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Abstract
The last few years have seen an explosion of interest in hydrodynamic effects in
interacting electron systems in ultra-purematerials.One suchmaterial, graphene, is not
only an excellent platform for the experimental realization of the hydrodynamic flowof
electrons, but also allows for a controlled derivation of the hydrodynamic equations on
the basis of kinetic theory. The resulting hydrodynamic theory of electronic transport
in graphene yields quantitative predictions for experimentally relevant quantities, e.g.,
viscosity, electrical conductivity, etc. Here I review recent theoretical advances in the
field, compare the hydrodynamic theory of charge carriers in graphene with relativistic
hydrodynamics and recent experiments, and discuss applications of hydrodynamic
approach to novel materials beyond graphene.

Keywords Hydrodynamics · Kinetic theory · Electronic transport · Viscosity · Hall
effect · Graphene · Compensated semimetals · Topological materials

1 Hydrodynamics and condensedmatter

Collective excitations in solid-state physics—phonons, magnons, plasmons, etc.—are
often considered in the long-wavelength (small wavevector) limit with the correspond-
ing observables describing long-distance properties of matter. One way to develop a
macroscopic theory reflecting such physics [1] is to combine continuity equations
(manifesting conservation laws) with thermodynamic arguments to identify how the
entropy of the system responds to local density fluctuations of the conserved quanti-
ties. Requiring the total entropy production rate to be non-negative, one may establish
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the “constitutive relations” between the macroscopic currents and the external bias.
Closing the equations with the help of the thermodynamic relations one can complete
the description of the long-wavelength dynamics of the system. The resulting theo-
ries are macroscopic since their variables are densities of physical quantities and the
corresponding currents. They are also phenomenological since they provide no means
of calculating the coefficients in the constitutive relations (i.e., the “generalized sus-
ceptibilities”). Such approach is justified at distances that are much larger than any
length scales corresponding to the underlying “microscopic” scattering processes, the
condition that is very often satisfied in experiments.

The most common equation describing the long-wavelength dynamics in solids is
the diffusion equation [1]. In the simplest example, spin diffusion [2, 3] arises in a
system of spin-1/2 particles with a velocity- and spin-independent interaction leaving
the total magnetization conserved. This behavior has been observed experimentally
(see, e.g., Ref. [4]) and is generally expected to be applicable to a wide variety of spin
systems (with the possible exception of one-dimensional integrable models, see Refs.
[5–8]).

Low-temperature charge transport is also often considered to be diffusive [9]. In the
simplest case, charge carriers are assumed to be independent and non-interacting, so
that their total number is a conserved quantity, while the dominant relaxation process
is the electron–impurity scattering described by the transport mean free time, τ . The
latter defines both the diffusion constant and electrical conductivity [10] and is still one
of the most important quantities characterizing conductive properties of experimental
samples. The diffusive behavior is commonly expected to take place in real metals
and semiconductors as long as the sample size is large compared to the mean free path
(typically, � = vFτ with vF being the Fermi velocity) [11] and at low temperatures,
T τ � 1 [12] (the units with � = kB = 1 are used throughout this paper).

A common feature of the above theories is the decaying (diffusive) nature of col-
lective modes (defined as the normal modes of the set of linearized macroscopic
equations). In contrast, the collectivemodes in conventional fluids, both classical (e.g.,
water [13, 14]) and quantum (e.g., 3He [15]), include also sound waves (with the linear
dispersion). This crucial difference can be attributed to the momentum conservation.
Indeed, the usual description of a fluid (or a gas, see [16]) assumes a system of “par-
ticles” (molecules or atoms) interacting by means of local collisions. In the simplest
case (of a single-component, monoatomic fluid) the collisions preserve momentum,
and hence overall there are three global conserved quantities—the number of particles,
energy, and momentum. If, moreover, Galilean invariance is assumed, then the current
is defined by the momentum, which is the key point ultimately leading to the existence
of the sound-like collective mode.

The macroscopic theory describing the flow of a conventional fluid—namely,
hydrodynamics—can be derived in the several ways. One can follow the above pre-
scription using the continuity equations and entropy [1], one can “guess” (or postulate)
the constitutive relations based on the Galilean invariance (or, in the relativistic case,
Lorentz invariance) [13], or one can use the “microscopic” kinetic theory [16]. The
latter approach is justified, strictly speaking, in a dilute gas, but yields the same set
of hydrodynamic equations as the more phenomenological methods. This fact is typ-
ically attributed to the universality of the hydrodynamic approach: the belief that
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long-distance properties are largely independent of the short-distance (microscopic)
details. As a result, strongly interacting fluids (such as water) can be successfully
described by the same hydrodynamic theory as an ideal gas [16].

In condensed matter context, hydrodynamic approaches have been applied to
phonons [17] (also see the recent experiment [18] and references therein) andmagnons
[19], while applications to electronic systems [20–22] have only recently attracted
widespread attention [23–25]. This may appear surprising, after all the Fermi Liquid
theory originally developed for 3He [15] has become a dominant paradigm in solid-
state physics. In 3He, the Fermi Liquid theory can be used to derive the hydrodynamic
equations [26], so why cannot the same be done in solids? Unlike helium atoms, elec-
trons in solids exist in the environment created by a crystal lattice and can scatter
off both lattice imperfections (or “disorder”) and lattice vibrations (phonons). In both
cases, their momentum is not conserved. As a result, the electron motion is typically
diffusive [9], unless the sample size is smaller than the mean free path and the sys-
tem is “ballistic” [11]. For most typical scattering mechanisms in solids, the mean free
path is strongly temperature dependent. In conventionalmetals [10], electron–impurity
scattering dominates at low temperatures, leading to, e.g., the residual resistance. At
high temperatures, the main scattering mechanism is the electron–phonon interac-
tion. In many materials, at least one of these two mechanisms is more effective than
electron–electron interaction at any temperature, leaving no room for hydrodynamic
behavior. In terms of the associated length scales, this statement can be formulated as
�ee � �dis, �e−ph (in the self-evident notation). If a material would exist, where the
opposite conditionwere satisfied at least in some temperature range, then onewould be
justified in neglecting momentum non-conserving processes and applying the hydro-
dynamic theory. For a long time such amaterial was not known. In recent years, several
extremely pure materials became available bringing electronic hydrodynamics within
experimental reach [27–36].

2 Experimental signatures of hydrodynamic behavior

The parameter regime supporting the hydrodynamic behavior can be readily found
in systems where the temperature dependence of key length scales (�ee, �dis, �e−ph ,
etc.) is sufficiently different. This may happen, for example, in two-dimensional (2D)
systemswhere the electron–electron scattering length varieswith temperature as �ee ∼
T −2 (within the typical Fermi Liquid description), while the contribution of acoustic
phonon scattering to the electronic mean free path varies as �e−ph ∼ T −1. At the same
time, the low-temperature values of �ee are easily surpassed by the mean free path
�dis in ultra-pure samples. Hence, 2D systems may offer an intermediate temperature
window [23, 24, 37, 38], where electron–electron interaction is the dominant scattering
process and hence appear to be plausible candidates to support the hydrodynamic
behavior. It is then not surprising that many experiments on electronic hydrodynamics
were focusing on 2D systems and especially on graphene. The latter is a particularly
convenient material [27, 28, 39–43] where the mean free path remains long up to room
temperatures, max[�dis, �e−ph] > 1μm.At the same time, at T ≥ 150K the electron–
electron scattering length decreases to �ee ≈ 0.1 ÷ 0.3μm. Since the pioneering work
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on the nonlocal resistance [27] and Wiedemann–Franz law violation [28], several
impressive experiments [39, 41–45] aimed at uncovering the hydrodynamic behavior
of the electronic system in graphene. In particular, it was suggested that a viscous
hydrodynamic flow in electronic systemsmight exhibit enhanced, higher-than-ballistic
conduction [39, 44, 45]. More recently, several breakthrough experiments [30, 34, 44–
54] demonstrated various distinct imaging techniques making it possible to “observe”
the electronic flow in graphene “directly”.

Hydrodynamicflowof electrons in solids should be observable not only in graphene,
but in any material that is clean enough to satisfy the condition that the electron–
electron scattering length is much shorter than the disorder mean free path. In
particular, modern semiconductor technology allows fabricating ultra-high-mobility
heterostructures [30, 32, 36, 55–57], a noticeable improvement since the original
observation of the Gurzhi effect [58].

At the same time, the hydrodynamic behaviormight be observable in awide range of
novelmaterials including the 2Dmetal palladium cobaltate [29], topological insulators
(where the conducting surface states may exhibit hydrodynamic behavior), and Weyl
semimetals [59, 60]. The latter systems have attracted considerable attention since
they exhibit a solid-state realization of the Adler–Bell–Jackiw chiral anomaly [61–
65]. One of the hallmark manifestations of the anomaly in Weyl systems [59, 66] is
the recently observed negative magnetoresistance [64, 67]. Observation of relativistic
Weyl hydrodynamics in these systems is the next milestone in the field.

2.1 Gurzhi effect

In his pioneeringwork [17, 20, 21],Gurzhi considered an idealized problemof the elec-
tric current flowing in a thin, cleanwire. In this case, there are two competing scattering
processes: the electron scattering off the walls of the wire (i.e., system boundaries) and
the electron–electron interaction, either direct or effective (e.g., phonon-mediated).
Assume that at the lowest temperatures, the electron–electron scattering length is
longer than the width of the wire, �ee � d. Then boundary scattering will dominate
leading to the approximately temperature-independent resistivity, ρ ∼ 1/d. Now,
the electron–electron scattering length �ee is inversely proportional to some power
of temperature (for the direct electron–electron interaction �ee ∝ T −2 [20], while
for the phonon-mediated interaction �ee ∝ T −5 [21], see Fig. 1). As the temperature
increases, �ee will eventually become smaller than d. In the limit �ee � d, the resis-
tivity will be determined by the electron–electron scattering, ρ ∼ �ee/d2 [20, 21] and
hence will decrease with the increasing temperature. This effect can be seen as the
electronic analogy of the crossover between the Knudsen (molecular) flow and the
Poiseuille (viscous) flow in a rarefied gas driven through a tube [68].

The above conclusion crucially depends on the assumption that the effective mean
free path d2/�ee is much smaller than the length scale �dis describing bulk momentum-
relaxing processes (i.e., electron–impurity or electron–phonon scattering). Then the
electronic momentum is approximately conserved and one can introduce the hydro-
dynamic description (the expression for ρ follows from the standard expression for
the kinematic viscosity, ν = vF�ee/3 [20]).
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Once the effective mean free path due to electron–electron interaction exceeds
the disorder scattering length, d2/�ee � �dis, the system becomes diffusive and the
resistivity resumes its usual growth with temperature. Hence, ρ(T ) is expected to
exhibit a minimum, see Fig. 1, the result now known as the Gurzhi effect.

A direct observation of the Gurzhi effect in metals is hindered by several factors:
in addition to the electron–impurity and electron–phonon scattering, Umklapp scat-
tering, nonspherical Fermi surface shapes, or Kondo effect may all contribute to the
temperature dependence of the resistivity. An elegant way around these obstacles was
suggested by de Jong and Molenkamp [58]. They used 2D wires defined electrostati-
cally in the two-dimensional electron gas (2DEG) in semiconductor (GaAs/AlGaAs)
heterostructures. Given the weakness of the electron–phonon coupling in this system,
it was possible to control the electronic temperature selectively without changing the
temperature of the whole sample by passing a dc current. The resulting measurement
exhibited a minimum in the differential resistance as a function of the current, see
Fig. 1, which was argued to be equivalent to the Gurzhi effect. More recently, the
observed decrease of resistivity with increasing temperature typical of the Gurzhi
effect (ρ ∼ T −2) was reported in Ref. [32].

2.2 Nonlocal transport measurements

The “modern era” in electronic hydrodynamics was announced in the three back-
to-back Science papers in 2016 reporting the negative vicinity resistance [27] and
Wiedemann–Franz lawviolation [28] in graphene, aswell as hints of the hydrodynamic
behavior in [29] in PdCoO2. These groundbreaking experiments opened the door for
further studies focusing on unconventional aspects of electronic transport in ultra-pure
materials.

Fig. 1 Gurzhi effect. Left panel: a sketch of the theoretically predicted resistance minimum (reprinted with
permission from Ref. [17]; copyright (1968) Uspekhi Fizicheskikh Nauk). Right panel: experimental (IIa
and IIIa) and theoretical (IIb and IIIb) differential resistance dV /d I as a function of the current I at the
lattice temperatures T = 4.5, 3.1, 1.8K, from top to bottom (reprinted with permission from Ref. [58];
copyright (1995) by the American Physical Society)
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Conventional experiments aimed at uncovering inner workings of solids often rely
on transport measurements [10, 16], the tool that proved to be indispensable through-
out the history of condensed matter physics. In a traditional experiment one measures
a current–voltage characteristic and extracts linear response functions determined by
properties of the unperturbed system.A basic quantity that can bemeasured in this way
is the Ohmic resistance R. At the simplest level, R can be described by the Drude the-
ory [10, 71], which essentially amounts to writing down classical equations of motion
of charge carriers in applied electric and magnetic fields with a phenomenological
friction term.

A more intricate question concerns the spatial distribution of the electric current
density, which is most relevant in small samples (chips) with multiple leads. Here
the current density may exhibit complex patterns depending on the external bias,
electrostatic environment, chip geometry, and magnetic field. One way to detect such
patterns is provided by nonlocal transport measurements [72–78], i.e., by measuring
voltage drops between various leads that are spatially removed from the source and
drain, see Fig. 2. These techniques were devised to study ballistic propagation of
charge carriers in mesoscopic systems, but recently they were applied to investigate
possible hydrodynamic behavior in ultra-pure conductors [23, 24, 27, 41, 42].

Nonlocal resistance measurements have also been used to study edge states accom-
panying the quantum Hall effect [70, 79–83]. While the exact nature of the edge states
has been a subject of debate, the nonlocal resistance, RN L , appears to be an intuitively
clear consequence of the fact that the electric current flows along the edges of the
sample. Such a current would not be subject to exponential decay [69] exhibited by
the bulk charge propagation leading to a much stronger nonlocal resistance.

Fig. 2 Hall bar geometry for nonlocal transport measurements. Traditional four-terminal measurement
involves passing a current between leads 1 and 4, while measuring the voltage drop between leads 2 and
3. The resulting resistance R23,14 = V23/I14 is related to the longitudinal resistivity, ρxx = R23,14W/L ,
where W and L are the width and length of the Hall bar. In contrast, a nonlocal measurement consists
of passing a current between, e.g., 2 and 6, while measuring the voltage between leads 3 and 5. In the
case of usual diffusive transport, such voltage should be exponentially suppressed [69], RN L = R35,26 ∼
ρxx exp(−π L/W ). (From Ref. [70]. Reprinted with permission from AAAS)
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2.2.1 Giant nonlocality in magnetic field

While traditional studies of electronic transport tended to focus on low temperatures,
more recent experimental work has been gradually shifting towards measurements
at nearly room temperatures [27, 41, 42, 70, 77]. A detailed analysis of the nonlocal
resistance in a wide range of parameters (temperatures, carrier densities, and magnetic
fields) was performed in Ref. [70] using graphene samples.

At low temperatures and in strong magnetic fields, graphene exhibits the quan-
tum Hall effect (QHE) with well-defined plateaus in Hall resistivity corresponding
to regions of the carrier density where ρxx = 0. At the same densities, the nonlo-
cal resistance also remains zero, but in between the QHE zeros may reach values as
high as 1 k�. At high temperatures, all but one such peaks disappear. The remaining
peak at charge neutrality exhibits behavior that appears to be inconsistent with the
QHE interpretation. In particular, the strong signal persists at near room temperatures,
way beyond the QHE regime with the peak value RN L ≈ 1.5 k� at B = 12 T and
T = 300K, three times higher than that at T = 10K, see Fig. 3.

The unexpected “giant” nonlocality in neutral graphene was originally explained
by diffusion of the mismatched spin-up and spin-down quasiparticles in the presence
of the Zeeman splitting [70]. This interpretation was disputed in Ref. [84] where the
effect was not observed in the nearly parallel field (the Zeeman splitting is independent
of the field direction). Moreover, the magnitude of the effect proposed in Ref. [70] was
disputed in Ref. [85], where the residual quasiparticle density due to Zeeman splitting
(at T = 0 and B = 10 T) was estimated to be ρQ ≈ 2.2 × 106 cm−2 leading to a
nonlocal resistance that is much weaker than the data of Ref. [70].

