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Abstract

In their agro-ecological habitats, plants are constantly chal-
lenged by fungal interactions that might be pathogenic or
beneficial in nature, and thus, plants need to exhibit appro-
priate responses to discriminate between them. Such in-
teractions involve sophisticated molecular mechanism of
signal exchange, signal transduction and regulation of gene
expression. Small RNAs (smRNAs), including the microRNAs
(miRNAs), form an essential layer of regulation in plant
developmental processes as well as in plant adaptation to
environmental stresses, being key for the outcome during
plant—microbial interactions. Further, smRNAs are mobile
signals that can go across kingdoms from one interacting
partner to the other and hence can be used as communication
as well as regulatory tools not only by the host plant but also by
the colonising fungus. Here, largely with a focus on
plant—fungal interactions and miRNAs, we will discuss the role
of smRNAs, and how they might help plants to discriminate
between friends and foes.
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Introduction

Non-coding small-RNAs (smRNAs) form an indispens-
able layer of gene expression regulation [1,2]. A
large spectrum of endogenous smRNA, including the
microRNAs (miRNAs) exists in plants, usually ranging

between 18 and 30 nucleotides, and capable of inducing
RNA interference [1,3—6]. smRNAs may act locally in
the cells where they are produced or in a non-cell
autonomous manner [7—10]. But most remarkably,
they can be even translocated in a cross-kingdom
manner between plants and their interacting organ-
isms [6,11—15]. smRINAs regulate gene expression in a
sequence dependent manner, impacting a broad range of
plant processes beyond plant development to adapt to
the environment including the interaction with other
organisms [16—19].

In their agro-ecological habitats, plants are constantly
challenged with fungal interactions that might have
pathogenic as well as symbiotic outcomes. Such fungal
encounters of host plants entail a large-scale reprog-
raming of the smRNome, with examples both in path-
ogenic and symbiotic interactions [20—27]. Most
interestingly, interactions with plants also modify the
smRNome of the fungal partner [28—30].

What could be the consequences of reprograming of
smRINAs/miRNAs for the interaction between plant and
fungi is a key question. It is plausible that smRINAs
serve as signal themselves. Then, smRNAs would not
only be molecules that adjust plant response to the
microbe, but also communication tools for the hosts to
discriminate friends from foes and effective small
weapons to control interacting fungi in a cross-kingdom
manner. We shall examine such possibilities in the
following sections.

Phytohormones: A hot spot for smRNA
regulation during fungal interactions

Host responses to microbial infection are a consequence
of a complex signal transduction process in which phy-
tohormones such as jasmonic acid (JA) and its conju-
gates, salicylic acid (SA) and ethylene play a major role.
While these defense hormones might have mutually
exclusive roles, they are known to crosstalk in a syner-
gistic as well as in an antagonistic manner [31,32]. In-
teractions between these traditional ‘defense’ hormones
and other plant hormones further fine-tune plant mi-
crobial interactions [33—35]. Consistently, phytohor-
mones also have been disclosed as having a major role in
shaping the symbiosis with AM fungi, reviewed in the

www.sciencedirect.com

Current Opinion in Plant Biology 2022, 69:102259


mailto:natalia.requena@kit.edu
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.pbi.2022.102259
https://doi.org/10.1016/j.pbi.2022.102259
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2022.102259&domain=pdf
www.sciencedirect.com/science/journal/13695266
www.sciencedirect.com/science/journal/13695266

2 Biotic interactions

Box 1. Hormonal crosstalk by miRNAs during plant—fungal interactions.

