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The fifth-generation atmospheric reanalysis of the European Center for Medium-Range
Weather Forecasts (ERA5) is the latest reanalysis product. However, the reliability of ERA5
to capture extreme temperatures is still unclear over China. Hence, based on conventional
meteorological station data, a new criterion (DISO) was used to validate the ERA5
capturing extreme temperature indices derived from the Expert Team on Climate
Change Detection and Indices (ETCCDI) across the six subregions of China on
different timescales. The conclusions are as follows: the original daily temperatures
(mean temperature, maximum temperature, and minimum temperature) can be well
reproduced by ERA5 reanalysis over China. ERA5 tends to exhibit more misdetection
for the duration of extreme temperature events than extreme temperature intensity and
frequency. In addition, ERA5 performed best in the summer and worst in the winter,
respectively. The trend of absolute indices (e.g., TXx and TNx), percentile-based indices
(e.g., TX90p, TX10p, TN90p, and TN10p), and duration indices (e.g., WSDI, CSDI, and
GSL) can be captured by ERA5, but ERA5 failed to capture the tendency of the diurnal
temperature range (DTR) over China. Spatially, ERA5 performs well in southeastern China.
However, it remains challenging to accurately recreate the extreme temperature events in
the Tibetan Plateau. The elevation difference between the station and ERA5 grid point
contributes to the main bias of reanalysis temperatures. The accuracy of ERA5 decreases
with the increase in elevation discrepancy.
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1 INTRODUCTION

Global warming is unequivocal. Global surface temperature data
show that the temperature in 2011–2020 was 1.09 (0.95–1.20)°C
warmer than in 1850–1900 (IPCC, 2021). Climate change has
resulted in the strengthening of extreme weather and climate
events in every region worldwide. Many scholars have observed
significant changes in extreme cold and warm weather at global or
regional scales (Zhang et al., 2019; Sheridan et al., 2020; Lei et al.,
2021a). Extreme high-temperature events can cause heatwaves and
droughts, which directly affect human survival, health, and crop
growth (Alexander et al., 2006; Donat et al., 2014; Jiang et al., 2019;
Zhan et al., 2020; Watts et al., 2021). A recent report by the World
Meteorological Organization (WMO) has shown that the high-
temperature heatwaves in Russia killed approximately 55,736
people in 2010, which is described as one of the top ten disasters
causing the most casualties in 1979–2019 (World Meteorological
Organization, 2021).

It is well established that three main types of data sources have
been used in extreme weather and climate event research:
conventional observation data, atmospheric reanalysis datasets,
and satellite-based datasets (Best et al., 2004; Gao C. et al., 2012,
2018; Diamond et al., 2013; He and Zhao, 2018). Atmospheric
reanalysis dataset is a global data resource, which has the advantages
of comprehensive spatial coverage, a continuous long-term
timescale, and a higher spatial and temporal resolution. It can
compensate for the disadvantages of the limited and uneven
station data (Kistler et al., 2001; Uppala et al., 2005; Gao C. et al.,
2012; Gao L. et al., 2012, 2014, 2016b, 2018; Turner et al., 2021).
Hence, reanalysis datasets have gradually become an indispensable
foundation and reference for climate impact and variability
assessment research (IPCC, 2021).

With the rapid development of reanalysis data, the current
extensively used reanalysis data include reanalysis products
released by the National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric Research
(NCAR) (Kalnay et al., 1995), the CFSR and CFSv2 produced
by the NCEP and Department of Energy (Kanamitsu et al.,
2002; Saha et al., 2010), Japan reanalysis JRA-25 (Onogi et al.,
2007) and JRA-55 (Onogi et al., 2015), the European Centre for
Medium-Range Weather Forecasts (ECMWF) FGGE (Boer,
1986), ERA-15 (Sprenger and Wernli, 2003), ERA40 (Uppala
et al., 2005), ERA-Interim (Berrisford et al., 2011), and ERA5
(Hersbach et al., 2020). Among them, ERA5 is the latest
generation of reanalysis data, which has wider assimilation
data sources, greater spatial-temporal resolution, and more
advanced four-dimensional variational analysis (4DVAR) than
other reanalysis datasets (Hersbach et al., 2020). Many studies
have demonstrated that the ability of the ERA5 dataset in
describing the real atmospheric condition is better than that of
the other reanalysis datasets (Albergel et al., 2018; Olauson,
2018; Urraca et al., 2018; Tarek et al., 2020a). However,
reanalysis data are a non-independent dataset, which has
errors due to observing systematic errors, the changing of
the numerical prediction model, and different assimilation
systems. Therefore, the objective evaluation for the
credibility and accuracy of reanalysis datasets before the

application of reanalysis products plays a crucial role in
climate change research (Gao L. et al., 2012; Pappenberger
et al., 2015).