The alternative explanation suggested in Ref. [85] was based on the “two band”
phenomenology of the electronic system in neutral graphene [86–88]. Indeed, at the
charge neutrality point, the conductance and valence bands in graphene touch. At finite
temperatures, both bands contain mobile carriers leading to a two-component nature

Fig. 3 Nonlocal resistance in graphene. Left panel: QHE regime at T = 10K and B = 12 T (the red
curve indicates that no signal could be detected at B = 0 within the experimental resolution; the curve
is downshifted for clarity and magnified). Right panel: high-temperature regime, T = 300K. (From Ref.
[70]. Reprinted with permission from AAAS)
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of the electronic system. Given the exact particle–hole symmetry at neutrality, this
system is “compensated” and hence there is no classical Hall effect, such that the bulk
Hall conductivity vanishes, ρxy = 0, and the longitudinal conductivity is unaffected
by the magnetic field. In contrast, the same approach yields the nonlocal response that
is strongly field dependent. Indeed, the presence of two types of carriers (electrons
and holes) leads to the existence of two macroscopic currents: the electric current J
and the total quasiparticle (or “imbalance” [89]) current j I ,

j = je − jh, j I = j e + jh, J = e j , (1)

where j e(h) is the electron (hole) current and e is the electron charge. In the absence
of the magnetic field, the neutral current j I is decoupled from J and is practically
undetectable (it does not couple to the electric field). The electrons and holes are
drifting in parallel, but opposite directions. However, the magnetic field bends the
quasiclassical trajectories of charge carriers coupling the two currents and turning j I
in the direction that is orthogonal to J . Now the neutral current can transport charge
carriers to distant parts of the sample, where a nonlocal response is induced, again, by
the magnetic field, see Sect. 4 for more details.

The arguments of Ref. [85] yield the nonlocal response capturing the main qual-
itative features of the effect observed in Ref. [70]. Quantitatively, these results are
consistent with the rapid decay of the nonlocal signal away from the neutrality point,
but overestimate the magnitude of the effect. The latter discrepancy was attributed to
the simplicity of themodel that did not take into account the effects of electron–electron
interaction contributing to resistivity of neutral graphene, the residual carrier popu-
lation at neutrality due to fluctuations of the electrostatic potential [84], and viscous
phenomena, all of which are expected to suppress RN L .

Viscous effects are of particular interest in the context of electronic hydrodynamics
and may also lead to nonlocality. However, these effects are expected to occur in the
absence of magnetic field as well and in graphene are most pronounced away from
charge neutrality.

2.2.2 Negative vicinity resistance

Away fromcharge neutrality, i.e.,when the chemical potential exceeds the temperature,
μ � T , electrons in graphene are typically expected to behave similarly to 2DEG in
semiconductor heterostructures. The contribution of the valence band is exponentially
suppressed and the electronic system comprises only the single component. In that
case, a Fermi liquid is expected to behave hydrodynamically [26], the issue with the
electronic systems being whether the material is pure enough.

Assuming the hydrodynamic regime is possible, the single-component electronic
system should obey the Navier–Stokes-like equation [13, 90–92] with an additional
damping due to disorder scattering [21], as well as the continuity equation. Within
linear response and in the static limit, these equations can be written as (see, e.g.,
Sect. 3)

eE = −mν�u + mu/τdis, ∇u = 0, (2)

123



Hydrodynamic approach to two-dimensional...

whereu is the hydrodynamicvelocity,ν is the kinematic viscosity, andm is the effective
mass (in graphene this should be replaced byμ/v2g , withμ being the chemical potential
and vg the velocity of the Dirac spectrum). The electric current is expressed in terms
of the hydrodynamic velocity as

j = nu, (3)

where n is the carrier density, see also Eq. (1).
The resulting behavior of the current density is determined by the relative strength

of the viscosity and disorder scattering, which can be expressed in terms of the dimen-
sionless “Gurzhi number” (note that this definition iswritten in analogy to theReynolds
number [13] and is the inverse of the number defined in Ref. [93])

Gu = l2

ντdis
, (4)

where l is the typical length scale of the problem. Large values of Gu indicate that the
disorder scattering dominates (such that the current density exhibits patterns typical
to the traditional diffusive behavior), whereas small values of Gu correspond to the
hydrodynamic viscous flow [93–98].

In confined geometries, viscous flows may be accompanied by vortices (or
whirlpools) [93–96], which may be detected by observing negative nonlocal resis-
tance by placing the leads on the opposite sides of a vortex. This idea was realized in
the pioneering experiment of Ref. [27]. Here (unlike the measurement in Ref. [70]) the
leads were placed close to each other (based on the expected vortex size), see Fig. 4,
hence the measured quantity was referred to as “vicinity resistance”.

In agreement with the expectation that the hydrodynamic behavior should occur
at intermediate temperatures, the measured vicinity resistance is negative roughly
between 70K and 250K (with the actual range being density dependent), see Fig. 4.
This observation was supported in Ref. [27] by a solution to the above equations
(2) showing formation of a vortex close to the leads. Similar theoretical results were
reported in Refs. [93–96], see also Ref. [99].

Fig. 4 Negative vicinity resistance in graphene. Left panel: multi-lead device with the measurement
schematic. Right panel: color map showing a wide, intermediate temperature range where the vicinity
resistance is negative (From Ref. [27]. Reprinted with permission from AAAS)

123



B. N. Narozhny

Fig. 5 Vorticity in electronic flows in graphene. Top panel: simulated flow in the experimental device shown
in Fig. 4 (from Ref. [27]. Reprinted with permission from AAAS). Bottom panel: double vortex in a long
device suggested in Ref. [93]. The red and blue colors indicate the alternating sign of the deviation of the
electrochemical potential from its median value. (Reprinted with permission from IOP Publishing)

Despite the apparent agreement between theory and experiment, observation of the
negative vicinity resistance does not represent the proverbial “smoking gun” proving
that the system is in fact in the hydrodynamic regime. The reason is that ballistic
systems may also exhibit negative nonlocal resistance [51] as has been shown both
experimentally [77] and theoretically [100]. This issue has been specifically studied
in Ref. [41], where it was shown that in addition to being negative, the vicinity resis-
tance has to grow with temperature (the crossover from the ballistic to hydrodynamic
behavior was identified with the minimum in the vicinity resistance as a function of
temperature). More recently, Ref. [93] reported a numerical solution to the hydro-
dynamic equations (2) showing the existence of multiple vortices in long samples,
see Fig. 5. Since the vorticity of the adjacent vortices has the opposite sign, placing
multiple leads along the sample and measuring the voltage as a function of distance
from the source electrode should yield a sign-alternating nonlocal resistance which
should in principle distinguish the ballistic and hydrodynamic behavior. Alternatively,
one could try to use one of the novel imaging techniques [50–53] to observe vortices
“directly”.

2.3 Hydrodynamic flow aroundmacroscopic obstacles

The collective hydrodynamicflow is expected to differ strongly from the single-particle
ballisticmotion in systemswithmacroscopic obstacles.Whereas particles tend to scat-
ter off anything they may encounter—sample boundaries, other geometrical features,
or long-range potentials, a viscous fluid tends to avoid obstacles by flowing around
them. As a result, the collective flow maybe more efficient in carrying the constituent
particles through the system in question. In the context of the traditional hydrody-
namics of rarefied gases, this fact has been established already by Knudsen [68]. In
the context of electronic hydrodynamics, this issue was first addressed theoretically
in Ref. [101] and experimentally in Ref. [39].
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2.3.1 Superballistic transport

One of the most common types of “obstacles” studied in the context of electronic
transport is a constriction (or a point contact). This object was extensively studied in
mesoscopic physics [11], with the conductance quantization [102, 103] being the hall-
mark effect. In particular, it was established that ballistic propagation of charge carriers
through a point contact yields the conductance that is constrained by a fundamental
upper bound [104].

Quantization of the point contact conductance can be understood by considering
one-dimensional (1D) subbands in the constriction of the width W (corresponding
to the quantized values of the transverse momentum, ky = ±πn/W ). Each subband
contributes equally to the conductance due to the cancellation of the group velocity
and the 1D density of states (DoS) [11]. Observing that the number of the occupied
subbands is naturally an integer, one finds that the total conductance is quantized,
Gb = 2Ne2/h. In the classical limit, the number of propagating (Landauer) channels
in 2D can be estimated as N = [kF W/π ] (square brackets indicate the integer value),
yielding the upper bound known as the Sharvin limit [11, 104].

The above argument neglects electron–electron interaction and is justified when
the corresponding scattering length is large compared to the width of the constric-
tion, �ee � W . In the hydrodynamic regime, �ee � W , electrons move collectively
avoiding the boundaries and thus may carry the charge through the point contact
more effectively than free fermions (i.e., achieving conductance higher than Gb, see
Fig. 6). Indeed, the solution to the hydrodynamic equations describing the electron
flow through a simplest 2D constriction reported in Ref. [101] yields the conductance

Gh = πe2n2W 2

32η
, (5)

where η is the shear viscosity. Since Gh grows with width faster than Gb, there is a
possibility for the “superballistic” conduction for wide enough channels.

The theoretical expectation (Gh > Gb)was first confirmed in the experiment ofRef.
[39], see Fig. 6, and more recently corroborated in Ref. [44], where a novel imaging
technique was applied to the point contact problem (see Sect. 2.4), see also Ref. [45].
The theory of Ref. [101] was revisited and expanded upon in Ref. [37], where the
same hydrodynamic equation was solved for the current density profile. The authors
of Ref. [37] also analyzed the intermediate parameter regime where hydrodynamic
flows could be realistically observed. Heating effects in similar inhomogeneous flows
were analyzed in Ref. [105].

2.3.2 Flows aroundmacroscopic obstacles

The transition from the Ohmic to hydrodynamic flow observed in the point con-
tact geometry in Refs. [39, 44] is similar to the transition between the Knudsen and
Poiseuille flows [17, 58, 68]. The tendency of the viscous flow to avoid obstacles is
well known in hydrodynamics and is illustrated in Fig. 7. However, a naive solution of
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Fig. 6 Superballistic transport in graphene. Left panel: a typical measuring device showing multiple point
contacts varying in width from W = 0.1 to W = 1.2μm. Right panel: point contact resistance for a
W = 0.5μm constriction at representative carrier densities. The experimental data are represented by
dots, while the horizontal lines indicate the Sharvin limit of the maximum classical ballistic conductance.
Lower-than-the-limit resistance at intermediate temperatures is indicative of the collective, viscous flow of
electrons. (From Ref. [39]. Reprinted with permission from Springer Nature)

Fig. 7 Numerical simulation of the Poiseuille flow in a 2D channel with randomly placed macroscopic
obstacles (represented bywhite shapes). The colormap indicates themagnitude of the flow velocity (ranging
from zero shown in blue to the maximum shown in dark red)

the hydrodynamic equations in a 2D system with macroscopic obstacles within linear
response leads to the so-called “Stokes paradox” [13, 14, 32, 106, 107].

The problem of a motion of a spherical object through an otherwise stationary
viscous fluid (or equivalently, viscous flow around a stationary sphere subject to the
condition of constant flow velocity at infinity) is a classic problem in hydrodynamics
[13, 14, 92]. For flows characterized by small Reynolds numbers, one may neglect
the nonlinear term in the Navier–Stokes equation [13, 90, 91] and solve the resulting
system of linear equations. In 3D, the problem can be solved analytically not only for
the sphere but also for several other simple shapes [14], where one typically calculates
the “drag force” acting on the obstacle.

The above simple solution of the linearized hydrodynamic equations appears to fail
if the obstacle has the form of an infinitely long cylinder (or equivalently, in 2D), the
issue known as the “Stokes paradox”. The reason for the apparent paradox lies in the
approximation used to linearize the Navier–Stokes equation: the Reynolds number
(i.e., the quantitative expression for the relative strength of the nonlinear and viscous
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terms) is scale dependent and cannot be assumed small at arbitrary large distances [13,
14]. Instead of simply neglecting the nonlinear term, one should linearize it following
Oseen [108], whose modified equation yields a consistent solution (as well as the
corrected expression for the drag force).

In contrast to traditional hydrodynamics, in solid-state physics one is typically inter-
ested in linear response properties and has to take into account momentum relaxation
due to weak impurity scattering. The latter allows one to stabilize the solution, while
keeping it within linear response [106, 107]. Indeed, in ultra-pure electronic systems
the Gurzhi number (4) may be much larger than the Reynolds number

Gu

Re
= l2/(ντdis)

ul/ν
= l

uτdis
, (6)

justifying the Stokes approximation in the presence of the impurity scattering.
Stokes flow in the 2D electron system with a circular obstacle was observed in

Ref. [32]. The experiment was performed in a GaAs heterostructure with the role of
the obstacle played by an anti-dot (or a micro-hole) in the middle of the Hall bar,
see Fig. 8. The measured resistivity was interpreted using the macroscopic approach
of Refs. [109, 110]. The two scattering mechanisms (one due to impurity scattering
and another due to viscosity) were treated as two parallel channels of momentum
relaxation (based on the fact that the corresponding relaxation rates can be attributed
to the first and second moments of the semiclassical distribution function). The two
contributions can be separated since they have a different temperature dependence, in
particular, the viscous contribution should exhibit the Gurzhi-like ρ ∼ T −2 behavior.
Now, the obstacle does not seem to affect the latter, while the disorder contribution
at low temperatures is significantly enhanced, see Fig. 8, which is consistent with

Fig. 8 Stokes flow around an obstacle in GaAs. Left panel: image of the Hall bar with two anti-dots used in
the experiment [32]. Right panel: the disorder (squares) and electron–electron interaction (circles) scattering
rates obtained from the experimental data measured in sample with (red) and without (black) the obstacle
(From Ref. [32])
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the expectation of the viscous fluid avoiding the obstacle (as opposed to individual
electrons scattering off it).

2.4 Imaging of electronic flows

Although traditional linear response measurements may be strongly affected by the
collective, hydrodynamic behavior, interpretation of such experiments is not straight-
forward [41]. It would be much easier if one could simply “watch” the flow (in a close
analogy to the usual hydrodynamics). Fortunately, in recent years, several “scanning”
or “imaging” techniques were suggested allowing one to do just that even if indirectly.

The basic requirement for any imaging technique is that it should be non-invasive,
i.e., it should not disrupt the flow itself. When trying to image the flow of electrons,
one can rely either on detecting spatial variation of electric potential [51, 52] or on
detecting the local magnetic field induced by the charge motion [50].

2.4.1 Scanning carbon nanotube single-electron transistor

Electric current flowing through a conductor is known to generate a local change
in electrostatic potential (or “voltage drop”). This potential can be detected using
the capacitive coupling to a local probe such as the scanning single-electron transistor
(SET), seeFig. 9. In particular, a nanotubeSETmayexhibit extremevoltage sensitivity,
while the planar probe design could help minimizing the back action on (or gating)
the sample [52]. Moreover, by applying weak perpendicular magnetic field, the same
probe is able to resolve the Hall voltage associated with the flow, yielding a direct
measure of the local current density.

Applying the nanotube SET technique to doped graphene in the hydrodynamic
regime allowed to image the Poiseuille flow of charge carriers [51]. Similarly to
the case of the Gurzhi effect, see Sect. 2.1, the main goal of the experiment was to
distinguish the collective (hydrodynamic) motion from the single-particle (ballistic)
behavior (assuming �dis is the largest length scale in the problem). However, instead
of contrasting the temperature dependence of the sample’s resistance [41], here one
has to compare the spatial profile of the current density. In the channel geometry, see
Fig. 9, one studies its dependence on the lateral coordinate, j = j(y)ex (where ex is
the unit vector directed along the channel and y is the coordinate across the channel).
The difficulty is that in contrast to the textbook diffusive behavior, where the current
density is uniform (except in the narrow regions close to the sample boundaries),
both in the ballistic and hydrodynamic cases j(y) is characterized by a non-uniform
profile with the maximum at the center of the channel [11, 112], making it difficult to
distinguish the two regimes experimentally.

The hydrodynamic Poiseuille flow in a narrow channel is a textbook problem [13].
Taking into account weak impurity scattering and making the common assumption
of the no-slip boundary conditions, one finds for the electric current density in doped
graphene in the channel geometry

Jx = σ Ex

[
1 − cosh(y/�G)

cosh[W/(2�G)]
]

, (7)
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Fig. 9 Spatial imaging of the voltage drop of flowing electrons in the diffusive (left) and ballistic (right)
regimes [52]. Both plots show the imaged electrostatic potential normalized by the total current (yielding a
quantity with the units of resistance). The data were measured at T = 4K. The diffusive flow was observed
at charge neutrality (determined by the sharp maximum in the two-terminal resistance of the sample), while
the ballistic behavior was imaged at the hole density of 1×1012 cm−2. In the latter case, most of the voltage
drop occurs at the contacts, with the contact resistance approaching the ideal Sharvin value [104, 111]. The
bottom plane shows the equipotential contours superimposed on the schematic of the graphene channel and
contacts, indicating the gradual voltage drop in the diffusive case contrasted to the flat potential typical of
the ballistic motion [112]. (From Ref. [52]. Reprinted with permission from Springer Nature)

where σ in the bulk longitudinal conductivity and �G is the Gurzhi length [93, 110,
113–115]

�G = √
ντdis. (8)

Here ν is the kinematic viscosity, see Eq. (2). The parabolic current density profile
typical of the standard Poiseuille flow [13, 116] can be recovered by assuming a large
Gurzhi length, �G � W . In this limit, the sample resistance is proportional to the shear
viscosity [114], a manifestation of the Gurzhi effect [17].