Both symbiotic and pathogenic fungi have been shown to modulate the auxin response in plants by means of several miRNAs. Thus, in many
plants, including, tomato, barrel clover, rice, coyote tobacco and poplar, the precursor of miR393 was found to be downregulated during symbiosis
with AM fungi [22,74,75]. miR393 targets, among others, the auxin receptors TIR1/AFB [76] and overexpression of miR393 led to a severe
impairment of the development of the symbiotic fungus in the root [75]. miR393 seems to be a conserved hub where many plant-interacting
organisms might impact on, not only fungi, but also bacteria or aphids, to control auxin-mediated defense responses [77]. It has been pro-
posed that by negatively targeting the auxin receptors, miR393 increases the SA signalling and thus plants are more resistant to biotrophs but
more susceptible to necrotrophs [44,77,78].

The auxin node is controlled, in addition, by several other miRNAs, for instance miR160 and miR167, that also target ARFs [79]. Interestingly,
miR160, which is induced in response to infection by the oomycete Phytophthora infestans has been also proposed to mediate the antagonistic
crosstalk between SA-related defences and auxin-regulated growth pathways during infection in potato [80]. miR160 and miR167 are both
regulated during symbiosis with the AM fungus R. irregularis in Medicago truncatula[45]. New miRNAs targeting auxin signalling were identified in
eggplants in response to infection with the pathogenic fungus Verticillium dahliae [81]. Interestingly, preliminary functional results suggest that
induction of mMiRmM0002 enhances resistance to V. dahliae not by cleaving its putative target ARF8 but by inhibiting its translation [82]. However,
this possibility awaits confirmation.

Several other hormonal nodes where miRNAs have been shown to impact during plant—fungal interactions include ethylene response factors. For
example can-miRn37a, a novel miRNA from chilli, can target ethylene response factors and act against infection of Colletotrichum truncatum [83];
miR163, a miRNA unique to the Arabidopsis genus, that invokes a regulatory module involving JA and SA signalling [84]; miR773 from Arabi-
dopsis, that participates in the resistance against a variety of fungal pathogens (such as the necrotroph Plectosphaerrella cucumerina, or the
hemibiotrophs Fusarium oxysporum and Colletototrichum higginianum) impacting on the JA, ethylene and SA-signalling pathways [85]; or the lily
miR159, which overexpression represses two MYB transcription factor boosting both JA and SA pathway during infection of grey mould Botrytis
cinerea [86]. How these other pathways are affected by miRNA during interaction with symbiotic fungi has not been functionally analysed yet, but

there are several findings that suggest that ABA and ethylene pathways are also targeted [19,22,45].

study by Gutjahr et al. [36]. Phytohormones can alter
the miRNome [37—39] and not surprisingly, smRINAs
are also important factors regulating phytohormone
crosstalks during plant—fungal interactions [20,22]. It is
predicted, that sophisticated miRNA-transcription
factor interactomes could fine-tune phytohormonal
signalling during these interactions. For instance, WRKY
transcription factors, which are induced by pathogens
and by phytohormones, regulate smRNA populations
[40]. But also, WRKY transcription factors can be
themselves targets of pathogen-induced miRNAs, as
shown in the interaction between Magnaporthe oryzae
and rice [41]. The many ways phytohormonal pathways
are intersected by miRNA during fungal—plant in-
teractions are shown in Box 1.

Endogenous miRNAs generated in
response to the interacting microbe are a
blueprint that serves plant cell
reprogramming

miRNAs networks may act in a complementary, syner-
gistic or antagonistic fashion to help plants to maximise
the appropriate physiological response. miRNAs and
their targets allow a context-dependent regulation to
tailor specificity in responding to foes and friends.
Hence, the expression of miRNAs has been shown to
change specifically in a stimulus dependent manner.
Many of these miRINA networks act upstream regulating
hormone biogenesis and their master transcription fac-
tors.  Fusarium  brachygibbosum-induced miRNAs, for
instance, target JA biogenesis and many other JA
signalling genes, largely affecting the functioning of the

JA pathway [20]. However, although JA-signalling forms
a central component of the defense against insect her-
bivores [42], the herbivore-induced miRNome in Nico-
tiana attenuata hardly overlaps with the one elicited by
E brachygibbosum [20]. Similarly, N. attenuata miRNAs
regulated in response to Rhizophagus irregularis coloni-
sation [22] revealed few commonalities to those from
FE brachygibbosum (Pradhan, Pandey, Baldwin, personal
communication). However, a caveat due to different
infected tissues (shoot and root) between the two
studies remain. These results support the model of the
transcriptomic  signal signatures specific for each
plant—‘attacker’ combination [43] and expand the
model with the inclusion of miRNAs as part of the
signature.