Numerous studies have focused on the applicability of reanalysis
data in the temperature field. On the global scale, Poli et al. (2016)
compared the temperature data on the ERA-20C with the
observation and demonstrated that the reanalysis data was 1K
colder than the night observational data within 65° north-south
latitude. Kozubek et al. (2020) indicated that the trend of
temperature from ERA5 data has good consistency with
observations data. Liu et al. (2021) confirmed that the land
surface temperature data on ERA5 products are highly consistent
with the trend derived from satellite data in 2003–2017. On the
regional scale, the research of evaluating the credibility of reanalysis
data over China has received extensive attention. You et al. (2013)
evaluated the ability of NCEP/NCAR and ECMWF reanalysis data
to simulate extreme temperature events and found that two
reanalysis products have substantial differences in reproducing
the long-term trend of the extreme temperature indices. Gao L.
et al. (2012), Gao et al. (2014), and Gao et al. (2016a) demonstrated
that reanalysis datasets can reproduce China’s temperature fields
well and deduced that the altitude difference can cause significant
temperature deviation. Zou et al. (2022) investigated the
performance of ERA5-Land in southeast coastal China and
concluded that ERA5-Land can capture daily and monthly
temperature variations well. Huang et al. (2021) found that
ERA5-Land temperature performed better than the Global Land
Data Assimilation System (GLDAS) but worse than the China
Meteorological Administration Land Data Assimilation System
(CLDAS) over China.

Overall, most of the current reanalysis data applicability research
focuses on the performance of original data and hardly emphasizes
the accuracy of identifying extreme weather events (Sheridan et al.,
2020). Regarding evaluation methods, the research usually applied
single indicator such as the root mean square error (RMSE),
correlation coefficient (CC), absolute error (AE), relative bias
(RB), and the standard deviation (STD) (Gleixner et al., 2020;
Jiang et al., 2020; Zheng 2020). However, it probably happens
that individual indicators perform well, while others perform
relatively poor, making it impossible to judge directly.
Accordingly, the distance between indices of simulation and
observation (DISO) combined with the CC, NRMSE, NMAE,
and RB was used to evaluate the applicability of ERA5. The best
advantage of DISO is that it can represent the performance of
simulation at different stations after normalizing the reanalysis data
and observational data (Hu et al., 2019; Deng et al., 2021). In
addition, further research is required to determine the credibility of
the latest ERA5 reanalysis dataset in capturing extreme temperature
events at different timescales over various Chinese regions, which is
not limited to the analysis of heatwave event trends or spatial
distribution characteristics (Albergel et al., 2018; Kozubek et al.,
2020; Awasthi 2021). China is one of the most climate-sensitive and
ecologically fragile areas worldwide because of its sophisticated
geographic environment and unique multi-climate conditions
(Cheng et al., 2019). Extreme weather events such as heatwaves
and drought disasters are frequent under the joint influence of
summer monsoon circulation and mid-high latitude circulation.
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Therefore, clarifying the deviation and correlation between the
ERA5 data and the observational data in recognizing extreme
temperature events is influential to developing global atmospheric
reanalysis products and regional climate change analysis.

The structure of this article is as follows: Section 2 introduces
the data and methods applied in this study. The validation of
ERA5 original data is presented in Section 3.1. The applicability
of ERA5 data in capturing extreme temperature events in six

TABLE 1 | Geomorphological regionalization information.

Region Name Latitude (°) Longitude (°) Average
elevation

(m)

Area
(1.0×104 km2)

Station
number

I Eastern hilly plains 112.55°-
135.08°E

29.60°-
52.90°N

221.18 155.99 181

II Southeastern low-middle mountains 105.72°-
124.57°E

6.31°-33.58°N 281.55 102.66 159

III North China and Inner Mongolia eastern-central mountains
and plateaus

102.50°-
126.14°E

33.99°-
53.55°N

1110.27 149.65 104

IV Northwestern middle and high mountains, basins, and
plateaus

73.83°-
107.72°E

36.25°-
49.17°N

1374.98 188.26 47

V Southwestern middle and low mountains, plateaus, and
basins

97.52°-
113.68°E

21.14°-
35.05°N

1167.47 108.76 118

VI Tibetan Plateau 73.44°-
104.84°E

25.96°-
39.97°N

4343.16 256.49 57

FIGURE 1 | Study area information. (A) Meteorological stations and topography. (B) Mean annual temperature.

TABLE 2 | Definition of extreme temperature indices.

Index Name Definition Unit

TXx Max Tmax Monthly maximum value of daily maximum temperature °C
TNx Max Tmin Monthly maximum value of daily minimum temperature °C
TXn Min Tmax Monthly minimum value of daily maximum temperature °C
TNn Min Tmin Monthly minimum value of daily minimum temperature °C
FD0 Frost days Annual count when TN (daily minimum) < 0°C d
SU25 Summer days Annual count when TX (daily maximum) > 25°C d
ID0 Ice days Annual count when TX (daily maximum) < 0°C d
TR20 Tropical nights Annual count when TN (daily minimum) > 20°C d
TN10p Cool nights Percentage of days when TN < 10th percentile d
TX10p Cool days Percentage of days when TX < 10th percentile d
TN90p Warm nights Percentage of days when TN > 90th percentile d
TX90p Warm days Percentage of days when TX > 90th percentile d
WSDI Warm spell duration indicator Annual count of days with at least 6 consecutive days when TX > 90th percentile d
CSDI Cold spell duration indicator Annual count of days with at least 6 consecutive days when TN < 10th percentile d
GSL Growing season length Annual (1st Jan to 31st Dec in NH and 1st July to 30th June in SH) count between first span of at least 6 days with the average

of temp (TG) > 5°C and first span after July 1 (January 1 in SH) of 6 days with TG < 5°C
d

DTR Diurnal temperature range Monthly mean difference between TX and TN °C
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subregions of China at different timescales is shown in Sections
3.2 and 3.3. The comparison of the trend of extreme temperatures
computed from ERA5 and meteorological station data is
described in Section 3.4, and the analysis of possible bias is
discussed in Section 3.5. The conclusions are summarized in
Section 4.

