Can ANNs also be used to reasonably predict the long-term development of GWLs?

RQ6 How does the climate crisis influence the GWL development in Germany until the end
of the century?

RQ7 How can state-of-the-art XAI techniques be used to increase trust in model decisions
and to gain system understanding from ANNs models?

RQ8 How does a given routine for GWL modeling perform for predicting spring discharge
in complex karst systems?

RQ9 Can ANNs learn the relevant fraction of spatially distributed input data automatically?

A total of four studies address these nine RQs. An elaborated approach for time series
clustering with a specific adaption to heterogeneous GWL time series data sets investigates
RQ1. Moreover, workflows for GWL prediction models are established, and the performance
of several model architectures is comprehensively evaluated to examine RQs 2-4. To ensure
high transferability, these workflows use solely easy-to-measure and widely available meteoro-
logical input variables, such as precipitation and temperature. Furthermore, the application
of ANNs to long-term predictions (RQ5-7) and the successful transfer of GWL forecasting
approaches to karst spring discharge modeling (RQ7-9) is demonstrated. See also Table I.1
for a summary at the end of this section. The following four paragraphs shortly present these
applications, each of which corresponds to one study reproduced in the chapters II, III, IV
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and V. Each paragraph summarizes the corresponding study, highlights the motivation, sum-
marizes the main findings, and explains how all studies are connected. Publication details
can be found at the beginning of each of the respective chapters. Finally, in chapter VI a
synthesis of this thesis and an outlook are given.

The motivation of the first study in chapter II (Wunsch et al., 2022b) was to learn about
factors that influence groundwater dynamics and to understand if, or how, these result in
spatial patterns of (dis-)similar hydrographs (RQ1). For this purpose, an unsupervised clus-
tering approach based on self-organizing maps (SOMs) (Figure I.4) was developed. SOMs
are a powerful ANN approach with both characteristics of clustering (local averaging) and
data compression methods (topology preservation) (Kohonen, 2014). However, most GWL
time series are patchy and vary in length and covered period, making them inadequate for
SOM and other clustering methods. Hence, direct processing of groundwater hydrographs
was not possible or would have reduced the usable amount of data considerably. Surrogate
clustering, which uses descriptors, also called features that capture certain aspects of ground-
water dynamics, can overcome these problems. Moreover, such features can be calculated
regardless of the quality of the primary data, at least to some degree. Some features were
developed as part of this study, while others originate from the literature; in any case, they
are all suited explicitly for describing the dynamics of groundwater hydrographs. This study
shows that it is hard to conclusively assess and separate the influence of single factors on
groundwater dynamics because they interact and superimpose both in time and space. Nev-
ertheless, large groups of hydrographs with highly correlating dynamics, which are often also
spatially grouped, were found. However, spatial proximity is no necessity for similar ground-
water dynamics, and some patterns also emerge over larger distances. The application of
this approach was demonstrated for the Upper Rhine Graben (URG) region in southwestern
Germany/northeastern France.

F1
F2

F4

F3

GW                                                         SOM                                                     Cluster

Figure I.4: Graphical abstract chapter II: Groundwater hydrographs are transformed into features and
subsequently fed into a SOM model, which can cluster similar time series within a dataset.

Such groups of similar hydrograph dynamics are an excellent foundation for GWL forecasting
because the results allow (i) to improve the individual data basis of a groundwater well
by closing larger data gaps with information from highly correlated cluster neighbors, (ii) to
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reduce the (computational) workload of forecasting a large dataset by selecting representative
cluster members, and (iii) to conclude information on the representativeness of a single
forecast for a larger region. Based on the results of this study, the data used in chapter III
(Wunsch et al., 2021) is selected and preprocessed. Also, the data basis of chapter IV
(Wunsch et al., 2022a) strongly profits by results of the approach developed here, even
though applied in other regions than the URG.

At the time of performing the study presented in chapter III (Wunsch et al., 2021), a
considerable increase of published modeling studies based on ANN and DL methods in
the hydrological sciences occurred. Particularly LSTMs proved themselves extremely useful
for several applications such as rainfall-runoff modeling (e.g., Kratzert et al., 2018) and
increasingly became the method of choice for modeling hydro(geo)logical time series. In
Wunsch et al. (2018), an earlier study, which is not part of this thesis, I already showed
that nonlinear autoregressive networks with exogenous inputs (NARX) are very well suited to
perform GWL predictions. However, focusing on popular DL methods such as LSTMs, pushed
more classical ANNs (e.g., NARX) out of the focus of the studies conducted by the scientific
community. The motivation of chapter III was therefore to compare these different model
types specifically for the task of GWL forecasting, to find the best performing approach,
and to learn about their properties (RQ2, RQ4) (Figure I.5). Besides NARX and LSTMs,
also experiments with CNNs were conducted. At the time, CNNs were already successfully
applied to signal modeling tasks in other than water-related domains such as NLP and had
shown promising results in preliminary experiments for GWL prediction.

ANN
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Date

Tsin

Climate                                    ANN                                              GWL Forecast

Figure I.5: Graphical abstract chapter III: Climate data serves as input to different ANNs to forecast
groundwater levels.

Based on their properties and the results of existing studies, LSTMs, somewhat surprisingly,
performed weaker than CNNs and NARX for a standard one-step-ahead modeling setting
(sequence-to-value). NARX usually showed the highest performance values, closely followed
by CNNs, while the latter exceeded both LSTMs and NARX substantially in calculation
speed. Besides their high overall accuracy and speed, CNNs proved to be the most helpful
tool for subsequent modeling studies because of the lower dependency on the random network
initialization procedure and much greater implementation flexibility compared to NARX.
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CNNs rely on a Python (van Rossum, 1995) implementation (instead of MATLAB as for
NARX) using state-of-the-art frameworks such as Tensorflow and Keras (Abadi et al., 2015;
Chollet, 2015).

Chapter IV (Wunsch et al., 2022a) was partly motivated by recent developments, such as
the dry summers of 2018-2020 in Germany and their consequences, and is thus intended to
contribute to answering questions about the direct influence of climate change on ground-
water resources in Germany (RQ6) (Figure I.6). Another motivation was to investigate if
ANNs could reasonably perform long-term predictions (RQ5), as it now was clear that ANNs
perform excellently for short-term predictions. Such long-term predictions proved to be a
particular challenge because it was necessary to ensure that the models learned the correct
relationships and could reproduce them with high accuracy. Therefore, a way had to be
found to establish as much confidence as possible in the simulation results, even for such
long future periods, where no validation is possible (RQ7).

Climate Pojections                            ANN                                                 GWL Trends

0

2

4

6

[K
] 
re

la
tiv

e
 t
o
 1

8
5
0
-1

9
0
0
 

2050200019501900

RCP 8.5
RCP 4.5
RCP 2.6

CNN

Figure I.6: Graphical abstract chapter IV: Climate data from different RCP scenarios are fed into CNN
models to estimate the future groundwater level trends in Germany. Left part of the figure
is based on (Tebaldi et al., 2021).

Climate projection data from three different representative concentration pathways (RCP2.6,
4.5, and 8.5) were the basis to simulate the future GWLs at 118 selected sites all over
Germany. Each RCP describes one possible pathway of the future climate. The number-label
of each scenario indicates the strength of the expected climate change and corresponds to
the respective radiative forcing values in the year 2100. The simulations used purely climatic
inputs; thus, they considered only the direct climate influence on groundwater. Future
developments of other factors that strongly affect groundwater levels, such as anthropogenic
extractions and changing land use or vegetation, had to be neglected due to missing data of
their complex future development. A clear tendency of overall declining groundwater levels
was found in the results for all scenarios, with partly opposite trends for annual upper extreme
values (especially under RCP8.5), which illustrated the possibility of a generally increasing
variability in the future for some regions and under certain conditions. Under the stringent
mitigation scenario RCP2.6, the effects on groundwater are considerably less pronounced and
less severe than for both other scenarios. Regardless of all political efforts in recent times,
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the near future best matches the RCP8.5 conditions (Schwalm et al., 2020) and current
estimations of future climate change impact still exceed the RCP4.5 scenario (UNFCCC,
2021), which highlights the importance of the results for RCPs 4.5 and 8.5.

The clustering approach from chapter II proved extremely useful in preliminary work to this
third paper, to gain insight into dynamic patterns in regions of Germany other than the URG,
and subsequently building the foundation to improve the data basis of thousands of time series
that served as study site candidates for this study. Based on the findings of chapter III, CNNs
were the method of choice to model the groundwater levels in this long-term study. The high
framework flexibility allowed the implementation of an XAI approach that was key to selecting
models and sites and increasing confidence in the simulation results. According to this XAI
method, all models in this study learned the relation between input and output variables
following the conceptual understanding of the major processes: groundwater recharge and
evapotranspiration. Hence, these models not only performed well in the validation period
but also "did the right things for the right reasons" without prior instructions or inductive
biases.

Chapter V (Wunsch et al., 2022c) bridges the gap from GWLs to the closely related domain of
karst spring discharge modeling (RQ8). Primarily due to the usually high complexity of karst
systems, ANN approaches offer a convenient alternative to classical modeling approaches
because only little karst domain knowledge is necessary to deploy them. The study results
showed that CNNs are equally well suited to model karst spring discharge as to model
groundwater time series (chapter III) and also rival existing modeling results of other authors
in the studied areas. Motivated by the work of Anderson and Radić (2022), this study
demonstrated that it is possible to let CNNs learn the relevant data from spatially distributed
input data automatically (RQ9), which has the potential to solve data availability problems
in many karst spring catchments by using openly available gridded meteorological data (such
as E-OBS (Cornes et al., 2018)) (Figure I.7).

CNN

Spatial Data                               ANN                                                 Spring Discharge

Catchment Position

over tim
e

Figure I.7: Graphical abstract chapter V: Spatially distributed input data, fed into a CNN model allows
both karst spring discharge simulations, and an estimation of the catchment position.
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For this purpose, a combination of 2D- and 1D-CNNs processed data from three well-studied
karst springs in Austria, Slovenia, and France, representing karst systems of different system
properties, environmental conditions, and data availability. Furthermore, a spatial input
sensitivity analysis of the trained models even opened possibilities of using this approach to
localize karst spring catchments in the future (RQ7), given adequate conditions (such as the
appropriate spatial resolution of the meteorological data) and further development of the
existing approach.

Table I.1 finally provides an overview on the applied model types in the following chapters,
how they relate to the concepts discussed in section 2.2, and which RQs are connected with
each chapter.

Table I.1: Overview of applied learning concepts, models and the associated research questions.

Chapter
Technique Models

RQs GoalsUL SL FFN RNN
II x SOM 1 Hydrograph clustering

III x CNN NARX, 2, 3, 4 GWL forecasting, model
LSTM comparison

IV x CNN 5, 6, 7 GWL long-term fore-
casting

V x 1D-CNN 7, 8, 9 Karst spring discharge
2D-1D-CNN modeling
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Chapter II

Hydrograph Clustering with
Self-Organizing Maps

This chapter is based on a study published in Water Resources Management and combines
the original article and material from its electronic supplement and is, therefore, a consider-
ably extended version of:

Wunsch, A., Liesch, T., Broda, S., 2022. Feature-based Groundwater Hydrograph Clus-
tering Using Unsupervised Self-Organizing Map-Ensembles. Water Resources Management
36, 39-54. doi: 10.1007/s11269-021-03006-y

The original article is distributed under the Creative Commons Attribution 4.0 License.

The following links provide access to the associated online resources of this study:

Paper
DOIDOI 10.1007/s11269-021-03006-y10.1007/s11269-021-03006-y

Electronic Supplementary Material
ESMESM Springer.comSpringer.com

Code
GitHubGitHub AndreasWunsch/Groundwater-Dynamic-ClusteringAndreasWunsch/Groundwater-Dynamic-Clustering DOIDOI 10.5281/zenodo.399136910.5281/zenodo.3991369
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Chapter II: Hydrograph Clustering

1 Introduction

The analysis and evaluation of groundwater level dynamics can contribute valuable informa-
tion to assess quantitative groundwater availability, which is important to manage ground-
water resources and secure water supply in many regions worldwide. As every hydrograph
contains information about system properties (e.g., geology), artificial (e.g., withdrawal),
and natural (e.g., streamflow interaction) environmental factors, hydrograph clustering is of-
ten helpful to identify common dynamics and to differentiate between signals resulting from
external controlling factors and noise. This improves understanding of system dynamics
and forms the basis for further analysis, including forecasting or scenario building. Popu-
lar methods to cluster hydrological time series are for example Cluster-Analysis (CA) (e.g.,
Naranjo-Fernández et al., 2020) and principal componant analysis (PCA) (e.g., Haaf and
Barthel, 2018), each alone or as a combination of both (e.g., Machiwal and Singh, 2015).
Besides classical approaches, ANNs offer innovative concepts to deal with larger sets of mul-
tidimensional data, such as using self-organizing maps for unsupervised clustering. Several
studies from different disciplines compare SOM to other well-established clustering methods
like k-means and hierarchical clustering (HC). Some authors found that k-means performs
equally (He et al., 2004) or even better than SOM (Balakrishnan et al., 1994; Kumar and
Dhamija, 2010; Mingoti and Lima, 2006); however, there is no consent on this aspect in
literature as other authors found SOM to be clearly superior to k-means (Chen et al., 2010b;
Kiang et al., 2006; Melo Riveros et al., 2019) and also to HC (Mangiameli et al., 1996).
Often, SOM are even combined with k-means or HC methods because interpreting a trained
SOM structure is not trivial, and usually, second-level clustering is therefore applied. Be-
sides classical clustering methods, also algorithms specialized in the interpretation of trained
SOM, such as DS2L (Cabanes et al., 2012), exist. In the hydrological context SOM have
been extensively used to analyze water quality and chemistry (e.g., Gholami et al., 2021).
Applications to groundwater hydrographs are: forecasting by using hybrid SOM-ANN models
(Chang et al., 2016; Chang et al., 2014; Chen et al., 2010a; Lin and Chen, 2005; Moradkhani
et al., 2004), hydrological event type clustering and classification (Abrahart and See, 2000;
Toth, 2009), or catchment classification (Toth, 2013). The clustering of groundwater hy-
drographs, especially using SOM, has been carried out rather rarely so far. Han et al. (2016)
used SOM to identify homogeneous clusters of groundwater level piezometers as a prepro-
cessing step to forecasting with a step-wise cluster multi-site inference model. However, they
tested the approach on a rather small number of wells (30), and more importantly, they used
the time series directly as inputs. Such approaches that use time series directly for clustering
suffer from dependency on high-quality data (equal length, equal period, no gaps). Appli-
cation of feature-based approaches can overcome this problem by being able to use patchy
input data (Wang et al., 2006). Features, in this case, are descriptive (statistical) measures
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of the time series, extracted, e.g., from the time or frequency domain (Caiado et al., 2015).
To apply a feature-based approach to groundwater level data, features taking the peculiari-
ties of groundwater hydrographs into account are desirable. Heudorfer et al. (2019) present
a comprehensive compilation of 45 possibly suited indices to describe groundwater dynam-
ics. Their approach is very much related to the concept of hydrological signatures (e.g.,
McMillan et al., 2017), where features are designed to describe certain dynamic aspects in
surface hydrology. Feature-based clustering of hydrological time series using self-organizing
Maps has already been performed by Nourani et al. (2015), who used features based on
wavelet decomposition to cluster a small number of wells on Ardabil plain, Iran. However,
to the authors’ best knowledge, no approach is known yet that combines SOM-clustering
with specifically designed features that describe certain groundwater hydrographs’ dynamics
aspects.

In this study, we develop a robust, flexible, and semi-automated framework for groundwater
hydrograph clustering. We deploy feature-based time series clustering, which allows us to
use data from time series of different periods, different lengths, and missing and noisy data.
Further, we present and explore several new features that showed promising results and are
particularly suited to describe dynamic aspects of groundwater hydrographs. We modify a
powerful clustering algorithm combination (SOM+DS2L) that allows influence on the level
of detail of the clustering result and implement ensemble modeling techniques to remove
arbitrariness from the feature selection process as to ensure higher robustness of the clustering
result. We apply the developed approach to the Upper Rhine Graben area in central Europe,
based on a dataset of overall 1853 groundwater hydrographs. The motivation and later
application is the reduction of the forecasting workload of regional forecasting of groundwater
levels by selecting representative hydrographs from the clustering result. Additionally, we aim
for increased system understanding in terms of dynamic patterns and their main controlling
factors.

2 Data and Study Area

2.1 Upper Rhine Graben Area

The study area is the Upper Rhine Graben, mainly located in southwestern Germany and
northeastern France (Figure II.1a). It is the largest groundwater resource in central Europe
(LUBW, 2006), covering 80% of the drinking water demand of the region (Région Alsace
- Strasbourg, 1999) and is also intensively used for water extraction both for irrigation
and industrial purposes. The URG, a Cenozoic rift structure, 300 km long (N-S) and on
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average about 40 km wide (E-W), is filled with sediments (mainly gravel and sand) with a
total thickness up to about 3500 m (Geyer et al., 2011). Hydrogeologically, the uppermost
Quaternary sediments are most important. They reach a thickness of more than 200 m in
the southern part, which strongly decreases to about 30 m in the area around Karlsruhe. In
the northern part of the URG, the Quaternary sediment thickness increases up to 500 m,
and a multi-aquifer system exists due to several fine-clastic layers dividing the Quaternary
sediments (Geyer et al., 2011; LUBW, 2006).

2.2 Groundwater Data

The used dataset consists of 1853 weekly groundwater hydrographs from Germany and
France, including one synthetic hydrograph with strong outlier characteristics to explore
and illustrate additional properties of the clustering approach. The considered period ranges
from October 1986 to September 2016 (30 years). The majority of the hydrographs con-
tain data for almost the entire period; the shortest length being included is six years. We
removed strong outliers conservatively and interpolated small data gaps up to 1 month lin-
early. Additionally, we set the maximum portion of data gaps within a time series to 25%
and homogenized the dataset concerning the sampling interval. This included downsampling
of higher-resolution data by picking discrete values (no averaging) and filling small data gaps
to make use of monthly data. After preprocessing, considerable heterogeneity still exists,
which was intended, since as much data as possible should be included, to fully use the
available hydrographs. Figure II.1a shows the study area in general (left) and the locations
of the 1852 actual wells included in the dataset (right). The dataset includes only wells from
the uppermost aquifer within the Quaternary sediments, which causes, e.g., the three major
blank spaces on the map in Figure II.1a (right), due to locally changing geological conditions
in these areas.

2.3 Groundwater Dynamics

Figure II.1b sketches a strongly simplified E-W cross-section of the URG and illustrates that
the regional groundwater dynamics are the result of a complex interaction of multiple factors,
which we, for the sake of a more systematic point of view, divided into processes (Pr), driving
forces (DF ) and governing parameters (GP). Processes are the thereby physical processes
that directly influence the groundwater levels (e.g., recharge). They are driven mainly by
external driving forces (e.g., precipitation) and, in most cases, dependent on one or several
governing parameters (e.g., topography, land use). The following paragraphs describe all
factors in general and provide details on the respective conditions in the study area.
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Figure II.1: a) The study area Upper Rhine Graben (left) and the locations of the used 1852 real
groundwater monitoring wells (right). b) Strongly simplified E-W cross-section of the
URG, summarizing some influences on groundwater dynamic patterns (DF : driving force,
GP: governing parameter, Pr : process); DF1 – artificial extraction/infiltration, DF2 – sur-
face water interactions (a: floods), DF3 – regional flow systems, DF4 – weather/climate,
DF5 – soil moisture; GP1 – topography, GP2 – vegetation/land use, GP3 – geology
(aquifer type/material properties), GP4 – pressure state (free/confined), GP5 – mean
depth to groundwater; Pr1 – recharge (a: direct/diffuse; b: direct/local; c: inter-aquifer-
exchange; d: lateral), Pr2 – evapotranspiration, Pr3 – signal damping (low pass filter
effect), Pr4 – in-/exfiltration, Pr5 – bank storage;
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Groundwater Recharge and Climatic Conditions

One of the main processes with influence on groundwater dynamics in the region is ground-
water recharge (Pr1), either directly (Pr1a/b) or as inter-aquifer exchange (Pr1c). Direct
recharge is a highly complex process and occurs localized (DF2/Pr1b), or diffusely through
the unsaturated zone (Pr1a). Recharge in general also depends on many other factors like
precipitation (physical state, amount, intensity) (DF4), temperature (DF4), topography
(GP1), vegetation (GP2), geology (GP3), soil moisture (DF5) etc. (e.g., Alley et al., 2002;
Jasechko et al., 2014). Some of these, especially precipitation and temperature, in turn,
are driven by global climatic patterns (DF4), which, especially in humid regions, have a
significant influence on groundwater levels (Cuthbert, 2014) and generally influence factors
like land use and vegetation (GP2) directly. These, in turn, have a strong impact on soil
moisture (DF5) and evapotranspiration (Pr2). Further, mainly during long dry seasons, even
in moderate climate shallow groundwater is exposed to the risk of strong direct groundwater
evaporation (Balugani et al., 2017) as shown by Lam et al. (2011). The URG is one of the
warmest areas in Germany, and the yearly precipitation within the Graben is in the order
of 500 to 900 mm per year. The adjacent mountain regions can reach cumulative rainfalls
of 2000 mm per year (Thierion et al., 2012). The mean annual groundwater recharge in
our dataset ranges from 0 mm (mainly floodplains of the Rhine) to about 350 mm/a, with
a mean value of about 150 mm/a. In general, the diffuse recharge in the northern part is
comparably low, while the highest recharge values mostly occur in the middle URG between
the cities of Offenburg and Rastatt (BGR, 2019). Dominant land use types within the URG
are agricultural areas of different types (37%), on par with artificial surfaces (36%), the rest
are mostly forests/semi-natural surfaces (22%) (CORINE Land Cover, 2018).

Hydrogeological Properties and Regional Context

Geology (GP3), thus, material properties (permeability/hydraulic conductivity, effective po-
rosity) or, more generally speaking, the aquifer type (porous, fractured, karstic), also plays
a major role in controlling groundwater dynamics. Porous unconsolidated gravel or sand
aquifers like in the URG usually show high matrix porosities, often going along with high
hydraulic conductivity and high storage capacity. Also, the regional geological setting is of
great importance, since the development of local and regional groundwater flow systems
(DF3), thus the lateral recharge (Pr1d) within an aquifer, depends on it (Toth, 2009). Con-
fined and unconfined aquifers (GP4) are known to react differently to atmospheric pressure
changes or groundwater withdrawal (Alley et al., 2002; Hölting and Coldewey, 2013). The
mean depth to groundwater (GP5) is also an important factor concerning groundwater dy-
namics as the recharge signal is increasingly damped with depth (Pr3), filtering seasonal
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variation patterns and leaving only multi-annual periodicities. Overlying layers with lower
hydraulic conductivities can amplify this low-pass filter effect (e.g., Corona et al., 2018).
The study area comprises mainly unconfined sand/gravel aquifers of generally high storage
coefficients and high hydraulic conductivities in the order of 10E-4 to 10E-3 m/s (LUBW,
2006). Hydrographs used in this study are from the uppermost aquifer, with very shallow
mean depths to groundwater (<5 m bgl for 70% of the wells), rising to a maximum of about
20-30 m towards the Graben edges. A rather shallow gradient towards the north of the
Graben and at the same time from the Graben edges towards the graben center controls the
regional groundwater flow-systems (Thierion et al., 2012). Towards the Graben edge, local
inflow from adjusting fissured aquifers or alluvial fans from side valleys may dominate the
flow regime and result in steeper gradients towards the Rhine River as the main receiving
streamflow of the region.

Surface Water

Surface water interactions (DF2), already mentioned as a source of local recharge, are
usually essential driving forces of groundwater dynamics. Important processes and driving
forces in this context are, for example, streamflow in-, and exfiltration (Pr4), bank storage
(Pr5), tides, waves, as well as floods (DF2a)(Alley et al., 2002; Cloutier et al., 2014). In
the study area, the main surface water body is the Rhine River, with a strong influence on
groundwater dynamics, up to several hundreds of meters in distance. To a lesser degree, there
are also smaller streams from the adjacent mountain ranges that strongly affect groundwater
dynamics on a local scale (Longuevergne et al., 2007). Besides natural interaction, especially
in floodplains and along the ancient river course, anthropogenic interventions like correction
of the streambed course or weir locks and dams influence the dynamics in many parts along
the streams.

Artificial Factors

Anthropogenic actions, in general, cannot only influence streamflows but also strongly alter
groundwater dynamics directly (Stoll et al., 2011). Typical influences in general, also widely
present in the study area, are land-use changes over vast areas, landscape-engineering actions
(e.g., river course modifications and dredging lakes), recharge inhibition by surface sealing in
urban areas, abstraction for drinking water supply or industrial purposes, artificial infiltration,
and irrigation in agricultural areas, which increased in the study area particularly in recent
years. Especially direct groundwater interactions like abstractions and infiltrations (DF1) are
most important because, on a local scale, pumping patterns can partly or even completely
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superimpose the natural groundwater dynamics. Especially in the northern part of the URG,
intensive groundwater management is applied by managing extraction rates and artificial
aquifer recharge. Besides the increasing water demand in these areas, this is especially
necessary to protect ecosystems and infrastructure from land-subsidence and groundwater-
floodings (Bouwer, 2002; Regierungspräsidium Darmstadt, 1999).