The miRNome signature is context dependent (i.e.
microbe-plant combination, environmental conditions,
nutrient availability) to allow the plant to mount the
appropriate physiological response towards the inter-
acting microbe. miR393 for example, in addition to
negatively targeting the auxin signalling, helps the plant
to prioritise its resources by re-directing the metabolic
flow by stabilising specific ARFs to generate certain
anti-microbial compounds  (glucosinolates)  while
repressing others (camalexin) [44]. Thus, miR393 trig-
gers two complementary responses to increase the
resistance towards the interacting biotroph Hyaloper-
onospora parasitica, but it renders the plant more sus-
ceptible to the necrotroph Alernaria brasicicola [44].
Similarly, miR171h, a symbiotic (mycorrhiza and nodu-
lation) induced miRNA [25,27,45] seems to serve as a
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tool to restrict root colonisation by its symbionts also in a
context dependent manner. miR172h targets the GRAS
transcription factor NSP2, essential for nodulation and
with a role in strigolactone synthesis and in mycorrhizal
symbiosis [46—48]. But interestingly, miR172h, which is
only found in plants able to form AM symbiosis, is
induced by high phosphate under non-symbiotic con-
ditions, showing a negative correlation to its target
NSP2 [25,26,45]. During symbiosis, in contrast, both
miR172h and NSP2 are induced, albeit with mutually
exclusive expression localization patterns [26]. This
suggests that in the regulation of miR172h and NSP2
several inputs converge to adjust the mycorrhizal colo-
nisation in a nutrient- and fungal signal-dependent
manner [25,26]. Novel roles for miRNAs during sym-
biotic interactions with AM fungi have been recently
discovered, including miRNAs coding for small peptides
that regulate their own transcription [17,49], and
miRNAs that instead of cleaving their target protect
them from cleaving by other miRNAs of the same family
[17]. These interesting findings suggest that many yet
unknown processes ruling plant—fungal interactions are
likely to be fine-tuned by smRNAs.

Achieving the right response with the help
of AGO proteins

The physiological specificity of miRNome reprograming
is achieved via the regulatory function of the RNAi
machinery. smRNAs are synthesised with the help of the
RdRs and the DCLs [50], and act through the AGOs,
making them a core component of this machinery [13].
The AGOs serve as effectors of the pathway, on which
miRNAs are loaded to form the RNA-induced silencing
complex, RISC [1,51]. Plant genomes code for a large
number of AGOs, which could be classified into four
evolutionary classes [52]. Analysis of molecular evolu-
tionary patterns suggested that their functional speci-
ficity might have arisen due to selection pressure [52],
helping to recruit a specific set of miRNAs to evolve
novel physiological functions in the context of a plant
natural habitat [20,42,53]. Although, how the different
AGO proteins are involved in shaping the interaction
with specific microbes has not been systematically
studied, there are many examples that show that the
same AGO protein might play the opposite role on plant
susceptibility towards two different microbes and also
that the microbe-plant interaction might be preferen-
tially shaped by one or a few specific AGO proteins.
Thus, for instance, Arabidopsis thaliana agol mutants
exhibit a milder response to bacterial pathogens, but an
induced resistance to fungi [reviewed in 13]. Also, from
the 10 AGO proteins from A. thaliana, only AGO2 is
induced in response to Pseudomonas syringae pv. tomato
and consistently ago2 plants are more susceptible to this
bacterium [54]. This suggests that in natural ecosys-
tems the smRNA machinery requires of a coordinated
response as plants are simultaneously exposed to
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different microbes. The ecological functions of the
RNAi machinery have been extensively analysed in
N. attenuata [20,42,55—58]. In that system, it has been
shown that the smRINA machinery drives the specificity
required for plants to adapt to their natural post-fire
habitat by tailoring the appropriate responses to the
unpredictable challenges and myriads of competitors
ranging from herbivores and pathogens to other in-
dividuals from the same species that bloom in that
environment [58]. Accordingly, distinct AGO proteins
are recruited depending on the nature of the inter-
actor (Figure 1).