2 DATA AND METHODS

2.1 Study Area
The terrain of China is high in the west and low in the east and
includes mountains, plateaus, hills, basins, and plains. Mountains
and plateaus are the main components of China’s topography. The

undulations and differences in landforms and various complex
climate characteristics substantially affect the spatial distribution of
the surface temperature. Consequently, the country is classified
into six major regions, according to the latest geomorphologic
division to evaluate the applicability of ERA5 temperature data in
different regions of China (Cheng et al., 2019). Table 1 shows the
information on six subregions of China.

Figure 1 shows the groundmeteorological stations and annual
mean temperature distribution over China. There are numerous,
evenly distributed observations in eastern China (regions I, II, III,
IV, and V) and few observations in western China (regions IV,
and VI). The annual mean temperature gradually decreases from
the southeast coast to the inland. The annual mean temperature
of regions II and V is approximately 15.00°C, and the annual

TABLE 3 | Extreme temperature indices for six regions over China.

Region Absolute Threshold Percentile-based Duration Other

I TXx, TXn, TNx, and TNn ID0, FD0, TR20, and SU25 TX10p and TX90p WSDI, CSDI, and GSL DTR
II TXx and TNx TR20 and SU25 TX10p and TX90p WSDI, CSDI, and GSL DTR
III TXx, TXn, TNx, and TNn ID0, FD0, and SU25 TX10p and TX90p WSDI, CSDI, and GSL DTR
IV TXx, TXn, TNx, and TNn ID0, FD0, and SU25 TX10p and TX90p WSDI, CSDI, and GSL DTR
V TXx and TNx SU25 TX10p and TX90p WSDI, CSDI, and GSL DTR
VI TXx and TNx FD0 TX10p and TX90p WSDI, CSDI, and GSL DTR
All TXx and TNx TX10p and TX90p WSDI, CSDI, and GSL DTR

TABLE 4 | Evaluation criteria used in this study.

Metric Name Formula Optimal value Unit

NRMSE Normalized root mean square error 1
�O

�������������
1
n∑n

i�1(Ei − Oi)2
√

0 /

NMAE Normalized mean absolute error 1
n �O∑n

i�1|Ei − Oi | 0 /

RB Relative bias ∑n

i�1(Ei−Oi )∑n

i�1Oi
× 100

0 %

CC Pearson correlation coefficient ∑n

i�1(Ei− �E)(Oi− �O)��������∑n

i�1(Ei− �E)2
√ ���������∑n

i�1(Oi− �O)2
√ 1 /

DISO Distance between indices of simulation and observation
����������������������������������
NRMSE2

i + NMAE2
i + RB2

i + (CCi − 1)2
√

0 /

RMSE Root mean square error
�������������
1
n∑n

i�1(Ei − Oi)2
√

0 °C

n is the number of samples; �E ( �O) is the mean value of the extreme temperature indices calculated from the ERA5 (Obs); and Ei (Oi ) is the value of the extreme temperature indices
calculated from the ERA5 (Obs).

FIGURE 2 | DISO performance over China from 1979 to 2020 for Tmean (A), Tmax (B), and Tmin (C).
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mean temperature in the north of regions I, III, and VI is
approximately 0.00°C.

2.2 Observations and ERA5
Themeteorological stations are from the ChinaMeteorological Data
Network (http://data.cma.cn/); an amount of 666 meteorological
observational data in China were selected in a common time series
with ERA5 in the period of 1979–2020. The observational data (daily
mean temperature, the daily maximum temperature, and the daily
minimum temperature data) were subject to rigorous quality
inspection. Moreover, the missing daily data from the
observations are ignored in the calculation of extreme
temperature indices.

ERA5 is the latest reanalysis product from the ECMWF
(Hersbach et al., 2020). The complete ERA5 data released so
far start in 1979 and extend forward in near real-time, with a
three-month lag. ERA5 provides hourly estimates of many
atmospheric, land, and oceanic climate variables. The data
cover the Earth on a 31-km grid and resolve the atmosphere
using 137 levels from the surface up to a height of 80 km
(https://confluence.ecmwf.int/display/CKB/ERA5). ERA5 has
a more advanced 4DVAR assimilation system and higher
spatial and temporal resolution than other reanalysis
products (Hersbach et al., 2020). ERA5 has also been
enhanced in terms of data selection, quality control, bias
correction, and performance monitoring techniques
(Albergel et al., 2018; Gleixner et al., 2020). The Euclidean
distance is used to calculate the nearest ERA5 grid to the Obs
stations to obtain the ERA5 temperature data corresponding
to the Obs stations. The coordinated universal time of ERA5
is converted to a daily scale to remain consistent with the Obs
stations in this study.