3 Methodology

3.1 Feature-based Time Series Characterization

Depending on the unique hydrogeological conditions, a proper feature set is a key to ade-
quately describing and thus successfully clustering the data. Here, features are descriptive
(statistical) indices that quantify the dynamics of groundwater hydrographs, similar to the
concept of signatures in hydrology (see, e.g., McMillan et al., 2017). However, groundwater
hydrographs generally differ considerably from surface water hydrographs, which makes many
hydrological signatures inadequate for describing dynamic aspects of groundwater, and there
is a need for comprehensive testing of transferability to the groundwater domain like done
by Heudorfer et al. (2019). The most important supportive tool for pre-selecting adequate
features is a visual skill test to check every single feature’s adequacy and explanatory power.
Applying PCA or related methods can help to reduce the feature number by ruling out redun-
dant features based on the explained variance. However, including correlated features can
help to improve the result by up-weighting important aspects of the general dynamics. We
explore this aspect with a correlation analysis of all selected features in the results section.
In total, we tested a broad variety of feature candidates (>50), including standard statistics
measures, features derived from literature (e.g., from Heudorfer et al., 2019; Wang et al.,
2006), as well as self-designed features to account for peculiarities of both the study area
and groundwater hydrographs in general. In the following, we introduce those that have
successfully passed the visual skill test for our data set. Skill test results that show the
explanatory power of each feature are provided in the supplementary material (Figures S1
to S13). Table II.1 summarizes the feature calculation, the corresponding data basis, and
the primary purpose or a short description for all used features. For more details on the
self-designed features, we refer to the supplementary material (Text S2).

We designed three experiments to examine better the properties and data requirements of
the applied features. The first two try to answer how strongly the features react to missing
values and white noise in the data, respectively. Thus, 0%-25% of each time series is
randomly replaced by white noise or data gaps in 0.25% steps (50 times each), and both the
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Table II.1: List of promising features (passed skill test) to describe groundwater dynamics of time
series in the URG dataset. Features in italic were not used based on the decision of the
ensemble approach (see section 3.3)

Feature Name (Abbrev.) Data* Purpose / Description Ref**
Range Ratio (RR) o Detection of superimposed long-periodic sig-

nals, also sensitive to outliers, calculated as the
ratio of the mean annual range to the overall
range

sd

Skewness (Skew) o Boundedness, inhomogeneities, outliers, asym-
metry of the probability distribution

ss

Annual Periodicity (P52) o Strength of the annual cycle, calculated by cor-
relating (Pearson) the mean annual (52 weeks)
periodicity with the complete time series

sd

SDdiff o Flashiness, frequency and rapidity of short-term
changes, calculated as the standard deviation of
all first derivatives

sd

Longest Recession (LRec) o (unnaturally) long descending heads, longest
sequence without rising head values

sd

Jumps z Inhomogeneities/breaks, partly also variability,
calculated as the absolute and standardized
maximum change of the mean of two succes-
sive years

sd

Seasonal Behavior (SB) z Position of the maximum in the annual cycle,
agreement with the expected average seasonal-
ity (Min in September, Max in March)

sd

Median[0,1] (Med01) n Boundedness, median after scaling to [0,1],
standard statistics measure, derived from
(Heudorfer et al., 2019)

ss/lit

High Pulse Duration
(HPD)

n Average duration of heads exceeding the 80th

percentile of non-exceedance, for details see
Richter et al. (1996), derived from (Heudor-
fer et al., 2019)

lit

Richards-Baker Index
(RBI)

o Flashiness, frequency and rapidity of short term
changes, for detailed explanation see Baker et
al. (2004)

lit

Yearly Variance (Yvar) z Variability, periodicity, calculated as the median
of the yearly calculated variances

sd

Standard Error of the
Mean (SEM)

o Standardized statistical dispersion, calculated
as the standardized standard deviation of the
time series

ss

Low Pulse Duration (LPD) n Average duration of heads dropping below the
20th percentile of non-exceedance, for details
see Richter et al. (1996), derived from Heudor-
fer et al. (2019)

lit

* o: original, z: z-scored, n: normalized
** lit: literature, sd: self-designed, ss: standard statistics
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absolute characteristic values and their changes compared to the initial undisturbed values are
examined. To estimate how long a time series has to be at least to provide a representative
feature value, the features for systematically varied time series lengths were calculated in
experiment three. Starting from 2016, the time series length was extended in 1-year steps
until 1986. For this experiment, we used only a subgroup of about 50% of the data set, which
had complete data over the 30 years. To make the feature values and changes comparable,
the features were standardized in all experiments, using the respective mean and standard
deviation from the (undisturbed) 30-year feature values.

3.2 Self-Organizing Map Clustering Using DS2L Algorithm

SOM perform a nonlinear projection of multidimensional data onto a regular neuron lattice
surface. They show characteristics of both clustering (local averaging) and data compression
methods (topology preservation), which is a unique property and also an advantage of SOM
compared to other cluster algorithms and projection methods (Kohonen, 2014). Every neu-
ron has clearly identifiable neighbors, allowing simple two-dimensional visual representations
of multi-dimensional data. We apply a modified version of the density-based simultaneous
two-level (DS2L)-algorithm (Cabanes et al., 2012) to automatically derive clusters from the
trained SOM. DS2L detects clusters by analyzing data density and neighborhood connection
strength of the SOM. An adequate cluster number is automatically determined, and the al-
gorithm does not tend to produce clusters of equal size, both advantages compared to some
well-established cluster algorithms (e.g., k-means or some hierarchical methods). We modify
DS2L-algorithm so that the user can decide purely qualitatively whether the clustering should
be performed more coarsely or more finely. The cluster number is still determined automat-
ically on the chosen level of detail. For this, we implement three adjustment parameters for
thresholds of data density and neighborhood connection strength as well as to control the
application of some algorithm steps. Besides the number of neurons (SOM-size), which also
influences the clustering result, the following four parameters must be optimized during the
clustering process.

• SOM-size: normal (5√
n), small (5√

n · 0.25) or big (5√
n · 4) - options implemented

in SOM-Toolbox (Vesanto, 2005), n: number of samples

• NTH: NTH ≥ −1 ∈ Z - DS2L-Neighborhood-Threshold, connection strength re-
quired to qualify as cluster border, -1 means connection strength is not used.

• DR: Yes/No - DS2L-Density-Refinement, use density values for cluster determination

• DM: Yes/No - DS2L-Density-Merging, merge similar clusters based on density-depen-
dent index
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3.3 Workflow

Figure II.2 summarizes the workflow of the approach applied in this study. A common
problem with many feature-based approaches is the arbitrariness of feature selection. As
shown by line I in Figure II.2 we implement a SOM-ensemble to find the best combination
of all pre-selected features, whereby the cluster quality is judged by five different internal
validation indices (Caliński-Harabasz criterion (CH), McClain-Rao criterion (MR), PBM-
Index, Ratkowsky-Lance criterion (RL), C-Index). Line II in Figure II.2 shows a second
SOM-Ensemble based on delete-d-Jackknifing resampling. Its purpose is to simulate changes
in the observational network by manipulating the input data set and to obtain cluster results
as robust as possible. The final cluster result is based on voting consensus. We rearrange all
original time series of a cluster for visualization and evaluation by their mean pairwise Pearson
correlation with all other cluster members. A weighting by the p-value of the respective single
correlations lowers correlation values with low significance (which might arise from only short
overlapping periods). We define this value as the weighted intra-cluster correlation (RW ).
A detailed description and discussion of the workflow is added to the supplementary material
(Text S3).

Figure II.2: Workflow of the presented methodology.

Besides the clustering itself, interpreting the results is very useful to improve system under-
standing in general. This is especially the case for clusters, which are not easily interpretable
in terms of spatial location or dynamic aspects. Hence, we conduct detailed correlation
analyses for factors mentioned in Figure II.1b, where reasonable additional data are available
to perform meaningful statistics. For some, data are only available for a part of the study
area; we, therefore, link them also with features and not only with clusters. In this way,
we avoid a bias for clusters with wells in areas without data. Furthermore, the dynamics
within clusters are usually the result of a superposition of several influencing factors, which
can make correlations rather challenging. We focus on linear correlation analysis because of
the easier metric interpretation, although we are aware that nonlinear relationships can also
exist; further, we only mention significant correlations with p<0.05.
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4 Results and Discussion

4.1 Feature Robustness

We conducted three experiments to examine the sensitivity of the 13 tested features towards
(i) data gaps, (ii) white noise, and (iii) time series length. These experiments mainly aimed
to test if thresholds exist, which can be formulated as recommendations for minimum data
quality requirements. As reference values within each experiment, the undisturbed values
of the features (no additional gaps, noise, or shortened time series) were used. We can
show (Table II.2) that most features only react little (<0.1 with 25% missing values) to
additional data gaps. In contrast, adding white noise leads to much higher differences much
faster. Though one might think this could lead to unstable results for noisy datasets, this
is probably not the case in reality. Little noise from unknown sources is hard to recognize
and will not lead to strong differences in feature calculation. However, strong noise causes
higher differences in the features, usually can be detected as outliers and removed hereafter.
Therefore, data should always be carefully checked for implausible outliers in preprocessing.

Experiment three shows that time series length seems to have a constant influence on the
feature values (Table II.2). We found a steady increase of differences the shorter the time
series, up to strong increases for lengths of only a few years. No threshold value that might
serve as a recommendation as minimum length can be found. Thus, we instead generally
conclude that the longer the time series, the better. Features that are not robust and
show bad performance, or cause unsatisfying cluster results, should usually be ruled out
by the visual skill test or the feature selection ensemble. Please check the supplement for
detailed information on feature robustness results (Tables S2 and S3). Answering how these
disturbances alter the clustering result is exceptionally challenging because additional factors
such as the ensemble and the consensus voting approaches also influence the final results.
Extensive and thorough experiments would be necessary to investigate these interactions,
which is why this question lies beyond the scope of this work but would be worth to be
answered in future research.

4.2 Clustering Results

We applied our approach to 1853 time series from the URG (incl. one synthetic hydrograph).
The feature pre-selection provided 13 features with good explanatory power regarding our
specific dataset (sec. 3.1/Table II.1). The used cluster parameter combination was: SOM-
size: big, NTH=0, DR=Yes, DM=No (sec. 3.2). The best feature configuration derived
from the first ensemble (115.005 members) included 9 out of 13 features.
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Table II.2: Median influences of data gaps, white noise and time series length on standardized feature
values. The table shows the absolute values of the differences between the according
disturbed values and the undisturbed values (no additional noise, data gaps, full length).
Due to the standardization, the unit below is standard deviations.

Added White Noise Added Data Gaps
Feature 1% 5% 10% 25% 1% 5% 10% 25%

RR 0.13 0.49 0.75 1.14 0.00 0.01 0.02 0.04
Skew 0.00 0.03 0.05 0.12 0.00 0.00 0.00 0.01
P52 0.02 0.08 0.15 0.34 0.00 0.01 0.03 0.07
SDdiff 0.41 1.37 2.10 3.42 0.01 0.03 0.06 0.15
LRec 0.00 0.20 0.40 0.69 0.00 0.06 0.11 0.23
Jumps 0.01 0.03 0.05 0.11 0.00 0.02 0.03 0.12
SB 0.00 0.02 0.03 0.08 0.00 0.00 0.01 0.01
Med01 0.00 0.11 0.30 0.49 0.00 0.00 0.00 0.00
HPD 0.10 0.31 0.42 0.52 0.01 0.03 0.04 0.10

RBI 0.03 0.24 0.46 0.99 0.00 0.01 0.01 0.03
Yvar 0.00 0.00 0.00 0.01 0.01 0.04 0.09 0.22
SEM 0.08 0.27 0.38 0.48 0.01 0.03 0.04 0.10
LPD 0.14 0.68 1.31 2.82 0.01 0.04 0.08 0.18

Time Series Length [years]
Feature 30 25 20 15 10 5 3 1

RR 0.00 0.05 0.24 0.40 0.87 1.47 2.10 NaN
Skew 0.00 0.08 0.17 0.29 0.27 0.39 0.53 0.51
P52 0.00 0.07 0.16 0.18 0.45 0.78 0.78 2.68
SDdiff 0.00 0.02 0.04 0.06 0.09 0.10 0.14 0.16
LRec 0.00 0.00 0.00 0.00 0.06 0.34 0.40 0.92
Jumps 0.00 0.14 0.23 0.44 0.91 1.39 1.76 NaN
SB 0.00 0.04 0.07 0.12 0.16 0.22 0.32 0.61
Med01 0.00 0.10 0.29 0.46 0.53 0.60 0.85 0.95
HPD 0.00 0.05 0.08 0.10 0.14 0.15 0.17 0.31

RBI 0.00 0.06 0.15 0.21 0.51 0.76 1.38 NaN
Yvar 0.00 0.15 0.26 0.47 0.60 1.49 2.13 5.08
SEM 0.00 0.03 0.05 0.08 0.12 0.17 0.19 0.27
LPD 0.00 0.02 0.03 0.05 0.07 0.09 0.10 0.13

As stated in section 3.1, we found that including correlated features improves the clustering
results. A correlation analysis among the included features shows the highest absolute signif-
icant (p<0.05) correlations for the features Skew-Med01 (-0.81) and P52-RR (0.79), which
is consistent with the meaning and calculation of these respective feature pairs (e.g., hydro-
graphs with high annual periodicity often also show a regular range over the years, thus high
RR values). A detailed correlation matrix of all features can be found in the supplementary
material (Figure S27).

The final cluster result consists of 18 clusters (Figure II.3a) with sizes ranging from 239
hydrographs in cluster 1, to only one hydrograph in cluster 18, which is the synthetic hy-
drograph with outlier characteristics (cluster numbers sorted in descending order by size).
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The five biggest clusters include almost 1000 of the 1853 hydrographs in total; 8 clusters
show sizes larger than 100, only 5 clusters show sizes below 50. Due to the vast amount of
information, we summarize detailed information and graphics on every single cluster in the
supplement (Figures S28-S65); we only present selected results in the following.

Figure II.3: a) Cluster sizes; b) Feature-value boxplots of all clusters. For a better graphical represen-
tation Cluster 18, was omitted, due to strong outlier characteristics. Boxplots including
Cluster 18 can be found in the supplement.
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The boxplots in Figure II.3b show the feature value distributions within each cluster. For
some clusters, clear feature importance can be derived. Cluster 2, for example, is comprised of
mainly regular hydrographs dominated by annual periodicity and with few other long- or short-
term periodicities (high P52), as well as the annual maximum and minimum occurring very
regularly during March and September respectively (high SB). The reasons are comparably
high recharge values in the middle of the Graben, which are typical for wells neither strongly
dominated by margin inflows nor by the Rhine River. However, less straightforward feature
combinations also exist, which are harder to interpret. The same applies to the spatial
distribution of the clusters. Without distinct grouping, e.g., as a result of a spatially limited,
local influence on the dynamics, more effort is required to understand what processes, forces,
or parameters might cause the common dynamics.

Cluster 3 (Figure II.4a) is an example of straightforward interpretation, where wells follow
almost exclusively the Rhine River course, thus identifying interaction with surface water
(DF2, Pr1b, Pr4, Pr5, Figure II.1b) as the dominant driving force is comparably easy. Some
wells of this cluster showing greater distances to the Rhine River are in turn closer to mid-sized
rivers like the Neckar or Ill, where common dynamics can be expected due to similar overall
conditions. The resulting hydrograph grouping reveals that despite data gaps and different
time series lengths, the homogeneity of the cluster is still high. The weighted intra-cluster
correlation values (RW ) are expressed by the coloring (the brighter, the lower), thus by the
sorting of the stacked time series and by the bars on the right. In general, with decreasing
(RW )-values towards the cluster borders, the heterogeneity increases, and the certainty of
the cluster assignment of individual hydrographs decreases. Considering cluster 3, we can
observe a distinct north-south gradient, which means that despite a changing dynamic along
the river, grouping was still successful. Other wells close to the Rhine River were sorted
into different clusters but showed indeed different dynamics (compare clusters 7 and 9 in the
supplement). In terms of feature values, the Rhine influence for cluster 3 is best expressed by
feature SDdiff, describing the higher flashiness close to the river (Figure II.3). Other features
are also in accordance. For example, Med01 values are comparably low, indicating that the
hydrographs are more likely to be bound to some kind of baseflow level in combination with
short and high peaks triggered by the streamflow.

Overall results show that in the north of the URG predominantly hydrographs with small
variability and weak annual periodicity occur, while especially the middle section of the URG
exhibits highly seasonal and highly regular hydrograph patterns. The former is expressed
mainly by clusters 1, 5, 8, 10, 16; the latter can be seen, e.g., in clusters 2 and 4 (Figures
S29-S65). We selected cluster 8 (Figure II.4b) to illustrate the low-variance case in the north-
ern URG. Driving forces connected to this cluster are most certainly strong anthropogenic
influences (DF1, Figure II.1b) because the cluster focuses spatially on an area with strong
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groundwater management efforts. Connections to generally lower groundwater recharge val-
ues (Pr1a, Figure II.1b) in the northern URG can also be drawn. Both factors can explain
the smoothness as well as the comparably weak annual periodicity and low variability of the
hydrographs in cluster 8.

The approach successfully separates a small group of 16 hydrographs with outliers and
significant inhomogeneities, which probably occur due to two major Rhine River weir locks
(Strasbourg, Breisach) (cluster 15, Figure II.4c). Furthermore, the synthetic hydrograph is
put in a separate cluster (cluster 18, Figure II.4d). Both clusters are examples for clusters
that are rather based on single events or characteristics than on similar, highly correlated
time series. Therefore, even for good clusters in terms of such events, (RW )-values can be
rather low.

In terms of system understanding, thus the correlation analysis of clusters and features with
explaining factors, we found that the mean depth to groundwater (GP5, Figure II.1b) shows
clear negative correlations (P52 (-0.45), RR (-0.44), SB (-0.29), SDdiff (-0.16)) with features
describing the variability of hydrographs (e.g., seasonality, flashiness). Such variability is
generally damped with increasing depth to groundwater. The complimentary case applies
for HPD (0.33) and LRec (0.29), which reach higher values for smoother hydrographs with
little short-term variations. A clear relation to the clusters could not be found, though,
probably due to the just minor variation of this parameter (70% of the wells <5 m bgl on
average), which makes a meaningful interpretation of the cluster development challenging.
We observed only slight tendencies to greater or smaller depths to GW for some clusters.
Another probable explanation could be that more dominating factors superimpose the effect
of the depth to groundwater and are thus more decisive for cluster assignment.

We explored the connection of features and clusters to diffuse groundwater recharge (Pr1a,
Figure II.1b) using the GWN1000 dataset (BGR, 2019). French wells (190) were excluded due
to no data. In accordance with the findings and explanations given for depth to groundwater,
we found significant positive correlations for damping sensitive features (RR (0.26), P52
(0.19), SB (0.07), SDdiff (0.05)). Further, it seems plausible that weak recharge signals
correlate with important features for smoother hydrographs (LRec (-0.15), HPD (-0.14)).
In agreement with the spatial recharge data, we found that clusters showing mainly smooth
hydrographs with lower variability (1, 5, 8, 10, 16) are connected to lower recharge in the
northern URG; clusters showing higher annual periodicity and variability and which occur
mainly in the middle part of the URG (2, 4, 6) are connected to higher recharge. Nonetheless,
due to missing data for France, these relations must be considered somewhat carefully.
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Figure II.4: Maps and stacked, z-transformed hydrographs of selected clusters. Coloring and stacked
order reflect the weighted intra-cluster correlation (RW ), also shown as bar-plot on
the far right; a) Cluster 3 is mainly influenced by the Rhine River; b) Cluster 8 shows
spatial grouping in the northern part and contains hydrographs with low annual periodicity
and low variability; c) Cluster 15 groups hydrographs with outliers and inhomogeneities;
d) Cluster 18 contains only the synthetic hydrograph, which is a heavy outlier compared
to the whole dataset.
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For most of the area east of the Rhine (Baden-Württemberg) we explored connections to the
hydraulic conductivity within the uppermost aquifer (K-values, GP3, Figure II.1b) (LGRB,
2007). Due to the spatially limited data, no meaningful correlation can be made with clus-
ters; however, a reasonable number of wells (828) can still be assigned to a specific K-value.
Categorical correlation analysis (Spearman) with features yields positive correlations for Skew
(0.24) and SDdiff (0.18), probably because high conductivities can be found mainly close
to the Rhine River. Similarly, Jumps (0.20) are probably often caused by anthropogenic
influences (GW abstractions, ship locks), which in turn occur preferentially in regions of high
conductivities. Other correlations implicate that smoother hydrographs (HPD (-0.34)), long
descending hydrograph parts (LRec (-0.23)), boundedness preferentially to an upper bound
(Med01 (-0.21)), as well as the yearly maximum during spring (SB (-0.18)), seem to be
related to lower hydraulic conductivities for this subset of wells. This might sound counter-
intuitive since flashy behavior is often linked to lower hydraulic conductivities, however, the
main reason for flashy behavior in this area is probably the influence of the Rhine River,
where high conductivities occur.

The influence of streamflows (DF2, Pr1b/4/5, Figure II.1b) was first explored as the general
relationship between distance to the Rhine River and feature values. The results confirm the
relation to cluster 3. Further, we found clear relationships for clusters 7 and 9. Clusters 6
and 15 showed a weaker connection, but all of the mentioned clusters show a clear spatial
relation to the Rhine River. Nevertheless, they exhibit different dynamics, which maintains
the reasonability of the results. Clusters 3, 6, and 7 are closely related, but the hydrographs’
flashiness decreases from one to the other. Cluster 9 shows fewer periodicity than cluster 3,
but both are visually similar and match major dynamic peaks. It remains an open question
what the causes of different dynamics close to the streamflow are. Also, smaller streamflows
seem to have a significant influence on groundwater, at least in the southern part of our
test area (Longuevergne et al., 2007). Hence, secondly, we performed a detailed streamflow
distance analysis based on the Strahler classes of all streams (Text S5) within the area, de-
rived from the Copernicus EU-HYDRO Dataset (EEA, 2017). We obtained similar findings,
showing a stronger influence for cluster 15 and a slight influence of streamflows on cluster 12.

For most conducted analyses, the correlation values are significant, but rather low. This
illustrates that there are distinct relations but at the same time also a lot of interactions be-
tween the influences. Correlation is nevertheless a good indicator and shows that the features
express important properties of the hydrographs and thus are well selected. On the other
hand, low correlations also indicate that dynamic-based clustering is even more important
because simply grouping wells according to external factors is insufficient. Supplement Table
S4 and Figure S66 show a comprehensive overview of all explored correlations (r-values and
significance).
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5 Summary and Conclusions

In this work, we present the results of a newly developed semi-automated groundwater hydro-
graph clustering framework. We group hydrographs based exclusively on their dynamics by
describing them with features designed explicitly for important dynamic aspects of ground-
water hydrographs. Heterogeneous input data can be used, which we confirmed by high
robustness for most of our features, especially towards data gaps. Combining the DS2L-
algorithm with SOM allows automatic cluster number determination and great flexibility in
terms of cluster size. It further allows the user to qualitatively determine the level of detail of
the clustering result. The application of two SOM-Ensembles helps to remove arbitrariness
from the feature selection process, also a common issue in feature-based clustering, as well
as to obtain robust and practice-oriented results even for groundwater observation networks
that are subject to change over time. The combination of these methods, therefore, creates
a solid clustering framework with advantages in terms of (i) making use of heterogeneous
data (ii) operating in a comparably high-automated manner, still leaving adaption possibil-
ities to specific dataset characteristics and analysis goals, as well as (iii) obtaining robust,
practice-oriented results. The presented framework is easily transferable to other time series-
clustering applications in various domains by exchanging the describing features. For cluster
ordering and visualization, we propose the use of a weighted correlation measure (RW ).

The clustering results illustrate the above characteristics well. Similar dynamic patterns are
derived from a large data set, which can be used for further processing (e.g., forecasting) and
interpretation. Our results also show that the frequently made assumption that nearby wells
have a more similar dynamic than wells further apart is only partly true, even for wells in
the same aquifer. Moreover, there are similar dynamic patterns in some cases with no clear
spatial reference, making it important to cluster wells according to their dynamics rather
than spatial proximity or common aquifer properties.

We confirmed that groundwater dynamics are a complicated interaction of most diverse
factors, where some of them are hard to determine or are even poorly understood at all. This
makes disentangling the contributions usually hard, not to mention the mostly incomplete
information on such metadata. We mainly focused on framework development, motivated
by the superior goal of selecting representatives for forecasting purposes, which is why it
only lies partly within the scope of this work to improve the understanding of the different
factors contributing to groundwater dynamics. Thus, we have comparably small or almost
no variation in geological conditions, aquifer type, and similar parameters, which is not
the best starting point for a search for such correlations. Nevertheless, we hope that our
approach can contribute to this general question, besides the improved system knowledge on
the local scale, which a hydrograph grouping itself already provides. This applies especially
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because studies of groundwater dynamics and their connections to relevant driving forces are
comparatively rare yet (Giese et al., 2020). To fully exploit the potential of this method in
contributing to the improvement of system knowledge, comprehensive data sets of potential
influencing factors covering the complete study area should be available. The goal should be
to link driving forces directly to features or indices. For this purpose, more systems should be
subject to research studies to explore many different characteristics and system properties.
We also imagine that once a better understanding of dynamic-controlling factors is in place,
a prediction of ungauged locations generally seems possible.
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1 Introduction

Groundwater is the only possibility for 2.5 billion people worldwide to cover their daily water
needs (UNESCO, 2012), and at least half of the global population uses groundwater for
drinking water supplies (WWAP, 2015). Moreover, groundwater also constitutes a substan-
tial amount of global irrigation water (FAO, 2010), which altogether and among other factors
such as population growth and the climate crisis, make it a vital future challenge to dramat-
ically improve the way of using, managing, and sharing water (WWAP, 2015). Accurate and
reliable groundwater level forecasts are a key tool in this context, as they provide important
information on the quantitative availability of groundwater and can thus form the basis for
management decisions and strategies.