smRNAs as major players in plant—fungal
interaction at the cross-kingdom level (500
words)

smRNAs have a highly mobile nature, with many of
them travelling systemically for short and long distances
within plant cells and organs to act in a non-cell-
autonomous manner. Some of them are even traf-
ficking between the host and its interacting fungi in a
‘cross-kingdom manner [6]. Interestingly, it has been
shown that plant smRNAs can target fungal genes
essential for virulence, hence adding smRNAs to the
arsenal of defense responses [59,60]. But perhaps even
most remarkably, fungi have been shown to hijack the
host cell by delivering smRNAs into the plant,
compromising immunity [11—15,61]. Such smRNAs act
as unique class of fungal effectors that suppress host
immune responses. The cross-kingdom movement of
smRNAs is thus bidirectional and invokes an interesting
conundrum. In addition to fungi sending their smRNAs
to hijack host immunity genes, they could also target
components of the plant smRNA machinery to promote
infection [11,62]. Furthermore, it has been proposed
that exogenous smRNAs, if in high abundance, might
compete with endogenous smRINAs for loading into the
RNA silencing machinery [6]. Thereby, pathogenic
smRNAs might in that form indirectly compromise the
ability of the infected cells to mount the defense
response. This interspecies exchange of smRNAs likely
travels in extracellular exosome-like vesicles as demon-
strated for plant smRNAs [60,63]. But accumulating
evidence suggests that this might be also the vehicle for
fungal smRNAs towards the plant [64—66]. Exchange of
smRNAs represents consequently an unexpected and
extraordinary tool of communication between plants and
their interacting organisms.

Although the cross-kingdom action of smRNAs in
plant—pathogen interactions has started to unravel
rapidly, its role during plant-mutualistic symbiosis is far
from being understood. Evidence of smRNAs transition
from the plant to the fungus during AM symbiosis exists,
as it has been shown that inactivation of fungal genes
can be achieved i planta by host induced gene silencing,
HIGS [67—69]. On the other hand, the genome
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Figure 1
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Specialisation of biological function of AGOs during plant interactions with other organisms. AGO proteins are effectors of small RNA pathways as
they are loaded by mi/siRNAs, form the RNA-induced silencing complex (RISC) and identify targets in a sequence-specific dependent manner. During
plant interactions with other organisms, specific AGO proteins are recruited in the context of the particular interacting organism, that is, an insect (left
panel), pathogens (middle panel) or mutualistic AM fungi (right panel). Such specific involvement of AGOs allows distinct portions of miRNome to be
recruited to modulate specific responses towards the interacting organism maximising plant fitness. This model has been well studied in Nicotiana
attenuata. There, herbivores specifically entail an AGO8-mediated smRNA signalling for the production of defense metabolites such as nicotine,
phenolamides and diterpenoid glycosides. Accordingly, AGOS8 silenced plants are more susceptible to Manduca sexta [42]. In contrast, AGO4 is spe-
cifically recruited during the interaction of N. aftenuata with its natural hemi-biotrophic interacting pathogen Fusarium brachygibbosum while none of the
other AGO protein of N. attenuata are required during this interaction [20]. Interestingly, AGO4 is also recruited in tomato in response the wilt pathogen
Fusarium oxysporum f.sp. lycopersici [73]. Similarly, colonisation of AMF is expected to be shaped with the participation of a specific AGO, while none of
the other AGOs appears to have a functional role during the symbiotic interaction [58] (Pradhan et al., unpublished data). It is astonishing that plants
manage to get a coordinated response to so many different microbial-induced miRNome signatures with a limited number of Argonaute proteins. This
suggests that co-evolution of plants and their associated microbes may have posed evolutionary constraints giving rise to the selection of only one or few