2.3 Methods

2.3.1 Extreme Temperature Indices
The WMO and the World Climate Research Program (WCRP)
jointly defined representative climate change detection indices to
create consistency of extreme event indicators and thresholds in all
countries (Alexander et al., 2006; Donat et al., 2014; You et al., 2013).
The indices include extreme temperature indices and extreme
precipitation indices, which are currently widely used in extreme
climate research. The extreme temperature indices can represent
extreme event changes in intensity, frequency, and duration, which
are divided into 5 categories: 1) absolute indices (TXx, TXn, TNn,
and TNx), 2) threshold indices (ID0, FD0, TR20, and SU25), 3)

percentile-based indices (TX10p, TX90p, TN10p, and TN90p), 4)
duration indices (CSDI, WSDI, and GSL), and 5) other indices
(DTR) (Table 2) (Alexander et al., 2006). In addition, TXx and TNx

TABLE 5 | DISO for extreme temperature indices over China.

Region TXx TNx TX10p TX90p TN10p TN90p CSDI WSDI GSL DTR

I 0.21 0.26 0.18 0.23 0.41 0.27 0.72 0.78 0.17 0.43
II 0.39 0.53 0.16 0.35 0.28 0.50 0.66 0.80 0.23 0.41
III 0.26 0.32 0.25 0.25 0.45 0.36 0.76 0.76 0.24 0.53
IV 0.42 0.40 0.30 0.30 0.50 0.43 0.67 0.72 0.30 0.58
V 0.42 0.55 0.23 0.34 0.42 0.45 0.82 0.89 0.41 0.39
VI 0.75 0.61 0.52 0.42 0.84 0.42 1.21 0.92 0.75 0.65
Whole China 0.44 0.45 0.30 0.32 0.52 0.40 0.83 0.82 0.39 0.51

FIGURE 3 | Spatial distribution of DISO for extreme temperature indices
of ERA5 over China.
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have also been calculated on monthly timescales to evaluate the
performance of ERA5 for capturing the extreme temperature indices
at monthly and seasonal scales.

Notably, climate characteristics among regions in China are
substantially different. Individual indices do not apply to all
regions. For instance, the Tibetan Plateau has a high altitude
and low annual temperature, which rarely has a daily minimum
temperature of >20°C. Thus, the TR20 index (annual count when
the daily minimum is >20°C) is not applicable for region VI to
evaluate the reliability of ERA5. Similarly, the daily maximum
temperature is always greater than 0.00°C in southern China, and
the ID0 index (annual count when the daily maximum is <0°C) is
also not appropriate. Therefore, regional indices are selected
based on the regional-specific climate feature to conduct a
greater accuracy analysis of the extreme indices for each
region (Table 3).

2.3.2 Trend Analysis
The Mann–Kendall (MK) test is a nonparametric statistical
test method used extensively in meteorological statistical
research (Machiwal et al., 2019; Lei et al., 2021b). Yue and
Wang (2002) proposed “prewhitening” before the MK test to
eliminate the effect of the serial correlation in trend detection
so that the trend of series has improved credibility. Many
scholars (Burn and Hag Elnur, 2002; Mirdashtvan and
Mohseni Saravi, 2020; Lei et al., 2021a; Shin et al., 2021)
have used the prewhitening Mann–Kendall (PWMK) trend
test method to describe the trend variation of relative
humidity, surface temperature, and other hydrological and
meteorological variables in various climatic zones and argued
that the trend of prewhitening correction has greater accuracy
than the MK. This study used the PWMK to calculate the
trend of extreme temperature indices in ERA5 data and
station data.

2.3.3 Evaluation Criteria
Table 4 demonstrates the evaluation criteria used to
quantitatively assess the applicability of ERA5, comprising the
NRMSE, NMAE, RB, and CC. In addition, this study adopted a
new comprehensive indicator DISO, with the advantage of
evaluating the simulation accuracy of data more
comprehensively than other indicators, instead of a single
indicator limited to describing unilateral performance (Hu
et al., 2019; Deng et al., 2021). The DISO had been confirmed
more flexible to express the quality of models or datasets than the
Taylor diagram (Xu and Han, 2020; Zhou et al., 2021).

The main distribution range of the DISO is between 0.0 and
1.0 in this study. Generally accepted is that the smaller the value
of DISO, the more accurate are the data (Xu and Han, 2020).
Therefore, the value of DISO is divided into two groups: 0.0–0.5
and above 0.5 to investigate the capabilities of ERA5 for each
region. It is implied that ERA5 can capture extreme temperature
events well when DISO is less than 0.5 (Hu et al., 2019).
Moreover, RB was divided into two groups: less than 0.0 and
greater than 0.0. The RB less than 0.0 or above 0.0 was considered
to mean that ERA5 relatively underestimates or overestimates the
observational data, respectively.

3 RESULTS AND DISCUSSION

3.1 Validation of ERA5 Temperatures
Figure 2 demonstrates the DISO distribution of original
temperature data (mean temperature, maximum temperature,
and minimum temperature) at daily timescales based on ERA5
and observations in 1979–2020. Three types of temperature data
all have above 50% stations with the DISO value less than 0.5,
indicating that the original temperature data of ERA5 have a good
agreement with observational data.