Introducing more realistic (Maxwell’s) boundary conditions with nonzero slip
length [117] effectively sets the coordinates where the catenary curve (7) reaches
zero outside of the channel, but does not significantly affect the current density in the
bulk of the sample. From the experimental viewpoint, however, the resulting curve is
difficult to distinguish from the non-uniform current density in the ballistic regime,
see the bottom panel in Fig. 10 and Sect. 3.2. As a result, one has to perform other
measurements (e.g., the Hall field, see Fig. 10) to distinguish the two regimes [51].
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Fig. 10 Spatial imaging of the hydrodynamic flow of electrons in doped graphene [51]. Top: the Hall field
Ey as obtained by numerical differentiation of the measured Hall voltage with respect to y, normalized by
the classical value, Ecl = B J/(neW ). The top left panel shows data taken at T = 7.5K, B = ±12.5mT,
and Ecl = 91Vm−1. The right top panel shows data in the presumed hydrodynamic regime at T = 75K,
B = ±18mT, and Ecl = 162Vm−1. The right vertical axis converts the field into the units of the current
density by scaling with ne/B. Bottom: calculated current density Jx /Ju (with Ju = J/W ) and Hall field
Ey/Ecl. The numerical values were obtained using the parameters corresponding to the experimental data
in the top panels. (From Ref. [51]. Reprinted with permission from Springer Nature)

2.4.2 Quantum spin magnetometry

An alternative technique for imaging the electric current density is based on the idea
of measuring the associated stray magnetic field [50]. A sensitive quantum spin mag-
netometer was realized using nitrogen-vacancy (NV) centers in diamonds [118]. In
contrast to Ref. [51], the experiment of Ref. [50] targeted the so-called Dirac fluid in
neutral graphene and contrasted the presumed hydrodynamic regimewith the diffusive
behavior in low-mobility devices. The latter measurements served as a benchmark and
yielded the standard picture of nearly uniform current (exhibiting a sharp decay near
the channel boundaries, see also Sect. 3.2) shown in Fig. 11.

The main result of Ref. [50] is the observation (by means of the scanning NV
magnetometry) of a Poiseuille-like flow of the electric current in neutral graphene
described by a catenary curve (7). Comparing the data to Eq. (7), the authors have
extracted the kinematic viscosity of the Dirac fluid in graphene (see the right panel
in Fig. 11) showing a good quantitative agreement with the theoretical calculations
of Ref. [119] (without any fitting procedure). Nevertheless, the results of Ref. [50]
remain controversial. Within the existing theory of electronic hydrodynamics, the
electric current is related to the hydrodynamic velocity by Eq. (3) up to an Ohmic
correction. Precisely at charge neutrality, n = 0, and Eq. (3) yields zero, implying that
any electric current at charge neutrality is not hydrodynamic, but is rather given by
the Ohmic correction [120, 121] with the corresponding bulk conductivity determined
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Fig. 11 Spatial imaging of the electric current in neutral graphene [50]. Left: reconstructed current density
as a function of the lateral coordinate. The current is normalized by the average charge carrier flux I/W ,
where I is the total flux and W = 1μm is the width of the channel. The spatial coordinate y is normalized
by W and centered on the channel. Red points show data measured in neutral graphene, gray points—in
palladium channel, orange points—low-mobility graphene. The curves correspond to idealized theoretical
expectations: blue—ideal viscous flow, green—uniform current, purple dashed—the current profile of non-
interacting electrons with diffusive boundary condition. Center: similar measurement for W = 1.5μm
compared to the data on the left. Solid lines are fit to Eq. (7). Right: bounds on kinematic viscosity obtained
from fitting the data to Eq. (7). The black curve is the result of a theoretical calculation of Ref. [119] at
T = 300K and no adjustable parameters (FromRef. [50]. Reprinted with permission from Springer Nature)

by electron–electron interaction [122]. The situation is more involved if the system is
subjected to the external magnetic field. In that case, the Ohmic correction acquires an
additional dependence on the hydrodynamic velocity [120],which in particular leads to
positive magnetoresistance [123, 124]. However, a recent theoretical calculation of the
electronic flow in a channel geometry in neutral graphene based on the direct solution
of hydrodynamic equations (see Sect. 4) yields the so-called “anti-Poiseuille” flow
[125], with the current density exhibiting a minimum in the center of the channel—in
contrast to the maximum in Eq. (7), see Sect. 5.

Another feature of the data shown in Fig. 11 not accounted for by the existing
theory is that the electric current vanishes at the channel boundaries. Indeed, the
boundary conditions for the Ohmic correction to Eq. (3) should be derived from the
kinetic theory similarly to those describing ballistic propagation of electrons [11]. In
that case, one has to solve the kinetic equation imposing boundary conditions on the
electronic distribution function. Both extreme limits typically considered in literature,
namely the diffusive and specular boundary conditions, do not lead to the current
vanishing at the boundary.Moreover, the kinetic theory derivation of the hydrodynamic
equations yields the Maxwell’s boundary conditions for the hydrodynamic velocity
[117]. Finally, there is strong experimental evidence [53] for the existence of classical
edge currents in graphene that are not taken into account in existing theories but casting
further doubts on the results shown in Fig. 11.

The importance of edge physics is further highlighted by the experiment of Ref.
[44], where the NV magnetometry was used to image the flow of charge through a
constriction (or a slit) in neutral graphene. The authors performed measurements in a
channel geometry as well with somewhat contradicting results, see Fig. 12. While the
channel measurement at nearly room temperature (T = 298K) yielded the current
density profile similar to that reported in Ref. [50], see Fig. 11, the same profile was
observed at T = 100K implying that the charge flow in the channel is not very sensi-
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Fig. 12 Spatial imaging of the electric current in neutral graphene [44]. a Optical image of the graphene
device showing the locations used in obtaining the current density measurements for the channel geometry
b, c, W = 2.7μm, and the slit geometry (d–f). b Current density profile in the channel near the charge
neutrality point (CNP) at T = 298K. The black dots are the reconstructed current density. cMeasurement
of the current density profile of the channel at the same position as in b, but at T = 100K and n =
7 × 1011 cm−2. d Reconstructed current density magnitude at T = 298K, near the CNP, showing the
characteristic double peaks of Ohmic flow. d Temperature dependence of the reconstructed jy at fixed
carrier density n = 7 × 1011 cm−2 in a line cut through the constriction. e Carrier density dependence of
jy at fixed temperature T = 100K. (From Ref. [44]. Reprinted with permission from the authors)

tive to the variation of the scattering length. In contrast, the current density measured
in the slit geometry exhibited Ohmic behavior at room temperature, while at lower
temperatures and finite charge densities the Ohmic double peaks disappeared indicat-
ing the crossover into the hydrodynamic regime. The authors of Ref. [44] explained
the contradiction between the results in the channel and slit geometries by fact that the
latter is not affected by the boundary conditions as much as the former. They conclude
that while the edge physics is poorly understood the slit geometry is better suited to
observe the Ohmic-viscous crossover.

2.4.3 Non-topological edge currents

Sample edges play a crucial role in all of the experiments discussed so far. Yet, under-
standing of the physics of the edges themselves has proven somewhat challenging.
In traditional condensed matter physics [10], the focus is typically on bulk behavior
and hence a system is modeled to be infinite. Sample geometry and edge scattering
becomes important in mesoscopic physics [11, 112], but most details are encoded in
the boundary conditions. Finally, edge states are being actively researched in the con-
text of the Quantum Hall Effect (QHE) [126, 127] and more generally in the field of
topological insulators [128]. But even in the latter case, the edge behavior is dictated by
the topological properties of the bulk. At the same time, experiments show that sample
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edges (in particular, in graphene, see Fig. 13) may exhibit charge accumulation [48,
129–131] and carry non-topological currents [53, 132].

Charge accumulation at the surface is a known phenomenon in semiconductors
[133] and is a key feature in the traditional theory of the Schottky barrier [134]. Typ-
ically, these effects are associated with “band bending” or local, position-dependent
changes in quasiparticle energy levels in the vicinity of the sample surface (or an
interface). The band bending can also occur in 2D systems. In particular, it has been
suggested that in graphene, band bending leads to p-doping of the edges, due to either
intrinsic mechanisms or charged impurities (or defects) [48, 132, 135]. The resulting
hole accumulation at the sample edges has been used in Ref. [53] to interpret the
highly unusual nonlocal transport observed by means of SQUID-on-tip (SOT) ther-
mal imaging and scanning gate microscopy [47, 48, 136] (for applications of scanning
gate microscopy to 2D electron systems in semiconductor heterostructures, see Ref.
[137]).

The experiment of Ref. [53] provided a deeper insight into the giant nonlocality
observed in neutral graphene subjected to magnetic field in Ref. [70], see Sect. 2.2.1.
While confirming the giant enhancement of the nonlocal resistance at charge neutrality
and inmagnetic field, the new data show a number of novel features: (i) the nonlocality
exists even in the absence of magnetic field; although the observed RN L is much
smaller than in the presence of the field, it is still an order of magnitude stronger that
the Ohmic expectation; (ii) the observed nonlocality is asymmetric with respect to
electron and hole doping; (iii) in magnetic field, the system exhibits the Hall voltage
of the opposite sign (as compared to the naive expectation); and most importantly, (iv)
the observed nonlocality can be suppressed by applying a potential at the sample edges.
The latter observation represents the key evidence in support of the interpretation of
the data offered inRef. [53]. The authors argue that the sample edgesmay carry electric
current which in turn leads to nonlocal resistance. The fact that this current can be
suppressed by a local potential points towards its non-topological origin (a topological

Fig. 13 DFT calculation of the local density of states (LDoS) in a graphene flake [131]. The enhanced
LDoS at the edges appears regardless of the shape of the edge and the presence of macroscopic defects in
the bulk (From Ref. [131])
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current tends to flow around obstacles [48] such that applying a potential would just
“redefine” the edge). The existence of the edge current is further corroborated by the
thermal imaging, see Fig. 14.

The authors of Ref. [53] offer a simple theoretical model to account for the exper-
imental data. Consider a sample that is infinite in x direction, while having a width
W in the y direction. Without charge accumulation at the edges, the sample can be
assumed to host a uniform charge density, while the current density can be found using
the Ohm’s law and the continuity equation. Consider now a different situation, where
the charge density in narrow regions close the sample edge exceeds the bulk density.
Now, the same equations have to be solved separately in the edge and bulk regions
leading to the complicated behavior shown in Fig. 15.

The classical model accounts for the unexpected inversion of the Hall voltage and
edge currents observed in the experiment, but does not explain the physical origin
of these effects at a microscopic level. Some of these features appear to be rather
general for the usual transport equations in the strip geometry. For example, current

Fig. 14 Thermal imaging of a graphene sample [53]. Both images show the local temperature distribution
obtained using the scanning SOT at the background temperature T = 4.2K and B = 0. Left: enhanced
nonlocality in neutral graphene—heat dissipation is extended into the left and right arms of the Hall bar.
Right: Ohmic behavior—heat dissipation is confined to the central region of the sample between the source
and drain electrodes. (From Ref. [53]. Reprinted with permission from Springer Nature)

Fig. 15 Classical model mimicking the effects of charge accumulation at the sample edges [53]. Top: the
setup—a strip-like sample of width W with bulk conductivity σ and narrow edge regions (width w/2) with
the conductivity ησ W/w with η being the phenomenological measure of charge accumulation. Bottom:
non-uniform current density in the presence of the magnetic field B featuring the bulk flow in the direction
opposite to the applied electric field. (From Ref. [53]. Reprinted with permission from Springer Nature)
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flows against the direction of the applied electric fields have also been reported in
Ref. [115], where the hydrodynamics-like phenomenology was used to define distinct
edge regions where charge carriers react to the applied magnetic field differently than
carriers in the bulk of the sample, see also Ref. [87].

Although implications of the results of Ref. [53] are not fully understood at the
time of writing, it is clear that the boundary effects play a very important role in
the observed behavior of small graphene samples. This presents a clear challenge for
the theory which so far was focusing on bulk systems, see Sect. 3. In particular, the
existing solutions of the hydrodynamic equations in the strip geometry (similar to
Fig. 15) were found under the simplest model assumptions of either the no-slip or
Maxwell’s boundary conditions, see Sect. 3.

One could try to avoid the issue of the boundary conditions (except for the bound-
arieswith the source and drain electrodes [138]) by utilizing theCorbino disk geometry
[139]. Due to inherently inhomogeneous current flow (even in the Ohmic regime),
the Corbino disk was suggested as a potential device to measure electronic viscos-
ity [140]. More recently, hydrodynamic behavior in this setting was reported in the
imaging experiment of Ref. [54].

2.5 Wiedemann–Franz law violation

Unconventional charge transport properties exhibited by electronic systems presumed
to be in the hydrodynamic regime may be accompanied by unusual heat transport
leading to strong violations of the Wiedemann–Franz law [141, 142]. Initially an
empirical observation, the Wiedemann–Franz law can be readily understood within
the standard, single-particle transport theory [10]. Qualitatively, if both charge and heat
are carried by the same excitations and affected by the same scattering mechanisms
(as is the case for non-interacting electron models), then the only difference between
the electric and thermal conductivities is the dimensionality, leading to the famous
expression

κ

σ
= LT , L = L0 = π2

3e2
. (9)

Here σ and κ are the electric and thermal conductivities and the coefficient L is
known as the Lorenz number, while the “universal” value L0 corresponds to free
electrons. Now, electrons in solids are typically not free and hence there is no reason
for Eq. (9) to be universally valid. In conventional metals, the Wiedemann–Franz law
is approximately obeyed, for example the Lorenz number in copper exhibits deviations
from L0 up to a factor of 2 at intermediate temperatures (depending on sample purity)
[143]. Consequently, a strong violation of theWiedemann–Franz law almost certainly
an indication of unconventional physics, that in the context of electronic systems may
include hydrodynamic behavior.

2.5.1 Large Lorenz number in neutral graphene

Unconventional thermal transport in neutral graphene was reported already in early
experiments of Refs. [144, 145]. TheWiedemann–Franz lawwas then studied in detail
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in Ref. [28] where it was interpreted as evidence for the hydrodynamic “Dirac fluid”.
An observation of the related phenomenon of giant thermal diffusivity in a Dirac fluid
was reported in Ref. [146].

In hindsight, strong violation of the Wiedemann–Franz law in neutral graphene
should have been expected (see also Ref. [147]) on the basis of the two celebrated
features—the linear spectrum [148–150] and “quantum” conductivity [122, 151–155].
The latter indicates that the unusual feature of the electrical conductivity at charge neu-
trality is not its value, but rather the scatteringmechanismbehind it—electron–electron
interaction. In contrast, the former ensures that the electron–electron interaction does
not relax the energy current (since it is equivalent to the momentum flux, see Sect. 3),
which implies that the thermal conductivity is determined by disorder scattering. As
a result, the Lorenz number is expected to be proportional to the ratio of the disorder
mean free time to the electron–electron scattering time, which in the hydrodynamic
regime (or otherwise in ultra-clean graphene in the appropriate temperature interval)
is assumed to be large, L ∝ τdis/τee � 1, see Fig. 16.

The intermediate nature of the hydrodynamic regime suggested by the data inFig. 16
is corroborated by the results of the experiments on the thermoelectric power [40].
Here it manifested itself in the failure to uncover the ideal hydrodynamic limit where
(in the absence of disorder) the thermopower equals the thermodynamic entropy per
carrier charge [89, 158]. Still, the observed thermopower at relatively high tempera-
tures significantly exceeded the standard Mott relation indicating the hydrodynamic
behavior [40].

Interestingly, the hydrodynamic theory predicts the Wiedemann–Franz law viola-
tion even in doped graphene (in the Fermi-liquid regime) [24, 159] (for a detailed
discussion of the Wiedemann–Franz law violation in Fermi liquids in general see Ref.
[160]), but now the Lorenz number is predicted to be small (and in fact vanish in the
limit of large densities, see Sect. 3). The effect can not be clearly seen in Fig. 16,
presumably due to relatively low densities explored in the data shown. This prediction
suggests a possible relation with the small Lorenz number observed in topological
materials, which has not been fully addressed so far.