Especially due to the success of DL approaches in recent years and their more and more
widespread application in our daily life, DL starts to transform traditional industries and is
also increasingly used across multiple scientific disciplines (Shen, 2018a). This applies as
well to water sciences, where ML methods, in general, are used in a variety of ways, as data-
driven approaches offer the possibility to directly address questions on relationships between
relevant input forcings (e.g., precipitation) and important system variables (e.g., runoff, or
GWL), without the need to build classical models and explicitly define physical relationships.
This is especially handy because these classical models sometimes might be oversimplified
or, in the case of numerical models, data-hungry, difficult and time-consuming to set up and
maintain, and therefore expensive. In particular, ANNs have been successfully applied to
a variety of surface water (Maier et al., 2010) and groundwater level (Rajaee et al., 2019)
related research questions already; however, especially DL was used only gradually at first
(Shen, 2018a), but is just about to take off, which is reflected in the constantly increasing
number of DL and water resource-related publications (see, e.g., Chen et al., 2020; Duan
et al., 2020; Fang et al., 2020, 2019; Gauch et al., 2020, 2021; Klotz et al., 2020; Kraft
et al., 2020; Kratzert et al., 2019a, 2018, 2019b; Pan et al., 2020; Rahmani et al., 2021). In
this work we explore and compare the abilities of (shallow) NARX models, to the currently
popular DL approaches LSTM and CNN. During the last years several authors have shown
the ability of NARX to successfully model and forecast groundwater levels (Alsumaiei, 2020;
Chang et al., 2016; Di Nunno and Granata, 2020; Guzman et al., 2017, 2019; Hasda et al.,
2020; Izady et al., 2013; Jeihouni et al., 2019b; Jeong and Park, 2019; Wunsch et al., 2018;
Zhang et al., 2019). Although LSTMs and CNNs are state-of-the-art DL techniques and
are commonly applied in many disciplines, they are not yet widely adopted in groundwater
level prediction applications, if at all, mainly in the last two years. LSTMs were used twice
as often to predict groundwater levels (Afzaal et al., 2020; Bowes et al., 2019; Jeong and
Park, 2019; Jeong et al., 2020; Müller et al., 2020; Supreetha et al., 2020; Zhang et al.,
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2018) compared to CNNs (Afzaal et al., 2020; Lähivaara et al., 2019; Müller et al., 2020).
The main reason might be that the strength of CNNs is mainly the extraction of spatial
information from image-alike data, whereas LSTMs are especially suited to process sequential
data, such as from time series. Overall, these studies show that LSTMs and CNNs are very
well capable of forecasting groundwater levels. Both, Afzaal et al. (2020) and Müller et al.
(2020) also directly compared the performance of LSTMs and CNNs but no clear superiority
of one to the other can be drawn from their results. Müller et al. (2020), who focus on
hyperparameter optimization, draw the conclusion that CNN results are less robust compared
to LSTM predictions, however, other analyses in their study also show better results of CNNs
compared to LSTMs. Jeong and Park (2019) conducted a comparison of NARX and LSTM
(among others) performance on groundwater level forecasting. They found both to be the
best models in their overall comparison concerning the prediction accuracy, however, they
used a deep NARX model with more than one hidden layer. To the best of the authors’
knowledge, no direct comparison has yet been made of (shallow) NARX, LSTMs, and CNNs
to predict groundwater levels.

This study aims to provide an overview of the predictive ability in groundwater levels of shal-
low conventional recurrent ANN, namely NARX, and popular state-of-the-art DL-techniques
LSTM and (1D-)CNN. We compare the performance on single value (sequence-to-value
(seq2val), also known as one-step-ahead, sequence-to-one, or many-to-one) and sequence
(sequence-to-sequence, seq2seq) forecasting. We use data from 17 groundwater wells within
the Upper Rhine Graben region in Germany and France, selected based on prior knowledge
and representing the region’s total bandwidth of groundwater dynamic types (Wunsch et
al., 2022b, or chapter II). Further, we use only widely available and easy-to-measure me-
teorological input variables (precipitation, temperature, and relative humidity), making our
approach widely applicable and highly transferable. All models are optimized using Bayesian
optimization models, which we extend to also solve the common input variable selection
problem by considering the inputs as optimizable parameters. Further, the data-dependency
of all models is explored in a simple experimental setup for whether there are substantial
differences between shallow and deep learning models regarding their need for training data,
as one might suspect.
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2 Methodology

2.1 Input Variables

In this study, we only use the meteorological input variables precipitation (P), temperature
(T), and relative humidity (rH), which in general are widely available and easy to measure.
In principle, this makes this approach easily transferable and thus applicable almost every-
where. Precipitation may serve as a surrogate for GW recharge; temperature, and relative
humidity include the relationship of GW to evapotranspiration and at the same time provide
the network with information on seasonality due to the usually distinct annual cycle. As an
additional synthetic input variable, a sinusoidal signal fitted to the temperature curve (Tsin),
can provide the model with noise-free information on seasonality, which often allows consid-
erably improved predictions to be made (Kong-A-Siou et al., 2014). Without a doubt, the
most important input variable out of these is P, since GW recharge usually has the greatest
influence on GW dynamics. Therefore, P is always used as an input variable, the suitability
of the remaining variables is checked and optimized for each time series and each model
individually. The fundamental idea is that for wells with primarily natural GW dynamics, the
relationship between groundwater levels and the important processes of GW recharge and
evapotranspiration should be mapped via the meteorological variables P, T, and rH. However,
especially for wells with a dynamic influenced by other factors, this is usually only valid to a
limited extent since groundwater dynamics can depend on various additional factors such as
groundwater extractions or surface water interactions (chapter II). Due to a typically strong
autocorrelation of GWL time series, a powerful predictor for the future groundwater level
is the groundwater level in the past. Depending on the purpose and methodological setup,
it does not always make sense to include this variable; however, where meaningful, we also
explored past GWL as inputs (GWLt-1).

2.2 Nonlinear Autoregressive Exogenous Model

NARX models relate the current value of a time series to past values of the same time series
as well as to current and past values of additional exogenous time series. We implement
this type of model as a recurrent neural network, which extends the well-known feed-forward
MLP structure (Figure I.3) by a global feedback connection between output and input layer
(Figure III.1). One can therefore also refer to it as recurrent MLP. NARX are frequently
applied for nonlinear time series prediction and nonlinear filtering tasks (Beale et al., 2016).
Similar to other types of RNNs, NARX have difficulties in capturing long-term dependencies
due to the problem of vanishing and exploding gradients (Bengio et al., 1994), yet they
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can keep information up to three times longer than simple RNNs (Lin et al., 1996, 1995),
so they can converge more quickly and generalize better in comparison (Lin et al., 1998).
Using the recurrent connection, future outputs are both regressed on independent inputs and
on previous outputs (GWLs in our case), which is the standard configuration for multi-step
prediction and also known as closed-loop configuration. However, NARX can also be trained
by using the open-loop configuration, where the observed target is presented as an input,
instead of feeding back the estimated output. This configuration can make training more
accurate and efficient, as well as computationally less expensive because learning algorithms
do not have to handle recurrent connections (Moghaddamnia et al., 2009). However, ex-
perience shows that both configurations can be adequate for training a NARX model since
open-loop training often results in more accurate performance in terms of mean errors. In
contrast, closed-loop trained models are often better at capturing a time series’s general
dynamics. NARX also contain a short-term memory, i.e., delay vectors for each input (ID)
(and feedback (FD)) (Figure III.1), which allow the availability of several input time steps
simultaneously, depending on the length of the vector. Usually, delays are crucial for the
performance of NARX models. Please note that some of our experiments include past GWLs
for training (compare section 2.1), which is also performed in closed-loop setup and thus
uses both multiple observed past GWLs (according to the size of ID) as an input, as well
as multiple simulated GWLs (according to the size of FD) via the feedback connection. In
a way, this mimics the open-loop setup, however, we still use the feedback connection and
simply treat the past observed GWL as an additional input variable.

The given configuration describes sequence-to-value forecasting; to perform sequence-to-
sequence forecasts, some modifications are necessary. Like other ANNs, NARX are capable
of performing forecasts of a complete sequence at once, i.e., one output neuron predicts a
vector with multiple values. Technically it is necessary to use sequenced inputs with the same
length as for the output sequences (here: 12 steps). To build and apply NARX models, we
use MATLAB 2020a (Mathworks Inc., 2020) and its Deep Learning Toolbox.

2.3 Long Short-Term Memory

LSTM networks are recurrent neural networks, which are typically applied to model sequential
data like time series or natural language (e.g., Chen et al., 2017a). As stated, RNNs suffer
from the vanishing gradient problem during backpropagation, and in the case of simple RNNs,
their memory barely includes the previous ten time-steps (Bengio et al., 1994). LSTMs,
however, can remember long-term dependencies because they have been explicitly designed
to overcome this problem (Hochreiter and Schmidhuber, 1997). Besides the hidden state of
RNNs, LSTMs contain a cell memory (or cell state) to store information and three gates to
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control the information flow (Hochreiter and Schmidhuber, 1997). The forget gate (Gers
et al., 2000) controls which and how much information of the cell memory is forgotten,
the input gate controls which inputs are used to update the cell memory, and the output
gate controls which elements of the cell memory are used to update the hidden state of the
LSTM cell. The cell memory enables the LSTM to handle long-term dependencies because
information can remain in the memory for many steps (Hochreiter and Schmidhuber, 1997).
Several LSTM layers can be stacked on top of each other in a model, however, the last
LSTM layer is followed by a traditional fully connected dense layer, which in our case is a
single output neuron that outputs the groundwater level. To realize sequence forecasting,
as many output neurons in the last dense layer as steps in the sequence are needed. For
LSTMs we rely on Python 3.8 (van Rossum, 1995) in combination with the libraries Numpy
(van der Walt et al., 2011), Pandas (McKinney, 2010; Reback et al., 2020), scikit-learn
(Pedregosa et al., 2011) and Matplotlib (Hunter, 2007). Further we use the Deep-Learning
frameworks TensorFlow (Abadi et al., 2015) and Keras (Chollet, 2015).

2.4 Convolutional Neural Networks

CNNs (LeCun et al., 2015) are predominantly used for image recognition and classification
(as 2D models) (e.g., Cai et al., 2016; Li et al., 2014). However, in a 1D configuration, they
also work well on signal processing tasks, such as natural language processing (e.g., Kiranyaz
et al., 2019; Yin et al., 2017). CNNs usually comprise three different layers. Convolutional
layers, the first type, consist of filters (or kernels) and feature maps. The input to a filter is
called the receptive field and has a fixed size. Each filter (size three in our case) is dragged
over the entire previous layer’s resulting in an output, which is collected in the feature map.
Convolutional layers are often followed by pooling layers that perform down-sampling of
the previous layers feature map. Thus, information is consolidated by moving a receptive
field over the feature map. Such fields apply simple operations like averaging or maximum
selection. Similar to LSTM models, multiple convolutional and pooling layers in varying
order can be stacked on top of each other in deeper models. The last layer is followed by a
fully connected dense layer with one or several output neurons to match the desired output
dimension. To realize sequence forecasting, as many output neurons in the last dense layer
as steps in the sequence are needed. For CNNs, we equally to LSTMs use Python 3.8 (van
Rossum, 1995) in combination with the libraries and frameworks mentioned above.
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2.5 Model Calibration and Evaluation

In this study, we use NARX models with one hidden layer and train them in closed-loop using
the Levenberg-Marquardt algorithm, which is a fast and reliable second-order local method
(Adamowski and Chan, 2011). We choose the closed-loop configuration for training because
other hyperparameters (HPs) are optimized using a Bayesian model (see below), which seems
to work properly only in a closed-loop configuration, probably due to the artificially pushed
training performance in an open-loop configuration. Optimized HPs are the inputs T, Tsin,
and rH (1/0, i.e., yes/no), size of the input delays (ID P, ID T, ID Tsin, ID rH), size of
the feedback delay vector (FD), and the number of hidden neurons (hidden size). ID and
FD can take values between 1 and 52 (which is one year of weekly data), the number of
hidden neurons is optimized between 1 and 20. Strictly speaking, input selection is no
hyperparameter optimization problem, however, the algorithm can also be applied to select
an appropriate set of inputs (Figure III.1). This assumption applies in our study also to
LSTM and CNN models.

We choose our LSTM models to consist of one LSTM layer, followed by a fully connected
dense layer with a single output neuron in the case of sequence-to-value forecasting. We use
Adam-Optimizer with an initial learning rate of 1E-3 and apply gradient clipping to prevent
gradients from exploding. Hyperparameters being optimized by a Bayesian model are: the
number of units within the LSTM layer (hidden size, 1 to 256), the batch size (1 to 256),
and the sequence length (1 to 52). The latter can be interpreted more or less as equivalent
to the delay size of the NARX models and is often referred to as the number of inputs
(Figure III.1).

The CNN models we apply consist of one convolutional layer, a max-pooling layer, and two
dense layers, where the second one consists only of one neuron in the case of sequence-to-
value forecasting. Adam-optimizer is used with the same configuration as for the LSTM
models. For all CNN models, we use a kernel size of 3 and optimize the batch size (1 to
256), sequence length (1 to 52), the number of filters (1 to 256) within the convolutional
layer, as well as the number of neurons within the first dense layer (dense size, 1 to 256)
according to a Bayesian optimization model (Figure III.1).

Hyperparameter Optimization is conducted by applying Bayesian optimization using the
Python implementation by Nogueira (2014). We apply 50 optimization steps as a min-
imum (25 random exploration steps followed by 25 Bayesian optimization steps). After
that, the optimization stops as soon as no improvement has been recorded during 20 steps
or after a maximum of 150 steps. For the NARX models, we use the MATLAB built-in
Bayesian-optimization, where the first 50 steps cannot be distinguished as explained above,
however, the rest applies accordingly. The acquisition function in all three cases is expected
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Figure III.1: a) Simplified schematic summary of the models and their structures used in this work.
ID/FD are delays, circles in dense layers symbolize neurons, squares within the LSTM
cell the number of hidden units respectively; b) Hyperparameters (and inputs) of each
model used to tune the models by using Bayesian optimization algorithm, the last column
summarizes the optimization ranges for each parameter.

improvement, and the optimization target function we chose is the sum of Nash-Sutcliffe
efficiency (NSE) and squared Pearson’s correlation coefficient (R2) (compare equations III.1
and III.2) because these two criteria are important and well-established criteria for assessing
the forecast accuracy in water-related contexts.

All three model types use 30 as the maximum number of training epochs. To prevent
overfitting, we apply early stopping with a patience of five steps. The testing or evaluation
period in this study for all models are the years 2012 to 2015 (inclusively). This period
is exclusively used for testing the models. The data before 2012 are of varying length
(hydrographs start between 1967 and 1994, see also Figure III.3) and split into three parts,
namely 80% for training, and as well 10% for early stopping as 10% for testing during
HP-Optimization (opt-set) (Figure III.2). Thus, the target function of the HP-optimization
procedure is only calculated on the opt-set.

All data are scaled between -1 and 1, and all models are initialized randomly. They show,
therefore, a dependency towards the random number generator seed. To minimize initializa-
tion influence, we repeat every optimization step 5 times and take the mean of the target
function. For the final model evaluation in the test period (2012–2016), we use ten pseudo-
random initializations and calculate errors of the median forecast. For sequence2sequence
forecasting, we always take the median performance over all forecasted sequences, which
each have a length of 3 months or 12 steps, respectively. This is a realistic length for
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Figure III.2: Data splitting scheme: each time series is split into four parts for training, early stopping,
HP optimization as well as testing. The latter is fixed to the period years 2012 to 2016
for all wells, the former three parts depend on the available time series length.

direct sequence forecasting of groundwater levels, which also has some relevance in prac-
tice because it (i) provides useful information for many decision-making applications (e.g.,
groundwater management), and (ii) is also an established time-span in meteorological fore-
casting, known as seasonal forecasts. In principle, this also allows a performance comparison
of 12-step seq2seq forecasts with a potential 12-step seq2val forecast, based on operational
meteorological forecasting, where the input uncertainty potentially lowers the groundwater
level forecast performance. However, this is beyond the scope of this study, which focuses
on neural network architecture comparison.

To judge forecast accuracy, we calculate: Nash-Sutcliffe efficiency, squared Pearson’s corre-
lation coefficient, absolute and relative root mean squared error (RMSE/rRMSE), absolute
and relative Bias (Bias/rBias) as well as persistency index (PI). For the following equations
applies that o represents observed values, as well as p represents predicted values, n stands
for the number of samples.

NSE = 1 −
∑n

i=1 (oi − pi)2∑n
i=1 (oi − ō)2 (III.1)

Please note that we use the mean observed values in the denominator until the start of the
test period (2012 in the case of our final model evaluation). This represents best the meaning
of the NSE, which compares the model performance to the mean values of all known values
at the time of the start of the forecast.

R2 =

 ∑n
i=1 (oi − ō) (pi − p̄)√∑n

i=1 (oi − ō)2
√∑n

i=1 (pi − p̄)2

2

= r2 (III.2)

In our case, we use the squared Pearson correlation coefficient r2 as a general coefficient of de-
termination R2, since it compares the linear relation between simulated and observed GWLs.
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RMSE =

√√√√ 1
n

n∑
i=1

(oi − pi)2 (III.3)

rRMSE =

√√√√ 1
n

n∑
i=1

(
oi − pi

omax − omin

)2
(III.4)

Bias = 1
n

n∑
i=1

(oi − pi) (III.5)

rBias = 1
n

n∑
i=1

(
oi − pi

omax − omin

)
(III.6)

PI = 1 −
∑n

i=1 (oi − pi)2∑n
i=1 (oi − olast)2 (III.7)

Please note that RMSE and Bias are useful to compare performances for a specific time series
among different models, however, only rRMSE and rBias are meaningful to compare model
performance between different time series. The persistency index PI basically compares the
performance to a naïve model that uses the last known observed groundwater level at the
time the prediction starts. This is particularly important to judge the performance when past
groundwater levels (GWLt-1) are used as inputs because, especially in this case, the model
should outperform a naïve forecast (PI > 0).

2.6 Data-dependency

Data-dependency of empirical models is a classical research question (Jakeman and Horn-
berger, 1993), often focusing on the number of variables but also concerning the length of
available data records. Data scarcity is also an important topic in ML in general, especially
in DL and the focus of recent research (e.g., Gauch et al., 2021). Therefore, one can expect
to find performance differences between both shallow and deep models used in this study.
We hence performed experiments to explore the need for training data for each of the model
types. For this, we started with a reduced training record length of only two years before
testing the performance on the fixed test set of four years (2012-2016). In the following, we
gradually lengthened the training record until the maximum available length for each well
and tracked the error measure changes. This experiment aims to give an impression of how
much data might be needed to achieve satisfying forecasting performance and if there are
substantial differences between the models; however, it is out of the scope to answer this
very complex question in a general way for each of the modeling approaches.
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2.7 Computational Aspects

We used different computational setups to build and apply the three model types. We built
the NARX models in MATLAB and performed the calculations on the CPU (AMD-Ryzen 9
3900X). Using a GPU instead of a CPU is not possible for NARX models in our case because
of the Levenberg-Marquardt training algorithm, which is not suitable for GPU computation.
However, both LSTMs and CNNs can be calculated on a GPU, which in the case of LSTMs
is the preferred option. For CNNs, we observed a substantially faster calculation (factor 2
to 3) on the CPU and therefore favored this option. Both LSTMs and CNNs were built and
applied using Python 3.8; the GPU we used for LSTMs was a Nvidia GeForce RTX 2070
Super.

3 Data and Study Area

In this study, we examine the groundwater level forecasting performance at 17 groundwater
wells within the Upper Rhine Graben area (Figure III.3), the largest groundwater resource
in central Europe (LUBW, 2006). The aquifers of the URG cover 80% of the drinking
water demand of the region as well as the demand for agricultural irrigation and industrial
purposes (Région Alsace - Strasbourg, 1999). The wells are selected from a larger dataset
from the region with more than 1800 hydrographs. Based on the analyses of Wunsch et al.
(2022b) (chapter II), the wells of this study represent the total bandwidth of groundwa-
ter dynamics occurring in the dataset. The whole dataset mainly consists of shallow wells
from the uppermost aquifer within the Quaternary sand/gravel sediments of the URG. Mean
GWL depths are smaller than 5 m bgl for 70% of the data, rising to a maximum of about
20-30 m towards the Graben edges. The considered aquifers generally show high storage
coefficients and high hydraulic conductivities in the order of 10E-4 to 10E-3 m/s (LUBW,
2006). Strong anthropogenic influences exist in some areas, e.g., the northern URG, due to
intensive groundwater abstractions and management efforts. A list of all examined wells with
additional information on identifiers and coordinates can be found in the supplement (Table
S1). All groundwater data are available for free via the web services of the local authorities
(HLNUG, 2019; LUBW, 2018; MUEEF, 2018). The shortest modeled time series starts in
1994, the longest in 1967, however, most hydrographs (12) start between 1980 and 1983
(Figure III.3). Meteorological input data was derived from the HYRAS dataset (Frick et al.,
2014; Rauthe et al., 2013), which can be obtained free of charge for non-commercial pur-
poses on request from the German Meteorological Service. This study exclusively considers
weekly time steps for both groundwater and meteorological data.
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Figure III.3: a) Study area and position of examined wells; b) respective time series length for each
of the wells.

4 Results and Discussion

4.1 Sequence-to-Value Forecasting Performance

Figure III.4 summarizes and compares the overall seq2val forecasting accuracy of the three
model types for all 17 wells. Figure III.4a shows the performance when only meteorological
inputs are used, the models in Figure III.4b are additionally provided with GWLt-1 as an input.
Because the GWL of the last step has to be known, the latter configuration has only limited
value for most applications since only one-step-ahead forecasts are possible in a real-world
scenario. However, the meteorological inputs of the former configuration are usually available
as forecasts themselves for different time horizons. Figure III.4a shows that on average, NARX
models perform best, followed by CNN models, LSTMs achieve the least accurate results.
This is consistent for all error measures except rBias, where CNN models show slightly less
bias than NARX. However, all models suffer from considerable negative bias values in the
same order of magnitude, meaning that GWLs are systematically underestimated. Providing
information about past groundwater levels up to t-1 (GWLt-1) improves the performance of
all three models considerably (Figure III.4b). Additionally, performance differences between
the models vanish and remain only visible as slight tendencies. This is not surprising, as
the past groundwater level is usually a good or even the best predictor of the future GWL,
at least for one step ahead, and all models are able to use this information. The general
superiority of NARX in the case of Figure III.4a is therefore not totally surprising, as a
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Figure III.4: Boxplots showing the seq2val forecast accuracy of NARX, LSTM and CNN models within
the test period (2012-2016) for all considered 17 hydrographs. The diamond indicates
the arithmetic mean; a) only meteorological inputs; b) GWLt-1 as additional Input.

feedback connection within the model already provides information of past groundwater
levels, even though it also includes a certain forecasting error. However, providing GWLt-1

as input to a seq2val-model (Figure III.4b) basically means providing the naïve model itself,
which needs to be outperformed in the case of PI metric (compare section 2.5). PI values
below zero, therefore, mean that the output is less accurate than the input, which is, apart
from the limited benefit for real-world applications mentioned above, why we refrain from
further discussion of the models shown in Figure III.4b.

For our analysis, we did not make a pre-selection of hydrographs that show predominantly
natural groundwater dynamics and thus a comparatively strong relationship between the
available input data and the groundwater level. Therefore, even though hydrographs pos-
sibly influenced by additional factors were examined, we can conclude that the forecasting
approach in general works quite well, and we reach, e.g., median NSE values of ≥0.5 for
NARX and CNNs, LSTMs show a median value only slightly lower. In terms of robustness
against the initialization dependency of all models (ensemble variability), we clearly observe
the highest dependency for NARX, followed by CNN and LSTM, while LSTMs on median
perform slightly more robust than CNNs. Including GWLt-1 lowers the error variance of
the ensemble members, which we used to judge robustness in this case by several orders of
magnitude for all models. NARX and LSTMs on median now show slightly lower ensemble
variability than CNNs, however, all models are quite close. A corresponding figure was added
to the supplement (Figure S69). Furthermore, we added information on the results of the
hyperparameter-optimization (Tables S2-S4), a table with all error measure values of each
considered hydrograph and model (Table S5), as well as according seq2val forecasting plots
(Figures S1 to S34) to the supplement, as well.
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Figure III.5 shows exemplarily the forecasting performance of all three models for well
BW_104-114-5, where all three models consistently achieved good results in terms of accu-
racy. The NARX model (a) outperforms both LSTM (b) and CNN (c) models and shows
very high NSE and R2 values between 0.8 and 0.9. The CNN model provides the second-best
forecast, which even very slightly shows less underestimation (Bias/rBias) of the GWLs than
the NARX model. By comparing the graphs in (a) and (c) we assume that this is only
true on average. The CNN model overestimates in 2012 and constantly underestimates the
last third of the test period. The NARX model, however, is more consistent and therefore
better. Concerning R2 values, the LSTM basically keeps up with the CNN; all other error
measures show the still good, but in comparison worst values. We notice that in accordance
with our overall findings mentioned above, the LSTM shows the lowest ensemble variability
and, therefore, the smallest initialization dependency. Looking at the selected inputs and
hyperparameters, we notice that rH does not seem to provide important information and was
therefore never selected as an input. Further, the input sequence length of both LSTM and
CNN is equally 35 steps (weeks). In the NARX model, there is no direct correspondence,
but a similar value is shown by the parameter FD, and thus the number of past predicted
GWL values available via the feedback connection.

In contrast to the above-mentioned well, hardly any systematic can be derived from the
choice of input variables across all wells that even might have physical implications for each
site. Instead, it is noticeable that certain model types seem to prefer also certain inputs. For
example, temperature is only selected as input in 5 out of 17 cases for LSTM models, and
in 2 out of 17 cases for CNN models. Furthermore, relative humidity (rH) is always selected
for LSTM models except for two times. In the case of NARX models, there seems to be
a lack of systematic behavior. For more details, please see Tables S2-S4 in the supporting
material.

Our approach assumes a groundwater dynamic mainly dominated by meteorological factors.
We can assume that all three model types are basically capable of modeling groundwater
levels very accurately if all relevant input data can be identified. To exemplarily show the
influence of additional input variables, which, however, are usually not available as input for
a forecast or even have insufficient historical data, Figure III.6 illustrates the considerably
improved performance after including the Rhine River water level (W), a large streamflow
within the study area, using the example of the NARX model for well BW_710-256-3, which
indeed is located close to the river. Besides improved performance, we also observe lower
variability of the ensemble member results, thus, lower dependency to the model initializa-
tion, which also corresponds to other time series, where we often find smaller influence the
more relevant the input data are. This also confirms that little accuracy is presumably due
to insufficient input data on a case-by-case basis, not necessarily because of an inadequate
modeling approach. Similarly, this applies also to other wells in our dataset that show unsat-
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Figure III.5: Forecasts of a) a NARX, b) a LSTM and c) a CNN model for well BW_104-114-5
during the test period 2012-2016.

isfying forecasting performance. Examples of this are wells in the northern part of the URG
(e.g., most wells with the prefix HE), for which our approach is generally more challenging
due to strong GW extraction activities in this area, and well BW_138-019-0, which is close to
the Rhine River and presumably under the influence of a large ship lock nearby. Additionally,
this well is within a flood retention area that is spatially coupled to the ship lock.
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Figure III.6: Forecasting performance exemplarily shown for NARX model of well BW_710-256-3
a) based on meteorological input variables and b) improved performance after including
Rhine River water level (W) as input variable.