AGO proteins for one specific microbe.

sequence of several AM fungi has revealed the existence
of RdR, DCL and AGO-like genes, suggesting an active
smRNA pathway in AM fungi [30,70]. Accordingly,
smRNA populations have been identified in R. irregularis
and their putative targets in the host predicted, some of
which with a known role in the AM colonisation [30].
However, they have not been experimentally validated,
and thus their biological functions await to be disclosed.
Also, in the ectomycorrhizal fungus Piso/lithus microcarpus
a microRNA has been recently identified with a role in
symbiosis [29]. Altogether these results suggest a role
for smRNAs in shaping fungal mutualistic interactions.

Additional possible scenarios of the involvement of
smRNAs in the interaction between plants and their
interacting fungi cannot be ruled out. For instance,
plants might recognise their interacting fungi by iden-
tifying their smRNAs. Furthermore, in natural habitats,
pathogenic and mutualistic fungi co-exist and often
colonise the same host plant. Thus, it is plausible that
smRNAs act in such a complex scenario as communi-
cation tools to modulate multi-trophic interactions
(Figure 2). It is known that miRNA gradients in plants
can help to produce positional information in a group of
cells and thus asymmetric distribution of their target
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Inter-species and cross-kingdom smRNA exchange during plant—fungal interactions. smRNAs are deployed by plants in response to colonising
fungi to adjust not only their own cellular program but also as effectors to communicate and manipulate fungal cells. Fungi also produce smRNA during
interactions that travel to plant cells to highjack their defense program. At the same time, we hypothesise that fungal smRNAs might aid plants to

discriminate between pathogens and mutualists during multi trophic interactions. A hypothetical transport of SmRNAs between different fungal species
colonising the same host might help fungi to control their niche. Transport across cell membranes is hypothesised to be conveyed in extracellular vesicles.

(i.e. miR165/156 and its target PHABULOSA in roots),
thereby conferring cells a specific identity [71,72]. It
would be interesting to investigate whether different
fungi co-colonising a plant enable smRNA-governed
micro-territories to safeguard their niche. Furthermore,
these micro-territories might help plants to quickly
integrate different microbial signals and deploy coordi-
nated responses towards natural habitat challenges.
These open questions warrant immediate attention.

Concluding remarks

smRNAs are handy tools for plants to discriminate
between friends and foes. They regulate signalling
during interaction of plants with associating partners
and participate in tailoring specificity. The biological
function of some conserved miRNAs has diversified
across plant lineages possibly as a consequence of the
selection pressure that different plant species
encounter in their natural habitats [53]. Moreover, as
both plants and fungi use smRNAs to communicate and
control the cell program of the other partner, this could
be critical in defining the nature and outcome of the
interaction. But also, smRNAs might function under
more complex conditions, helping plants to coordinate
responses and endure abiotic and biotic stresses under
fluctuating environmental challenges. Additionally,
unravelling the identity and function of cross-kingdom-
acting smRNAs may provide the much needed tools

for biotechnological interventions in agriculture to
control pathogenic fungi while promoting mutualistic
fungal associations. This will contribute towards a
sustainable agriculture by decreasing the need of fun-
gicides and fertilizers.
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Abbreviations

RNAi RNA Interference

HIGS Host Induced Gene Silencing
smRNA small RNA

miRNA micro RNA

RDR RNA directed RNA Polymerase
DCL DICER like Protein

AGO Argonaute

RISC RNA Induced Silencing Complex
SA Salicylic acid

JA Jasmonic acid
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ABA  Abscisic acid
AM fungi Arbuscular mycorrhizal fungi
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