The average DISO of Tmean is 0.74. There are 562 stations with
a DISO value smaller than 0.5, accounting for 84.38% of total

FIGURE 4 | Spatial distribution of RB for extreme temperature indices of
ERA5 over China.
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stations in China. It can be seen that Region VI, the northern part
of Region I, and Region III show higher DISO than the other
regions. In other words, the mean temperature data from ERA5
have large deviations in these regions. The DISO values of Tmax

are very small, with an average of 0.28. There are approximately
90.00% of stations with a DISO less than 0.5. More than half of the
stations even have lower DISO values (less than 0.2). Only 28
stations have a DISO value above 1.0, which are located in Region
VI. The performance of Tmin is worse than that of other data

types. There are more than 20% of stations with a DISO greater
than 1.0 over China, which are mainly distributed in Regions III,
IV, VI and the northern part of Region I. DISO presents a
“southeast-northwest” distribution, increasing from the
southeast coastal area to the northwest inland area.

Generally, the performances of ERA5 for mean temperature
and maximum temperature data are more ideal than those for the
minimum temperature. ERA5 tends to misdetect the minimum
temperature. From the respective spatial distribution, the

FIGURE 5 | Spatial distribution of DISO for selected extreme temperature indices of ERA5 in six regions.
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reliability of ERA5 original temperature data in southeast China
is higher than in other regions. ERA5 performs poorly in the
Tibetan Plateau, which is common for other reanalysis products
in previous studies (Gao C. et al., 2012; Gao et al., 2016a; Huang
et al., 2021; Jiang et al., 2021).

3.2 Validation of ERA5 Extreme
Temperatures
3.2.1 Overall China
To further quantitatively evaluate the ability of ERA5 data to
reproduce extreme temperature events, DISO was calculated by
ERA5 and observations of extreme temperature indices. Table 5
summarizes the specific performance of ERA5 data for extreme
temperature indices in each subregion. DISO ranges from 0.16 to

1.21 with an average of 0.48 for all stations. Figure 3
demonstrates the spatial distribution of DISO for extreme
temperature indices over China. There are discrepancies in
various regions for ERA5 to capture different extreme
temperature indices.

The results showed that ERA5 has an ideal simulation for
maximum and minimum temperatures within a year. The
average values of DISO in the whole of China for TXx and
TNx are 0.44 and 0.45, respectively. The cumulative percentage of
stations with the lower DISO value (less than 0.5) is above
70.00%. According to specific spatial distribution, ERA5 shows
the best performance in Regions I and III, with a correlation of
0.77 and 0.68, respectively. The higher DISO stations are
concentrated in Regions II, V, and VI, especially for TNx.
There are approximately half of the stations that had the

FIGURE 6 | Spatial distribution of DISO for TXx of the ERA5 over China from spring to winter. Spring (March, April, and May), summer (June, July, and August),
autumn (September, October, and November), and winter (December, January, and February).
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DISO greater than 0.5 for TNx index in Regions II, V, and VI. It
indicates that the ability of ERA5 in northern China is better than
that in southern China for reproducing the intensity of extreme
temperature events.

Another interesting finding is that the mean DISO of TX10p
(cool days) and TX90p (warm days) in China is 0.30 and 0.32,

respectively. Yet, the average of DISO for TN10p (cool nights)
and TN90p (warm nights) is higher than TX10p and TX90p,
which are 0.53 and 0.40, respectively. It is distinct that ERA5
simulates diurnal temperature better than nocturnal temperature.
Spatially, TX10p and TN10p demonstrate analogous spatial
distribution characteristics. DISO gradually increases from the
southeast coast to the northwest inland regions. However, the
spatial distribution of TX90p and TN90p shows a different north-
south distribution; higher DISO stations are concentrated in the
southern part of Regions II, V, and VI. This difference illustrates
that the credibility of the southeast coast is higher than in other
regions in China when ERA5 simulates cool nights (TN10p) and
cool days (TX10p), whereas ERA5 is more precise in the north
than in the south when retrieving warm nights (TN90p) and
warm days (TX90p).

ERA5 shows a good performance in capturing the GSL index.
Stations with a DISO of less than 0.5 account for more than
80.00% of the total stations in China, of which more than 40.00%
of stations have a correlation coefficient (CC) that exceeds 0.9.

FIGURE 7 | Spatial distribution of DISO for the TNx of ERA5 over China from spring to winter. Spring (March, April, and May), summer (June, July, and August),
autumn (September, October, and November), and winter (December, January, and February).

TABLE 6 | Monthly and seasonal DISO for TXx and TNx over China.

Month/season TXx TNx Month/season TXx TNx

March 0.32 1.58 September 0.24 0.31
April 0.25 0.68 October 0.21 0.41
May 0.26 0.54 November 0.35 1.19
Spring 0.28 0.93 Autumn 0.27 0.64
June 0.27 0.36 December 1.32 3.32
July 0.28 0.36 January 1.31 1.23
August 0.28 0.34 February 0.98 4.09
Summer 0.28 0.35 Winter 1.20 2.88
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However, the performances of CSDI and WSDI are both
disappointed. The average values of DISO for CSDI and
WSDI are 0.83 and 0.82, respectively. There are approximately
90.00% of stations that have a DISO greater than 0.5. Among
them, 102 and 144 stations show a higher DISO (above 1.0) in
CSDI and WSDI, respectively. The conclusion showed that
ERA5-simulating CSDI and WSDI indices are worse than
other indices. Concerning to diurnal temperature range
(DTR), the DISO value is mainly concentrated in the range of
0.3–0.6. Stations with a DISO of less than 0.5 account for 64.11%
of total stations. Regarding spatial distribution, ERA5 performs
better in Regions II and V than in other regions for DTR. The
cumulative percentages of stations with the DISO less than 0.5 in
Regions II and V reach 76.10% and 83.90%, respectively. The
higher DISO (greater than 0.5) stations are mainly distributed in
Regions I, III, IV, and VI, which show a weak performance.