4.2 Sequence-to-Sequence Forecasting Performance

Seq2Seq forecasting is especially interesting for short- and mid-term forecasts because the
inputs only have to be available until the start of the forecast. Figure III.7 summarizes and
compares the overall seq2seq forecasting accuracy of the three model types for all wells.
Figure III.7a shows the performance for purely meteorological inputs, Figure III.7b shows the
results with an additional GWLt-1 input. Equally to the seq2val forecasts (Figure III.4), past
GWLs seem to be especially important for LSTM and CNN models as GWLt-1 causes sub-
stantially improved performance. Without GWLt-1, NARX are superior, presumably due to
their inherent global feedback connection. However, NARX show almost equal performance
values in both scenarios (Figure III.7a and b). In contrast to seq2val results, for seq2seq
forecasts NARX systematically show lower R2 values than LSTM and CNN models. For all
other error measures, the accuracy of NARX models outperforms LSTMs and CNNs in di-
rect comparison for the vast majority of all time series. While LSTMs and CNNs show lower
performance for seq2seq forecasting compared to seq2val forecasting, NARX seq2seq models
even outperform NARX seq2val models (except for R2). This is quite counter-intuitive as
one would expect it to be more difficult to forecast a whole sequence than a single value.
All in all, the scenario including past GWLs (Fig. III.7b) seems to be the preferable one for
all three models and shows promising results for real-world applications. Detailed results on
all seq2seq models can be found in supplementary Table S6, and Fig. S35-S68.

51



Chapter III: Groundwater Level Forecasting with ANNs – A Model Comparison

Figure III.7: Boxplots showing the seq2seq forecast accuracy of NARX, LSTM and CNN models within
the test period (2012-2016) for all considered 17 hydrographs. The diamond indicates
the arithmetic mean; a) only meteorological inputs; b) GWLt-1 as additional Input.

Figure III.8 summarizes exemplarily for well HE_11874 the seq2seq forecasting performance
for NARX (a,b), LSTMs (c,d), CNNs (e,f), only with meteorological input variables (a,c,e)
and with an additional past GWL input (b,d,f). These confirm that GWLt-1 substantially
improves the performance of LSTMs and CNNs, however, NARX forecasts in this case only
improve very slightly. Especially for LSTMs and CNNs, it is visible that the sequence fore-
casts of the better models (d,f) mostly estimate the intensity of a future groundwater level
change too conservatively; meaning that both in- and decreases are predicted too weak. This
is a commonly known issue with ANNs, as extreme values are typically under-represented
in the distribution of the training data (e.g Sudheer et al., 2003). We further notice that
the robustness of LSTMs and CNNs in terms of initialization dependency, thus the ensem-
ble variability, considerably improves when past GWLs are provided as inputs (Figure III.8).
This is also supported by analyzing the ensemble-member error variances and is also true
for all other time series in the dataset as well (Figure S69 in the supplement). Just like for
seq2val forecasts, NARX usually show considerably lower robustness in terms of initialization
dependency; however, the median ensemble performance nevertheless is of high accuracy.
Therefore, all models, but especially NARX models, should not be evaluated without in-
cluding an initialization ensemble. The initialization dependency of LSTMs and CNNs is
considerably lower, with LSTMs being even more robust than CNNs.
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Figure III.8: Forecasts of a,b) a NARX, c,d) a LSTM and e,f) a CNN model for well HE_11874 during
the test period 2012-2016; Models in a,c,e) use only meteorological input variables,
models b,d,f) use also past GWL observations
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The extraordinary performance of the NARX models, especially in the case of Well HE_11874
(Figure III.8) surprises, because the performance (NSE≥0.9 in both seq2seq models) sub-
stantially outperforms the seq2val NARX without GWLt-1 input (NSE: 0.35, R2: 0.75);
however, the seq2val NARX model with GWLt-1 inputs also showed high accuracy (NSE:
0.99, R2: 0.99). It is also interesting to note that the sequence predictions of the NARX
models overlap exactly and the individual sequences are therefore no longer visible. One rea-
son for this different behavior compared to the LSTM and CNN models is presumably that
the technical approach for seq2seq forecasting differs for these models. While LSTMs and
CNNs use multiple output neurons to predict multiple time steps, this approach for us did
not yield meaningful results for a NARX model, presumably because of feedback connection
issues. Instead, we used one NARX output neuron to predict a multi-element vector at once.

4.3 Hyperparameter Optimization and Computational Aspects

During the HP-Optimization, depending on the forecasting approach (seq2val/seq2seq) and
available inputs (with/without GWLt-1), there were noticeable differences with regard to the
number of iterations required and the associated time needed (Figure III.9). The best pa-
rameter combination, especially for CNN and LSTM networks, was often found in 33 steps
or fewer, hence after 25 obligatory random exploration steps in only 8 Bayesian steps. Please
note that we chose to perform at least 50 optimization steps prior to the analysis, which
explains the distribution in the ‘total iterations’ column. In column two (‘best iteration’), we
can observe similar behavior of CNNs and LSTMs; NARX are always somehow different from
these two. We suspect that this is rather an influence of the software or the optimization
algorithm since especially model types implemented in Python show an identical behavior.
However, in the majority of cases, the best iteration was found in less than 33 steps, the
minimum as well as the maximum number of iteration steps were therefore sufficient. It is
interesting that for CNNs and LSTM, the number of steps is similar throughout the experi-
ments, whereas for NARX, the inclusion of GWLt-1 as input caused an increase of iterations.
Columns three to five in Figure III.9 show substantial differences concerning the calculation
speed of the three model types. CNNs outperform all other models systematically, however,
concerning the sequence-2-sequence forecasts, NARX models can almost keep up. We also
observe that LSTMs seem to slow down when including GWLt-1 as input or when performing
seq2seq forecasts, the opposite happens in the case of NARX models, which speed up in
these cases. This also means that even though NARX models need more optimization itera-
tions until the assumed optimum than LSTMs, in terms of the time, they outperform them
due to shorter duration per iteration (col. 3). Please note that it is out of the scope of this
work to provide detailed assessments of the calculation speed under benchmark conditions
but to share practice-relevant insights for fellow hydrogeologists.
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Figure III.9: Comparison of the performed HP-optimizations (columns 1 and 2), their calculation time
per iteration in seconds (col. 3), until the optimum was found (minutes) (col. 4) and
the total time spent on optimization in hours (col. 5).

4.4 Influence of Training Data Length

In the following section, we explore similarities and differences of NARX, LSTMs, and CNNs
in terms of the influence of training data length. It is commonly known that data-driven
approaches profit from additional data, however, it still remains an open question how much
data are necessary to build models, which are able to perform reasonable calculations. This is
because the answer is highly dependent on the application case, data properties (distribution
e.g.), and model properties, as model-depth can sometimes exponentially decrease the need
for training data (Goodfellow et al., 2016). Therefore, this question cannot be entirely
answered by a simple analysis as we perform it here. Nevertheless, we still want to give an
impression on how much data might be approximately needed in the case of groundwater
level data in porous aquifers and if the models substantially differ in their need for training
data. For our analysis, we always consider the forecasting accuracy during the 4-year testing
period (2012-2016) and systematically expand the training data basis year by year, starting
in 2010, thus with only clearly insufficient two years of training data. We focus on sequence-
to-value forecasting due to the more straightforward interpretability of the results, and we
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always consider the median performance of 10 different model initializations for evaluation.
Figure III.10 summarizes the performance and the improvement that comes with additional
training data, all values are normalized per well to make them comparable. Please note
that all models at least show 28 years of training data (until 1982), only three models
exceed 30 years of training data (1980), thus, the number of samples represented by the
boxplots decreases considerably after 30 years. Figure III.10 summarizes as well models with
as without GWLt-1 inputs because no considerably different behavior was observed for each
group. Please find according figures for each group in the supplement (Figures S70-S71).

As expected, we observe considerable improvements with additional training data. NARX
models seem to improve more or less continuously and also work better with little data,
whereas for LSTMs and CNNs, some kind of threshold is visible (about ten years, thus
approx. 500 samples), where the performance considerably increases and rapidly approaches
the optimum. It should be noted, though, that this can probably not be transferred to other
time steps, i.e., in the case of daily values e.g., 500 days will most certainly not be enough,
since only one entire annual cycle is included. We explored the reason for this threshold and
observed that when stopping the training five years earlier (2007), the threshold now occurs
correspondingly five years earlier (Figure S72 in supplement). Additionally, we found that
several standard statistic values such as mean, median, variance, overall maximum, and the
25th, 75th, as well as the 97.5th quantile show similar thresholds (Figure S73 in supplement).
Thus, the early years of the 2000s seem to be especially relevant for our test period. This
is a highly dataset-specific observation that cannot be generalized; however, this also shows
that it is vital to include relevant training data, which is, however, not very easy to identify.
Nevertheless, as a rule of thumb, the chance of using the correct data, increases with the
amount of available data. These findings are supported by the observation that not every
additional year improves the accuracy, only the overall trend is positive. This seems plausible
because, especially when conditions change over time, the models can also learn behavior that
is no longer valid, possibly decreasing future forecast performance. One should, therefore,
not only include as much data as possible but also carefully evaluate and also possibly shorten
the training data basis necessary.
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Figure III.10: Influence of training data length on model performance.

5 Conclusions

In this study, we evaluate and compare the groundwater level forecasting accuracy of NARX,
CNN, and LSTM models. We examine as well sequence-to-value as sequence-to-sequence
forecasting scenarios. We can conclude that in the case of seq2val forecasts, all models are
able to produce satisfying results, and NARX models, on average, perform best, LSTMs the
worst. Since CNNs are much faster in calculation speed than NARX and only slightly behind
in terms of accuracy, they might be the favorable option if time is an issue. If accuracy is
especially important, one should stick with NARX models. LSTMs, however, are most robust
against initialization effects, especially compared to NARX. Including past groundwater levels
as inputs strongly improves CNN and LSTM seq2val forecast accuracy. However, all three
models mostly cannot beat the naïve model in this scenario and are therefore of no value.

Especially when no input data are available in short- and mid-term forecasting applications,
sequence-to-sequence forecasting is of particular interest. Again, past groundwater levels
as input considerably improved CNN and LSTM performance, NARX performed almost
similar in both scenarios. Overall, NARX models show the best performance (except R2

values) in the vast majority of all cases. In addition to the fast calculation of NARX in this
case, which almost keeps up with CNN speed, they are clearly preferable. However, NARX
models are least robust against initialization effects, which nevertheless are easy to handle
by implementing a forecasting ensemble.
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We further analyzed what data basis might be needed or sufficient to reach acceptable results.
As expected, we found that in principle, the longer the training data, the better; however, a
noteworthy threshold seems to exist for about ten years of weekly training data, below which
the performance becomes considerably worse. This applies especially for LSTM and CNN
models but was also found to presumably be highly dataset specific. Overall, NARX seem
to perform better in comparison to CNN and LSTM models when only little training data
are available.

The results are surprising in a way that LSTMs are widely known to perform especially well
on sequential data and are therefore also more commonly applied. In this work, they were
outperformed by CNNs and NARX models. We showed that for this specific application
(i) CNNs might be the better choice due to considerably faster calculation and mostly
similar performance, and (ii) even though DL-approaches are currently often preferred over
traditional (shallow) neural networks such as NARX, the latter should not be neglected in
the selection processes especially when there is little training data available. Particularly
NARX sequence-to-sequence forecasting seems to be promising for short- and mid-term
forecasts. However, we do not want to ignore the fact that LSTMs and CNNs might perform
substantially better with a larger dataset, which better fulfills common definitions of DL-
applications and where deeper networks can demonstrate their strengths, such as automated
feature extraction. Since such data are usually not available in groundwater level prediction
tasks yet, for the moment, this remains in theory.
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Chapter IV

Groundwater in the Context
of Climate Change

The following chapter is based on a study published in Nature Communications and is an
edited reprint of:

Wunsch, A., Liesch, T., Broda, S., 2022. Deep learning shows declining groundwater levels
in Germany until 2100 due to climate change. Nature Communications, 13, 1221. doi:
10.1038/s41467-022-28770-2

The original article is distributed under the Creative Commons Attribution 4.0 License.
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1 Introduction

The climate crisis is increasingly altering water availability even in generally water-rich areas
like Germany, where overall water stress is currently low (UBA, 2020). Nevertheless, hot and
dry summers in recent years (especially 2018-2020) led to ongoing exceptional droughts (UFZ,
2021; Wriedt, 2020) with severe consequences for agriculture and ecology, such as drought
damages in forests, reduced crop yields, and extreme low flows in rivers. Drought effects
accumulated over the years because winter precipitation did not compensate for summer
deficits. This applies not only but especially to groundwater resources, which constitute the
major source of drinking water supply in Germany (almost 70%) (Destatis, 2021). Declining
groundwater levels due to generally reduced groundwater recharge and higher water demand
in summer regionally forced water suppliers to exploit their current maximum capacity during
dry periods to meet the demand; locally, even water supply shortages occurred. During
future dry periods, strong usage conflicts can be expected in areas of low water availability
between water suppliers and industry (process and cooling water), additionally amplified by
increasing agricultural irrigation demand, which currently has only minor significance with
less than 2% of the total withdrawal volume (UBA, 2020). Knowledge of future groundwater
level development, especially in the long-term, is, therefore, crucial to develop sustainable
groundwater management plans to meet future demands, solve usage conflicts and protect
ecosystems.

Changing climate affects groundwater in several direct and indirect ways (Taylor et al.,
2012). Major direct drivers are changes in precipitation, snowmelt, and evapotranspiration
(Wu et al., 2020). Different representative concentration pathways (RCP) describe possible
future climate scenarios. The current situation best matches RCP8.5, often described as a
business-as-usual scenario with increasing greenhouse gas (GHG) emissions. Despite existing
mitigation efforts, this scenario might be the most plausible one for the near future (Schwalm
et al., 2020). RCP2.6, a stringent mitigation scenario with an average global warming below
2◦C above pre-industrial temperatures (IPCC, 2014), might be hard to reach at all, and
even the intermediate RCP4.5 is still more ambitious than current (as of 2021) nationally
determined contributions under the Paris Agreement, according to UN-FCCC (UNFCCC,
2021). Their analyses estimate a global warming of approximately 2.7◦C compared to pre-
industrial temperatures. For Germany, analyses based on climate projections show opposing
trends in terms of water availability. With some differences between drier and wetter models,
they find a slight increase in annual precipitation sums, i.e., generally more water, but at
the same time with high agreement between models a significant temperature increase of
several degrees Celsius by 2100 (Jacob et al., 2014; Marx et al., 2017; Thober et al., 2018),
i.e., less water. The resulting effect on groundwater resources is therefore not directly clear
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and needs to be analyzed. Higher precipitation is generally expected during winter, which in
combination with a decreasing amount of snow, thus increasing direct infiltration, leads to
higher groundwater recharge during winter and less in spring. For the few snow-dominated
regions in Germany (e.g., in the South), this might cause changes in seasonality (Wu et al.,
2020), however, overall this plays a minor role. Weather extremes are expected to intensify;
therefore, longer droughts and more frequent intense rainfall events will occur (Taylor et
al., 2012). Generally, higher temperatures cause higher atmospheric water demand, thus
increasing evapotranspiration, which leads to less infiltration and, therefore, less groundwater
recharge. Especially unconfined, shallow aquifers are most likely to be sensitive to direct
climate change effects (Kløve et al., 2014). Indirect climate change influences on groundwater
are mostly related to anthropogenic groundwater withdrawals or associated with land-use
changes (Taylor et al., 2012), and it is known that the groundwater storage reduction caused
by pumping could easily far exceed natural recharge (de Graaf et al., 2019; Wu et al., 2020).
The impact of these factors will be exacerbated as water demand increases to as well meet the
needs of regionally growing populations (mainly due to growing urban areas), as of industry
and agricultural irrigation. To date, there are no reliable data available that estimate the
future development of such factors under different climate change scenarios.

In recent years, ANN approaches have proven their usefulness in predicting groundwater
levels (Guzman et al., 2017; Jeong and Park, 2019; Jeong et al., 2020; Müller et al., 2020;
Wunsch et al., 2021; Zhang et al., 2020), even using a highly transferable approach with
purely climatic input variables (e.g., Wunsch et al., 2021). In a previous study (Wunsch et al.,
2021), we showed that 1D-CNNs are a good choice for groundwater level simulation because
they mostly outperform even LSTM models in terms of accuracy and calculation speed, as
well as they showed considerably higher stability, flexibility, and calculation speed compared
to NARX models. Therefore, they are an accurate, fast, and reliable method of choice for this
study. Unlike physically-based models, which usually require a very good knowledge of local
conditions and need to be time-consumingly built and calibrated, data-driven models such
as ANNs can predict a target variable using only relevant driving forces. This makes studies
on larger areas easier and is, therefore, the favored approach for this study. To the authors’
knowledge, no comprehensive direct evaluation of groundwater level development until 2100
exists for Germany yet. Besides a rather old small-scale study (Eckhardt and Ulbrich, 2003)
also a regional-scale study for the Danube basin has been conducted to date (Barthel et
al., 2012). The latter uses several dynamically-coupled, process-based model components
and the authors found strongly declining groundwater levels with declines of up to 10 m
close to the Alps in southernmost Germany for their scenario period (2036–2060). Further,
several studies investigated future groundwater recharge in different contexts for smaller
subregions of Germany using mainly water balance models or process-based models (Barthel
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et al., 2012; Herrmann et al., 2016; Kersebaum and Nendel, 2014; Kreins et al., 2015;
Neukum and Azzam, 2012; Wegehenkel and Kersebaum, 2009).The application of ANNs
to study groundwater level development in the long-term and in the context of climate
change for a larger area like Germany has not been performed yet. Related studies with
applications of ANNs either used a very small number of wells (Ghazi et al., 2021; Idrizovic
et al., 2020; Jeihouni et al., 2019a) and limited time horizons (Ghazi et al., 2021; Jeihouni
et al., 2019a) or use ANNs without directly presenting future climate signals to the ANN
(Idrizovic et al., 2020). In the case of streamflow runoff simulation, however, ANNs have
been successfully applied to analyze the future development under climate change influences
in several catchments all over California (Duan et al., 2020) as well as in two catchments in
China (Gao et al., 2010; Lee et al., 2020).

In this study, we use a 1D-CNN approach (Wunsch et al., 2021) to build 118 site-specific
models, well distributed over Germany in the respective uppermost unconfined aquifer, which
are able to predict weekly groundwater levels with high accuracy using only precipitation and
temperature as inputs in the past. We visually check the model output plausibility under an
artificial extreme climate scenario in the past (Duan et al., 2020) and investigate how the
model has learned input-output relationships using an XAI approach (SHAP (Lundberg and
Lee, 2017)). We then use the trained CNN models to investigate the future climate-driven
groundwater level development for the selected sites, using precipitation and temperature
derived from different RCP scenarios (2.6, 4.5, 8.5) (Moss et al., 2008) of bias-corrected
and downscaled (5 × 5 km2) climate projection data (Brienen et al., 2020) from different
climate models. These climate models (“core-ensemble”) were preselected by the German
Meteorological Service (DWD) to represent 80-90% of the spread of the full ensemble of
all available and suitable (according to certain quality criteria) climate projection results
under the respective RCP scenario for Germany (DWD, 2018) based on CORDEX-EUR11
(EURO-CORDEX, 2018) and ReKliEs-De (Huebener et al., 2017) (see methods section). As
we use purely climatic input variables, we can only project the influence of direct climate
change effects, while secondary, most certainly stronger indirect effects, such as increased
groundwater pumping, are not included in this study. However, due to high prediction
accuracy in the past, the selected sites show a strong relationship between climate variables
and groundwater and are unlikely to be under the influence of strong groundwater withdrawals
or comparable effects. They are, therefore, suitable for predicting that part of the future
groundwater level trend that results from direct climatic influences, as long as the basic
input-output relationships remain unchanged.
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2 Methods

2.1 Data

We used weekly groundwater level data from 118 different sites, well distributed all over
Germany (Figure IV.1a). All wells are located in the unconfined, uppermost (thus mostly
shallow) aquifers, which are most likely to be subject to direct climate change effects (Kløve
et al., 2014). Greater depths to groundwater are predominantly found in fractured and
karstic aquifers. For additional details on the sites, please refer to the supplementary ma-
terial (Supplementary Table S1). Groundwater level records of all sites show very different
lengths (Figure IV.1b), from 15 to 67 years, with a median length of 36 years. Data gaps
were closed using the information of several related groundwater level time series with highly
correlated dynamics derived from an earlier comprehensive cluster analysis based on hydro-
graph dynamics (Wunsch and Liesch, 2020; Wunsch et al., 2022b). Alternatively, PCHIP
(Piecewise Cubic Hermite Interpolating Polynomial) was used to close smaller data gaps,
where no correlated hydrograph information was available. In our dataset, 48 time series had
no missing values; another 44 had less than 2% interpolated values. Only very few time series
show a higher proportion of interpolated values (11 time series >4%). More information on
interpolated values can be found online in the released dataset.

Input variables for our models are precipitation and temperature, thus purely climatic. These
variables are widely available and easy to measure both in the past and present and are
also well evaluated in terms of climate projection output. Precipitation serves as a proxy
for groundwater recharge, temperature for evapotranspiration. Additionally, the temperature
usually shows a distinct annual cycle, which also provides the models with valuable informa-
tion on seasonality. Since we specifically selected wells with high forecast accuracy in the
past (see Model Calibration and Evaluation), we can assume that the groundwater dynamic
at these wells is mainly dominated by climate forcings. As long as no fundamental change
of the system relations occurs (e.g., newly installed groundwater pumping or severe changes
in land use nearby), we can expect reasonable results for our simulations, as we explore only
the influence of changing climate and assume other boundary conditions fixed.

Besides the GWL data itself, we based our analysis on several datasets. The models were
trained using temperature and precipitation data from the HYRAS dataset (Frick et al., 2014;
Rauthe et al., 2013), which is a gridded (5 × 5 km2) meteorological dataset based on observed
data from meteorological stations ranging from 1951 to 2015. To evaluate the influence of
climate change we used RCP scenario data from several selected climate projections that form
the so-called core-ensemble defined by DWD (DWD, 2018) (Figure IV.1). Depending on the
scenario and the considered variable, this ensemble represents 80-90% of the ensemble spread
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Figure IV.1: a) Position, type of aquifer and depth to groundwater for each study site. b) Time series
length of all study sites ordered in North-South direction.

of the possible climate signal within the larger “reference-ensemble” (DWD, 2018). The
latter, in turn, constitutes all available and quality-assessed projections for Germany. Further,
we received the projection data bias-adjusted onto the HYRAS dataset and regionalized on
a 5 × 5 km2 grid by Brienen et al. (2020). For each site, the mean of 3 × 3 cells around
the cell with the respective well was chosen as input for the simulations, following the best
practices by DWD to reduce uncertainty resulting from the grid cell size.

Generally, the used climate projections show a slight increase in precipitation sums and a
significant temperature increase of several degrees Celsius for Germany by 2100 (EURO-
CORDEX, 2018; Huebener et al., 2017; Jacob et al., 2014), more precise values depending
strongly on the considered scenario. For RCP8.5, an input data analysis at the relevant 118
sites of this study showed a consistent annual average temperature increase in all regions
of Germany of several degrees Celsius (mostly between 3◦C and 4◦C). Only very slight
spatial patterns emerge, with strongest increases in the South (up to 4.7◦C) and generally
slighter increases in the Northwest, probably due to a buffer effect near the coast. For the
total annual precipitation, non-significant changes (p≥0.05) dominate. The fewer significant
changes partly show opposing trends, depending on the projection. One projection shows
consistently decreases of mostly -150 mm (max: -367 mm in the far South). Some other
projections show increasing precipitation instead (mostly around 100 mm) except for the
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Table IV.1: Climate projections used in this study and according abbreviations used throughout the
text. For more information on the models please visit www.euro-cordex.net.

Projections Abbrev.
R

C
P

8.
5

CCCma-CanESM2_rcp85_r1i1p1_CLMcom-CCLM4-8-17 p1
ICHEC-EC-EARTH_rcp85_r1i1p1_KNMI-RACMO22E p2
MIROC-MIROC5_rcp85_r1i1p1_GERICS-REMO2015 p3
MOHC-HadGEM2-ES_rcp85_r1i1p1_CLMcom-CCLM4-8-17 p4
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_UHOH-WRF361H p5
MPI-M-MPI-ESM-LR_rcp85_r2i1p1_MPI-CSC-REMO2009_v1 p6

R
C

P
4.

5

ICHEC-EC-EARTH_rcp45_r1i1p1_KNMI-RACMO22E_v1 p1
ICHEC-EC-EARTH_rcp45_r12i1p1_KNMI-RACMO22E_v1 p2
ICHEC-EC-EARTH_rcp45_r12i1p1_SMHI-RCA4_v1 p3
MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_v1 p4
MPI-M-MPI-ESM-LR_rcp45_r1i1p1_MPI-CSC-REMO2009_v1 p5
MPI-M-MPI-ESM-LR_rcp45_r2i1p1_MPI-CSC-REMO2009_v1 p6

R
C

P
2.