Fig. 16 Wiedemann–Franz law
violation in neutral graphene
[28]. The color scheme shows
the Lorenz number as a function
of the charge density and bath
temperature. The unusually large
Lorenz number is observed in
the vicinity of charge neutrality
and in a temperature window
above the disorder-dominated
regime, but below the onset of
electron–phonon coupling
(From Ref. [28]. Reprinted with
permission from AAAS)
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2.5.2 Small Lorenz number in topological materials

Recently, hints of electronic hydrodynamics have been observed in the topological
material W P2 [31, 156], where the Wiedemann–Franz law is also strongly violated,
see Fig. 17. The measured thermal and electrical conductivities in W P2 exhibit fea-
tures that are significantly different from those observed in graphene. The presumed
hydrodynamic regime is limited to temperatures below 20K (as determined by the
electron–phonon scattering dominating transport properties at higher temperatures).
Here, the measured Lorenz number turns out to be small, L � L0, the result that was
attributed to the existence of the hydrodynamic regime (confirmed by the extremely
large measured values of the typical length scale describing momentum-relaxing
scattering properties). Interestingly enough, similar effects have been observed in
a different topological material, MoP [157].

The precise microscopic nature of the proposed hydrodynamic state and especially
its relation to the hydrodynamic regime in graphene remains unclear. An interest-
ing proposal on the experimental measurement of one of the relevant length scales,
the “momentum-relaxing” length (e.g., �dis), which together with the “momentum-
conserving” length �ee determines whether the sample is in the hydrodynamic,
ballistic, or Ohmic regime, was suggested in Ref. [161]. The authors used Sond-
heimer oscillations [162] to extract �dis even in the ballistic case �dis � L (where L
is the typical system size) and suggested that this effect can be used as an effective
quantitative probe for identifying scattering processes in ultra-clean materials.

3 Electronic hydrodynamics

Hydrodynamic description of interacting particles (or excitations) has long been part
of the theoretical toolbox used (in addition to traditional fluid mechanics [13]) in a
wide range of fields including many-body theory [3], superfluids [15, 26], quark–
gluon plasma [163], or interstellar matter [164]. The underlying general idea allowing
to develop the hydrodynamic theory suitable to such different circumstances is the

Fig. 17 Wiedemann–Franz law violation in topological materials. Left: the Lorenz number extracted from
measurements of the electrical and thermal conductivities in aW P2 micro-ribbon (width 2.5μm) (Reprinted
from Ref. [156]). The inset shows the zoomed-in low-temperature region of the same data. Central: the
Lorenz number in bulk (mm-sized) single crystals of W P2 (Reprinted from Ref. [31]). Green dots show
the data from the left plot. Right: the Lorenz number in MoP (Reprinted from Ref. [157])
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universality of the long-time, long-wavelength behavior, i.e., the assumption that
macroscopic (long-distance) physics is independent of microscopic details and is gov-
erned by symmetries, which can be expressed in terms of continuity equations.

The most common symmetry assumed in physics is time translation invariance
leading to energy conservation. The corresponding continuity equation reads

∂t nE + ∇ · j E = 0, (10a)

where nE is the energy density and j E is the energy current.
The second conservation law typically assumed in the context of electronic sys-

tems is the particle number (or charge) conservation (manifesting gauge invariance)
described by the continuity equation

∂t n + ∇ · j = 0. (10b)

Here n and j are the particle number and current densities while the charge and electric
current densities differ by a factor of the electric charge, see also Eq. (1).

Supplementing equations (10a) and (10b) by the thermodynamic equation of state
and the entropy balance equation [1] onemay arrive at themacroscopic theory describ-
ing the long-distance properties of the system and find the spectrum of the collective
modes. The resulting behavior is diffusive (i.e., equivalent to the standard Drude-like
approach to electronic transport [10]).

In contrast, conventional fluids are additionally assumed to be translationally invari-
ant which implies momentum conservation described by the continuity-like equation
for the momentum density, nk,

∂t n
α
k + ∇β�

αβ
E = 0. (10c)

Here �
αβ
E is the momentum flux (or stress-energy) tensor. Introducing momentum

conservation has a drastic effect on the collective modes of the system leading to
the appearance of a mode with the linear dispersion, i.e., the sound mode [1]. The
existence of the latter is the crucial distinction between hydrodynamics and other
macroscopic, long-wavelength theories (although a more general interpretation of the
term “hydrodynamics” is also used in literature, see, e.g., Ref. [1]).

The explicit form of the hydrodynamic equations can be obtained by supplement-
ing the continuity equations (10) by the so-called “constitutive relations” reducing
the amount of independent variables and turning Eqs. (10) into a closed set. This is
typically done under the assumption of local equilibrium [13]. Moreover, the form
of the stress-energy tensor in the moving fluid is often obtained by relating to the
properties of the stationary fluid (that are assumed to be known). To do that, one needs
to change the reference frame to the rest frame of the fluid. Consequently, traditional
hydrodynamics [13] distinguishes the two cases of Galilean- and Lorentz-invariant
fluids, i.e., the classical and relativistic hydrodynamics. While early applications of
the hydrodynamic approach to electronic transport were based on the classical the-
ory [17, 22, 165], it is the possibility of realization of relativistic hydrodynamics in
graphene that ignited the current interest in the field.
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3.1 Relativistic hydrodynamics in a solid-state laboratory

The discovery of graphene and Dirac fermions in it [151] has provided a unique
opportunity to study relativistic effects in a solid-state laboratory [166]. In particular,
earlywork on collective electronic flows attempted to adapt relativistic hydrodynamics
in (2 + 1) dimensions to Dirac fermions in graphene [147, 167].

3.1.1 Ideal relativistic fluid

Standard equations of relativistic hydrodynamics [13] are encoded in the relation

∂T k
i

∂xk
= 0, (11)

where T ik is the relativistic stress-energy tensor (in graphene, this is a 3× 3 tensor in
the (2 + 1)-dimensional space-time)

T ik = wui uk − pgik, (12a)

with w and p being the enthalpy and pressure, respectively, in the local rest frame.
For the purposes of this review, it will be instructive to write down the explicit form

of the individual components of T ik : the energy density

T 00 = w

1 − u2/v2g
− p, (12b)

the momentum density (here we adopt the usual practice of denoting the space com-
ponents by Greek indices, while the Roman indices refer to the space-time)

T 0α = wuα

vg

(
1 − u2/v2g

) , (12c)

and finally the momentum flux density

T αβ = wuαuβ

v2g

(
1 − u2/v2g

) + pδαβ. (12d)

The energy flux density is proportional to the momentum density and is given by
vgT 0α . This fact will be explored in more detail below.

The relativistic generalization of the Euler equation [168] can be obtained by pro-
jecting Eq. (11) onto the direction perpendicular to the 3-velocity ui [13]. This yields

w

1 − u2/v2g

[
∂

∂t
+ u·∇

]
u + v2g∇ p + u

∂ p

∂t
= 0. (13a)
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Supplementing the Euler equation (13a) by the relativistic continuity equation

∂
(
nuk
)

∂xk
= 0, (13b)

and the thermodynamic equation of state

w = 3p, (13c)

one can quickly convince oneself that the ideal flowdescribed byEq. (13a) is isentropic

∂
(
suk
)

∂xk
= 0. (13d)

Equations (13) represent the closed set of hydrodynamic equations describing an ideal
(non-dissipative) flow of a single-component relativistic fluid in a (2+1)-dimensional
space-time with the velocity vg playing the role of the speed of light. This theory
possesses a collectivemode [24, 121, 122, 169–176]with the linear dispersion relation

ω = vgq√
2

. (14)

In the literature, this mode has been referred to as the “cosmic sound” [169] or the
“second sound” [174].

3.1.2 Electronic fluid in graphene

The ideal hydrodynamic theory outlined in the previous Section can be considered a
purely phenomenological since it is based on an implicit assumption of equilibrium
in the local rest frame without discussing the physical processes responsible for the
equilibration. In the case of graphene, that has to be electron–electron interaction,
which is the classical, three-dimensional Coulomb interaction. The latter point refers
to the fact that although graphene is atomically thin so that the electron motion is
restricted to two dimensions, the electric field induced by the electron charges is not.
The former point refers to the orders of magnitude difference between the electron
velocity and the speed of light, vg � c, preventing the above hydrodynamic theory
and electromagnetic fields to be transformed by the same Lorentz transformation. This
issue was addressed in detail in Ref. [147].

Coulomb interaction can be included in the hydrodynamic description by re-writing
the relativistic Euler equation (11) in the form

∂T k
i

∂xk
= e

c
Fik jk . (15)

Notice, that in the right-hand side of this equation one has to write the speed of light,
which is inconsistent with the use of the velocity vg in the stress-energy tensor (12).
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A possibility to resolve this issue was suggested in Ref. [147]. Indeed, redefining the
electromagnetic field tensor Fik and the current j k as

Fik =
⎛
⎝ 0 (c/vg)Ex (c/vg)Ey

−(c/vg)Ex 0 −B
−(c/vg)Ey B 0

⎞
⎠ , (16)

j k = (vgn, j
)
, (17)

one may remove the inconsistency from Eq. (15) turning it into the standard form
of the relativistic Euler equation. However, this is only a partial solution since the
redefined field tensor (16) leaves only two Maxwell’s equations intact,

∇ × B = 0, ∇ ·E = 4πen, (18)

while the other two are violated leaving the above approach questionable.
Even if the modified equation (15) can be accepted for those problems that do

not involve the two violatedMaxwell’s equations (e.g., a description of stationary cur-
rents), there are other issues that prevent one from treating electronic flows in graphene
as truly relativistic. As alreadymentioned above, there are other scattering processes in
graphene (and in any other solid) affecting the behavior of charge carriers. These may
include electron–phonon and disorder scattering, Auger processes, and three-particle
collisions, none of which are Lorentz-invariant. Moreover, typical currents studied in
present-day experiments are small enough, such that the hydrodynamic velocity is
small as well, u � vg . As a result, one would be interested in the non-relativistic limit
of the hydrodynamic equation (15) anyways. Now, the non-relativistic form of hydro-
dynamics can also be derived within the kinetic theory approach (see the next section),
where all of the above issues can be consistently taken into account. In the absence
of dissipative processes, the generalized Euler equation for the hydrodynamic elec-
tronic flows in graphene obtained from the kinetic theory does indeed closely resemble
Eq. (13a), while containing additional terms taking into account scattering processes
that were not considered so far. In addition, introducing dissipative processes within
the phenomenological approach involves defining new parameters, such as electrical
conductivity and viscosity, that can only be determined in an experiment. While the
kinetic theory provides amethod to “calculate” these parameters, the accuracy of these
calculations may be limited depending on the initial assumptions allowing one to for-
mulate the kinetic equation in the first place. The form of the dissipative corrections
remains the same in both approaches providing a useful checkpoint.

3.2 Kinetic theory approach

Kinetic approach has been used to describe electronic transport in solids for decades
[10].While applicability of the kinetic theory to quantummany-body systems remains
an active area of research [177], it is often assumed that at least at high enough temper-
atures electrons behave semiclassically such that the kinetic theory is applicable. At
the same time, this implies that quasiparticle excitations are long-lived, the assump-
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tion that might not be valid in strongly correlated or hydrodynamic regimes. Strictly
speaking, the kinetic equation can only be applicable in weakly interacting electronic
systems. This might be a problem in graphene, where the effective coupling constant
in an idealized model is αg = e2/vg ≈ 2.2 (which may be reached in suspended
graphene) and while an insulating substrate may reduce this value (by a factor of
the dielectric constant), the resulting αg is not small (typically, αg ≈ 0.2 ÷ 0.3 [43,
178]). Consequently, derivation of the hydrodynamic equations has to rely on univer-
sality: one assumes that the form of the equations is independent of the interaction
strength (similarly to how the Navier–Stokes equation derived from the kinetic theory
of rarefied gases [16] can be used to describe properties of water, where the kinetic
equation is not applicable). Calculation of kinetic coefficients then has to rely on the
renormalization group procedure [119, 179] treating αg as a running coupling constant
[180–183]. One renormalizes the theory to the parameter regime, where the coupling
constant is small, solves the kinetic equations, and then renormalizes back to realistic
parameter values. For a more microscopic approach to deriving the hydrodynamic
equations based on the nonequilibrium Keldysh technique, see Ref. [184]. This paper
provides a proper microscopic treatment of inelastic electron–electron scattering that
is responsible for establishing the local equilibrium that is the central assumption of
the kinetic approach discussed below.

3.2.1 Quasiclassical Boltzmann equation

At high enough temperatures (where the hydrodynamic behavior is observed [27,
39, 41, 42]), the quasiparticle spectrum in monolayer graphene [185] comprises two
bands of carriers (the “conductance” and “valence” bands) that touch in the corners
of the hexagonal Brillouin zone, i.e., at the “Dirac points” (multilayer graphene was
discussed in Ref. [186]). In the vicinity of the Dirac points the spectrum can be approx-
imately considered to be linear (logarithmic renormalization due to electron–electron
interaction [181], see also Ref. [187], is observed at much lower temperatures [188]).
The linearity of the Dirac spectrum leads to two important kinematic effects: (i) the
suppression of Auger processes [89, 189] and hence approximate conservation of the
number of particles in each band independently [23, 24, 89, 190]; and (ii) the so-called
“collinear scattering singularity” [122–124, 153, 180, 190–192]. The former represents
an additional conservation law that is not taken into account in the above phenomeno-
logical hydrodynamics. The latter is justified by the smallness of the effective coupling
constant and allows for a nonperturbative solution of the Boltzmann equation (recall
that the Boltzmann approach itself is justified in the weak coupling limit, αg → 0).

Consider now the two-bandmodel of low-energy quasiparticles in graphene.Within
the kinetic approach, the quasiparticles can be described by a distribution function,
fλk, where each quasiparticle state is characterized by the band index (or chirality),
λ = ±1, and 2D momentum, k. The spectrum is assumed to be linear,

ελk = λvgk, (19a)
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with the straightforward relation between velocities and momenta,

vλk = λvg
k
k
, k = λk

vg
vλk = ελkvλk

v2g
. (19b)

The distribution function satisfies the kinetic (Boltzmann) equation

L fλk = Stee[ fλk] + StR[ fλk] + Stdis[ fλk], (20a)

where the left-hand side (LHS) is defined by the Liouville’s operator

L = ∂t + v ·∇r +
(

eE+ e

c
v×B

)
·∇k, (20b)

and the right-hand side (RHS) represents the collision integral.
In the simplest Golden-Rule-like approximation, different scattering processes con-

tribute to the collision integral in the additive fashion; hence, the form of the RHS in
Eq. (20a). In the hydrodynamic regime, the electron–electron interaction (described
by Stee) is the dominant scattering process responsible for equilibration of the system.
Consequently, local equilibrium is described by the distribution function that nullifies
Stee [16]

Stee

[
f (le)
λk

]
= 0, f (le)

λk =
{
1+exp

[
ελk−μλ(r)−u(r)·k

T (r)

]}−1

, (21)

where μλ(r) is the local chemical potential and u(r) is the hydrodynamic (or “drift”)
velocity. The local equilibrium distribution function (21) allows for independent
chemical potentials in the two bands, which can be expressed in terms of the “ther-
modynamic” and “imbalance” [89] chemical potentials

μλ = μ + λμI . (22)

In global equilibrium (i.e., for stationary fluid)

f (0) = f (le)
λk (μI = 0, u = 0). (23)

In addition, two more scattering processes need to be taken into account. Even
ultra-pure graphene samples contain some degree of (weak) disorder. Scattering
on impurities violates momentum conservation leading to a weak decay term in
the generalized Euler equation [23, 24, 120, 121]. This process (as well as other
momentum-relaxing processes) is described in Eq. (20a) by Stdis. At the same time,
electron–phonon interaction may lead not only to the loss of electronic momentum
(which is already taken into account in Stdis), but also to the loss of energy. Conse-
quently, despite being subdominant in the hydrodynamic regime the electron–phonon
interaction should be taken into account as one of the dissipative processes. However,
due to the linearity of the Dirac spectrum, lowest order scattering on acoustic phonons
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is kinematically suppressed. Instead, it is a higher order process, the so-called disorder-
assisted electron–phonon scattering [193] or “supercollisions” [194–197], that plays
the most important role in the hydrodynamic regime. Indeed, supercollisions vio-
late not only energy conservation, but also conservation of the number of particles
in each band. As a result, continuity equations for energy and single-band particle
numbers also acquire weak decay terms. In the kinetic equation (20a), these effects
are described by StR (the subscript “R” here stands for “recombination”, see Refs.
[86–89, 114, 198–200]).