Generally, ERA5 performs well in capturing absolute indices
(TXx and TNx) and percentile-based indices (TX10p, TX90p,
TN10p, and TN90p) but performs poorly in capturing duration
indices (CSDI and WSDI) except for GSL. In other words, the
reliability of ERA5 to reproduce extreme temperature intensity
and frequency is higher than that for extreme temperature
duration. For the subregions, Region I performs best and
Region VI performs worst.

To further confirm the specific deviations between ERA5 and
the observational data concerning extreme temperature indices,
Figure 4 shows the spatial distribution of RB for extreme
temperature indices over China. For the absolute indices,
ERA5 underestimates the warmest day (TXx) and warmest
night (TNx) in the southern part of Region VI. In addition,
RB values are mostly concentrated near 0, and only five stations
are remarkably overvalued. It also demonstrates that ERA5 can
capture the intensity of extreme temperature events well,
coinciding with the conclusions obtained in the DISO indicator.

It also should be noted that TN10p and TX10p have 97.60%
and 84.68% of the stations with RB above 0, respectively. The
results indicated that ERA5 overestimated the 10th percentile
indices (TN10p and TX10p). However, the performance of ERA5
in capturing TN90p and TX90p is the opposite. There are 95.20
and 84.23% of the total stations with RB smaller than 0 for TN90p
and TX90p, respectively. It illustrates that ERA5 has misdetected
more cool nights (TN10p) and cool days (TX10p) but fewer warm
days (TX90p) and warm nights (TN90p) in comparison to the
observations.

About the duration indices, stations with RB greater than 0
account for approximately 60.00% of CSDI andWSDI, which are
mainly located in Regions I, II, III, and V. It is distinct that ERA5
tends to overestimate extreme high-temperature and low-
temperature consecutive days over China. Moreover, ERA5
underestimates the observational data in the southern part of
Region VI for the GSL. There are 91.22% of stations that have an
RB less than 0 in Region VI. The RB of other regions is mainly
concentrated in the range of -10–10%. It is considered to be a

FIGURE 8 | Box plots of the PWMK test value of DISO for Obs (A) and ERA5 (B) for extreme temperature indices over China from 1979 to 2020.

FIGURE 9 | Distribution of elevation gaps between stations and
ERA5 data.
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slight overestimation or underestimation within a
reasonable range.

The RB value is mainly distributed between -20% and 0 for
DTR. The cumulative percentage of stations with RB less than 0
reaches 91.59%. This finding shows that ERA5 slightly
underestimates the DTR compared with the observational data
over China. In summary, ERA5 tends to underestimate the
frequency of extreme high-temperature events and
overestimate the frequency of extreme low-temperature events.
Also, the duration of warm and cold days has been overestimated
by ERA5 over China.

3.2.2 Subregion Validation
Furthermore, there are substantial differences in terrain and
climate characteristics of the six subregions in China. Some
indices were not applicable in each region. For example, the
Tibetan Plateau has a unique plateau climate, which rarely has a
daily minimum temperature >20°C. The evaluation of the TR20
index (tropical nights) is not applicable in Region VI. Hence, it is
necessary to exclude unsuitable indices in specific regions before
evaluation to ensure the accuracy of the evaluation of ERA5.
Figure 5 demonstrates the DISO of selected extreme temperature
indices in six subregions.

TXn, TNn, and ID0 display similar spatial distribution
characteristics of DISO in Region I. Three indices all present a
north-south differentiation. The higher DISO stations are located
in the northern part of Region I, and stations with a lower DISO
are concentrated in the south. It indicates that the reliability of
ERA5 in the north is greater than that in the southern part Region
I for TXn, TNn, and ID0. It is noteworthy that TR20 displays an
opposite spatial distribution characteristic with ID0. The
accuracy of ERA5 in the southern part of Region I is greater
than that in the northern part for TR20. This difference may be
due to the relatively high latitude of the northern part in Region I,
where a minimum temperature warmer than 20.0°C is rare. It is
also rare that the annual maximum temperature is colder than
0.0°C in the southern part of Region I. Hence, there is a large
discrepancy in the spatial distribution of DISO for the two
indices, which is due to the local climate condition.
Furthermore, the FD0 and SU25 of ERA5 show the best
performance in Region I, and the average of DISO is 0.30 and

0.26, respectively. Stations with a DISO of less than 0.5 account
for more than 80.00% of all stations. For Region II, the cumulative
percentages of stations with the DISO less than 0.5 for SU25 and
TR20 are 95.60 and 96.85%, respectively. It implied that ERA5
can identify the number of summer days (SU25) and tropical
nights (TR20) well in Region II.