6

ICHEC-EC-EARTH_rcp26_r12i1p1_CLMcom-CCLM4-8-17_v1 p1
ICHEC-EC-EARTH_rcp26_r12i1p1_KNMI-RACMO22E_v1 p2
MIROC-MIROC5_rcp26_r1i1p1_CLMcom-CCLM4-8-17_v1 p3
MOHC-HadGEM2-ES_rcp26_r1i1p1_KNMI-RACMO22E_v2 p4
MPI-M-MPI-ESM-LR_rcp26_r2i1p1_MPI-CSC-REMO2009_v1 p5

Northwest, where almost no increases are visible. The southern part shows the strongest
possible increases in precipitation, up to 300 mm. Under RCP4.5, the respective input
data reveals no spatial pattern in the case of the temperature. Input data shows spatially
consistent increases mostly between 1◦C and 2◦C. For the precipitation data, non-significant
results dominate. However, the few significant changes show a clear spatial pattern and
occur mostly in the South and Northwest, ranging mostly around 100 mm; in the eastern
part, we see basically no increasing precipitation. Under RCP2.6, non-significant results are
dominating. In terms of the temperature data, however, we find a spatial pattern of slight,
yet significant increases (0.5◦C to 0.8◦C) in the North and Northeast, as well as for the Upper
Rhine Graben area in the Southwest. Only a few significant results occur for the precipitation,
showing decreases of about -100 mm, mostly in the Northwest. The methodology of this
input analysis is similar to the trend analysis described in section 2.5. For map and boxplot
representations of these analyses, please refer to the Supplementary Figures S3-S8.

2.2 Convolutional Neural Networks

CNNs (LeCun et al., 2015) are commonly used for image recognition and classification
(e.g., Cai et al., 2016; Li et al., 2014) tasks but also work well on sequential data, such
as groundwater level time series (Wunsch et al., 2021). The CNNs used in this study
comprise a 1D-Convolutional layer with fixed kernel size (three) and optimized number of
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filters, followed by a Max-Pooling layer and a Monte-Carlo dropout layer, applying a fixed
dropout of 50% to prevent the model from overfitting. This dropout rate is quite high and
forces the model to perform very robust training. A dense layer with an optimized number
of neurons follows, succeeded by a single output neuron. We used the Adam optimizer
for a maximum of 100 training epochs with an initial learning rate of 0.001 and applied
gradient clipping to prevent exploding gradients. Early stopping with a patience of 15 epochs
was applied as another regularization technique to prevent the model from overfitting the
training data. Several model hyperparameters were optimized using Bayesian optimization
(Nogueira, 2014): training batch-size (16 to 256); input sequence length (1 to 52 weeks);
number of filters in the 1D-Conv layer (1 to 256); size of the first dense layer (1 to 256). All
models were implemented using Python 3.8 (van Rossum, 1995), the deep-learning framework
TensorFlow (Abadi et al., 2015) and its Keras (Chollet, 2015) API. Further, the following
libraries were used: Numpy (van der Walt et al., 2011), Pandas (McKinney, 2010; Reback
et al., 2020), Scikit-Learn (Pedregosa et al., 2011), BayesOpt (Nogueira, 2014), Matplotlib
(Hunter, 2007), Unumpy (Lebigot, 2010–2020) and SHAP (Lundberg and Lee, 2017).

2.3 Model Calibration and Evaluation

We used weekly groundwater level time series data of varying length (Figure IV.1b). To
find the best model configuration, we split every time series into four parts: training set,
validation set, optimization set and test set. The test set uses always the 4-year period
from 2012 to 2016 (Figure IV.2b, s.a. Figure IV.3a for an example, for few sites where the
time series ended slightly earlier, we shifted the 4-year test set period accordingly). The first
80% of the remaining time series before 2012 were used for training, the following 20% for
early stopping (validation set) and for testing during HP optimization (optimization set),
using 10% of the remaining time series each (Figure IV.2b). As target function during HP
optimization we chose the sum of Nash-Sutcliffe efficiency and squared Pearson r (compare
Wunsch et al. (2021)), the acquisition function is expected improvement. For each model
we used a maximum optimization step number of 150 or stopped after 15 steps without
improvement once a minimum of 60 steps was reached. Generally, we scaled the data to [-1,1]
and used an ensemble of ten pseudo-randomly initialized models to reduce the dependency
towards the random number generator seed. For each of the ten ensemble members, we
applied Monte-Carlo dropout during simulation to estimate the model uncertainty from 100
realizations each. We derived the 95% confidence interval from these 100 realizations by
using 1.96 times the standard deviation of the resulting distribution for each time step.
Each uncertainty was propagated while calculating the overall ensemble median value for
final evaluation in the test set (2012-2016). We calculated several metrics to judge the
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simulation accuracy: Nash-Sutcliffe efficiency, squared Pearson r, absolute and relative root
mean squared error, as well as absolute and relative Bias. Note that we calculate NSE with
a long term mean GWL before the test set instead of the test set mean value. Please see
Wunsch et al. (2021) for more details on calculation as the same approach was used. We
use almost exclusively wells, at which the models showed a very high forecast accuracy in
the test-set (mostly NSE and R2 larger than 0.8, compare Figure IV.2a). Some models were
included with slightly lower accuracy (at least NSE and R2 larger than 0.7) to improve the
spatial coverage resulting in a set of 118 wells from all over Germany. For additional details
on the error measures and hyperparameters for all sites please refer to our supplementary
material. Figure IV.3a shows the model evaluation on the test set exemplarily for one well.

Figure IV.2: a) Model performance of all models for the test-set (2012-2016). b) Time series splitting
scheme for optimization (upper) and retraining (lower).

2.4 Model Plausibility and Interpretability

To perform groundwater level simulations until 2100 we retrained all models using the defined
hyperparameters and all data until 2014. Hence, we split the time series only in two parts:
80% for training and 20% for early stopping (Figure IV.2b). Afterwards, we assessed the
model stability and the plausibility of the output values in the extrapolated regime accordingly
to Duan et al. (2020) by evaluating the model output using artificially altered input data based
on historical observed climatology with quadruple precipitation and systematically 5◦C higher
temperature (Figure IV.3b). As long as the model output does not “blow up” or produce
meaningless outputs (Duan et al., 2020), we can hereby improve confidence in the simulation
results when investigating the different RCP scenarios. Models showing implausible behavior
in preliminary analyses were not considered for this study. We additionally applied a XAI
approach to check whether the models have learned correctly in terms of our conceptual
understanding of hydrogeological processes. We calculated SHAP (Lundberg and Lee, 2017)
values that explain the influence (sign and strength) of every input feature value on the model
output (Figure IV.3c). Generally, our models showed that the relationship between input and
output was captured plausibly. For example, high precipitation inputs (P, red) produce high
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SHAP values and therefore have a strong positive influence on the model output, which
corresponds to our basic understanding of the influence of recharge, leading to increasing
groundwater levels. Low or no precipitation (P, blue) has a comparably slight negative
influence on GWL, whereas high temperature inputs (T, red) have a strong negative influence
on the model output. Again, this corresponds with our basic understanding of the governing
processes, where high temperature usually means high evapotranspiration, which causes less
recharge or even direct groundwater evaporation in some cases. This sounds trivial, however,
during preliminary work for this study, we found that not all models capture these relations
correctly, which also partly caused erroneous values in the extrapolated regime (see above).
Such models were excluded for the final study. Figure IV.3 exemplarily summarizes the model
evaluation (a) and plausibility checks (b,c) for one well. Respective figures of all other sites
are provided in the supplement (Supplementary Figures S9-S126).

Figure IV.3: a) Optimized model evaluation in the past for the test set (2012-2016). b) Model output
under an artificial extreme climate scenario in the past. c) SHAP Summary plot.
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2.5 Evaluation of the Projected Groundwater Levels

For our simulation results until 2100, we examined the relative development of the mean
as well as the 2.5% (lower extreme), and 97.5% (upper extreme) quantile. All were site-
specifically calculated on a yearly basis for each individual projection followed by a linear
trend analysis based on Mann-Kendall and Theil-Sen slope. In doing so, we are able to
capture both the range and the individual development of all considered future climate
projections. Even though considering yearly values, we applied 3PW prewhitening method
(Collaud Coen et al., 2020) (implemented in the mannkendall/Python (Vogt, 2021) package)
to eliminate remaining first-order autocorrelation before applying Mann-Kendall test and
calculating corresponding Theil-Sen slopes. To make comparisons between different sites
possible, results are normalized on the individual range of each historic groundwater level
time series between the years 2000 and 2014 (start of simulation due to data availability).
Even though all climate projections are bias-adjusted on the HYRAS training dataset, they
still do not depict the real climate development for individual years (also historically), which
can cause a bias between the end of historical data records and the start of our simulations.
We, therefore, investigated the trend of the aforementioned quantities between the start of
the simulation and the end in 2100 and did not directly consider the end of the historical
records. We examined each groundwater level development using Mann-Kendall linear trend
test (Hussain and Mahmud, 2019) and derived the relative development in percent from a
linear fit using Theil-Sen slope (Sen, 1968). For Mann-Kendall test, we considered a trend
significant for p<0.05, and we further provide upper and lower 95% confidence bounds of
the Theil-Sen slopes for all significant trends.

3 Results

3.1 Individual Projection Results

For each of the examined 118 test sites, we simulated the future weekly groundwater level
development based on five to six climate projections per RCP scenario. Since these climate
projections differ considerably in detail for individual future time periods, we also obtained
several different future groundwater level simulations per scenario and considered site, which
should only be interpreted based on longer time periods (at least 30 years) (Kreienkamp
et al., 2012), such as with a linear trend analysis performed here considering the whole time
period of more than 80 years. Figure IV.4 depicts the results of our analysis for RCP8.5, in
terms of the relative change in % between the start (2014) and the end of the simulation
period (2100) for each of the six projections under RCP8.5 for: (a) the annual mean, (b) the
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annual upper extreme (97.5%) quantile and (c) the annual lower extreme (2.5%) quantile.
For each site, all displayed developments are ordered by the strength of the change, which
does not necessarily correspond to the numbering of the projections (Figure IV.1). The given
boxplots in Figure IV.4d provide more detailed information on the three maps, as well as
confidence intervals on the statistical analysis. The values of the non-significant trends are
not shown in the boxplots, which has to be kept in mind for interpretation. For detailed
numbers on the boxplots, we refer to Supplementary Table S3.

In the case of the annual mean, approximately 47% of all simulations (332 of 708, i.e., six
projections for each site) show a significant trend until 2100. There is always at least one
result for each site significant (p<0.05), which, however, also means that there are several
sites with mainly non-significant trends (gray). The large majority of the significant trends is
negative, with a median ranging between -18% (p1) and -6% (p6). Note that the uncertainty
(shown by the boxplots in Figure IV.4d) can be quite high from the trend analysis alone,
and we further see that the lower bound sometimes shows a larger spread, thus a higher
uncertainty, than the upper bound. In Figure IV.4d, we also observe that p1 systematically
shows the strongest declines until 2100, being significant for 114 of the 118 wells. The overall
maximum decline of the annual mean is -35%, clearly indicating the different character of
p1 compared to the other projections. Especially p3-p5 show more moderate changes of
the mean (median ranges from -8% to -11%), with many non-significant trends (50%-58%).
Simulations based on p2 and p6 only find significant trends for 22% and 29% of all sites,
respectively, and additionally are moderate in their significant results. Three projections (p2,
p3, but mainly p6) even show some positive trends until 2100, however, overall, these are
rare and occur at sites, where other projections simultaneously show at least non-significant
or even negative trends. In absolute numbers, the median changes are in the order of -0.1 m
to -0.3 m, which is highly dependent on the individual groundwater level range at each site.
Despite many non-significant and some positive trends, there is a clear tendency of declining
mean groundwater levels until 2100. Additionally, we can observe a slight spatial tendency
with more and stronger significant negative trends in some areas of northern and eastern
Germany, where we also find the strongest overall relative declines. In southern Germany,
many wells show multiple non-significant trends and most of the positive changes are also
scattered in this region; however, some of the southernmost wells also show some very strong
decreases for single simulations.
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Figure IV.4: Change of groundwater levels [%] in 2100 relative to 2014 (start of sim.) for each
site and each climate projection, based on a linear trend analysis: a) mean, b) 97.5%
quantile, c) 2.5% quantile; the order corresponds to the strength and sign of the change.
d) Boxplots showing the significant changes for a-c, light gray/sideways boxplots show
the uncertainty of the change as 95% confidence interval. Numbers above boxplots
depict the sample size (significant trends). Black boxes on maps depict the sites shown
in Figure IV.6
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The results for the upper extreme value quantile (97.5%) confirm these spatial patterns partly.
In Figure IV.4b we clearly observe many significant declines in eastern Germany, while the
large majority (76%) of the trends in whole Germany is considered to be non-significant.
Increasing trends are found comparably often, with increases close to 18% (p1, p3, p6).
Comparing the projections (Figure IV.4d), we find a similar behavior as before: p1 shows the
strongest significant decreases (down to -40%, conf.-interval: -61% to -19%), p3, p4, and
p5 tend to move in the moderate negative range (medians around -11%), while p2 and p6
more often show positive trends (positive medians of the significant trends). Particularly the
latter cause a partly contradictory development of the upper extreme values compared to the
mean. The absolute numbers of changes are again in the order of few tens of centimeters.

The tendency of declining groundwater levels we observed for the mean gets clearer for the
lower extreme values (2.5% quantile) shown in Figure IV.4c. We still observe 38% non-
significant trends, however, the remaining 62% show almost exclusively negative changes
with a maximum decline of -79%. The median change of the 2.5% quantile of all projections
ranges between -34% for p1, which again shows the strongest declines, followed by p4 (-
19%), as well as p2, p3, p5, and p6 with a median change around -9% to -12% each (lower
bound: -20%, upper bound: -2%). The latter four, and especially of them p6, contain the
majority of non-significant trends, the changes shown in the boxplots, therefore, tend to
be overestimated. There are only few sites where only one result is considered significant.
These occur, for example, near the Baltic Sea coast as well as the central and eastern part
of northern Germany. Quite strong relative decreases are visible in eastern Germany and in
the western part of northern Germany as well as at the southernmost sites. This pattern is
largely consistent with the spatial pattern of the mean mentioned above. When translating
into absolute units, most median decreases (p2-p6) are in the order of -0.1 m to -0.4 m.
For p1 and when considering the annual lower extreme value quantile, the median decrease
reaches even -0.6 m. From all projections except p6, we see that of all significant changes for
the 2.5% quantile, at least a decrease of -0.1 m is observed (summarized in Supplementary
Table S3).

The spatial patterns in Figure IV.4 (a-c) are particularly interesting because they do not
intuitively follow from the patterns of the input data (compare Figures S7 and S8). Con-
sidering all results of RCP8.5, we see a clear tendency toward declining groundwater levels
overall, with stronger declines for lower quantiles, i.e., groundwater level lows will occur more
frequently and will be more severe in the future. At the same time, except for East Germany,
mostly no or even increasing trends are found for upper extreme values, which means that
the overall variability will increase considerably by the end of the century.
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Figure IV.5 summarizes the results for the other considered RCP scenarios 2.6 and 4.5. For
the former, which is a stringent mitigation scenario in terms of greenhouse gas emissions, we
see that generally the number of significant samples (p<0.05) in total is low, with only 6% to
8%, depending on the quantile considered. We generally see smaller decreases compared to
RCP8.5; the upper extreme value quantile does no longer show considerable positive changes.
Supplementary Figure S1 shows the spatial distribution of the found changes. We can detect
no spatial pattern for the 2.5% quantile, but (slight) decreases all over Germany, dominated
by mostly non-significant results. The mean and the 97.5% quantile, however, show that
decreasing changes occur preferably in northern Germany, whereas the southern part either
shows few slight decreases for the mean or remains mostly non-significant for the upper
extreme values. The results strongly indicate that the reduced greenhouse gas emissions of
the RCP2.6 scenario also translate to a distinctly reduced impact on the groundwater level
development, especially compared to the opposite RCP8.5 scenario. Nevertheless, decreasing
trends are still visible all over Germany, showing that even for RCP2.6 with a limited global
warming below 2◦C compared to pre-industrial temperatures, a change in water availability
is to be expected.
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Figure IV.5: Boxplots showing the significant (p<0.05) relative changes between 2014 and 2100 based
on linear trend analyses of annual quantiles (2.5% and 97.5%) and the annual mean under
RCP2.6 (left) and RCP4.5 (right). Light grey/sideways boxplots show the uncertainty
of the change as 95% confidence interval. Numbers above boxplots depict the sample
size (number of significant trends).
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For RCP4.5, changes are also only rarely significant (Q97.5: 6%, mean: 7%, Q2.5: 13% of
all samples). Projection p6 represents definitely an increasing groundwater scenario for the
future, whereas p1 to p5 mostly show decreases for the significant changes. Except p6, we,
therefore, see median changes of all three annual quantiles between -5% and -10%. RCP4.5
and RCP2.6 do not differ here very strongly, but the number of significant samples is a bit
higher for RCP4.5 as well as the confidence intervals shown in Figure IV.5 are slightly narrower
than in RCP2.6. Differences get clearer spatially, where we find more distinct patterns in
the case of RCP4.5 (Supplementary Figure S2) with increasing values almost exclusively in
southern Germany (97.5% quantile, less frequent also for the mean). This clearly coincides
with the spatial pattern of increasing precipitation in the input data (Supplementary Figures
S5-S6). While decreasing changes can be found in northern Germany for the 2.5% quantile,
this is less pronounced for the annual mean and even lesser for the 97.5% quantile. For
both, sites with exclusively non-significant changes increasingly dominate. For both RCP2.6
and 4.5, we do not find the strong decreasing trends in eastern Germany seen for RCP8.5,
however, both scenarios indicate that a stronger tendency of decreasing trends in the North,
a slight increasing tendency of upper extreme values for the South, as well as an increasing
overall variability (decreasing lower quantiles, constant or increasing upper quantiles) are
possible. While for RCP2.6 we do not see that the lower extreme values decrease stronger
than other parts of the hydrographs as under RCP8.5, this pattern emerges under RCP4.5 in
agreement. Overall, due to the high number of non-significant results, RCP2.6 and RCP4.5
results should be interpreted carefully. Maps, as well as detailed numbers on the boxplots in
Figure IV.5, are part of the electronic supplement (Figure S1-S2, Table S4-S5).

Figure IV.6 shows exemplarily the detailed development at two arbitrarily selected sites (black
boxes in Figure IV.4) under RCPs 4.5 and 8.5, which, as explained, are the most relevant
given the current situation. The simulation results are depicted as time series plots for the far
future (2071-2100) and as heatmaps with years as rows and weeks as columns for each of the
projections. Heatmaps of both scenarios share the same color scale per site. Heatmaps and
time series plots of the simulation results of all other sites and for all RCPs are available online
(Wunsch, 2021). The time series plots show the diverging development of some projections
in the far future, however, there is no strict sequence of projections in terms of absolute
groundwater height, the order can change throughout the years. Most heatmaps visualize
the development described above by displaying generally declining groundwater levels (more
and darker red, as well as lighter or constant blue shadings towards 2100 in the lower part
of the heatmaps). Moreover, we observe increasing lengths of periods with low groundwater
levels (wider red shadings) throughout the year. In accordance, wet periods usually get
shorter (narrower blue shadings) or even change to red (e.g., in b, RCP8.5, p1, p3, p4). The
absolute height of groundwater levels during wet periods does not necessarily decrease but
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can even show the opposite behavior (darker blue, e.g., in a, RCP8.5, p6). Most importantly,
in both scenarios and at both sites, we can also recognize successions of several dry years.
Such periods are visible in the time series plots, but more clearly as dark red horizontal
stripes in the heat maps. These are especially critical because drought effects accumulate
and dependent ecosystems cannot recover but are instead particularly vulnerable to further
damage in subsequent years due to reduced resilience. Although the results should not be
interpreted over shorter periods of time (i.e., they do not reflect the absolute timing of an
event), they definitely show the increasing probability of such longer-term droughts in the
future, especially in the second half of the century.

3.2 Average Projection Results Under RCP8.5

In Figure IV.7 we consolidated the separate projection results under RCP8.5 for each site into
one by calculating the mean of the significant trends shown in Figure IV.4. Only sites with at
least four (thus the majority) significant projection results are included; the rest is depicted as
not significant on average. This is one reason for neglecting RCPs 2.6 and 4.5 in this analysis
step, as barely sites with four or more significant results were found there. Another reason
is that, at least for the near future, the results of RCP8.5 can be considered most relevant,
as it is the scenario closest to our current situation (Schwalm et al., 2020). Even though
we investigate a longer time period until 2100, tendencies should be nevertheless useful to
estimate near-future developments. The development of the mean is depicted in the upper
left map (a), and according to the aforementioned definition, about 30% of the wells (35
of 118) are considered significant on average and on median show a change of -12%. We
do not find any wells with increasing mean trends on average and observe a similar spatial
pattern as before with the strongest decreases in eastern Germany. For wells in southwestern
Germany, we observe a noticeable number of non-significant changes. Overall, we simulated
significant absolute average decreases between -0.2 m to -2.1 m for about 18 wells and at
least a decrease of -9 cm for all 35 wells in Figure IV.7a. In the case of the annual 97.5%
quantile, the consolidated results show mainly no trends, especially for southern Germany.
Two sites in northern Germany are expected to show increased upper extreme values up
to a maximum of 7.5% or 0.2 m, however, we still observe a spatial pattern of decreasing
upper extreme values in eastern Germany up to -24%. Hence, in this area, the groundwater
levels possibly decrease in every part of the annual cycle and with comparably high certainty
(many consistent significant simulations). This also applies to the lower extreme values (2.5%
quantile) that show on average significant decreases for more than half of the examined sites,
with median decreases of -17% (or -0.3 m) (compare Figure IV.7d, e). On this map, no clear
spatial pattern is recognizable any longer.
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Figure IV.6: RCP4.5 and RCP8.5 results for two arbitrarily selected sites marked by black boxes
in Figure IV.4 a) NW_100140142, b) ST_31340028. Heatmap plots show the whole
simulation period for each of the projections under each of the considered scenarios.
Columns of each plot as weeks during the year and rows as the year (top: 2014 –
bottom: 2100).
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Figure IV.7: Averages for all sites of the significant trends (at least four) of the a) annual mean,
b) the annual 97.5% and c) the annual 2.5% quantiles shown also in Figure IV.4. d)
Associated boxplots and e) the corresponding table.
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3.3 Model Input Analysis

From the combined analysis of our groundwater level simulations, especially under RCP8.5,
and the model inputs presented in the data section and Supplementary Figures S3-S8, we
conclude that for shallow aquifers temperature is the main driving factor for declining ground-
water levels, rather than precipitation. This applies because mostly non-significantly changing
or even increased precipitation is projected, however, our models still frequently show declin-
ing groundwater level tendencies. Therefore, these are most likely caused by the significantly
increased temperature until the end of the century. Nevertheless, especially under RCP4.5,
spatial precipitation data patterns from the input data translate into related patterns of
groundwater levels, which shows the also high importance of precipitation. Our results are
consistent with other studies, which indicate that the reduction in water availability in the
future is driven primarily by changes in temperature (Thober et al., 2018). This is also
reflected in the results of the model interpretability approach (SHAP values (Lundberg and
Lee, 2017)) that we used to check the plausibility of our model outputs. The minimum SHAP
value for T is mostly lower than the minimum SHAP value observed for P (except for eight
sites); i.e., the models have learned that high temperatures can cause stronger decreasing
groundwater levels than low precipitation. This is, however, only an interpretation of what
was learned, which agrees with our conception. Causality cannot be derived from this.

3.4 Sources of Uncertainty

There are different sources of uncertainty in our study. Considering the groundwater model
itself, there exists uncertainty directly from different model realizations as well as the uncer-
tainty due to limited model precision. The former was derived from a Monte-Carlo dropout
approach and is on average consistently small for all models (orange sections Figure IV.3a
and Supplementary Figures S9-S126), the latter is hard to generalize, as it is different for
each site. However, we only used models with high performance in the past, checked the
conceptual correctness of what was learned using SHAP values, and investigated the stability
of the model output in the extrapolating regime, to improve the confidence in the model
simulations. However, it is important to mention that data-driven models generally have
difficulties in predicting extreme values. Figure IV.8 shows the yearly relative model bias on
different quantiles during the model testing period (2012-2015, normalized on the historic
min-max range of each individual time series). On average, the models show a very small
bias; however, a considerable bias occurs for extreme values (2.5% and 97.5% quantiles).
Lower extremes are overestimated by 4.8%; upper extremes are underestimated by 9.6%
(both on median). Thus, the analyses of future extreme values are less robust than for
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the mean. Nevertheless, we argue that (i) reasonable conclusions can still be derived from
relative trends and tendencies even for the extreme values at each site and (ii) since the
extreme values are underestimated, the analyses constitute a kind of best-case scenario.

Figure IV.8: Evaluation of the yearly, relative model bias on different yearly quantiles at all sites for
the four-year model testing period.

Concerning the simulation of climate change impact, we are not extrapolating in a classical
sense. Mean values and frequencies of input values change in the future, but the total range
of these values is usually already present in the training data. Scaling uncertainty due to the
differences between a single location and the grid cell sizes are certainly present, however,
by achieving high performance in the past using training data in the same grid resolution,
we can assume that this influence is not severe. To account for atmospheric process scales
in the climate models that are not reliably scaling down to cell resolution, we follow the
DWD best practice recommendation of considering 3x3 cells rather than one cell that best
matches the site location. Regarding the uncertainty deriving from climate models or the
considered scenario themselves, we consider different RCP scenarios, each based on a whole
ensemble of individual climate models. Finally, the uncertainty from the applied statistical
tests (Mann-Kendall test and Theil-Sen slopes) is directly communicated in the text and
figures.

4 Discussion

The results of our simulations show a nationwide decrease in climate-driven groundwater
levels by the end of the century under the RCP8.5 scenario. The results for RCP2.6 and
RCP4.5 show comparably few significant changes, thus have to be interpreted with care in
absolute and relative numbers. However, this also means that mitigation of greenhouse gas
emissions could have a visible effect, at least for the climate-driven part of the total future
groundwater levels in Germany. Nevertheless, even for RCP2.6, decreases in all considered
quantiles were found all over Germany for some projections. We, therefore, will probably
have to cope with drought effects and changing water availability in any of the investigated
scenarios, especially because current estimations of future climate change impacts (UNFCCC,
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2021) still exceed the RCP4.5 scenario. Especially for the near future, the results under
RCP8.5 are most relevant (Schwalm et al., 2020) because its path is closest to our current
situation.