Within the kinetic theory, conservation laws are manifested in the sum rules for the
collision integrals. There are four conservation laws to consider: energy, momentum,
and particle number in the two bands. The latter can be expressed in terms of the
“charge” and “total quasiparticle” (or imbalance) numbers similarly to Eq. (22)

nλ = 1

2
(λn + nI ) . (24)

The continuity equation (10b) representing global charge conservation can be obtained
by summing the kinetic equation (20a) over all quasiparticle states. During this pro-
cedure, all three collision integrals in Eq. (20a) vanish [16]

N
∑
λ

∫
d2k

(2π)2
Stee[ fλk] = N

∑
λ

∫
d2k

(2π)2
StR[ fλk]

= N
∑
λ

∫
d2k

(2π)2
Stdis[ fλk] = 0. (25a)

Moreover, electron–electron and disorder scattering also conserve the number of par-
ticles in each band, such that

N
∑
λ

∫
d2k

(2π)2
λStee[ fλk] = N

∑
λ

∫
d2k

(2π)2
λStdis[ fλk] = 0, (25b)

whereas supercollisions lead to a decay term in the continuity equation for the imbal-
ance density

N
∑
λ

∫
d2k

(2π)2
λStR[ fλk] ≈ −μI n I ,0λQ ≈ −nI −nI ,0

τR
. (25c)

Here nI ,0 is the imbalance density at global equilibrium, see Eq. (23), i.e., for μI = 0
and u = 0. The first equality in Eq. (25c) was suggested in Ref. [89] and serves
as the definition of the dimensionless coefficient λQ , while the second (valid to the
leading order) was suggested in Refs. [87, 120] and offers the definition of the “recom-
bination time” τR (see also Ref. [198]). The two expressions are equivalent since
nI −nI ,0 ∝ μI .

Similarly, both electron–electron and disorder scattering conserve energy, hence
the corresponding collision integrals vanish upon summation over all quasiparticle
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states with an extra factor of energy

N
∑
λ

∫
d2k

(2π)2
ελkStee[ fλk] = N

∑
λ

∫
d2k

(2π)2
ελkStdis[ fλk] = 0. (25d)

Integrating the “recombination” collision integral one finds [201]

N
∑
k

ελkStR[ fλk] = −μI nE,0λQE ≈ −nE −nE,0

τRE
. (25e)

The equivalence of the two forms of the decay term stems from nE −nE,0 ∝ μI

assuming the electrons and holes are characterized by the same temperature.
Supercollisions contribute differently to recombination and energy relaxation.

Recombination typically implies scattering between the quasiparticle states in dif-
ferent bands only. At the same time, supercollisions may also take place within a
single band [193]. This process does not affect the number of particles in the band,
but is accompanied by the energy loss as the electron scatters from a higher energy
state into a lower energy state (losing its momentum to the impurity). Consequently,
this process provides an additional contribution to energy relaxation. Thus, the time
scales τR and τRE should be quantitatively different, although of the same order of
magnitude (at least at charge neutrality and in the hydrodynamics regime).

Now, other processes may contribute to τR and τRE , including direct electron–
phonon scattering [86, 89, 124, 192, 193, 202, 203], scattering on optical phonons
[158, 204], three-particle collisions [24, 204], and Auger processes [23, 24, 89, 190].
Taking into account these effects does not change the functional form of the continuity
equations leaving the integrated collision integrals (25c) and (25e) intact, but may
affect the theoretical estimates of the values of τR and τRE (see Refs. [193, 201]).
Given the approximate nature of such calculations, one may treat these parameters as
phenomenological taking into account all relevant scattering processes.

Finally, electron–electron interaction conserves momentum and hence

N
∑
λ

∫
d2k

(2π)2
k Stee[ fλk] = 0. (25f)

On the other hand, weak disorder scattering leads to a weak decay term that should be
included in Eq. (10c). Within the simplest τ -approximation [16, 120]

N
∑
λ

∫
d2k

(2π)2
k Stdis[ fλk] = nk

τdis
. (25g)

The remaining collision integral StR also does not conserve momentum, but given the
phenomenological nature of τdis [43] (a better version of the disorder collision integral
in graphene should involve the Dirac factors suppressing backscattering [205] which
would lead to the similar approximation but with the transport scattering time, which
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in graphene differs by a factor of 2), the contribution of the next-order supercolli-
sions (involving both disorder and phonons) may be considered to be included in τdis
(similarly to the above discussion of τR and τRE ).

3.2.2 Continuity equations in graphene

Using the above properties of the collision integrals, one can easily obtain the con-
tinuity equations in graphene [23, 24, 120] by integrating the kinetic equation (20a).
In comparison to the “phenomenological” continuity equations (10), the resulting
equation will contain extra terms due to the weak decay processes (discussed in the
previous Section) and external electromagnetic fields. Hence the only true symmetry
of the electronic fluid in a solid is gauge invariance that manifests itself by means of
the continuity equation (10b)

∂t n + ∇ · j = 0, (26a)

where the kinetic definitions of the “charge” density and current are [cf. Eq. (24)]

n = n+ − n−, n+ = N
∫

d2k

(2π)2
f+,k, n− = N

∫
d2k

(2π)2

(
1 − f−,k

)
,

(26b)

and [cf. Eq. (1)]

j = j+ − j− = N
∫

d2k

(2π)2

[
v+,k f+,k − v−,k

(
1− f−,k

)]
. (26c)

In the two-band model of graphene, the number of particles in each band is approx-
imately conserved (see above). Hence, in addition to Eq. (26a), one finds a continuity
equation for the “imbalance density”, see Eq. (24),

∂t n I + ∇ · j I = −nI −nI ,0

τR
, (26d)

where

nI = n+ − n−, j = j+ + j−, (26e)

and the RHS in Eq. (26d) comes from integrating the collision integral, see Eq. (25c).
The continuity equation for the energy density is obtained bymultiplying the kinetic

equation (20a) by ελk and summing over all quasiparticle states,

∂t nE + ∇ · j E = eE · j − nE −nE,0

τRE
, (26f)
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where nE and j E are defined as

nE = N
∑
λ

∫
d2k

(2π)2
ελk fλk (26g)

and

j E = Nv2g

∑
λ

∫
d2k

(2π)2
k fλk = v2gnk. (26h)

The last equality represents the fact that in graphene the momentum density is propor-
tional to the energy density [due to the properties of the Dirac spectrum Eq. (19)]. The
two terms in the RHS in Eq. (26f) come from the Lorentz term in the Liouville’s oper-
ator (20b) and the integrated collision integral, see Eq. (25e). The former physically
represents Joule’s heat.

Finally, the continuity equation representing momentum conservation is obtained
by multiplying the kinetic equation (20a) by k and summing over all states. In contrast
to the “phenomenological” equation (10c), the resulting equations contains extra terms
stemming from the effect of the electromagnetic field and weak disorder (25g)

∂t n
α
k + ∇β�

αβ
E − enEα − e

c

[
j×B

]α = − nα
k

τdis
. (26i)

Here nk is given by Eq. (26h) and the momentum flux tensor is defined as

�
αβ
E = N

∑
λ

∫
d2k

(2π)2
kαv

β

λk fλk. (26j)

3.2.3 Constitutive relations

Continuity equations represent the global conservation laws and are valid without
any further assumptions. Hydrodynamics, however, assumes that the set of continuity
equations can be closed by expressing the vector and tensor quantities (i.e., the currents
and stress-energy tensor) in terms of the “velocity field” u(r). Such expressions are
known as “constitutive relations”. Phenomenologically, they can be derived using the
Galilean or (in the relativistic case) Lorentz invariance [13]. However, neither is valid
for Dirac fermions in graphene (the former due to the linear spectrum and the latter due
to the classical nature of the Coulomb interaction, see Sect. 3.1.2). Instead, one can
derive the constitutive relations from the kinetic theory under the assumption of local
equilibrium [23, 120]. Indeed, substituting the local equilibrium distribution function
into the definitions of the three currents (26c), (26e), and (26h) yields the expected
relations

j = nu, j I = nI u, j E = Wu, (27a)
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whereW is the enthalpy density. This thermodynamic quantity can also be evaluated
using the local equilibrium distribution function, which yields the “equation of state”

W = nE + P = 3nE

2+u2/v2g
, (27b)

where P is the thermodynamic pressure. Both of these quantities appear in the explicit
expression of the momentum flux tensor

�
αβ
E = Pδαβ + W

v2g
uαuβ. (27c)

Combining Eqs. (27) with the continuity equation for momentum density (26i), one
may generalize the Euler equation [168] to Dirac quasiparticles in graphene

W(∂t + u·∇)u + v2g∇P + u∂t P + e(E · j)u = v2g

[
enE + e

c
j×B

]
− Wu

τdis
.

(28)

It is instructive to compare Eq. (28) to the relativistic version of the Euler equation,
Eq. (13a). Formally, the first three terms in the LHS of Eq. (28) coincide with the
three terms of Eq. (13a). The rest of the terms—the Joule’s heat, Lorentz force, and
weak decay due to disorder—have not been considered in the relativistic theory and
are explicitly not Lorentz-invariant. Even though the first three terms in Eq. (28) have
the same form as Eq. (13a), there is a subtle difference: the pressure p in Eq. (13a) is
the thermodynamic pressure in the local rest frame, while P in Eq. (28) is the pressure
in the laboratory frame. The latter is evaluated with the distribution function (21) and
hence is a function of the velocity u, while p = P(u = 0). This point is the only
difference between the relativistic equation of state (13c) and Eq. (27b) as well.

The generalized Euler equation (28) together with the continuity equations (26a),
(26d), and (26f) describe the “ideal” flow of the electronic fluid. In conventional
hydrodynamics “ideal” means “in the absence of dissipation”, which is not quite the
case here, since weak disorder scattering, quasiparticle recombination, and energy
relaxation are already taken into account. However, none of these processes are due
to electron–electron interaction and hence are absent in the conventional theory [13].

3.2.4 Dissipative corrections

In its simplest form, conventional hydrodynamics [13, 16] considers a system of par-
ticles (atoms, molecules, etc.) with the contact (short-range) interaction, such that
individual scattering processes are almost literally “collisions”. These collisions rep-
resent the physical process responsible for equilibration: if the system is driven out of
equilibrium, they tend to restore it. In the process, the system is bound to lose energy,
hence the collisions are responsible for dissipation.

In graphene (and other solids, see below), the situation is slightly more involved,
but the main idea remain the same—physical processes responsible for equilibration
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lead to dissipation that is described by “kinetic coefficients”. This can be described
as follows [13, 16]. Nonequilibrium states are characterized by nonzero macroscopic
current. In the process of equilibration the currents relax (their values are being reduced
towards zero). Hence, the quasiparticle currents (27a) acquire additional terms—the
dissipative corrections [23, 24, 120, 176]

j = nu + δ j , j I = nI u + δ j I . (29a)

In the absence of magnetic field, the dissipative corrections are related to external bias
by means of a “conductivity matrix” [89, 120, 204]

(
δ j
δ j I

)
= �̂

(
eE − T ∇(μ/T )

−T ∇(μI /T )

)
. (29b)

At charge neutrality μ = μI = 0 the matrix �̂ is diagonal. In the absence of disorder,
the upper diagonal element defines the “quantum” or “intrinsic” conductivity [23, 24,
89, 120, 204]

σQ = e2�11(0). (29c)

The third current j E does not acquire a dissipative correction since it is proportional
to the momentum density, see Eq. (26h), and electron–electron interaction conserves
momentum. This point represents the key difference between electronic hydrody-
namics in graphene (or any semimetal with linear spectrum) from conventional fluid
mechanics of systemswith parabolic (Galilean-invariant) spectrum. In the latter case, it
is the particle number (ormass) current j that is proportional to themomentumdensity.
As a result, the energy current gets a dissipative correction described by the thermal
conductivity κ that is determined by interparticle collisions. In the hydrodynamic the-
ory of graphene, the role that is equivalent to that of κ is played by the elements of
the matrix �̂. The matrix nature of �̂ reflects the band structure of graphene. In the
case of strong recombination, the imbalance mode becomes irrelevant and one is left
with the single dissipative coefficient σQ , see Ref. [24]. Now, the thermal conductivity
in graphene arises purely due to weak disorder scattering that is already taken into
account in the Euler equation (28). This is the reason for the strong violation of the
Wiedemann–Franz law in neutral graphene, see Sect. 2.5.1.

The kinetic coefficients �̂ can be found by solving the kinetic equation (20a) per-
turbatively using the standard procedure [16, 24, 121, 147]. In a bulk system and in
the absence of magnetic field, this calculation was performed in detail in Ref. [120],
where a 3×3 matrix was considered [i.e., adding the energy current and its relaxation
due to weak disorder to Eq. (29b)]. The following 2×2 matrix was introduced in
Ref. [176]. In both cases, one expresses the matrix �̂ as a linear combination of the
interaction and disorder contributions

�̂ = M̂ Ŝ
−1
xx M̂, Ŝxx = α2

gT 2

2T 2 T̂ + π

T τdis
M̂, (30a)
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where (following the 2×2 notation)

M̂=
(

1− 2ñ2

3ñE

T
T

xT
T − 2ññ I

3ñE

T
T

xT
T − 2ññ I

3ñE

T
T 1− 2ñ2I

3ñE

T
T

)
, (30b)

with dimensionless densities (in self-evident notation; Lin(z) is the polylogarithm)

ñ = Li2
(−e−x )− Li2

(−ex ), ñ I = x2

2
+ π2

6
, ñE = −Li3

(−ex )− Li3
(−e−x ),

x = μ/T , T = 2T ln [2 cosh(x/2)] , (30c)

and dimensionless scattering rates

T̂ =
(

t−1
11 t−1

12
t−1
12 t−1

22

)
, t−1

i j = 8πT
α2

g N T 2 τ−1
i j . (30d)

Here τ−1
i j represent the integrated collision integral appearing while solving the kinetic

equation within the three-mode approximation [120, 121, 153, 174]. The fact that
the collision integrals can be represented by the effective scattering rates τ−1

i j is not
equivalent to the simplest τ approximation that was employed above for the collision
integrals Stdis and StR . Instead, this is simply a manifestation of the dimensionality
of a collision integral (that is inverse time).

The numerical values of the scattering rates (30d) were discussed in Ref. [206].
In particular, at charge neutrality the off-diagonal elements vanish, t−1

12 (0) = 0. The
diagonal element t−1

11 (0) determines the “intrinsic” or “quantum” conductivity matrix,
σQ . For small x � 1 the dimensionless “scattering rates” ti j have the form [206]

1

t11
= 1

t (0)11

+ x2
(

1

t (2)11

− 1

8 ln 2

1

t (0)11

)
+ O(x3), (31a)

1

t12
= x

t (1)12

+ O(x3), (31b)

1

t22
= 1

t (0)22

+ x2
(

1

t (2)22

− 1

8 ln 2

1

t (0)22

)
+ O(x3). (31c)

For unscreened Coulomb interaction, the dimensionless quantities t (0,1,2)i j are indepen-
dent on any physical parameter. Numerically, one finds the values [176] (neglecting
the small exchange contribution [191]):

(
t (0)11

)−1 ≈ 34.63,
(

t (2)11

)−1 ≈ 5.45,
(

t (1)12

)−1 ≈ 5.72,
(

t (0)22

)−1 ≈ 19.73,
(

t (2)22

)−1 ≈ 5.65.
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In the case of screened interaction, the quantities t (0,1,2)i j depend on the screening
length.

The above values for the effective scattering rates yield the following value for the
intrinsic conductivity

σQ = Ae2/α2
g, A ≈ 0.12. (32)

The quantity σQ was studied by multiple authors [24, 120–123, 147, 152, 153, 191]
and is a temperature-dependent constant. This temperature dependence appears due
to the logarithmic renormalization of the coupling constant αg [179].

The above theoretical values can be related to the experimental data of Ref. [43].
Using the value of the coupling constant αg ≈ 0.23 that is consistent with measure-
ments at charge neutrality, the dimensionfull scattering rates at a typical temperature
T = 267K have the following values

τ−1
11 ≈ 7.35THz, τ−1

22 ≈ 4.17THz.

The disorder scattering rate at T = 267K can be estimated as

τ−1
dis ≈ 0.8THz.

In the opposite limit of strongly doped graphene, x � 1, all elements of the matrix
(30d) coincide approaching the value [120, 176, 206]

t−1
i j (μ � T ) → 8π2

3
. (33a)

The reason for this is the exponentially small contribution of the second band in which
case the two currents j and j I coincide. In this limit, the corresponding dimensionfull
rate vanishes

τ−1
11 ≈ π Nα2

gT 2

3μ
, (33b)

leading to the vanishing dissipative corrections to the quasiparticle currents

δ j = δ j I → 0. (34)

As a result, electric current has the hydrodynamic form (3) leading to the use of the
hydrodynamic approach to electronic transport in doped graphene, both theoretically
[95, 96, 100, 101, 207] and experimentally [27, 41, 42, 51]

In the presence of magnetic field or in confined geometries the dissipative correc-
tions to quasiparticle currents are more complicated. External magnetic field entangles
all three modes and hence the corrections to quasiparticle currents acquire a depen-
dence on the hydrodynamic velocity u [120]. In confined geometries, the coordinate
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dependence of the distribution function becomes important and as a result the dis-
sipative corrections (29) become non-uniform [125]. In that case, the usual local
conductivitymay become poorly defined [53, 125], but the issue remains insufficiently
explored.