ERA5 also performs well for capturing the FD0 index in
Region III, which shows a similar performance with Region I.
The percentage of stations with the DISO less than 0.5 reaches
88.46% for all stations. Additionally, the spatial distribution
characteristics of DISO for TXn, TNn, and ID0 in Region III
are also similar to those in Region I. The simulation effect of
ERA5 in the northern part of the region was better than that in the
southern part. There is no denying that the range of latitude is
similar in Region I and Region III. Therefore, the results
demonstrate that the reliability of ERA5 for TXn, TNn, and
ID0 is related to latitude location. There is a higher accuracy in
the north of 40°N but a lower accuracy in 30–40°N for TXn, TNn,
and ID0. Also, in Region IV, the same condition occurs for TXn,
TNn, and ID0, which is in accordance with the conclusion
obtained. The most reliable index for Region IV is FD0 too.
There are 95.74% of stations with a DISO value less than 0.5,
followed by SU25 with approximately 80.00% of stations showing
a DISO smaller than 0.5.

For Region V, stations with the lower DISO are mainly located
in the middle and southeast of the region where the Sichuan Basin
is. Stations with higher DISO are mainly in the southwestern
region, where the Hengduan Mountains are located. This
phenomenon also demonstrated that the accuracy of reanalysis
data in basins is better than that in mountainous areas. This is
consistent with the findings from Region VI. FD0 performed
poorer in Region VI than in other regions, and the average of the
DISO was 0.68. This larger deviation is due to the high altitude of
the Tibetan Plateau, the complex terrain, and the lack of
observations leads to more difficulty in simulation (Kistler
et al., 2001; Minder et al., 2010; Holden et al., 2016; Ma et al.,
2018).

Generally, there is a substantial difference in the reliability of
ERA5 to capture the extreme temperature events in various
subregions of China. ERA5 performs worse in mountainous
areas, especially in the Tibetan Plateau. In addition, the

FIGURE 10 | Linear regression of the RMSE and elevation gaps between stations and ERA5 reanalysis. Shading shows the prediction bands at the 95%
confidence level.
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accuracy of ERA5 to simulate some indices (TXn, TNn, TR20,
and ID0) demonstrates a north-south distribution, which is due
to the local climate condition.

3.3 Validation of ERA5 Monthly and
Seasonal Extreme Temperatures
To further evaluate the applicability of ERA5 to capture the
extreme temperature indices at a seasonal scale, Figure 6 and
Figure 7 present the spatial distribution of DISO for TXx and
TNx from spring to winter over China. The four seasons include
spring (March, April, and May), summer (June, July, and
August), autumn (September, October, and November), and
winter (December, January, and February). Table 6
summarized the DISO for TXx and TNx for each month and
season.

The average values of DISO for warmest days (TXx) in spring,
summer, autumn, and winter are 0.28, 0.28, 0.27, and 1.20,
respectively. Notably, DISO in winter is higher than that in
the other seasons. The stations with DISO greater than 0.5 in
winter account for approximately 40.00% of all stations. In
addition, the spatial pattern of distribution in spring, summer,
and autumn are similar. Stations with higher DISO are mainly
distributed in Region VI. However, the spatial distribution of
DISO shows a “southeast-northwest” distribution in winter. More
than 100 stations with a DISO higher than 1.0 are concentrated in
the northern part of Regions I and III and Regions IV and VI.

ERA5 also works better in spring, summer, and autumn than
in winter for TNx (Figure 7). However, TNx is slightly distinct in
November and March. The performance of TNx in the late fall
(November) and early spring (March) during the transition of
winter is worse. The cumulative percentage of stations with the
DISO greater than 0.5 exceeded 35.00%. In terms of spatial
distribution, the ability of ERA5 to simulate the TNx in
summer displays a different north-south characteristic, with
DISO gradually increasing from north to south. The DISO
greater than 0.5 stations are located in Regions II, V, and VI,
which demonstrates that the ERA5 reanalysis has better
simulation ability for the north than the south of China in
summer. This finding may be due to the southeastern part of
China being affected by the East Asian monsoon and
accompanying precipitation in summer (Ding, 2007), resulting
in unstable accuracy in Regions II and V. Furthermore, there is a
spatial discrepancy of DISO for TXx and TNx in December and
January. Stations with higher DISO (above 1.0) are located in the
central part of Region I and the southern part of Regions III
and VI.

In summary, the results demonstrated that ERA5 captured the
intensity of extreme temperature events in spring, summer, and
autumn with higher reliability than in winter. The possible reason
may be due to the air temperature being more changeable and
complex in winter (Zhao et al., 2020). Additionally, the low
simulation accuracy of snow cover and snow depth resulted in
large uncertainty of temperature modeling in winter (Kanamitsu
et al., 2002; Ma et al., 2008). Previous studies have also found that
the accuracy of reanalysis to capture air temperature is better in
summer, whereas worse in winter (Zhao et al., 2008; Zhao et al.,

2020; Yu et al., 2021). Furthermore, there is a large discrepancy of
the climate and topography characteristics in various subregions
of China. Therefore, a certain model always failed to capture all
climate features across seasons over such a large area (Gao et al.,
2016a).