The absolute changes even under RCP8.5 may seem small, but the facts that we investigated
almost exclusively shallow aquifers and sites with comparably small depths to groundwater
reinforce the importance of the results, predominantly in terms of water availability for
vegetation and agriculture. A decline of several tens of centimeters (depending on the
projection and the area) can be vital for plants during hot and dry periods if, as a result,
the groundwater is no longer accessible. Furthermore, a related study showed that for large
parts of northern Germany, a decline of the groundwater levels by 10 cm can be considered
critical in terms of altered streamflow discharge due to reduced baseflow from groundwater
(de Graaf et al., 2019). This has already been visible during the summers of 2018-2020, when
simultaneously to low groundwater levels, also extremely low water levels in surface waters
were observed (Wriedt, 2020). Our results show a clearer tendency of declining groundwater
levels in the North and the East compared to the South (Figure IV.7a), which emphasizes
the already existing trends and patterns. However, in the southernmost part of Germany,
for some individual projections, we also find some of the strongest declines (Figure IV.4). It
is very important to note that the assessed results are only long-term averages of a future
development. As recent developments illustrate, the succession of several dry years is much
more critical than the overall trend. In such periods, the projected effects accumulate over
consecutive years to extremely low groundwater levels, and thus more severe consequences are
to be expected. Such longer dry periods are most likely to be averaged out in a linear trend
analysis, as performed in this study. Nevertheless, we see an increasing frequency of them
in all RCP scenarios (Wunsch, 2021), especially in RCP8.5 and less pronounced in RCP4.5
(Figure IV.6). Future research should pay attention to this aspect more intensively. It is
also important to highlight that we only model direct climate effects on groundwater levels,
and we assume that the basic input-output relationship or system behavior does not change.
However, it can most certainly be expected that the system behavior will be influenced
by future changes in groundwater extractions, changes in vegetation and land use, as well
as surface sealing and other related factors. Groundwater withdrawals, in particular, are
expected to increase due to (i) the regionally growing population, especially in metropolitan
areas (drinking water demand) and (ii) the increasing demand for industry, energy, and
especially irrigated agriculture. As a result, the groundwater level will inevitably drop further
if no active measures such as limitation of withdrawals, avoidance of irrigated agriculture by
changing crop types, or even artificial recharge by infiltration, are applied. Despite all these
limitations, the results give a good impression of the magnitude of changes to be expected
purely due to direct climatic influences.
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Chapter V: Karst Spring Modeling

1 Introduction

Karst aquifers and karst springs are crucial for freshwater supply in many regions, and 9%
of the global population partly or fully rely on karst water resources (Stevanović, 2019).
Karst systems, in general, are characterized by high structural heterogeneity due to the at
least in large parts unknown conduit network, which controls the highly variable groundwa-
ter flow. These factors make modeling difficult. Nevertheless, different approaches exist,
which Jeannin et al. (2021) classify as hydrological models (fully distributed models), pipe
flow models (semi-distributed models), and data-driven models (including reservoir models).
ANNs or its subgroup of DL models are part of the last group. In contrast to the other
two categories, which usually require detailed system knowledge in order to achieve high-
quality results, DL approaches offer an alternative possibility of modeling by being able to
establish an input-output relationship automatically, without detailed system knowledge nec-
essary. Even though ANNs are not a standard method in karst modeling yet, different types
of ANNs have been applied in modeling karst water resources for quite a long time. As one
of the first applications Johannet et al. (1994) showed that karst spring discharge modeling
is possible with ANNs. Since then, application of ANNs in hydrology in general received
ever-growing research attention (e.g., Maier and Dandy, 2000; Maier et al., 2010). This has
amplified even more in the last years, mainly because of the recent success of DL models (e.g.,
Kratzert et al., 2018). Rajaee et al. (2019) more recently reviewed applications of ANNs on
groundwater; Sit et al. (2020) summarize applications on hydrology and water resources in
general. Recurrent neural networks, such as LSTM (Hochreiter and Schmidhuber, 1997) are
standard models for time series modeling because they possess explicit or implicit memory
to remember past time steps, which helps to infer the future. A consequence is that they are
trained sequentially, which can make them computationally expensive. CNNs (LeCun et al.,
2015) on the other hand, use convolutions along the time axis (1D-CNNs) to learn temporal
features and can be trained batch-wise, which therefore usually makes them computationally
favorable over RNNs. One example for this fact exists in the related domain of groundwater
level forecasting, where Wunsch et al. (2021) showed that 1D-CNNs are considerably faster
than RNNs in the case of single-site model application. CNNs, at the same time, exhibited
stable results through a comparably low dependency on the random network initialization
and achieved some of the highest performances in this specific study (better than LSTM).
Other authors similarly applied CNNs successfully for either GWL forecasting (Afzaal et al.,
2020; Lähivaara et al., 2019; Müller et al., 2020) or rainfall-runoff modeling (Hussain et al.,
2020; Van et al., 2020). Müller et al. (2020) find in contrast to Wunsch et al. (2021) that
CNNs take a considerably longer time to optimize than LSTMs, yet both studies agree that
they outperform LSTMs in terms of accuracy. Given these favorable properties of CNNs, we
choose 1D-CNNs for karst spring discharge modeling for our study. To our best knowledge
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Jeannin et al. (2021) is the only study yet, applying CNNs for karst spring discharge modeling
in some first experiments, and they also find CNNs to be superior over LSTMs in terms of
testing performance.

Data-driven approaches, in general, are considered to be black boxes. A way to still build
confidence in a model’s decisions is to understand what the model is doing (ideally, even
why) by using XAI approaches. There are different techniques that are potentially suited
for this purpose, depending on the specific goal. Such approaches are not only useful to
gain trust but also help during model building to debug the model and to check what as-
pects it is focusing on (McGovern et al., 2019). The class of wrapper methods (Kohavi and
John, 1997) incorporates both the data and the trained model to interpret what a model
has learned. Methods from this class are, for example, impurity importance for determining
feature importance in random forest (RF) models (Louppe et al., 2013), permutation impor-
tance (Breiman, 2001) both for RF and DL models, and partial dependence plots (Friedman,
2001) that also reveal why a predictor is important. See McGovern et al. (2019) for an
overview on these and several other model interpretation and visualization methods. Espe-
cially for image-alike data, input sensitivity approaches seem suitable, as focus regions of the
model on the image can be visualized. Two well-known approaches are occlusion sensitivity
(Zeiler and Fergus, 2014) and RISE (Randomized Input Sampling for Explanation) (Petsiuk
et al., 2018). Both methods show how relevant each pixel or area is for the decision of the
model (image classification) and can generate an importance heatmap (saliency map) for
visualization. The idea behind both algorithms is to use masked versions of an input image
and by obtaining the respective model output to learn the focus regions. A very closely
related approach to generate a saliency map was recently proposed by Anderson and Radić
(2022), which in contrast to RISE and occlusion takes the physical meaning of the absolute
value of each variable at each pixel into account during the perturbation of the input data.

One drawback of the 1D-CNN approach, as well as most other data-driven approaches, is
the dependency on high data availability and quality. However, climate stations are often not
available within the catchment itself, do not match the data availability of the discharge time
series (period or temporal resolution), or are more distant and thus do not truly represent
the climatic conditions within the catchment. Gridded climate data can provide a solution
to such data availability problems. Several openly available products exist (e.g., ERA5-
Land (Muñoz Sabater, 2019), E-OBS (Cornes et al., 2018)), which provide climate data for
several decades and with, in terms of karst spring modeling, appropriate temporal (hourly
or daily) and spatial (0.1◦ × 0.1◦) resolution. However, especially for karst springs, it is not
straightforward to extract relevant time series from the gridded data, because the spatial
extent of the grid cell containing the location of the spring usually does not coincide well
with the associated spring catchment position. Moreover, especially for karst springs, the
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catchment is often not well-known and, for larger springs, can stretch over several grid cells.
If the exact position of the catchment is unknown, using gridded data has the advantage
that a broader region can be taken into account as input to let the model learn the relevant
grid cells automatically.

Besides such modeling aspects, the delineation of karst catchments is generally important
to sustainably exploit but also protect karst water resources by establishing protection zones
accordingly. Malard et al. (2015) explain that only few generalizable methods for karst spring
catchment delineation based on models have been proposed. Instead, delineations usually
rely on classical hydrogeological methods such as assessing geology, topography, hydrology,
water balance, elaborate tracer tests, and geophysical investigations. These methods usually
are complex and costly, thus for many karst springs, exact catchment delineations are not
available at all or at least contain some uncertainties. Where no information about the
catchment is available at all, an approximate localization is advantageous as a first step
towards an exact delineation since it facilitates the application of more elaborate methods
like tracer test. There has already been an attempt by Longenecker et al. (2017) to semi-
automatically derive approximate catchment boundaries by correlating karst spring discharge
events with global precipitation measurement (GPM) gridded data (NASA, 2016). The
authors achieved reasonable results with their method but also noticed that they could not
replace conventional methods.

Anderson and Radić (2022) already applied gridded meteorological data to streamflow model-
ing in western Canada and used a coupled 2D-CNN-LSTM model to directly process spatially
distributed input data. They showed that such models learn the relevant parts of the large-
scale gridded input data for each local or regional streamflow automatically. We adapt and
extend this approach to karst spring discharge modeling, however, purely based on CNNs by
replacing the LSTM part with a 1D-CNN. Similar to the approach of Anderson and Radić
(2022), in our proposed methodology, the 2D-CNN part learns the spatial features of the
input data, while the 1D-CNN part extracts the temporal features, both necessary to sim-
ulate the spring discharge time series. With this combined 2D-1D-approach (for the sake
of simplicity in the following only 2D-approach), we can now directly use gridded meteo-
rological data to potentially overcome the common data availability problems when using
climate station data for modeling. This approach further does no longer depend on a prior
description of the catchment area, other than a very rough estimation of its approximate size
to select the gridded data section large enough. Moreover, we investigate the potential of
this approach for identifying the approximate catchment location based on a modified spatial
input sensitivity analysis from Anderson and Radić (2022). To derive recharge areas based on
rainfall-discharge event correlation, as previously done by Longenecker et al. (2017), requires
(i) heterogeneous rainfall at catchment scale, (ii) precipitation data with sufficient spatial
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resolution that capture this heterogeneity, and (iii) a karst system without too much damp-
ening of the precipitation signals. These requirements hold for our proposed methodology as
well, but a potential advantage of ANNs is their nonlinearity which may better capture the
nonlinear relationships between rainfall and discharge.

We explore the applicability of our proposed deep learning approaches with spatially dis-
tributed input data in modeling karst spring discharge in three different study areas in Aus-
tria (Aubach spring), France (Lez spring), and Slovenia (Unica springs). All three associated
karst areas are well studied, and for Austria and France, several modeling publications are
available as benchmarks. Discharge of Lez spring in France was extensively studied in the
past, including several ANN studies. Please refer to Kong A Siou et al. (2011) for an overview
of older modeling studies at Lez spring with approaches other than ANN. We omit three
newer ANN studies because they either do not focus on modeling discharge (Kong-A-Siou
et al., 2015) or train models not on the complete annual cycle (Sep.-Aug. in this region)
but on single flash-flood events (Darras et al., 2015; Darras et al., 2017). The other ANN
studies all use classical MLPs or recurrent MLPs for discharge modeling, and we introduce
them shortly in the following. Kong A Siou et al. (2011, 2012) and Kong-A-Siou et al.,
2013 use precipitation from three or six gauges, respectively, and all use a similar but slightly
varying data basis of 12 to 13 full annual cycles between 1988 and 2006. Testing period is
either the single cycle 2002/2003 (Kong-A-Siou et al., 2013, 2012) or two cycles roughly in
the same period (2002-2004) (Kong A Siou et al., 2011). Kong-A-Siou et al. (2014) uses
data from 1987 to 2007, however, this time additionally including evapotranspiration and
pumping from the Lez aquifer. For Aubach spring in Austria, no ANN studies exist, however,
other modeling studies are available. Three studies (Chen and Goldscheider, 2014; Chen
et al., 2017c, 2018) based on three successive and improved versions of a combined lumped
parameter (SWMM) and distributed model, investigate and simulate three springs of this
karst system simultaneously. They all achieved high performance in terms of NSE (>0.8),
but none of them covered a complete annual cycle as contiguous test period. Additionally,
they differ considerably in terms of their individual data basis for modeling (number and po-
sition of climate stations used as input data), as well as their testing periods. The shortest
test set only had 40 days (in autumn), the longest (Chen et al., 2017c) used one year of data
for model calibration and performed a split-sample test on the same data set. This makes a
comparison of modeling results among these studies difficult. For the third spring (Slovenia),
several earlier modeling studies are available (e.g., Kaufman et al., 2020; Kaufmann et al.,
2016; Kovačič et al., 2020; Mayaud et al., 2019), even including ANNs (Sezen et al., 2019),
but none of these directly modeled Unica springs discharge, but rather focused on other as-
pects like cave hydraulics or polje modeling. Besides existing studies, we compare the results
of the 2D-model with own 1D-CNN models using climate station input data to assess the
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usefulness and possible advantages of the direct use of spatially distributed input data. As
spatially distributed inputs, we use either hourly ERA5-Land reanalysis data (Muñoz Sabater,
2019) or daily E-OBS data (Cornes et al., 2018), depending on the temporal resolution of
spring discharge data. We selected these datasets among all openly accessible datasets (e.g.,
via Copernicus Climate Data Store) because of their available variable set and their spatial
and temporal resolution. We introduce them in more detail in the following data section.
Finally, we explore the potential of the 2D-approach for karst spring catchment localization
by investigating the spatial input sensitivity of the trained CNN models.

2 Data and Study Areas

2.1 Overview

In this study, we investigate three different karst springs: Aubach spring in the Hochifen-
Gottesacker area in Austria (Figure V.1a), springs of Unica river in Slovenia (Figure V.1b)
and Lez spring in southern France (Figure V.1c). All springs show different characteristics
regarding relevant system properties (e.g., catchment size, complexity of the hydrological
system), environmental conditions (e.g., dominant climate, anthropogenic forcing) and data
availability (see also Table V.A1). All areas are well studied and existing data was easily ac-
cessible. Further, several previous modeling approaches are available for comparison, except
for the Slovenian spring.

2.2 Aubach Spring, Austria

Aubach spring is a major karst spring in the Hochifen-Gottesacker karst area in the north-
ern Alps at the border between Germany and Austria. Southern border of the area is the
Schwarzwasser valley, which geologically forms the contact zone between the Helvetic Säntis
nappe in the north and sedimentary rocks of the Flysch zone in the south (Goldscheider,
2005). In the northern part the dominant karst formation is the Schrattenkalk formation, a
cretaceous limestone with a thickness of about 100 m. This Schrattenkalk is structured in
folds, which hydrogeologically form parallel sub-catchments (Figure V.1a) that contribute to
different proportions to the several springs in the valley (Chen and Goldscheider, 2014; Gold-
scheider, 2005). In this study we focus on one large, non-permanent spring called Aubach
spring (1080 m asl, discharge up to 10 m3/s). The Hochifen-Gottesacker area is largely in-
fluenced by seasonal snow accumulation and melting in the elevated regions (>1,600 m asl),
which is also clearly reflected in the discharge of Aubach spring by increased baseflow and
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Figure V.1: Overview of all three study areas, the simulated springs (red star) and their catchments
(red lines). Black squares indicate the locations of climate stations used for 1D-modeling
(some are outside the shown maps), blue shadings in the upper map show karst areas
based on WOKAM (Chen et al., 2017b) a) Hochifen-Gottesacker karst area and Aubach
spring, black lines depict minor contributing sub-catchments; b) Unica river springs and
Javorniki karst plateau (B); c) Lez spring catchment, Lirou overflow spring (black star)
and major fault Corconne-Les Matelles (grey line);

diurnal snowmelt-induced variations, especially in the months of April to June. Earlier stud-
ies by Goldscheider (2005) and Chen and Goldscheider (2014) have identified one major
catchment area of Aubach spring with approximately 9 km2 (Figure V.1a), still, to smaller
proportions upstream catchments can also contribute to Aubach spring discharge depending
on the flow conditions. This applies also to the non-karstified Flysch area directly in the
South (southernmost sub-catchment in Figure V.1a), where precipitation events are only
relevant during low flow conditions. Then, the surface runoff from this area sinks into an up-
stream estavelle and contributes via an underground connection to the discharge of Aubach
spring. During high flow conditions, the estavelle itself acts as an overflow spring and no con-
tribution from surface runoff at Aubach spring occurs. Generally, the climate in the area can
be described as cooltemperate and humid and the mean annual precipitation at the closest
used climate station in this study (Walmendinger Horn) is about 2000 mm (2003-2019).

For this study we select Aubach spring because of the good data availability and use 8 years
of hourly discharge data provided by the office of the federal state of Vorarlberg, division
of water management. Further precipitation and temperature data from three surrounding
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climate stations are available: Oberstdorf, Walmendinger Horn (shown in Figure V.1a) and
Diedamskopf. Additionally, due to the high importance of snow in the area, we run a
snowmelt routine as preprocessing of the meteorological input data as described in Chen
et al. (2018). This routine is a slightly modified version (after Hock, 1999) of the HBV
hydrological model snow routine (e.g., Bergström, 1975, 1995; Kollat et al., 2012; Seibert,
2000), which redistributes the precipitation time series in accordance with probable snow
accumulation and snowmelt.

2.3 Unica Springs, Slovenia

The Unica springs (450 m asl) are located on the southern edge of a karst polje in SW
Slovenia and are important from a biodiversity and water supply perspective. There are
two permanent and several temporary springs that feed the Unica river. The joint discharge
during 1989-2018 ranged from 1 to 90 m3/s, while the mean discharge was 21 m3/s (ARSO,
2020a). The springs are fed by three clearly distinguishable sub-catchments covering an area
of about 820 km2. The main recharge area is the highly karstified Javorniki plateau (up to
1,800 m asl; marked B on Figure V.1b), whose predominant lithology is Cretaceous rocks;
mainly limestones, changing in places to dolomites and breccias. To a lesser extent, Jurassic
and Palaeogene carbonate rocks are also present. The thickness of the unsaturated zone is
estimated to be up to several hundred meters (Petrič et al., 2018, and references therein).
To the east, a strike-slip fault zone controls the hydrology of the area, along which a chain
of karst poljes developed (between 500 and 700 m asl; marked C on Figure V.1b). Upper
Triassic dolomites predominate, changing to Jurassic limestones and dolomites in the south
and west, forming aquifers with fracture porosity, which in places have very low to moderate
permeability, and in some parts a superficial river network forms. As the karst poljes follow
each other in a downward series, they are connected in a common hydrological system with
transitions between surface and groundwater flows, and frequent flooding (Mayaud et al.,
2019). In the West, the Pivka River Basin (between 500 and 700 m asl; marked A on
Figure V.1b) consists of poorly permeable Eocene Flysch in the North, which conditions
a surface river network. The southern part consists of Cretaceous and Jurassic carbonate
rocks forming a shallow karst aquifer. Surface flow occurs during high water levels, receiving
additional water from intermittent springs on the western foothills of the Javorniki plateau.
The water flow of the sinking rivers in the subsurface from the regions A and C is of the
channel flow type. We select the springs for this study because they drain a complex binary
karst system of the so-called classical karst, they are well studied with long records of hydro-
meteorological data and their hydrology is influenced by substantial snow accumulation and
melting. The catchment belongs to the moderate continental climate and is mostly covered
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with forests. For this study we use daily discharge data from the Unica-Hasberg gauging
station (in the following called Unica) (ARSO, 2020a) and daily meteorological data from
Postojna and Cerknica climate stations ranging from 1981 to 2018 (ARSO, 2020b). These
climate stations (squares in Figure V.1b) are located on the western (Postojna) and eastern
(Cerknica) part of the catchment, representing different climate regimes and are separated
by the karst massif in between. For Postojna station the following variables are available:
precipitation, temperature, potential evapotranspiration (PET), relative humidity, snow (S)
and new snow (nS). For Cerknica station only P, S and nS exist. Average annual precipitation
during 1989-2018 is about 1500 mm and on average 33 days of snow cover occur in Postojna
(530 m asl) per year, while even longer snow cover is expected on the plateau.

2.4 Lez Spring, France

Our third study area is located 15 km north of Montpellier in southern France, within a large
and complex karst system delimited by rivers and marly terrains. Eastern and western borders
are the Vidourle and Hérault river valleys, northern and southern borders are piezometric
limits. At larger scale, northern and southern boundaries are structural boundaries due to
Cévennes and Montpellier faults, respectively. The dominant karst formations are Argovian to
Kimmeridgian, and Berriasian massive limestones with 650 m to 1000 m thickness. Infiltration
occurs mostly diffuse but also localized through fractures and sinkholes along the basin and
through the major geologic fault of Corconne-Les Matelles in the northern part of the basin
(indicated by a grey line in Figure V.1c).

The hydrogeological basin associated to the Lez spring has a size of about 240 km2 (Fig-
ure V.1c), which is estimated on the basis of the hydrodynamic response to high discharge
continuous pumping into the saturated zone of the aquifer (Thiéry and Bérard, 1983). How-
ever, the effective recharge catchment of the Lez spring, which corresponds to the extent of
Jurassic limestone outcrops, has been estimated to be about 130 km2 (Fleury et al., 2009;
Jourde et al., 2014). The Lez karst aquifer is under anthropogenic pressure (i.e., aquifer ex-
ploitation for water supply) with pumping performed directly within the karst conduit. The
discharge is measured at the spring pool and is regularly null during low water periods, when
the pumping rate exceeds the natural spring discharge. Ecological water discharge towards
the Lez river (160 L/s then 230 L/s after 2018) is ensured during such periods by a partial
deviation of the pumped water to the river. Lirou spring (Figure V.1c) is the main of several
overflow springs that activate during high flow periods (Jourde et al., 2014).

The Lez catchment is exposed to a Mediterranean climate, characterized by hot and dry
summers, mild winters and wet autumns. Analyses by MeteoFrance show that on average
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40% of the annual precipitation occurs between September and November with a high vari-
ability across years (Bicalho et al., 2012). The average annual rainfall rate for the 2008-2018
period is 904 mm.

For this study, we use nearly 10 years of daily discharge data provided by SNO KARST
(Jourde et al., 2018; SNO KARST, 2021). The temperature data is from the Prades-le-Lez
climate station; we use, however, an interpolated precipitation data series that is derived
from a weighted average of four rainfall stations (Figure V.1c) (similar to Fleury et al.,
2009; Mazzilli et al., 2011), three of them being located on the Lez catchment (Prades-le-
Lez, Valflaunès, Sauteyrargues). The fourth station (Saint-Martin-de-Londres) is located few
kilometers west of the catchment. Interpolation is in principle possible in this area due to the
existing topography; at the same time, interpolation based on Thiessen-polygons (compare
Appendix B) also allows compensation for data gaps at single stations. We decided to apply
this preprocessing, because all but Saint-Martin-de-Londres climate station show such gaps
from time to time, which explains the benefit from including within-catchment precipitation.
We do not use pumping data as input in this study, because these were only available for a
shorter period of time and such data would also not be available for a real forecast in the
future (in contrast to weather and climate data).

2.5 Spatial Climate Data

Besides climate station data, we explored raster data from the E-OBS (Cornes et al., 2018),
the ERA5-Land (Muñoz Sabater, 2019) and from the RADOLAN (DWD Climate Data Center
(CDC), 2020) datasets as spatially distributed model inputs. E-OBS provides daily gridded
meteorological data for Europe from 1950 to present, derived from in-situ observations,
ERA5-Land provides hourly reanalysis data from 1981 to present. Both are available with
a spatial resolution of 0.1◦ × 0.1◦ (approx. 8 km × 11 km for all study areas). Depending
on the dataset, different sets of variables are available. In the case of E-OBS we initially
provide our models with precipitation (P), mean, minimum and maximum temperature (T,
Tmin, Tmax), relative humidity (rH) and surface shortwave downwelling radiation (Rad). For
ERA5-Land, where a substantially larger set of variables is available, the following were used
as initial inputs: total precipitation (P), 2m temperature (T), total evaporation (E), snowmelt
(SMLT), snowfall (SF) and volumetric soil water of all four available layers (SWVL1: 0 - 7 cm,
SWVL2: 7 - 28 cm, SWVL3: 28 - 100 cm, SWVL4: 100 - 289 cm). Relevant input variables
from both datasets are later selected through Bayesian optimization (see section 3.3). The
spatial extent of the input data is chosen very generously for each spring, so that between
6 and 8 additional cells are available as input data around the respective catchments. This
prevents a predefinition of the area that needs to be identified as relevant as well as reduces

91



Chapter V: Karst Spring Modeling

the influence of possible border effects due to the CNN approach using 3 × 3 filters (compare
section 4.4). The resolution of ERA5-Land and E-OBS data corresponds to the grid cell size
shown in the catchment plots in Figures V.1a-c, although each showing a slightly different
absolute position of their grid center points. Depending on the temporal resolution of the
available spring discharge measurements, we choose the spatial input data in accordance,
thus E-OBS for Unica and Lez spring, ERA5-Land for Aubach spring.

Compared to the catchment size of Aubach spring (about 9 km2), the spatial resolution
(approx. 8 km × 11 km) of the gridded input data is extremely coarse. We therefore addi-
tionally explore a combination of ERA5-Land input variables (except P) with radar based
precipitation data (RADOLAN) that offers a spatial resolution of 1 × 1 km2 (DWD Climate
Data Center (CDC), 2020). The higher resolved precipitation data from RADOLAN is thus
augmented with climate variable values from ERA5-Land (for T, rH, etc.), which were down-
scaled and re-gridded to match the 1 × 1 km2 RADOLAN grid. Compared to the ERA5-Land
section around Aubach spring, for this additional analysis we reduce the spatial extent of the
2D-input data to save calculation time, but still considerably increase the total number of
cells due to the higher resolution of the RADOLAN grid.