3.2.5 Electronic viscosity

Dissipative processes also contribute a correction to the momentum flux (stress-
energy) tensor (26j). In the non-relativistic limit, one writes the dissipative correction
to �

αβ
E [here �

αβ
E,0 denotes the tensor given in Eq. (27c)]

�
αβ
E = �

αβ
E,0 + δ�

αβ
E , (35a)

to the leading order in gradient expansion as

δ�
αβ
E = ηαβγ δ∇γ uδ, (35b)

where ηαβγ δ is the rank-four viscosity tensor [13]. In a fully rotationally invariant
system the explicit form of the viscosity tensor is dictated by symmetry and in 2D is
given by

ηαβγ δ = η
(
δαγ δβδ + δαδδβγ

)+ (ζ − η)δαβδγ δ, (35c)

where η and ζ are the shear and bulk viscosity, respectively.
In graphene, the bulk viscosity vanishes, at least to the leading approximation [23,

24, 113, 121, 152], similarly to the situation in ultrarelativistic systems [16, 208] and
Fermi liquids [26, 209] (although it may appear in disordered systems in magnetic
field [210]). As a result, the leading term of the gradient expansion of the dissipative
stress tensor has the form [13, 119, 120]

δ�
αβ
E = −ηDαβ, (35d)

where

Dαβ = ∇αuβ + ∇βuα − δαβ∇ ·u. (35e)

In the presence of magnetic field, the shear viscosity acquires a field dependence [109,
110, 165] and the correction to the stress tensor gains an additional contribution

δ�
αβ
E = −η(B)Dαβ + ηH (B)εαi jDiβe j

B, (35f)

where eB = B/B and ηH (B) is the Hall [109, 110, 113, 120, 165, 211–214] viscosity.
While the sign of η is fixed by thermodynamics [13, 16], the sign of ηH is not.
Equation (35f) follows Ref. [42]: the Hall viscosity is positive for electrons [120] (and
negative for holes).
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Electronic viscosity can be calculated in two different ways. As a linear response
function relating stress to strain [211, 215], the viscosity tensor can be found using a
Kubo formula [211, 215, 216] (that can be related to the usual Kubo formula for con-
ductivity [211]). Such calculations are mostly perturbative and were used to evaluate
viscosity in strongly doped graphene [216] and in the high-frequency (collisionless)
regime [215], as well as in disordered 2D electron systems beyond the hydrodynamic
regime [217]. A further extension of this approach yields higher order corrections,
such as “drag viscosity” [218] (by analogy to Coulomb drag [219]). Alternatively,
one can proceed with the solution of the kinetic equation (20a) following the standard
procedure [16, 120, 121]. For arbitrary carrier density this yields a somewhat cum-
bersome expression that can only be analyzed numerically [119], but simplifies in the
limiting cases of neutral and strongly doped graphene.

At charge neutrality and in the absence of magnetic field, the only energy scale in
the problem is the temperature T and hence the shear viscosity has the form [180]

η(μ=0, B =0) = B T 2

α2
gv

2
g
. (36)

The coefficient B has been evaluated in Ref. [180] to have the value B ≈ 0.45.
This result was later confirmed in Ref. [120]. In both cases, the numerical value was
obtained with the simplest model of unscreened Coulomb interaction, which is valid
for small αg , i.e., in the regime of formal validity of the kinetic approach (as well
as the three-mode approximation allowing for nonperturbative results). At realistic
parameter values one has to supplement kinetic calculations by the renormalization
group (RG) approach treating αg as a running coupling constant [179–183]. However,
the product αgvg remains constant along the RG flow [180, 191], such that Eq. (36)
represents the correct form of shear viscosity in graphene at low temperatures and
B = 0 [179].

Experimentally, a measurement of the shear viscosity is nontrivial [140]. However,
nonlocal resistance measurements [27] yield an estimate of a related quantity, the
kinematic viscosity, see Eq. (2). In graphene, the kinematic viscosity is defined as

ν = v2gη

W . (37)

The appearance of the enthalpy density in this definition is a manifestation of the
fact that the hydrodynamic flow in graphene is the energy flow, see Eq. (26h). At
charge neutrality, the kinematic viscosity is determined by the ratio of the velocity and
coupling constant rather than their product [119]

ν(μ=0, B =0) ∝ v2g

α2
gT

, (38)
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and hence is renormalized along the RG flow. In doped graphene, the dominant tem-
perature dependence of the kinematic viscosity can be estimated as [119]

ν(μ � 1, B =0) ∝ v2gμ

α2
gT 2

1

1+T 2/μ2 . (39)

This expression disregards additional temperature dependence arising from the RG
and extra logarithmic factors [24, 119, 216].

Taking into account renormalization and screening effects, one can reach a quan-
titative estimate of the kinematic viscosity that is of the same order of magnitude as
the experimental data reported in Ref. [27], see Fig. 18. Close to charge neutrality,
the theoretical results show excellent agreement with the data reported in Ref. [50]
as shown in Fig. 11 (see, however, Sect. 2.4.2 for the discussion of the controversial
nature of that data).

The field dependence of the shear viscosity was discussed semiclassically in Refs.
[42, 109, 110, 165] in the context of a single-component Fermi liquid or strongly
doped graphene (where only one band contributes to low-energy physical properties).
The resulting behavior is similar to the conventional magnetoconductivity [10]

η(B;μ � T ) = η(B = 0;μ � T )

1 + �2
B

, (40a)

ηH (B;μ � T ) = η(B = 0;μ � T )
�B

1 + �2
B

, (40b)

where

�B = 2ωB τ̃11, ωB = |e|v2g B/(μc). (40c)

The kinetic approach [119] allows one to identify the scattering rate τ̃11 appearing
in Eqs. (40). Indeed, this rate should be distinguished [121, 216] from the transport

Fig. 18 Kinematic viscosity in monolayer graphene. Left: experimental data of Ref. [27] obtained by
means of vicinity resistance measurements, see Sect. 2.2.2 (From Ref. [27]. Reprinted with permission
from AAAS). Right: theoretical result of Ref. [119] obtained using the kinetic theory and renormalization
group techniques (Reprinted with permission from Ref. [119]. Copyright (2019) by the American Physical
Society)
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scattering rate [122, 220] that determines the electrical conductivity and the “quantum”
scattering rate [122] that determines the quasiparticle lifetime. At the same time, the
kinetic theory yields the field dependence of the shear viscosity at charge neutrality
as well [119]

η(B;μ = 0) = T 2

α2
gv

2
g

B + B1γ
2
B

1 + B2γ
2
B

, (41)

where

γB = |e|v2g B

α2
gcT 2 , (42)

where B1 ≈ 0.0037 and B2 ≈ 0.0274. In contrast to the Fermi liquid results, the shear
viscosity at μ = 0 does not vanish in the limit of classically strong field.

Frequency-dependent viscosity was analyzed in Refs. [211, 216, 221]. In particular,
Ref. [221] suggested an existence of a resonance in strong magnetic fields (as well
as the corresponding plasmon damping). Momentum-dependent viscosity in Fermi
liquids (due to head on collisions [222, 223]) was suggested in Ref. [224] (for an
alternative approach to viscosity in Fermi liquids see Ref. [225]).

Beyond graphene, in anisotropic Dirac systems [183, 212] one has to consider the
full viscosity tensor (these are the systemswhere twoDirac conesmerge inmomentum
space [226]; this may be relevant to the organic conductor α-(BEDT-TTF)2I3 under
pressure [227], the heterostructure of the 5/3 TiO2/VO2 supercell [228, 229], surface
modes of topological crystalline insulators with unpinned surface Dirac cones [230],
and quadratic double Weyl fermions [231]). In the absence of magnetic field, the vis-
cosity matrix contains six independent components (in accordance with the Onsager
reciprocity [13, 16]), which scale differently with temperature [183]. In particular,
one of the six components vanishes at lowest temperatures violating the famous (con-
jectured) bound for the shear viscosity to entropy density ratio [232]. As a result, the
authors ofRef. [183] proposed a generalization of the bound to anisotropic 2D systems,
see Sect. 6. An alternative view on anisotropic Dirac semimetals taking into account
spectrum topology (i.e., the Berry curvature) has been developed in Ref. [233]. Hall
viscosity in the quantum Hall regime in such systems was discussed in Ref. [234].
More complicated spectra can be encountered in 3DLuttinger semimetals [235] where
the long-screened nature of the Coulomb interaction leads to a scale-invariant, non-
Fermi-liquid ground state [236]. The hydrodynamic behavior in such systems was
considered in Ref. [237].

3.2.6 Hydrodynamic equations in graphene

Taking into account the dissipative corrections in the continuity equations (26), one
finds the generalization of the Navier–Stokes equation [13, 90, 91] in graphene

W(∂t + u·∇)u + v2g∇P + u∂t P + e(E · j)u =
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= v2g

[
η�u − ηH �u×eB + enE + e

c
j×B

]
− Wu

τdis
. (43a)

The full set of the hydrodynamic equations contains also the continuity equations

∂t n + ∇ · j = 0, (43b)

and

∂t n I + ∇ · j I = −nI −nI ,0

τR
, (43c)

and the thermal transport equation [201]

T

[
∂s

∂t
+ ∇ ·

(
su − δ j

μ

T
− δ j I

μI

T

)]
= δ j ·

[
eE+ e

c
u×B−T ∇ μ

T

]

−T δ j I ·∇
μI

T
+ η

2

(∇αuβ +∇βuα−δαβ∇ ·u)2

−nE −nE,0

τRE
+ μI

n I −nI ,0

τR
+ Wu2

v2gτdis
, (43d)

where s denotes the entropy density. The equation (43d) replaces the continuity
equation for the energy density (26f) as is common in hydrodynamics [13]. The hydro-
dynamic equations are supplemented by the constitutive equations for the quasiparticle
currents (29) and the generalized conductivity matrix �̂, as well as Maxwell’s equa-
tions for the electromagnetic field, in other words, Vlasov self-consistency [16, 23,
120, 121].

3.2.7 Boundary conditions

The state of a conventional fluid is described by the velocity vector and two ther-
modynamic quantities, such as density and pressure. The hydrodynamic equations are
differential equations containing spatial and time derivatives of these variables. Hence,
to find a solution to these equations one has to specify the boundary conditions.

The conventional Navier–Stokes equation [13, 90, 91] greatly simplifies for an
incompressible fluid. In this case, the fluid density is a constant, while the pressure
gradient can be excluded by applying the curl operation to the equation. The resulting
equation is a differential equation for the velocity only.

If a viscous fluid is flowing near a solid, stationary boundary, a simple “no-slip”
boundary condition is often assumed [13] (due to the molecular forces acting between
the fluid and the boundary). On the other hand, a boundary between a fluid and a
gas can be characterized by the “no-stress” boundary condition, where the tangential
stress is continuous at the interface. The two conditions can be “unified” as limiting
cases of a more general condition due to Maxwell [238]

uα
t

∣∣∣
S

= �S eβ
n

∂uα
t

∂xβ

∣∣∣∣
S
, (44)

123



Hydrodynamic approach to two-dimensional...

where en is the unit vector normal to the surface, ut = u − (u ·n)n is the tangential
velocity, and �S is the so-called “slip length”. The no-slip boundary condition, u = 0
(the normal component of the velocity has to vanish at any solid boundary by obvious
reasons) corresponds to �S = 0, while the limit �S → ∞ describes the no-stress case.

In electronic systems, the boundary condition (44) was studied in detail in Ref.
[117] based on the kinetic approach. Solving the kinetic equation in the presence of
a boundary requires boundary conditions for the distribution function. The latter are
well studied [239], especially in the context of mesoscopic physics [11]. Analytic
calculations are possible in the two limiting cases of specular and diffusive scattering
at the boundary. Boundary conditions in the presence of magnetic field were studied
in Ref. [240]. Recently, the issue of the boundary conditions and the slip length in the
magnetic field was discussed in Ref. [241].

Specular scattering refers to ideally smooth boundaries such that the incidence and
reflection angles (of the quasiparticle velocity) coincide. In that case, the distribution
function obeys the simple boundary condition

f (ϕ)

∣∣∣
S

= f (−ϕ)

∣∣∣
S
, (45)

where ϕ is the angle between the quasiparticle (microscopic) velocity v and the bound-
ary. Experimental feasibility of smooth boundarieswas recently explored inRef. [242].

In the diffusive case, the boundary is assumed to be sufficiently rough, such that
the incoming quasiparticle can scatter off the boundary in any direction with equal
probability (independent of the incidence angle). This can be expressed by a more
complex condition. In a channel geometry (see Fig. 19) the corresponding condition
has the form [11]

f (W/2,−π <ϕ<0) = 1

2

π∫
0

dϕ′ sin ϕ′ f (W/2, ϕ′), (46a)

f (−W/2, 0<ϕ<π)|S = 1

2

0∫
−π

dϕ′ sin ϕ′ f (−W/2, ϕ′). (46b)

The resulting slip length is strongly influenced by the choice of the boundary con-
ditions for the distribution function [117]. The authors of Ref. [117] express �S in

Fig. 19 Channel geometry: the
electronic fluid is confined to a
channel (along the x-direction)
of the width W ; v is the
quasiparticle velocity directed at
the angle ϕ to the channel
boundary
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terms of the electron–electron scattering length

�S = g(κ)�ee, κ = h2
1hd−1

2

λd+1 , g(κ) →
{

g0/κ, κ � 1,

g∞, κ → ∞,
(47)

where h1 and h2 are the mean height and correlation length describing the boundary
roughness [239], λ is the (temperature dependent) electron wavelength, and d is the
spatial dimensionality. The precise value of g(κ) varies dramatically, but at exper-
imentally relevant temperatures one finds �S ≈ 0.5μm, the value that agrees with
experimental observations, see Ref. [51].

Full solution to the hydrodynamic equations in electronic systems requires also
boundary conditions for thermodynamic quantities. In electronic systems, these are
most conveniently expressed in terms of electrochemical potentials.

Traditional transport theory is based on a single-electron approach, where the main
mechanism of electrical resistance—and hence, dissipation—is the electron–impurity
and electron–phonon scattering. In this case, the bulk system is characterized by
a local conductivity, while contact interfaces—by the contact resistance. The latter
appears due to equilibration of (originally mismatched) electrochemical potentials in
the two interfacing materials [243]. The bulk and contact resistances could be seen as
independent parts of the overall electrical circuit. If the bulk system is diffusive, the
contribution of the contacts is typically negligible. On the contrary, in ballistic systems
there is almost no dissipation in the bulk, such that most of the voltage drop occurring
in the contacts, see Fig. 9.

In the context of ideal (inviscid) hydrodynamics in nearly neutral graphene, bound-
ary conditions taking into account contact resistance were considered in Ref. [89].
Assuming the leads are represented by a disordered, particle–hole symmetric metal,
the electron and hole currents are given by the difference of the electrochemical poten-
tials across the interface divided by the contact resistance. If no electric current is
allowed in the system (as is appropriate for measurements of thermal conductivity
[24, 89]), this leads to a boundary condition relating the imbalance chemical potential
μI and the total quasiparticle current j I .

An alternative situation was considered in Ref. [138]. In this paper the authors have
considered an idealized situation where a clean (disorder-free), but viscous electron
fluid is contacted by an ideal conductorwith an ideal interface characterized by the van-
ishing reflection coefficient [244]. The absence of disorder implies the lack of Ohmic
dissipation in the bulk, while the ideal contacts do not provide any contact resistance.
In that case the bulk dissipation due to viscosity has to be compensated by the work
done by current source. If both the bulk and the contacts are disorder-free, then the
electric potential exhibits a sharp inhomogeneity (on the hydrodynamic scale—a jump)
in a narrow region close to the interface, which translates into a viscosity-dependent
contribution to the contact resistance that can be positive or negative depending on the
contact curvature sign.

Real samples are likely to exhibit all of the above effects and moreover may host
additional localized charges at the sample edges leading to classical (non-topological)
edge currents [53], see Sect. 2.4.3. The appropriate boundary conditions then strongly
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depend on sample geometry and the specific measurement scheme. For example, the
authors of Ref. [140] suggest using the Corbino disk geometry to measure electronic
viscosity. In their setup, the outer edge of the Corbino disk is isolated, implying
the vanishing radial component of the electric current. In addition, they required the
azimuthal momentum component to diffuse radially, such that the off-diagonal com-
ponent of the viscous stress tensor vanishes at both edges of the disk. Interestingly
enough, the authors of Ref. [140] considered the no-slip boundary conditions as well
and found no qualitative difference with the above approach.