3.4 Climatology and Trends of ERA5
Extreme Temperatures
The PWMK trends of ERA5 and observations for extreme
temperature indices in 1979–2020 are shown in Figure.8. TXx
(warmest day), TNx (warmest night), TX90p (warm days),
TN90p (warm nights), and GSL (growing season length) show
a significant positive trend. This result shows that the frequency
and intensity of extreme high-temperature events are gradually
increasing as global warming in China. Also, ERA5 can capture
the trend of extreme high-temperature indices well. WSDI and
CSDI do not demonstrate an overall increase or decrease trend.
Additionally, TX10p (cool days) and TN10p (cool nights)
calculated from ERA5 and observations both have a negative
trend. In other words, the frequency of extreme low-temperature
events tends to decrease in China. Nevertheless, there is a
discrepancy in the trend of the diurnal temperature range
(DTR) by ERA5 and observations. The average of the trend of
observations DTR is decreasing, whereas the DTR of ERA5 has a
slightly increased tendency. It is indicated that ERA5 fails to
capture the trend of DTR. Overall, there is agreement among the
trend of extreme indices of ERA5 data with observations, except
for DTR. ERA5 data can be used for predicting the tendency of
extreme temperature events over China, except for DTR.

3.5 Possible Bias Analysis of ERA5
Temperature
Many studies have reported that the elevation difference is the
principal reason leading to the error of the reanalysis data (Gao L.
et al., 2012, 2014; Zhou et al., 2018; Tarek et al., 2020b). Gao et al.
(2016b) concluded that the altitude difference between
meteorological stations and ERA-20CM led to the temperature
bias. Zhao et al. (2020) found the bias increases with the elevation
difference between ERA5-Interim and observation temperature
data. Figure 9 demonstrates the distribution of elevation gaps
between stations and ERA5 data (ERA5 original grid point height
minus Obs elevation) to further explore the reasons for the
deviation of ERA5 temperature data. There are 67 stations
with an elevation gap above 500 m, which are mainly located
in the southeast part of Region III, the northeast and western part
of Region V, and the southeast part of Region VI. Among these
stations, 10 stations have elevation gaps above 1000 m in Region
VI. The Emei mountain station shows the maximum elevation
gap of 1765.40 m in Sichuan Province.

Figure 10 shows the relationship of the elevation gap and
the RMSE between ERA5 and the stations. The RMSE ranges
from 0 to 13.50°C. The R2 of mean temperature, max
temperature, and min temperature is 0.70, 0.73, and 0.52,
respectively. The correlation coefficient (CC) is 0.84, 0.85,
and 0.72, respectively. It is implied that the performance of
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ERA5 is related to the elevation gap between ERA5 and
observations. The simulation accuracy of ERA5 decreases
with the increase in the elevation gap. Therefore, this is also
responsible for the weak simulation effect in the Tibetan
Plateau with the higher elevation difference. It must be
pointed out that the number of stations used in this study is
limited, especially in the Tibetan Plateau. However, previous
studies have concluded that limited stations can also accurately
evaluate the bias of reanalysis data. It is generally believed that
the elevation difference between the reanalysis grid point and
the ground station is the main error source (Gao et al., 2014,
2018, 2021; Zhou et al., 2018; Zhao et al., 2020).

4 CONCLUSION

This study is based on the comparison of ERA5 reanalysis data
and observational data during 1979–2020. The applicability of
ERA5 to identify temperatures and reproduce extreme
temperature events in six subregions of China at different
timescales has been evaluated. Conclusions are summarized as
follows:

ERA5 performs well for capturing the original temperature
field over China. The maximum temperature and mean
temperature reproduced by ERA5 are more ideal than the
minimum temperature. However, the performance of ERA5
in the Tibetan Plateau is worse. Additionally, ERA5 has a good
agreement in simulating extreme temperature absolute indices
and percentile-based indices. In other words, ERA5 performs
well in identifying the intensity and frequency of extreme
temperature events. Nevertheless, ERA5 tends to
underestimate the frequency of extreme high-temperature
events and overestimate the frequency of extreme low-
temperature events. Moreover, the reliability of ERA5
reanalysis to reproduce extreme temperature duration is
disappointed. The duration of warm days and cold days has
been overestimated by ERA5.

Spatially, the reproducibility of ERA5 to capture extreme
temperature events in different geomorphological regions has
a spatial discrepancy, which is manifested in that the
performance of ERA5 in plains and basins is superior to
that in mountainous areas. The southeastern part of China
performs best, and the Tibetan Plateau performs worst. This

result may be due to the substantial differences resulting from
the uneven distribution of stations, the absence of long-term,
high-quality climate station data, and the elevation gaps
between the ERA5 grid and the observed station in the
Tibetan Plateau.

Based on the simulation of extreme indices at a seasonal scale,
the accuracy of ERA5 in reproducing the intensity of extreme
temperature indices in spring, summer, and autumn is
significantly better than that in winter, especially in Regions I,
III, IV, and VI. Furthermore, the results confirmed that ERA5 is
reliable for capturing the trend of absolute indices, percentile-
based indices, and duration indices, except for DTR. In summary,
ERA5 data are ideal for temperature data simulation and
identification of extreme temperature events, which can be
used as important reference data for temperature changes and
extreme climate research.
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