3 Methodology

3.1 Modeling Approach

In this study, we simulate karst spring discharge with deep learning models using meteo-
rological input data. As proof of feasibility, we use meteorological data from surrounding
climate stations as inputs to 1D-CNN models. However, data from such stations are often
limited to precipitation and temperature, rarely more, as well as often exhibit data gaps, and
limited record length or coarse sampling intervals. Also, the proximity to the catchment is
often not sufficient, which especially in mountainous regions can introduce a distinct error
in representing the true conditions within the catchment. This applies especially to variables
with higher spatial variability such as precipitation.

Gridded meteorological data can be a solution to these issues, as they usually provide good
temporal coverage and sampling intervals, a good spatial resolution as well as a large-scale
availability (e.g., continental (E-OBS) or even global (ERA5-Land), see Bandhauer et al.
(2021) for a comparison of both products). Further, especially reanalysis data include a
larger variable set. When the catchment of the spring is unknown, it remains unclear which
cells of the gridded data should be selected to best represent the climate conditions in
the catchment, because the actual location of the spring is only a very rough indicator for
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the location of the catchment. Based on our revised version of the approach of Anderson
and Radić (2022), we demonstrate a solution by processing 2D-inputs and letting the model
decide automatically, which parts of the input data are relevant to model the spring discharge.

3.2 Convolutional Neural Networks

Convolutional neural networks (LeCun et al., 2015) are widely applied in several domains
such as object recognition (e.g., Cai et al., 2016), image classification (e.g., Li et al., 2014),
and signal or natural language processing (e.g., Kiranyaz et al., 2019; Yin et al., 2017).
The structure of most CNN models is based on the repetition of blocks that are made up
of several layers, typically at least one convolutional layer followed by a pooling layer. The
former matches the dimension of the input data (e.g., 2D for image alike data, 1D for
sequences such as time series) and uses filters with a fixed size (receptive field) to produce
feature maps of the input. The latter performs down-sampling of the produced feature maps
and summarizes the features detected in the input. This decreases the total number of
parameters of the model and makes it approximately invariant to small translations of the
input (Goodfellow et al., 2016). A large variety of model structures based on such blocks,
in combination with additional layers in between to prevent exploding gradients (e.g., batch
normalization layers (Ioffe and Szegedy, 2015)) or model overfitting (e.g., dropout layers
(Srivastava et al., 2014)) are possible; however CNNs usually end with one or several fully
connected dense layers to produce a meaningful output.

From earlier studies (Jeannin et al., 2021; Wunsch et al., 2021) we know that 1D-CNNs
are fast, reliable and excellently suited for modeling hydrogeological time series, such as
groundwater levels or spring discharge. We have shown that they are faster compared to
LSTMs, which are often the method of choice for time series modeling, and even outperform
them or at least show similar performance (Wunsch et al., 2021). This is in agreement with
the findings of (Van et al., 2020) in the domain of rainfall-runoff modeling. Based on these
findings we choose CNNs for predicting karst spring discharge in this study and establish
two different setups. One setup uses 1D-meteorological input data from surrounding climate
stations and applies a 1D-CNN for forecasting. The second approach consistently uses a 1D-
CNN to learn temporal features for discharge prediction, but combined with a time-distributed
2D-CNN to learn spatial features directly from gridded climate input data. Compared to the
approach in Anderson and Radić (2022) we replace the LSTM by a 1D-CNN to make both
setups methodologically consistent. Using CNNs in both setups further helps to assess the
influence of using spatially distributed input data in terms of model accuracy, as we do not
have to speculate if higher or lower performance might be due to the LSTM model rather
than the input data. The general model structure of both setups is shown in Figure V.2.
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Figure V.2: Model structures applied for modeling karst spring discharge based on climate station
data a) and gridded meteorological input data b). Flatten layers are not displayed.

They basically use the same 1D-model except the position of the dropout layer. We use
Bayesian hyperparameter optimization to select the 1D-filter number, batch-size and input
sequence length of each model in both setups.

To reduce the dependency on the random initialization of the models, we use an ensemble
with 10 members, each based on a different pseudo-random seed. Further, we implement
Monte-Carlo dropout to estimate the model uncertainty from a distribution of 100 results
for each of the ten realizations of each model in this study. We derived the 95% confidence
interval from these 100 realizations by using 1.96 times the standard deviation of the resulting
distribution for each time step. Each uncertainty was propagated while calculating the
overall ensemble mean value for final evaluation in the test set. This uncertainty is shown
as confidence interval for each of our simulation results in the following. We want to point
out, that this uncertainty does not include other sources (such as input data uncertainty)
but the random number dependency. All our models are implemented in Python 3.8 (van
Rossum, 1995) and we use the following libraries and frameworks: Numpy (van der Walt
et al., 2011), Pandas (McKinney, 2010; Reback et al., 2020), Scikit-Learn (Pedregosa et
al., 2011), Unumpy (Lebigot, 2010–2020), Matplotlib (Hunter, 2007), BayesOpt (Nogueira,
2014), TensorFlow and its Keras API (Abadi et al., 2015; Chollet, 2015).

3.3 Model Calibration and Evaluation

We split the data for each site into four parts (Table V.1). The first part is used for
training, the second part (validation) is simultaneously used to prevent overfitting via early
stopping. The model’s HPs are optimized according to its performance on the optimization
set, while the last set is used as completely independent test set for final evaluation of the
performance without data leakage from training or optimization. Training epoch number
and early stopping patience are varied manually for each model at each test site. HPs for
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the 1D-CNNs of both setups are optimized on the respective optimization set as stated
above, maximizing the sum of NSE and R2 (calculated as explained below). The number
of optimization steps is varied manually for each model and is always a trade-off between
accuracy and computational costs. In the case of many available input variables we treat input
variable selection equally as a global optimization problem and use Bayesian optimization to
simultaneously select a proper set of input variables and HPs. Thus, input optimization is
used for each 2D-model, as ERA5-Land and E-OBS offer several different climate variables, as
well as to the 1D-model of Unica springs, where the climate station records provide additional
climate variables such as snow cover. For Lez spring and Aubach spring, only a smaller input
variable set is available (mainly precipitation and temperature) and hence fully used. For all
models we use an additional input (Tsin), which is a sine curve fitted to the temperature data.
This variable can provide the model with noise-free information on seasonality and on the
current position in the annual cycle (Kong-A-Siou et al., 2014). P is the only variable that is
not optimized but fixed as input, because it has undoubtedly major influence on the discharge
of a karst spring. The optimized HPs, information on some fixed HPs, and a summary of the
number of parameters in each model, is given in Appendix Table V.D2. We calculate several

Table V.1: Data splitting schemes in years for all study areas (sample numbers in parentheses).
Time Interval Training Validation Optimization Testing

Aubach spring Hourly 2012-2017 2018 2019 2020
(44,807) (8,760) (8,760) (7,320)

Unica spring Daily 1981-2012 2013+2014 2015+2016 2017+2018
(11,687) (730) (731) (730)

Lez spring Daily 2008-2016 2017 2018 2019
(2,629) (366) (365) (701)

metrics to evaluate the performance of our models: Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970), squared Pearson r, root mean squared error (RMSE), Bias as well as Kling-
Gupta-Efficiency (KGE) (Gupta et al., 2009). For squared Pearson r we use the notation of
the coefficient of determination (R2), because we compare the linear fit between simulated
and observed discharge, thus of a simple linear model, which makes them equal in this case.

3.4 Spatial Input Sensitivity and Catchment Localization

Anderson and Radić (2022) show in their study that combined 2D-CNN-LSTM models can
learn to focus on specific areas of the spatially distributed input data and that these make
physically sense. We modify this approach and transfer it to karst spring modeling, where we
demonstrate that this approach is suited to approximate the location of karst catchments.
We use the Gaussian spatial perturbation approach from Anderson and Radić (2022), which
is similar to other input sensitivity algorithms such as occlusion (Zeiler and Fergus, 2014) or
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RISE (Petsiuk et al., 2018), but in contrary to these methods takes into account the physical
meaning of the absolute value of each variable at each pixel during the perturbation. We
modify this approach so that only a single input channel (e.g., precipitation) is perturbed at
a time for the sensitivity analysis. For details of this approach we refer to the original study.
In short it works by perturbing spatial fractions of the input data by adding or subtracting
a 2D-Gaussian curve from the input data at a certain location. Both the perturbed and un-
perturbed data are passed through the trained model to determine the resulting simulation
error between them. In this way, after many iterations, heat maps are created that show how
sensitive the trained model is to perturbations of certain areas of the input data. The consid-
ered input variables in our study show different properties in terms of spatial heterogeneity
and variability. Temperature for example usually exhibits a distinct spatial autocorrelation,
meaning that temperature information from outside the catchment area may be used to
infer temperature within the catchment area. In contrast, precipitation is less spatially au-
tocorrelated, meaning that precipitation information from outside the catchment area is less
related to precipitation from inside the catchment area. Therefore, we hypothesize that
the within-catchment precipitation fields will be most important for the model’s prediction,
and we will test this hypothesis by visually inspecting the sensitivity maps produced by the
modified approach of Anderson and Radić (2022). Compared to the original approach by
Anderson and Radić (2022), we therefore perturb only single channels at a time, instead of
all channels at once, to separate the influence of each channel on the model output.

4 Results and Discussion

4.1 Aubach Spring

Figure V.3a shows the simulation results of the 1D-CNN model for the test period 2020,
using only available climate station input data. Error measures indicate a high accuracy of
the model simulation: NSE and R2 values both are 0.74, KGE is 0.79. We observe that peaks
in winter and spring are underestimated. The snowmelt period, clearly visible by increased
baseflow and diurnal variations from April to June, is nicely fitted, as well as the following
summer peaks. A short series of discharge peaks in the end of September/beginning of Oc-
tober is not captured. We assume that these were caused by small-scale precipitation events
that are not represented in the data of the climate stations used as inputs. Interestingly,
diurnal variations, which might be learned during the snowmelt period, are also visible in
periods not influenced by snow (e.g., in August). From Chen et al. (2017c) we know the
high relevance of snow in this area and by coupling the CNN model with a snow routine data
preprocessing, we are able to further improve the model performance (Figure V.3b). We now

96



Chapter V: Karst Spring Modeling

can achieve a fit with 0.77 for both NSE and R2, KGE increases to 0.84. Our model is able
to better fit the second largest peak of the whole dataset, which occurs in February, though,
the peak is slightly overestimated, whereas other peaks still tend to be underestimated. The
snowmelt period remains well simulated, but shows increasing deviations close the end of the
period. The earlier noticed diurnal variations in summer and autumn, now are diminished,
which is presumably an effect of the snowmelt preprocessing.

Please note that the 95% model uncertainty from random number dependency, estimated
from 10 differently initialized models with a Monte-Carlo dropout distribution from 100 runs
each (i.e., 1000 simulations in total), is very low for both modeling results (a+b) compared
to the overall variability of the discharge. We assume the spatially limited input data to be
the major source of error in the complete modeling procedure, because all climate stations are
located outside of the catchment area and thus introduce distinct uncertainty about the true
conditions within the catchment. Other modeling approaches (Chen and Goldscheider, 2014;
Chen et al., 2017c, 2018) based on combined lumped parameter (SWMM) and distributed
models, achieve similar or higher NSE values for the simulation of Aubach spring discharge
(0.92, 0.83, 0.80 respectively). As mentioned, the results are, however, hardly comparable
with each other and neither with this study. Reasons are (i) different input data (number
and position of climate stations), (ii) different simulation periods, and (iii) very different test
set lengths. One reason for the slightly lower performance of our model could be that none
of the previous studies covered a complete annual cycle as contiguous test period, including
high peaks in late winter and strong snowmelt influence in spring and early summer.

Figure V.3c shows the results of the 2D-modeling setup using (only) ERA5-land input data.
Based on the described optimization procedure, the model uses the following inputs: P,
T, E, SMLT, SWVL2 and SWVL4 (for a comparison of selected input variables with other
study areas see also Table V.A1). The performance of the 2D-model is similar to that of
the 1D-models, showing a NSE (0.76) and RMSE in-between both, a larger R2 (0.8) but
a lower KGE (0.71). This performance is still high considering that the major catchment
is extremely small (about 9 km2) compared to one ERA5-Land grid cell, and that a large
grid section of 14 × 14 ERA5-Land cells (1.4◦ × 1.4◦) was used as input. We see that the
major peak in February is slightly underestimated, as well as the beginning of the snowmelt
period in April; however, the end of this period in May/June has improved now compared to
(b). Both 1D-models are superior in estimating the peaks especially during summer, except
the already mentioned peaks in September/October, which have improved using the 2D-
input data. This supports the assumption that the climate stations do not represent these
precipitation events, but the 2D-data does due to its spatial nature.
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Figure V.3: Simulation results for the year 2020 at Aubach spring: a) 1D-model based on climate
station inputs, b) 1D-model with additional snow routine preprocessing, c) 2D-model
based on ERA5-Land gridded data and d) 2D-model with combination of ERA5-Land
data and RADOLAN precipitation input.
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To account for the small area of the catchment of Aubach spring, Figure V.3d shows the
results of the 2D-input data, using the spatially higher resolved RADOLAN precipitation
data in combination with downscaled ERA5-Land data. We have reduced the spatial extent
of the 2D-input, but still have a reasonable buffer around the catchments and, compared
to the former 2D-model, increase the grid cell number considerably (22 × 22 or 222 km2).
The optimized model uses P, T, Tsin, SMLT, SF, SWVL1/2/4 as inputs, thus omits E and
SWVL3. This model shows the best performance of all four models by reaching a NSE
of 0.81, R2 of 0.82 and KGE of 0.81. Similar to the model in (c), the beginning of the
snowmelt period in April remains slightly underestimated and compared to the 1D-models,
the peaks in summer are less well fitted. Nevertheless, we generally see an accurate fit,
especially the largest peak in February is well reproduced. Compared to the 1D-approach,
the main source of uncertainty for both 2D-models should be the uncertainty of ERA5-
Land variables. Their values originate from large grid cells in comparison to the catchment
size, thus it is not clear how well they represent the true conditions on catchment scale.
A more elaborated downscaling of ERA5 data or other high resolved climate data for a
combination with RADOLAN precipitation data might be a promising approach for simulating
small catchments like this one. Model uncertainty derived from random number effects and
Monte Carlo dropout is (equally to the 1D-models) satisfyingly small. In total, we think that
both the 1D and the 2D-approach for this catchment bear substantial shortcomings in terms
of how well the input data represents the true conditions in the catchment, even though
the simulation results are generally very accurate. On the one hand the climate stations
represent the true observed climate, on the other hand this is true only for a very specific
point, which is in this case outside the catchment, and embedded into a highly variable
topography. The 2D-data have a too coarse spatial resolution compared to the size of the
Aubach spring catchment and are themselves modeled (in the case of ERA5-Land). We
therefore do not think that one approach is superior for this study area, but we can show
that even in this case with relatively coarsely gridded input data compared to the catchment
size, the 2D-approach offers a decent alternative in the case of missing climate station data.

4.2 Unica Springs

Figure V.4 summarizes the 1D- and 2D-model performance on the years 2017 and 2018 for
Unica springs in Slovenia. The simulation of this quite large catchment area (820 km2) is
based on the data of only two climate stations (Postojna and Cerknica). All available input
variables from both stations except relative humidity from Postojna station and new snow
from Cerknica station were used as inputs as selected by the Bayesian optimization model.
The 1D-model shows good performance overall (NSE: 0.73, R2: 0.79, KGE: 0.63), including
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a response for all major discharge events. However, recession slopes especially in 2017 are
underestimated substantially and the plateau shapes of the large peaks (e.g., January 2018)
are not well captured, but rather simulated as multiple peaks. In general, many of the high
flow events at this gauge have a quite long duration of days to even weeks resulting in such
plateau-like shapes. This is due to the regular flooding of the polje. After the drainage
areas of the polje are completely flooded, there is a progressive back-flooding and a steady
rise in the water level, which makes it impossible to accurately monitor the flow conditions
under these conditions. Therefore, during the plateau-like peaks, when we cannot observe
the true flow; the peaks simulated by the ANN might be conceptually true, which is however
not possible to evaluate. The peak in April 2018 is quite clearly underestimated, whereas
the following low flow period (summer 2018) is slightly overestimated. Such overestimation
might be due to small scale meteorological events that are detected by the climate stations,
but do not well represent the conditions in the whole catchment area. It is also important
to notice that between 2014 and 2018 substantial environmental changes occurred in the
catchment (Kovačič et al., 2020). During this period a considerable amount of vegetation
was destroyed by a series of large-scale forest disturbances. We expect the evapotranspiration
changed due to changes in canopy interception, water use, and soil moisture. As a result,
spring behavior has likely changed, because vegetation cover is an important element of
the water balance and recharge events may have resulted in higher infiltration rates and
more intense spring response, as well as more pronounced droughts. The effect of this
environmental change on the model performance is hard to evaluate, because it is not part
of the training data. However, the model was optimized and validated (early stopping) on
a part of the period with environmental changes, which means that the model may infer
some information on the changes from these periods (2014-2016). It is not expedient to
exclude this change from model building, since this would require to shorten the time series
to the period after 2018, thus loosing almost the complete data basis. Due to highly complex
hydraulic behavior in this study area, which is for example related to already mentioned polje
floodings and to a strongly variable water level in the system that varies also the catchment
area, extracting the highly nonlinear precipitation-discharge is especially challenging. We
generally observe less dynamics in terms of the number of flood pulse events compared to
Aubach spring. In terms of intensity of hydrologic variability, discharge rates can vary by
about two orders of magnitude. This is primarily due to the large size of the catchment area,
the very high degree of karstification of the carbonate rocks, and the fact that the main
spring may act as an overflow spring.

By using the 2D-input data from 18 × 21 E-OBS grid cells we were able to improve the
model performance substantially (Figure V.4b), reaching now a NSE of 0.83, a R2 of 0.84
and a KGE of 0.80. Model input variables are: P, Tmax, rH and Rad. We generally
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Figure V.4: Simulation results for 2017-2018 at Unica springs in Slovenia using a) climate station
input data and b) E-OBS gridded data.

observe a similar shape of the simulation as for the 1D-model but with overall reduced errors.
Still, the plateau shapes of some peaks are not well captured, but the same conceptual
understanding as for the 1D-model seems to be learned, which means the model mainly
simulates peaks instead of plateau-shaped high-flow events. The slope of the recessions
are still generally underestimated, especially the simulation of low flow periods and minor
discharge events improve clearly though. The improved results are plausible, because we can
expect precipitation events to be represented more accurately in the gridded data that in the
point data of only two climate stations, especially considering the size of the catchment. As
for Aubach spring, both models show a comparably low model uncertainty based on random
number variation and Monte-Carlo dropout, the model uncertainty of the 2D-simulation is
even a bit lower than for the 1D-model. Again, we assume the spatially limited climate station
data to be the main source of data uncertainty in the 1D-model, because meteorological
stations are located on the western and eastern side of the karst massif. The massif itself
represents the orographic barrier with different temperature and precipitation regimes that
are certainly not captured by the considered meteorological stations. Concerning the 2D-
data, the grid resolution is sufficiently high to adequately represent the climatic conditions
in this large size catchment.
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4.3 Lez Spring

Lez spring represents a third class of study area, as the catchment size (around 240 km2) is
somewhere in between the two others, the climate is Mediterranean and the spring runs dry
for a considerable amount of time during the annual cycle due to a constant exploitation
of the karst aquifer through pumping. Figure V.5 shows both the results for the 1D- (a)
and the 2D-model (b). Despite comparably short training (daily data, starting in 2008) we
observe a very high fit of the 1D-model above 0.86 for NSE, R2 and KGE. As well the timing
of the peaks, the absolute height of the peaks, as the dry periods are simulated accurately,
except some deviations in early 2019.

For the 2D-model we use input data from 19 × 18 E-OBS grid cells and the Bayesian model
selects only rH and Rad as inputs besides the fixed input P. Considering the high relevance of
PET in the Mediterranean, it is a bit surprising that temperature, as a major driver of PET,
is not selected (neither T, Tmin nor Tmax). However, relative humidity is also important to
calculate PET (King et al., 2015) (e.g., low rH favors high evaporation) and the information
on seasonality well encoded in a temperature time series, is presumably deducible from the
radiation data (higher in summer than in winter) . The performance of the model is very
good, but clearly lower compared to the 1D-model, showing NSE, R2 and KGE between
0.75 and 0.78. Generally, the simulation is better in 2018 than in 2019, which is, however,
also a tendency of the 1D-model. The model simulated some non-existent peaks in the dry
sections, after all one of them (in Oct. 2018) clearly occurs also in the 1D-model’s simulation.
Presumably, the input data is accountable for the general performance differences between
both modeling approaches. The climate stations, from which the interpolated precipitation
time series is derived, are mainly located inside the catchment and additionally represent a
good spatial coverage. Compared to both other study areas, the 1D-input data here best
represents the climatic conditions within the catchment. Based on the lower performance of
the 2D-model, we conclude that it seems to be harder to extract the relevant relationships
between climate forcing and spring discharge from the gridded data. This may be related to
a less favorable ratio of grid cell size to the catchment size, than for the Unica catchment
for example. The model uncertainty based on initializations and derived from Monte-Carlo
dropout again is small for both model setups, especially during dry periods.

The results of our models (1D-NSE: 0.87, 2D-NSE:0.75) can compete with the results from
several earlier studies (NSE: 0.76-0.88 (Kong A Siou et al., 2011), NSE: 0.76-079 (Kong-A-
Siou et al., 2014)), however, we do not beat the maximum performance reported by Kong
A Siou et al. (2012) (NSE: 0.69-0.95) and Kong-A-Siou et al. (2013) (NSE: 0.96). Generally,
all studies, including ours, achieve high performance and it is hard to conclude reasons for
the superiority of one or other study, as several factors differ among them, such as model
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Figure V.5: Simulation results for 2018-2019 at Lez spring in France using a) climate station input
data and b) E-OBS gridded data.

types, training and testing periods, or set of input variables. For our study, we chose not
to include pumping data (as used in Kong-A-Siou et al. (2014)) due to the data availability
reasons elaborated in section 2.4, as well as to be consistent in the 2D-modeling approach,
which would need an update of the model structure due the 1D-time series character of the
pumping data. The 2D-approach still shows very good performance in general, however, in
comparison among all mentioned NSE values its performance is rather low. Nevertheless, we
conclude if no climate station data would be available to apply a 1D-model, the 2D-approach
still offers a reasonable substitute.
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4.4 Spatial Input Sensitivity Results

The most important results of the spatial input sensitivity analysis from all catchments
are shown in Figure V.6. In the case of Aubach spring modeled with ERA5-Land data
(Figure V.6a), we can see that the catchment is smaller than one grid cell. Hence, despite
the quite good discharge modeling, we see no clear spatial meaning of the precipitation
channel heatmap. We also find a border effect with an almost uniform decrease in sensitivity
toward the edges, which is an important reason to choose the spatial extent of the data
large enough. This effect could be related to the size of the filter in the convolutional layer
(3 × 3), as it sometimes only occurs in the one or two outermost pixels (e.g., Figure V.6c).
In combination with zero-padding, which we apply to improve the informative value of the
edges and to maintain the data size throughout the convolutions, this may result in such error
halo, as also illustrated by Innamorati et al. (2020). Yet its origin remains unclear and not all
heatmaps show this pattern (Figure V.6d), which questions the hypothesis of being a purely
technical issue. For Aubach spring, precipitation shows only the fourth highest sensitivity (S)
in terms of absolute values, while the second most sensitive variable is snowmelt (SMLT),
which shows also the best spatial agreement with the catchment area. This is plausible
insofar as the discharge for a large part of the time is dominated by snowmelt and to a
lesser extent directly by precipitation. We conclude that even though the modeling results
are satisfying, not much meaning can be extracted from the spatial sensitivity analysis for
such a small catchment, given the existing spatial resolution of the gridded data. Please
find heatmaps of all other variables in Appendix Figure V.C1. The combined approach of
RADOLAN and ERA5-Land data (Figure V.6b) shows the heatmap in more detail in relation
to the size of the catchment. We show only the precipitation heatmap, because it is the only
variable with a native resolution of 1 km × 1 km and we do not consider the spatial patterns
of the remaining ERA5-Land-based variables to be meaningful to interpret. We observe that
the most sensitive cells are identified close to the spring and at the border between the main
catchment and the southern adjacent subcatchment. Due to the small scale of the spatial
extent shown in Figure V.6b in relation to the spatial extent of precipitation events, the model
is not able to sharply distinguish between precipitation inside and outside the catchment.
This is presumably also related to the data, as precipitation is not directly measured, but
estimated from radar signals and subsequently adjusted according to measured values from
nearby climate stations. It remains unclear if precipitation is spatially resolved with sufficient
accuracy in such alpine valleys on km-scale. No plausible reasoning exists for the two separate
sensitive areas in the SW and NE corners, however, they are less sensitive then the center
cells of the map.
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Figure V.6: Heatmaps of spatial input sensitivity for a) Aubach spring based on ERA5-Land gridded
data, b) for Aubach spring based on RADOLAN precipitation data, c) Unica springs and
d) Lez spring both based on E-OBS gridded data. In the case of c) and d), light-grey
lines indicate the coastlines for orientation.

Heatmaps of all four selected E-OBS variables at Unica catchment are shown in Figure V.6c.
In accordance with our expectation for karst areas, we see the highest sensitivity for precip-
itation, which visually also identifies the catchment area very well. Especially Tmax and rH
show high sensitivities on larger areas, however they are usually highly spatially autocorrelated
and do not show a strong spatial heterogeneity like precipitation, which makes it plausible
that the model learns from larger areas and does not concentrate strongly on the catchment
itself. The model further identifies an area in the north as most sensitive for radiation.