3.3 Hydrodynamic collective modes and plasmons

Hydrodynamic collective modes have been considered by many authors [24, 121, 122,
169–176, 245, 246]. The point of consensus is that the ideal (neglecting dissipative
processes) electronic fluid in neutral graphene is characterized by a sound-like collec-
tive mode (sometimes referred to as the “cosmic sound” [169] or the “second sound”
[174]) with the linear dispersion relation

ω = vgq/
√
2. (48)

In a way, this result justifies the claim that the electronic fluid behave hydrodynami-
cally, see Sect. 1.

Dissipative processes damp the sound mode (48). In contrast to traditional hydro-
dynamics this happens since dissipation due to “external” scattering (e.g., disorder
and electron–phonon scattering) appears already in the description of an “ideal” (i.e.,
inviscid) electronic fluid, see Eqs. (26d), (26f), and (28). Another issue is the regime
of applicability of the dispersion relation (48) or its damped counterparts. The point
is that hydrodynamics is based on the gradient expansion valid at length scales that
are much larger than �ee (representing the energy and momentum conserving interac-
tion responsible for equilibration). At smaller length scales, other, more conventional
collective excitations, such as plasmons [121, 170, 171, 173–175, 247–262], may be
identified.

3.3.1 Electronic “sound” in neutral graphene

Collective excitations in the electronic system in graphene have been recently studied
in detail in Ref. [176]. At charge neutrality and in the absence of magnetic field, the
sound mode (48) damped by the dissipative processes has the dispersion relation

ω =
√√√√v2gq2

2
− 1

4

(
1+q2�2G

τdis
− 1

τRE

)2

− i
1+q2�2G

2τdis
− i

2τRE
, (49)

where �G is the Gurzhi length (8). Although Eq. (49) can be straightforwardly derived
by linearizing the hydrodynamic equations (43), the damping in Eq. (49) can be seen
as exceeding the accuracy of the hydrodynamic regime. Indeed, the gradient expansion
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in neutral graphene is justified for momenta smaller than a certain scale defined by
the electron–electron interaction

q�hydro � 1, �hydro ∼ vg

α2
g T̄

. (50)

Assuming a clean system τdis → ∞ (energy relaxation due to supercollisions [201]
may be also neglected, τRE � τdis), the expression under the square root in Eq. (49)
can be expanded for small q as

v2gq2

2
−
(
1+q2�2G

)2
4τ 2dis

→ v2gq2

2

[
1− Aq2�2hydro− O(τ−1

dis )
]
,

where A is a numerical coefficient. Hence, within the hydrodynamic approach, the
viscous contribution to damping should be neglected, leaving one with the simpler
dispersion [121]

ω =
√

v2gq2

2
− 1

4τ 2dis
− i

2τdis
. (51)

Now, the peculiar nature of the Dirac spectrum in graphene leads to the fact that the
linearized version of the hydrodynamic equations is justified in a wider parameter
region than Eqs. (43) themselves [121, 124, 192, 206] (due to the “collinear scattering
singularity” [23, 24, 121, 153]). In the weak coupling limit, the linear response theory
is valid at much larger momenta

q�coll � 1, �coll ∼ vg

α2
g T̄ | ln αg|

� �hydro, (52)

formally providing one with a justification to extend Eq. (49) beyond the hydrody-
namic regime. However, already at q�hydro ∼ 1 the imaginary part of the sound
dispersion becomes comparable to the real part, at which point the dispersion is no
longer observable.

The nature of the sound mode (48) [or Eq. (49)] becomes clear if one takes into
account the fact that in neutral graphene in the absence of magnetic field the electric
charge is decoupled from the hydrodynamic energy flow. Indeed, at charge neutrality
n = 0 so that the electric field does not enter the linearized Navier–Stokes equation
(43a), while the “conductivity matrix” in Eqs. (29) is diagonal. Hence, the energy flow
is described by the Navier–Stokes equation (43a), while charge transport is described
by the Ohmic relation (29b), together with the Vlasov self-consistency. The latter can
be expressed using the Poisson’s equation

EV = −e∇
∫

d2r ′ δn(r ′)
|r−r ′| . (53a)
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In gated structures [87, 263], this can be simplified to

EV = − e

C
∇δn(r), (53b)

where C = ε/(4πd) is the gate-to-channel capacitance per unit area, d is the distance
to the gate, and ε is the dielectric constant. This approximation neglects the long-
ranged (dipole-type) part of the screened Coulomb interaction and is justified while
the charge density n(r) varies on length scales exceeding d.

The charge sector of the theory is characterized by an overdamped collective mode
with the dispersion

ω = −i D0q2
[
1+eVs(q)

∂n

∂μ

]
, D0 = 1

2

v2gτ11τdis

τ11+τdis
. (54)

In a gated structure, the mode is diffusive (with the Vlasov self-consistent potential
Vs = e/C providing a correction to the diffusion coefficient). For long-rangeCoulomb
interaction (here Vs = 2πe/q), the dispersion remains purely imaginary with ω ∼ iq
at small q.

3.3.2 Electronic “sound” in doped graphene

In doped graphene, the charge and energy modes are coupled by the Vlasov self-
consistency [176]. To the leading order in (weak) energy relaxation this leads to a
sound mode similar to Eq. (49) and a diffusive mode that in a gated structure has the
dispersion

ω = − i

τRE

κv2gq2

(κ+2πC)v2gq2+4πCτ−1
REτ−1

dis

, (55)

where the Thomas–Fermi screening length is given by

κ = NαgkF = Ne2μ/v2g. (56)

For long-range Coulomb interaction, the factor 2πC should be replaced with q. Phys-
ically, the mode (55) describes energy diffusion appearing due coupling of the charge
and energy fluctuations by Vlasov self-consistency.

For a gated structure, the sound mode coincides with the “cosmic sound” (48) at
the lowest momenta, albeit with the sound velocity modified by screening. In the case
of long-range Coulomb interaction the dispersion is no longer sound-like. In the limit
q → 0 (and μ � T ), one finds the spectrum similar to the usual 2D plasmon [12,
121]

ω(q � κ) = − i

2τdis
+
√
1

2
v2gqκ − 1

4τ 2dis
. (57)
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The expression (57) is valid when

q�G � 1, q � κ, v2gκqτ 2dis � 1.

These conditions are consistent with the applicability condition of the hydrodynamic
approach if

vgκτdis � 1 ⇒ Nαgμτdis � 1,

�G � v2gκτ 2dis ⇒ N 2α4
gμτdis(T̄ τdis)

2 � 1.

The above conditions provide a possibility to observe the dispersion (57) in a para-
metrically defined range of wavevectors.

3.3.3 Hydrodynamic modes and plasmons

The above sound-like modes have to be distinguished from plasmonic excitations in
electronic systems. The latter are well studied, also in graphene [121, 170, 173–175,
247–262]. In a degenerate electron gas in 2D, the plasmon dispersion (neglecting
impurity scattering, i.e., τdis → ∞) has the form [247]

ω =
√
2e2μq

(
1 + γ

q

κ

)
, (58)

where γ is a numerical coefficient, that can be evaluated either within the random
phase approximation (i.e., by computing the Lindhard function; this leads to γ = 3/4
[247]), or using a macroscopic (hydrodynamic-like) theory. The latter approach yields
a different value of γ which is typically attributed to the fact that hydrodynamics is
applicable at small momenta (q�hydro � 1) and frequencies, while plasmons are
nonequilibrium excitations that belong to higher momenta [247]. Based on this argu-
ment one might expect that the hydrodynamic collective modes and plasmons simply
have nothing to do with each other [171]. Yet, given the same leading momentum
dependence in Eqs. (57) and (58), the relation between the two is worth investigating.

In graphene, the possibility of discussing momenta exceeding 1/�hydro is afforded
by the collinear scattering singularity [23, 24, 120–122, 124, 152, 153, 192] which
leads to the existence of two parametrically different length scales, see Eq. (52), and
hence of an intermediatemomentum range, �−1

hydro � q � �−1
coll. Here a linear response

theory ofRef. [124] can be used to find the collectivemodes. Remarkably,macroscopic
equations of this theory coincide with the linearized hydrodynamic equations [176]
such that the resulting dispersions should be valid in the hydrodynamic regime as well
and can be compared with the above results.

In doped graphene, the electron system is degenerate and the linear response theory
of Ref. [124] can be expressed in terms of a single equation

∂ J
∂t

+ v2g

2
∇ρ − ν�J − v2g

2

∂n

∂μ
e2E = − J

τdis
, (59)
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where J is the electric current, see Eq. (1), and ρ denotes the charge density. Taking
into account the Vlasov field (53) and continuity equation, one finds the collective
mode with the spectrum

ω =
√
2e2μq

(
1+ q

κ

)
− (1+q2�2G)2

4τ 2dis
− i(1+q2�2G)

2τdis
, (60)

where D = v2gτdis/2 and σ = v2g(∂n/∂μ)τdis/2 are the diffusion coefficient and the
Drude conductivity.

The spectrum (60) is exactly the same as the screened sound mode leading to
Eq. (57). In the limit τdis → ∞, one may expand Eq. (60) in small q → 0. This yields
Eq. (58) with the “wrong” coefficient, γ = 1/2. At the same time, the leading term
(at q � κ) agrees with the Fermi liquid result in the presence of disorder [12] (in the
absence of viscosity). The dispersion (60) is valid for q�coll � 1, however, becomes
overdamped already at q ∼ �−1

hydro. For q � �−1
coll, the quasi-equilibrium description

leading to Eq. (59) breaks down and true plasmons with the dispersion (58) emerge.
At these momenta the spectrum (60) is purely imaginary. Based on this argument, the
authors of Ref. [176] argue that the two modes are not connected. Similar conclusions
were reached in Ref. [173], where it was argued that Coulomb interaction precludes
the appearance of hydrodynamic sound in Fermi liquids.

In graphene at charge neutrality, the “true” plasmon dispersion was established in
Ref. [122] on the basis of microscopic theory. The leading behavior of the plasmon
dispersion is given by

ω =
√

(4 ln 2)e2T q. (61)

This expression can be compared to the results of the linear response theory in graphene
[124, 176]. The linear response theory of Ref. [124] is based on the same three-mode
approximation as the hydrodynamics discussed in Sect. 3.2. Similarly to the discussion
inSect. 3.3.1, at charge neutrality the charge sector decouples from the rest of the theory
and can be described by the equation

∂ j
∂t

+ v2g

2
∇n − 2 ln 2

π
e2T E = − j

τdis
− j

τ11
, (62)

where τ11 determines the quantum conductivity (32), see also Eqs. (29) and (30).
Combining Eq. (62) with the continuity equation one finds

ω2 + iω

(
1

τdis
+ 1

τ11

)
= v2g

2
q2 + (4 ln 2)e2T q, (63a)

leading to the plasmon-like spectrum that can be expressed similarly to Eq. (54)

ω = −i
σ(ω)q2

e2∂n/∂μ

[
1 + eVs(q)

∂n

∂μ

]
, (63b)
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where σ(ω) is the optical conductivity [206] [in contrast to the static conductivity (32)
in Eq. (54]

σ(ω) = 2e2T ln 2

π

1

−iω + τ−1
11 + τ−1

dis

. (63c)

In the hydrodynamic regime of small frequencies, σ(ω → 0) → σ0, the mode (63b)
is purely diffusive recovering Eq. (54).

Resolving Eq. (63a) one finds the plasmon dispersion in the form

ω = −i
τdis+τ11

2τdisτ11
+
√

(4 ln 2)e2T q+ v2g

2
q2− (τdis+τ11)2

4τ 2disτ
2
11

. (63d)

For ω � τ−1
11 � τ−1

dis and q → 0, the leading behavior in Eq. (63d) coincides with
Eq. (61). At large momenta the first term in the RHS of Eq. (63a) dominates and the
dispersion resembles the hydrodynamic sound, Eq. (48). This contradicts the results of
Ref. [122]: although at large q the true dispersion also becomes linear, the coefficient
(analogous to the speed of sound) is different (there is no factor of

√
2).

To summarize, the plasmon mode (63d) should be contrasted with the diffusive
charge mode (54), and not the sound mode (49). The plasmon and the sound belong
largely to different frequency regimes [171], but most importantly, stem from the two
different, decoupled sectors of the theory (the sound mode can also be obtained from
the linear response theory hence one can extend its region of applicability beyond
the hydrodynamic regime). The latter fact is the reason why the plasmon dispersion
is independent of viscosity, while the sound mode (49) is unaffected by screening
effects (which are essentially responsible for plasmon excitations). Formally, the two
modes coexist but are characterized by different frequencies that are much higher for
the plasmon mode. Approximately at q ∼ �−1

coll, i.e., at the applicability limit of the
linear response theory, the sound mode becomes overdamped, which does not happen
to the plasmon. At that point the plasmon dispersion is almost linear albeit with the
coefficient that disagrees with the microscopic theory [122], as pointed out above.

An alternative approach to plasmons is to consider the electromagnetic response
of the 2D electron fluid to the high-frequency field generated by a Hertzian dipole
[264]. For small enough frequencies (ωτee � 1) the electron system responds hydro-
dynamically. Coupling the hydrodynamic equations with the 3DMaxwell’s equations
one can define a boundary value problem yielding the full description of the spatial
structure of the electromagnetic field. In particular, the numerical analysis of Ref.
[264] suggests co-existence between the plasmon and diffusive modes in a way that
is somewhat different from the above solution of the purely hydrodynamic problem
(where the electromagnetic field was assumed to be static). For analytic analysis of
edge magnetoplasmons (using the Wiener–Hopf technique) see Ref. [265].
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4 Known solutions to hydrodynamic equations in electronic systems

Once equipped with the hydrodynamic equations and boundary conditions, one may
embark on finding solutions in an attempt to either explain or predict experimental
observations. Sincemost transport measurements in solids are performedwithin linear
response, many authors consider solutions to linearized hydrodynamic equations.

Hydrodynamic charge flow in doped graphene (more generally, in hydrodynamic
Fermi liquids)was considered analytically inRefs. [37, 94–96, 101, 109, 110, 207, 266]
and numerically in Refs. [93, 97, 98]. Neutral graphene (more generally, compensated
semimetals) was analyzed in Refs. [85, 87, 114, 115, 125, 199, 267].

Nonlocal transport properties observed in doped graphene [27, 41, 42] were studied
in Refs. [94, 95] focusing on the appearance of vortices (or “whirlpools”) in viscous
flows in confined geometries, the effect that is responsible for the observed negative
nonlocal resistance [27]. A purely analytic approach to that problem (albeit in an
idealized geometry) was offered in Refs. [96, 207]. The authors of Ref. [96] hinted
on the possibility to observe multiple vortices, the effect that was further explored
numerically in Ref. [93] (see Fig. 5), where a sign-alternating nonlocal resistance was
suggested as a consequence. The latter is especially important given that negative non-
local resistance is not a unique characteristic of the viscous flow and can be observed
in ballistic systems [41, 100]. Interestingly enough, complicated patterns of multiple
vortices may arise also in nearly neutral graphene with long-ranged disorder [267].
Further complications with the hydrodynamic interpretation of the observed nonlo-
cal resistance and the associated vorticity were discussed in Ref. [268], where it was
argued that nonlocal (i.e., momentum-dependent) conductivity in disordered electron
systemsmaymimic the hydrodynamic effects even in the absence of electron–electron
interaction [the idea is to interpret Eq. (2) as the Ohm’s law with nonlocal conduc-
tivity]. However, extracting the viscosity from the nonlocal conductivity obtained by
means of the Kubo formula [211] might not be straightforward in disordered systems
[217]. Moreover, it is unclear why should one use the hydrodynamic “no-slip” bound-
ary conditions [which are needed to obtain Poiseuille-like solutions from Eq. (2)] in
conventional disordered systems outside of the hydrodynamic regime.

An alternativemeasurement providing indirect evidence of hydrodynamic behavior,
namely superballistic transport through a point contact [39]was discussed theoretically
in Refs. [37, 101]. Reference [37] provided a detailed analysis of the hydrodynamic
theory in the slit geometry comparing the results to those of the ballistic and diffusive
(Ohmic) behavior. The authors of Ref. [37] concluded that the hydrodynamic regime
represents a relatively narrow intermediate parameter region between the two more
conventional regimes (namely, the diffusive and ballistic). Further analysis of a viscous
flow through a constriction and the related enhancement of conductivity was reported
in Ref. [269].

Now, one of the most popular geometries to consider hydrodynamic effects is the
channel (or slab) geometry, see Figs. 9 and 19. The reason for this is the wide spread
of the Hall bar geometry of the experimental samples, see Figs. 2 and 4, as well as
simplicity of theoretical solution, since assuming a long channel all physical quantities
depend only on the coordinate along the channel (the x-coordinate in the notations
adopted in Fig. 19). Assuming the no-slip boundary conditions, one finds the solution
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to the Navier–Stokes equation in the form of the catenary curve, which reduces to the
standard Poiseuille flow [13, 116, 270] in the limit of the large Gurzhi length, �G � W
(where W is the channel width).