105



Chapter V: Karst Spring Modeling

Heatmaps of the 2D-Lez spring model are shown in Figure V.6d. In this area the model
very strongly ignores large parts of the input data (dark blue, no visible border effects) and
comparably sharply identifies the relevant area for the spring. This might be related to the
higher spatial heterogeneity of precipitation in Mediterranean climate (Fresnay et al., 2012),
which in this specific region has a special importance (severe flash floods known as Cévenol
episodes (Kong A Siou et al., 2011)). Generally, we observe a slight south and east shift of
the highest sensitivity compared to the catchment position. This might be related to the
performance of the 2D-approach, which could not compete with the 1D-models. Maybe the
model did not exactly learn the most relevant spatial features. The most sensitive variable
is precipitation, while the rH channel shows the best spatial fit. We furthermore see that
the size of the catchment is about the minimum size to produce meaningful heatmaps based
on this given grid resolution, which corresponds also to our interpretation of the 2D-model
performance shortcomings in comparison with the 1D-approach.

Given the spatial resolution of the used input data, the obtained heatmaps, and the simulation
results of all three catchments, the Unica springs catchment seems to be most appropriate
to further investigate the usefulness for catchment localization. It has the highest ratio of
catchment size to data resolution and exhibits both generally high performance of the ANN
models, and especially a considerably improved performance when using spatially distributed
inputs compared to climate station input data. Thus, we used the Unica springs to conduct
additional experiments to investigate the sensitivity of our approach to the absolute catch-
ment location within the considered area of the input data. Figure V.7 shows the results
of these experiments, where we shifted the 2D-input data boundaries in such a way that
the catchment is located in one of the four corners or edges, leading to eight additional
modeling results, named by the position of the catchment in the considered area of the input
data. (e.g., upleft: catchment in the upper left corner). First of all, we find that all models
successfully model the spring discharge curve and similarly learn the relevant grid cells of the
considered input area, i.e., they are able to learn the approximate position of the catchment.
The NSE values vary moderately between 0.80 and 0.85 among all models. The heatmaps of
the precipitation input channel visually well identify the location of the catchment for each of
the different considered areas of the input data. We find that regardless of the catchment’s
position within the considered areas of the input data, the resulting high-sensitive area in
the P channel well indicates the true catchment position. For the heatmaps of the other
input channels, we see that usually larger areas are identified as relevant and more variations
between the models occur. Two things are particularly noticeable here. First, the identified
sensitive input areas are generally slightly smaller for the up* models, which is possibly related
to the fact that the considered area of the input data is shifted towards the Mediterranean
Sea, where no input data are available in the E-OBS dataset (compare the grey coastline).
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These areas contain zeros or mean values and show no temporal variation that could be used
to model the spring discharge. Second, the noticeably best performing model (downleft,
NSE of 0.85) is the model with the least fraction of no-data cells (due to the Sea). Intu-
itively, we would not have expected the best performance here, but rather with the upright
model, since there it is almost predetermined where the model has to learn. So the model
seems to be able to use the larger amount of "useful data", even outside the catchment, to
improve the overall performance. To possibly delineate a catchment from these results, a
strategy has to be developed regarding the sensitivity contrast between the catchment and
its surroundings. From our results we conclude that focusing on the precipitation channel
is the most promising approach for potential catchment delineation. This makes, however,
only sense if (i) precipitation is sufficiently heterogeneous at the scale of investigation, (ii) if
conceptually spring discharge is mainly driven by precipitation (not snowmelt for example)
and (iii) the gridded climate data is provided in a relatively high spatial resolution compared
to the catchment size. Please find the precipitation channel heatmaps for Aubach spring and
Lez spring in Appendix Figures V.C2 and V.C3.

In summary, we observe that the approach in its current form can produce meaningful
heatmaps for at least roughly locating karst spring catchments. At least for the precipitation
channel, we showed that the location of the catchment is successfully learned, regardless of
the position within the considered area of the input data, if the ratio of catchment size to
grid cell size is favorable (as for Unica springs). We notice that it generally works better
the larger the catchment area, especially in relation to the grid cell size, but the absolute
size of the catchment itself appears to be also important. For small catchments it seems
harder to extract precise catchment locations, even if spatially finer-resolved data are avail-
able. This might be related to the fact that at small scales, even precipitation has a distinct
spatial correlation, which can lead to higher sensitivity also in areas outside the catchment.
However, one should keep in mind that these conclusions are only tendencies as we only
investigated a small number of catchments. To develop a catchment delineation strategy,
future investigations should analyze more catchments with adequate ratio of size to grid cell
resolution, such as Unica catchment. Moreover, it can be expected that more and better
gridded meteorological data products will be available in the future, which might lead to
better results with the proposed methodology also for catchments with varying sizes.
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Figure V.7: Heatmaps of spatial input sensitivity for Unica springs catchment based on E-OBS gridded
data. The considered area of the gridded input data is shifted to demonstrate the spatial
learning capabilities of the models.
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5 Conclusions

From the obtained insights, we can conclude that karst spring discharge can be predicted
accurately with the presented 1D and 2D-approaches. Their performance competes with
that of existing models in the three study areas. One main advantage compared to conven-
tional modeling approaches in karst is that in order to obtain precise discharge simulations,
far less prior knowledge of the system under consideration is required. Thus, using ANNs
can generally reduce the amount of preliminary work that would be required to gain such
sufficient system knowledge. We can further show that gridded climate data can provide an
excellent substitute for non-existent or patchy climate station data. This does not require
knowledge of the exact catchment area, which is a critical component, especially for karst
springs. Rather, coupled 2D-1D-CNNs can be used to generate a first approximation of the
catchment location. However, as it was shown, this approach still needs further development
to more accurately localize the catchment, for example, by modifying the input sensitivity
approach and by defining a routine to infer the catchment location from the sensitivity data,
other than visual inspection. An important factor in achieving more accurate catchment
localization is 2D-meteorological input data with a finer spatial resolution in relation to the
catchment size because we found the approach to work best for the largest catchment. Ad-
ditionally, a sufficient heterogeneity of precipitation in comparison to the catchment size is
necessary, which, however, cannot be controlled but possibly limits the application in some
karst areas. Given these developments and conditions, the approach’s capabilities to delineate
karst catchments should be further investigated, ideally including an evaluation against tracer
tests and hydrogeological studies. In terms of accuracy, we do not find that one of the tested
model setups (1D and 2D) is fundamentally superior. A key benefit of the 2D-approach,
which uses spatially discretized input data, is the spatially and temporally complete nature
of the data and the number of variables available for study. Furthermore, for many areas,
the openly available 2D-climate data are easier accessible than climate station data, which
still have to be collected from various different authorities, if accessible or existing at all. A
weak spot of the 2D-approach is a substantially higher computational effort due to the large
number of model parameters and the larger amount of data that has to be processed during
training and optimization. In summary, gridded meteorological data is useful to overcome
missing climate station data and to get a quite good idea of the spatial extent of larger
catchments, given sufficiently small grid cell sizes.
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Appendix

A Study Area Comparison Table

Table V.A1: Summary and comparison of different aspects of all three study areas.
Aubach Spring Unica Springs Lez Springs

Country Austria Slovenia France
Climate cooltemperate moderate mediterranean

and humid continental
Catchment Area [km2] 9 820 240
Mean Precip. [mm/year] 2000 1500 904

(Station, Period) (Walm.-Horn, (1989-2018) (2008-2018)
2003-2019)

Spatially distributed ERA5-Land, E-OBS E-OBS
input datasets RADOLAN

Offered variables P, T, Tsin, P, T, Tmin, P, T, Tmin,
E, SMLT, SF, Tmax, Tsin, rH, Tmax, Tsin, rH,

SWVL1-4 Rad Rad

Selected variables ERA5-Model: P, Tmax, rH, P, rH, Rad
P, T, E, SMLT, Rad

SWVL2, 4
RADOLAN-Model:

P, T, Tsin,SMLT
SF, SWVL1, 2, 4

Omitted variables ERA5-Model: T, Tmin, Tsin T, Tmin,
Tsin, SF, Tmax, Tsin

SWVL1, 3
RADOLAN-Model:

E, SWVL3

B Lez Catchment Precipitation Interpolation

The Thiessen’s polygon interpolation method consists of calculating a weighted average of
the precipitation data by allocating a contribution percentage to each meteorological station,
based on its influence area on the catchment. These influence areas are calculated through
geometric operations. First, we draw straight-line segments between each adjacent station,
then we add the perpendicular bisectors of each segment, which will define the edges of the
polygons. Each meteorological station thus corresponds to a particular polygon, for which
the precipitation over the surface is assumed to be the same as the measured precipitation
at the station.
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The weighted average of the precipitation Pwa at each time step is calculated as follows:

Pwa =
∑n

i=1 AiPi

A
(V.1)

With n the number of meteorological stations, Ai the area (over the catchment) of the
polygon corresponding to the ith station, Pi the precipitation measured at the ith station
and A the area of the catchment.

C Heatmaps

Figure V.C1: Spatial input sensitivity heatmaps for Aubach spring based on ERA5-Land gridded data.

112



Chapter V: Karst Spring Modeling

Figure V.C2: P-channel heatmaps based on ERA5-Land gridded data for Aubach spring with shifted
area of the spatial input data in relation to the catchment position.
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Figure V.C3: P-channel heatmaps based on E-OBS gridded data for Lez spring with shifted area of
the spatial input data in relation to the catchment position.
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D Model Overview

Table V.D2: Model parameter summary table.
Aubach
(ERA5)

Aubach
(RADOLAN)

Lez Unica

Optimized HP
n (1DConv filter) 128 128 16 16
input seq. length 54 (hours) 162 (hours) 53 (days) 40 (days)
batch-size 64 256 32 32

Optimized Inputs P (fixed) P (fixed) P (fixed) P (fixed)

Yes T, SMLT, T, Tsin, Tmax, rH, rH, Rad
E, SWVL2+4 SMLT, SF, Rad

SWVL1+2+4
No Tsin, SF, E, SWVL3 T, Tmin, T, Tmin,

SWVL1+3 Tsin Tmax, Tsin

Other HPs

inital learning rate 0.001 0.001 0.001 0.001
training epochs 100 100 100 100
early stopping 12 8 12 12
patience

Model Summaries

Total Parameters 708,353 1,502,849 358,977 384,017
Trainable Par. 708,097 1,502,593 358,945 383,985
Non-trainable Par. 256 256 32 32
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Synthesis and Outlook

1 Synthesis

ANNs pose manifold possibilities for modeling natural systems across various disciplines,
including hydrogeology. This thesis explored several applications of ANNs to hydrogeological
time series and successfully established approaches for hydrograph clustering, groundwater
level forecasting on different time scales, and karst spring discharge prediction.

Chapter II, a study on the dynamics of groundwater level time series mainly designed to
learn about their influencing factors, showed that homogeneous groups of groundwater hy-
drographs are not only interesting from a purely hydrogeological point of view. They are also
helpful as preliminary work for groundwater modeling activities of any sort in a particular
area. Knowledge about how a specific groundwater hydrograph represents the dynamics of
a larger group proves itself highly valuable. Therefore, it is possible to select representative
wells and model or predict them as surrogates for an entire group, which has a favorable
implication for the required amount of work and computational power. Especially the latter,
despite all progress in computing, still represents a hurdle for many applications and should
not be neglected. The study aimed to provide a flexible framework with highly robust results
based on ensemble approaches and, most importantly, an automated cluster number deter-
mination. Even though successful in these terms, the computational workload for datasets
requiring a description with a larger feature number is undoubtedly a weak spot. Though
reducing the potential workload of subsequent modeling actions, the method itself can be
computationally quite expensive. Some guidance for dealing with these cases was provided
alongside the study. In hindsight and relation to subsequent studies, a simple by-product of
chapter II revealed itself to be a highly valuable outcome: the possibility to improve the data
basis of individual wells based on cluster knowledge. The data of chapters III and IV were
hence improved this way.
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Chapter III is a state-of-the-art modeling approach comparison for groundwater level fore-
casting using ANNs with some surprising results. First, despite the focus of most related
studies on popular DL approaches, the results showed that shallow network architectures
such as NARX still deserve attention, especially since they achieved the most accurate re-
sults. Second, CNNs proved to be the most appropriate tool for modeling groundwater levels.
They showed (i) slightly lower performance than NARX but considerably higher than LSTMs,
(ii) the considerably lowest computational requirements among all models, and compared to
NARX (iii) lower dependency on random initialization, and (iv) higher implementation flexi-
bility. The experiments further showed that at least short-term forecasts are possible without
any future input data. This finding is especially valuable for operational forecasting and re-
spective short-term management decisions. Furthermore, the data requirements to build and
train models that are capable of performing reasonable forecasts should be no high barrier
for most applications in the groundwater sector, primarily because the presented approaches
only focus on single site models, and first proper performance was achieved after ten years
of weekly training data already. Generally, this study demonstrated the great potential of
ANNs for forecasting GWL time series. From the hydrogeological point of view, modeling
GWL with ANNs is comparably uncomplicated, as little domain knowledge and few input
parameters are required, and the necessary gap-free GWL time series can often be easily
prepared using the approach from chapter II.

Chapter IV demonstrated how to apply CNNs on long-term modeling tasks in the groundwater
domain. These require special care in the model building process because the results of future
periods cannot be validated. Additionally to validating the model performance in the past,
both artificial climate scenarios to explore the behavior of the models in the extrapolating
regime and an XAI approach proved to be helpful in enhancing trust in the model outcomes.
Despite the innovative modeling approach of this study, the main contribution of this chapter
is more on a non-technical level. This study clearly showed that even without considering
important secondary factors such as anthropogenic withdrawals, we can expect large-scale
decreases in groundwater levels in Germany until the end of the century. Overall, however,
it becomes also clear that the changes for more optimistic scenarios, such as RCP2.6, are
substantially smaller, indicating the importance of reducing global GHG emissions. It remains
a future challenge to further refine and validate the results of this study using other modeling
approaches.

Chapter V successfully transferred the existing modeling approaches from the groundwater
domain to the related application of karst spring discharge modeling. However, the main
contribution of this study is a specialized approach using spatially distributed input data,
which showed that using openly available climate raster data can overcome insufficient cli-
mate station data availability within karst catchments. More importantly, ANNs can directly
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process such data and independently learn the relevant spatial fraction. This study is only
one of many recent examples where the classical division of DL methods into spatial learning
(image-alike data) and sequential based learning (time series) fades, being also the typical
scenario where DL stands out: exploiting spatial and temporal regularities in large amounts
of data (Camps-Valls et al., 2021). This 2D-approach also introduced the exciting aspect
of determining the location of catchment areas, which looks promising with some further
development of the approach and an appropriate resolution of the spatial data.

To provide a final overview on the results of this thesis, the following paragraphs briefly
answer the research questions formulated in chapter I:

RQ1: How can we use unsupervised ANNs to group heterogeneous data sets of GW hydro-
graphs based on their dynamics, and what can we learn from the resulting patterns?

• Feature-based approaches are vital to make use of patchy real-world GW datasets.

• SOM+DS2L proved to be well suited for the intended purpose of clustering

• Similar GW dynamics are not only possible with spatial proximity.

• Influencing factors superimpose temporally and spatially and mostly are hard to dis-
entangle. Nevertheless, some patterns are clearly dominated by distinct factors (e.g.,
surface water).

• The patterns provide valuable information on the representativeness of a single hydro-
graph’s dynamic in relation to the region.

RQ2: What are adequate model architectures to model and predict GWL time series, and
what are their properties?

• All models (NARX, CNN, LSTM) are capable of forecasting GWLs.

• NARX provide the most accurate predictions but are rather slow and sensitive to
random initialization effects.

• CNNs are accurate, the fastest among all models, provide stable results, and are based
on a flexible framework.

• LSTMs are outperformed in terms of accuracy by both other model types.

RQ3: Is it possible to perform reasonable short-term predictions of GWLs with ANNs without
any future input data?

• Yes, for selected sites with reasonable performance for a 12-week forecast horizon.

• NARX provide the most accurate sequence predictions and almost keep up with CNNs
in terms of computational speed.
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RQ4: What amount of data are necessary to build an ANN model for GWL prediction with
reasonable performance?

• The results are highly dataset-specific.

• For the given hydrographs, about ten years of weekly data were sufficient.

• It generally applies: the longer, the better; however, including recent periods with high
relevance is more important than a training period as long as possible.

RQ5 Can ANNs also be used to reasonably predict the long-term development of GWLs?

• Yes, but only at sites with very high accuracy in validation periods in the past and
given all relevant input variables for the future.

• Special care and additional analyses (e.g., XAI) are necessary to provide a trustworthy
model.

RQ6: How does the climate crisis influence the GWL development in Germany until the end
of the century?

• All investigated scenarios show decreasing GWL tendencies.

• GWL variability could potentially increase (found in RCP4.5 and 8.5).

• North and East Germany may be prone to stronger decreases than the South.

• RCP2.6 shows considerably less pronounced and less severe changes. The influence of
stringently mitigating GHG emissions is clear.

RQ7: How can state-of-the-art XAI techniques be used to increase trust in model decisions
and to gain system understanding from ANNs models?

• SHAP values provide valuable insight if models learn relations according to the existing
conceptual understanding of relevant processes.

• Saliency maps are helpful to explore the spatial feature learning capability of 2D-CNN
models.

RQ8: How does a given routine for GWL modeling perform for predicting spring discharge
in complex karst systems?

• CNN models provide accurate karst spring discharge simulations and partly outperform
existing approaches in the study areas.

• The approach is successful regardless of the specific karst system’s properties (size,
complexity, dominant climate, etc.).
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RQ9: Can ANNs learn the relevant fraction of spatially distributed input data automatically?

• Yes, with high accuracy, regardless of the catchment size in all three study areas.

• The spatial fraction does not necessarily correspond to the exact catchment location
(mainly depending on the input variable and the ratio of catchment size to grid cell
size).

• Investigating the spatial sensitivity on precipitation input data might be helpful to
locate karst catchments.

2 Outlook and Future Directions

DL research is making great strides across all disciplines, both improving or modifying existing
model architectures and developing new model types whose potential for hydrogeology needs
to be assessed. This does not only mean that the models in the presented approaches should
be replaced with other/newer/better models, such as with transformers, which currently are
at the foremost front of advances in DL research. Instead, completely new possibilities arise.
For example, in the domain of rainfall-runoff modeling Kratzert et al. (2018) already showed
in 2018 that one DL model trained on multiple basins on average outperforms specialized
models that were specifically trained on a single site. Such more holistic modeling approaches
offer attractive options, particularly for the studies from chapters III and IV, because a knowl-
edge transfer takes place and the model now potentially generalizes across space, not only
time. These approaches, however, also rely on large, currently mostly unavailable, data sets,
which not only include GW data and relevant driving forces, but also descriptor variables (e.g.,
aquifer type, hydraulic conductivity, land use, vegetation, etc.) to distinguish between differ-
ent sites. Especially in the case of climate impact modeling, future studies should also collect
data from other climate zones (e.g., the Mediterranean) and apply only one model to all
investigated sites. This strategy makes the model possibly more potent in estimating climate
impacts (such as from dry periods) by generalizing from already seen conditions in the past
but different areas. Given the relevance of karst areas for water supply, for example, in the
alpine region, this aspect is also interesting for applications related to chapter V. Models could
potentially generalize how systems react under the influence of glacier retreat in the future,
using information from retreating glaciers in other areas in the past. Such investigation is not
limited to a particular contiguous region such as the Alps in Europe but could potentially be
extended to other alpine regions, such as in Asia or North America, to enlarge the data basis.

To model spatially closer and more distinct spatial relations between study sites (as in
the URG from chapter III), spatio-temporal groundwater level forecasting is a promising
option. Such approaches can simultaneously predict multiple points in space and time,
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ideally considering the relation between neighboring points (or pixels, grid cells,. . . ) in-
stead of only providing unrelated predictions of such related points. Models for spatio-
temporal forecasting either use uniformly gridded, thus image-alike data (e.g., using CNNs)
or sensor networks (e.g., groundwater monitoring networks). Graph representations can
account for such networks’ spatially mostly irregular structure (basically nodes connected
with vertices). Graph models using such graph structures usually apply temporal graph
convolutions to learn from the similarity in the neighborhood. The basic idea is simi-
lar to CNNs in computer vision, assuming that neighboring pixels are typically related to
each other somehow. However, graphs extend this idea to an irregular structure, contrary
to CNNs that rely on regular, image-alike data with a uniform grid. Similar approaches
already exist, for example, in the domain of traffic forecasting (e.g., Zhao et al., 2020;
Zhu et al., 2021). Irregularly connected intersections, where traffic flow in one street
often influences the roads nearby, can serve as an analogy to neighboring groundwater
wells in the same aquifer. In reality, modeling groundwater monitoring networks should
be more complex due to their additional dimension of depth and other difficulties, such
as the fact that spatial proximity does not guarantee similar dynamics as shown in chap-
ter II.

Understanding what AI models do and why they do it has a similar importance to develop-
ing new approaches to improve the modeling performance in general or to tackle unsolved
modeling problems. Using XAI approaches, such as SHAP values in chapter IV or input
saliency maps in chapter V are only two of many possibilities to do so. When applying DL
models to a small sample size, we often end up with locally-fitted models, and we cannot
expect them to learn universally-applicable physical laws necessarily (Shen et al., 2021). As
in chapter IV, XAI is useful to check if a model nevertheless learns a representation of the
input-output relationship that matches our physical understanding of the major processes.
Such methods can considerably increase the trust in the model’s decisions. The chance
of DL models to learn more universal laws from large datasets is higher yet not assured;
thus, XAI is helpful (even necessary) in this case, too. The difference to learning from
small data sets is that we may use XAI to discover unknown relations from large data sets,
which can potentially be translated into physical parameter hypotheses. As demonstrated
in Tsai et al. (2020), conventional physically-based models can perform tests to investigate
these hypotheses. Generally, XAI is gaining research interest because AI models get in-
creasingly applied in critical sectors such as healthcare, and the pressure to justify model
decisions amplifies (Gerlings et al., 2022). In hydrogeology, this might be less critical than
in healthcare; nonetheless, explainability is vital to gain system understanding and learn
about the underutilization of large data sets that researchers are unaware of in conventional
approaches.
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Besides understanding model decisions with XAI, we can also teach models to do the right
things for the right reasons by introducing inductive biases through enforcing physical model
constraints. Shen and Lawson (2021) argue that large potential lies in applications of such
physics-informed or physics-constrained ML, especially for hydrogeology, where underground
observations are limited. Additional information obtained by enforcing physical laws generally
reduces the necessary amount of training data (Karniadakis et al., 2021; Shen and Lawson,
2021), but can also help in applications with "enough" data to address physical unknowns
for improved generalization ability, predictive performance, and training speed (Karniadakis
et al., 2021).

Table VI.1 summarizes the mentioned options for future research and highlights the currently
limiting factors, that often prevent their application.

Table VI.1: Summary of the more advanced approaches mentioned, their respective relationship to
the chapters, and currently existing problems that often hinder direct implementation.

Approach Relation to
Chapter

Current Limitations

holistic modeling: one model
- many sites

III, IV, V according data (esp. descriptor variables)
are currently unavailable or hard to assem-
ble

graph modeling: spatio-tem-
poral forecasting

III according data (esp. descriptor variables)
are currently unavailable or hard to assem-
ble; only few appropriate approaches exist
yet.

XAI III, IV, V finding a suitable and compatible XAI ap-
proach; to whom should the explanation
be useful?

physically informed models II, III, IV, V implementation of models is not yet
straightforward; strong programming skills
necessary

The focus of ANN users should not only be on improving model performance and building ever
larger and more powerful models. Especially working in a field like hydrogeology that aims to
understand and protect our environment, we should always consider the impact of what we
do. This also applies to the algorithms that we apply to our data. DL works with large data,
and processing such data in complex DL models on a global scale already needs a considerable
amount of energy. This aspect also applies to this work, where especially the approaches
from chapters II (SOM-Clustering) and V (2D-CNN models) potentially need considerable
computing resources and a particular calculation time, depending on the specific problem.
The field of sustainable AI is just in its infancy and is mostly a side aspect in current DL
applications. However, awareness throughout the communities grows, and the goal should be
not only to use AI for sustainability but also to use sustainable AI (van Wynsberghe, 2021).
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This includes (i) the aspects of the hardware powering with sustainable energy and developing
efficient hardware, (ii) developing and using efficient algorithms for training or applying
models, or (iii) providing and exchanging pre-trained models so that each new task does
not start from scratch. The latter aspect is also related to the aspect of embedding human
knowledge in AI systems. Introducing knowledge (e.g., physical constraints as mentioned
above) means that this knowledge does not have to be extracted from the data, which may
help to reduce the associated energy consumption of such models (Vinuesa et al., 2020).
We should also evaluate if DL is always the way to go. Using highly specialized models,
both from the ML domain or other conventional approaches from a specific field of research
may be as good as DL models (or better), however, circumventing the mentioned problems
of DL. It is essential to raise awareness in all disciplines and follow sustainability principles
in the future. Raising awareness also involves appropriate education that addresses these
aspects and equips future AI practitioners with the necessary tools (s.a., programming skills)
to apply algorithms efficiently or develop them themselves.

It will remain a challenge to keep up with ML research’s current and future pace. On the one
hand, advances in machine learning methods across disciplines are constantly yielding new
methodical options; on the other hand, AI research is also being advanced explicitly in the
hydrological sciences themselves (e.g., LSTMs on multiple timescales (Gauch et al., 2020)).
The real benefit of DL lies in large sample sizes; one reason why relevant innovations and
advances, aside from DL research itself, for water-related sciences mainly occur in rainfall-
runoff modeling, as there are excellent (large-sample) datasets available. These are mostly
missing for hydrogeology, even though lots of data are potentially available. Many of the ideas
mentioned in the last paragraphs rely on appropriate data, which is usually the limiting factor
when designing applications and new studies. The compilation of suitable hydrogeological
data sets with many predictors and proper spatial and temporal resolution for Germany,
Europe, and worldwide is, therefore, an essential task in hydrogeology in the coming years.
Such datasets will provide the necessary conditions to keep pace with advances in DL research
and to be able to test new approaches in hydrogeology as well. However, data alone is not
sufficient. As argued by Shen et al. (2018), DL is still a niche skill in the hydrological sciences
community, and including DL in the future hydrogeology curricula is an important task to
profit from the great possibilities to come from this field.
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