In doped graphene, the electric current is hydrodynamic and is expected to exhibit
this behavior [94], with

Jx = σ0Ex

[
1 − cosh y/�G

cosh W/[2�G]
]

, (64)

where Jx and Ex are the components of the current density and electric field along the
channel and σ0 is the Drude conductivity (due to, e.g., disorder). This effect was later
observed in the imaging experiment of Ref. [51]. If the system is subjected to the mag-
netic field, then increasing the field decreases the viscosity, see Eqs. (40), and hence
the Gurzhi length (8) leading to negative magnetoresistance (suggested theoretically
in Refs. [109, 110] and observed experimentally in Ref. [42]). These effects were also
considered within the two-fluid hydrodynamic model in Ref. [114]. For an alterna-
tive theory of the electronic flows in narrow channels in magnetic fields describing
the interplay of electron–electron interactions, disorder, and boundary conditions that
goes beyond the hydrodynamic description, see Ref. [240]. For a detailed discussion of
the Hall voltage and more generally the role of Hall viscosity in 2D Fermi liquids see
Ref. [271]. The case of long-range disorder (or general inhomogeneity of the medium)
was considered in Refs. [266, 272, 273], where a positive bulk magnetoresistance was
found due to the absence of the Hall voltage [273]. The latter point is reminiscent of
the situation in graphene at charge neutrality (other than the boundary effects).

In neutral graphene, the picture is more complicated due to decoupling of the
charge and energy flows in the absence of magnetic field. In that case, the hydro-
dynamic, Poiseuille-like flow is expected for the energy current [183], while the
charge transport exhibits the usual diffusion with the quantum conductivity (32)
due to electron–electron interaction instead of the standard Drude conductivity due
to disorder. Applying external magnetic field naively leads to a positive, parabolic
magnetoresistance. This is because the bulk electric current in neutral graphene is
accompanied by the lateral quasiparticle (and energy) current (which in turn leads to
the geometric magnetoresistance). However, due to the compensated Hall effect and
quasiparticle recombination, see Sect. 3.2.1, there is a strong boundary effect changing
that behavior and leading to nonsaturating, linear magnetoresistance (at charge neu-
trality) [87] that is somewhat similar to the edge effects considered in Ref. [86, 274].
The key point is that the above bulk effect is incompatible with finite size geometry:
assuming that the bulk current is flowing along the channel, the lateral quasiparticle
current must flow across the channel and hence must vanish at both boundaries. The
resulting inhomogeneity of the individual electron and hole currents is inconsistent
with the standard geometric magnetoresistance. Moreover, this inhomogeneity is only
compatible with the continuity equation for the total quasiparticle density, Eq. (26d), if
one takes into account recombination. The resulting quasiparticle density is practically
uniform in the bulk (characterized by the parabolic geometrical magnetoresistance),
but is strongly inhomogeneous in boundary regions of the width of the recombination
length, �R(B) = �R(B = 0)/

√
1+μ2B2 (hereμ stands for carriermobility). The edge
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contribution to the overall resistance is linear in magnetic field [87] and can dominate
in classically strong fields. This effect is not specific to Dirac fermions. Theoretically
similar phenomena were considered in Refs. [114, 115, 199]. Experimentally, linear
magnetoresistance due to recombination was studied in bilayer graphene in Ref. [88].

Electric current in a neutral graphene channel also becomes inhomogeneous in
magnetic field (where all three modes in the “three mode approximation” discussed
in Sect. 3 are coupled). However, unlike the situation in doped graphene, the current
does not exhibit the Poiseuille-like flow (64) [125], see Fig. 20. One of the reasons
for that is the boundary conditions: the Poiseuille flow is the solution of the hydro-
dynamic equations with the no-slip boundary conditions (which can be generalized
to the Maxwell’s boundary conditions with a relatively small slip length). The elec-
tric current in neutral graphene is not related to any solution of the Navier–Stokes
equation and, moreover, there is no reason to assume that the current vanishes at the
channel boundaries. In fact, for specular boundary conditions the opposite happens
[125]: quasiparticle recombination leads to a minimum of the current density in the
center of the channel, while the maximum value occurs at the boundaries. More gen-
eral boundary conditions (see Sect. 3.2.7) require a numerical solution of the kinetic
equation, which has not yet been carried out in this context.

An alternative geometry to study hydrodynamic flows is offered by the Corbino
disk [139]. Here the electric current is inhomogeneous even in the simplest case of the
Ohmic flow in the absence of magnetic field ( j ∝ (1/r)er , where er is the unit vector
in the radial direction). Applying an external magnetic field that is orthogonal to the
disk one can induce an azimuthal, non-dissipativeHall current (that is not compensated
by the Hall voltage due to the absence of boundaries). The resulting inhomogeneous
flows represent an excellent opportunity to study viscous effects [140]. The Corbino
disk with specular boundaries was analyzed in Ref. [214]. Assuming small momentum
relaxation, the authors of Ref. [214] concluded that the Hall angle (that can be deter-
mined by the ratio of the azimuthal and radial components of the current) is directly
related to the ratio of the Hall and shear viscosities such that the resistive Hall angle
approaches the viscous Hall angle. Anomalous thermoelectric response (i.e., violat-
ing the Matthiessen’s rule, Wiedemann–Franz law, and Mott relation) exhibited by
hydrodynamic flows in the absence of Galilean invariance was reported in Ref. [275].

Recently, theCorbinogeometrywas used to demonstrate the “superballistic conduc-
tion” both experimentally [54] and theoretically [276, 277]. Both theories focused on
the boundary effects. Ref. [277] analyzed the radial electric current (in the absence of
magnetic field). In the hydrodynamic regime, the interface between the lead (assumed
to be a perfect conductor) and the Corbino disk is characterized by the finite Knudsen
layer [138] with the boundary conductance that can exceed the Sharvin conductance
[104]. Reference [276] came to similar conclusions arguing that if the number of con-
ducting channels varies along the current flow (using either a wormhole or Corbino
geometries as examples), the Landauer–Sharvin resistance is detached from the leads
and is spread throughout the bulk of the system. If the length scale characterizing
the spread is larger than �ee then the resistance is reduced leading to superballistic
conductance.

More complicated flow patterns can be achieved by considering curved boundaries
or adding artificial obstacles to engineer boundary conditions [97, 98]. In particular, on
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Fig. 20 Anti-Poiseuille flow in narrow channels in graphene in perpendicular magnetic field [125]. The
curves represent the inhomogeneous current density in narrow channels of width W = 0.1, 1, 5μm
(blue, green, and red curves, respectively). Calculations wee performed for typical parameter values
τdis ≈ 0.8THz [43], αg ≈ 0.2 [43, 178], ν ≈ 0.4m2/s [50, 119], B = 0.1T, T = 250K (Reprinted with
permission from Ref. [125]. Copyright (2021) by the American Physical Society)

the basis of numerical analysis it was shown [98] that additional barriers on the channel
walls may lead to the effective “no-slip” boundary conditions that are commonly
assumed in theoretical calculations.

5 Nonlinear phenomena in electronic hydrodynamics

Nonlinear hydrodynamic effects in electronic systems remain largely unexplored both
theoretically and experimentally. Early numerical work [278] suggests that electron
flows with the high enough Reynolds numbers (for samples of the size of 5μm and
macroscopic speeds u ∼ 105 m/s [279], the authors of Ref. [278] estimate Re ∼ 100)
may exhibit pre-turbulent phenomena such as vortex shedding.

A representative example of nonlinear hydrodynamic phenomena in graphene—
hot spot relaxation—was considered in Ref. [121]. A hot spot is a particular non-
equilibrium state of the system that is characterized by a locally elevated energy
density. This state can be prepared with the help of a local probe or focused laser
radiation [250, 251]. As expected [250, 251], the hot spot loses energy by emitting
plasmon-like waves. At charge neutrality, these are in fact acoustic energy waves
analogous to the long-wavelength oscillations in interacting systems of relativistic
particles [sometimes called the “cosmic sound”, see Eq. (48)]. However, a nonzero
excess energy remains at the hot spot due to compensation between the thermodynamic
pressure and the self-consistent (Vlasov) electric field. Dissipation tends to destroy
the thus achieved quasi-equilibrium, but the resulting decay is characterized by a
longer time scale as compared to the initial emission of plasmons. At the same time,
the plasmons appear to be damped by viscous effects, see Sect. 3.3.3. The plasmon
emission can also be expected in the in the high-frequency regime, where it has been
linked to the Cherenkov effect [280–283].
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The above quasi-equilibrium solution [121] may be viewed as an example of a
soliton-like stationary nonlinearwavewhere charge and energy fluctuations (otherwise
distinct at charge neutrality) are coupled by nonlinearity of the hydrodynamic theory.
Away fromcharge neutrality, solitonswere considered in the inviscid limit inRef. [284]
and more generally in Ref. [285]. In particular, the authors of Ref. [285] focused on
hydrodynamic flows in graphene, where the decay of solitonic solutionswas suggested
as a possible experimental measure of electronic viscosity.

One of the most important consequences of nonlinearity of the hydrodynamic
equations—turbulence [13]—is currently regarded as unlikely to occur in electronic
systems, e.g., in graphene. In conventional fluids, turbulence can be reached when the
Reynolds number characterizing the flow becomes large, Re � 1000 [13]. In con-
trast, typical Reynolds numbers characterizing existing experiments in graphene are
rather small. Indeed, assuming one of the highest reported values of the drift velocity
graphene, u ∼ 105 m/s (based on the “saturation velocity measurements” [286]), the
experimental estimate for the kinematic viscosity ν ∼ 0.1m2/s [27], and a typical
sample size L ∼ 1μm, one can estimate the Reynolds number as

Re = uL

ν
∼ 105 ms × 10−6m

0.1m2

s

= 1.

At such values of the Reynolds number, one may hope to observe “pre-turbulent”
phenomena, such as vortex shedding, as can be seen by solving the hydrodynamic
equations numerically [278] (although at somewhat higher Re, see Fig. 21). For a
possibility to achieve turbulence in electronic systems other than graphene, see Ref.
[287].

Nonlinearity of the Navier–Stokes equation also leads to a number of known insta-
bilities, arising in particular in systems with nontrivial boundary conditions [13]. One

Fig. 21 Preturbulent hydrodynamic phenomena [278]. Left: microscale impurities in graphene can trigger
coherent vorticity patterns that closely resemble classical 2D turbulence. The color represents themagnitude
of the velocity. Calculations wee performed for Re = 25. Right: Vortex shedding in graphene at Re = 100
(Reprinted with permission from Ref. [278]. Copyright (2011) by the American Physical Society)
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Fig. 22 Kelvin–Helmholtz instability in graphene [288]. The color represents density fluctuations relative
to the initial density. The streamlines show the direction of the hydrodynamic velocity. The gray object
is the stationary obstacle. The four images are respective snapshots of the fluid motion taken at different
times. Calculations wee performed for Re = 53 (Reprinted with permission from Ref. [288]. Copyright
(2017) by the American Physical Society)

of these instabilities, the Kelvin–Helmholz instability [290, 291], was studied numer-
ically in Ref. [288], see Fig. 22. In conventional fluids this effect (actually visible in
the atmosphere as a specific cloud pattern, the “fluctus”) occurs in the case of velocity
shear within a continuous fluid or at the interface between two fluids. In an elec-
tronic system this can be achieved by directing a charge flow through a macroscopic
obstacle beyond which one observes vortex formation [288] that is reminiscent of
the “whirlpools” that have been argued to be at the core of the nonlocal resistance
experiments [27, 93–96]. Similarly, numerical simulations demonstrate the Rayleigh-
Bénard instability [292, 293], see Ref. [289] and Fig. 23. Note that the simulations
of Ref. [288] were performed using a lattice Boltzmann method for relativistic gases.
For more recent work on that method see Ref. [294].

In addition to the “conventional” instabilities of the hydrodynamic equations, there
is another instability that is predicted to occur in a ballistic field effect transistor [22] or,
in other words, in a gated 2D electron systems. There are two key observations leading
to the appearance of this instability. First, the carrier density in gated structures is deter-
mined by the same electric field (or voltage), see Eq. (53b), that represents the driving
term in the Navier–Stokes equation (43a). In that case, the simplified Navier–Stokes
equation (i.e., in the absence of magnetic field, neglecting Joule heating and weak dis-
order scattering) together with the continuity equation closely resemble the standard
hydrodynamic equations for “shallow water” [13]. Second, one requires somewhat
unusual (but experimentally feasible) boundary conditions: by connecting the source
and drain of the device to a current source and the gate, while at the same time con-
necting the source to a voltage source, one arrives at the setup with a constant value
of the voltage at the source together with the constant value of the current at the drain.
In that case the wave velocities (shallow water waves in hydrodynamics or plasma
waves in the heterostructure) describing propagation in the opposite directions are
different leading to the instability with respect to plasmon generation. Known as the
“Dyakonov–Shur” instability, this effect has attracted considerable attention in liter-
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Fig. 23 Rayleigh–Bénard instability in graphene [289]. The color represents the temperature perturbation
field with T ∗ = 100K. The streamlines show the electron velocity. The image shows the formation of con-
vection cells and the cosine-shaped temperature perturbation vanishing at the thermal contacts. (Reprinted
with permission from Ref. [289]. Copyright (2015) by the American Physical Society)

ature, including that on hydrodynamic behavior in graphene [295, 296]; however, a
definitive experimental observation of the effect is still lacking. For a detailed numer-
ical analysis of a similar instability in GaAs MESFETs see Ref. [297]. An alternative
suggestion for using viscous electrons as a source of terahertz radiation was proposed
in Ref. [298]. Dyakonov–Shur instability in the Corbino geometry was discussed in
Ref. [299].

Further nonlinear phenomena were discussed in Ref. [300] where three distinct
hydrodynamic effects, namely the Bernoulli effect [301], Eckart streaming [302], and
Rayleigh streaming [303], were suggested as possible experiments revealing nonlinear
electron fluid dynamics, see Fig. 24. The suggested electronic analog of the Bernoulli
effect yields a nonlinear term in the I–V characteristic (V ∝ I 2) in the “Venturi
geometry” (named after the Venturi tube, the standard device used for demonstrating
the Bernoulli effect), which is essentially a finite-angle sector of the Corbino disk.
The proposed effect is strongly dependent on sample geometry (e.g., it is expected to
vanish in rectangular samples) and hence the boundary conditions.While the stationary
Bernoulli effect is expected to occur in the ideal (inviscid) fluid, the dynamic nonlinear
phenomena, such as the Eckart and Rayleigh streaming, are expected to occur in
the presence of dissipation. Applying an oscillatory voltage to one of the sources
while grounding the drain, the authors of Ref. [300] find a dc current (via the down-
conversion). The two effects are distinguished by whether the dominant dissipation
occurs in the bulk (Eckart streaming) or at the boundaries (Rayleigh streaming).
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Fig. 24 Nonlinear hydrodynamic phenomena suggested in Ref. [300]. Left: the Venturi geometry and the
expected nonlinear I–V characteristic with I ∼ √

V (the gray dashed line represents and unstable solution,
while the gray area corresponds to the parameter regime of a possible instability towards turbulence). Center:
Eckart streaming and the rectification effect. Right: Rayleigh streaming. (Reprinted with permission from
Ref. [300]. Copyright (2021) by the American Physical Society)

6 Theoretical conjectures of hydrodynamic behavior in strongly
correlated systems

A (relatively) recent discovery of gauge-gravity duality (or AdS/CFT correspondence)
[304–306] offers a new alternative theoretical tool to study strongly correlated systems
by relating strongly coupled quantumfield theories to gravity theories in one additional
dimension. The best-known result of this approach is the conjectured lower bound for
the shear viscosity to entropy density ratio [232] that has been found to be satisfied in
quark-gluon plasma [307], cold atoms in the unitary limit [308], and intrinsic graphene
[180]. The same physics can also be expressed in terms of the diffusivity bound [309].
Such bounds reflect not only the interaction strength, but also the symmetry properties
of the system. In particular, in anisotropic systems the proposed bounds should be
modified [183, 310].

In the condensed matter context, the duality has also been applied to the by now
perennial issue of the linear resistivity [311] in “strange metals” [312, 313] (cuprates
[314, 315], iron-based superconductors [316–319], twisted bilayer graphene at magic
angles [320, 321], etc). The main premise of this approach is that excitations in
strongly correlated systems are predominantly of the “collective” nature unlike the
quasiparticles in conventional metals [306]. In that case, the system is described by
“hydrodynamic-like” currents, with their relation to the external fields provided by
the standard linear response theory. This way one can suggest universal bounds on the
diffusion coefficient and conductivity (related by the Einstein relation) of a strange
metal, as well as their scaling with temperature [309, 310]. The concept of diffusion
appears through a particular collective mode (the so-called quasinormal mode [322]).
Such modes essentially replace quasiparticles in the qualitative interpretation of the
resulting theory [306]. Linear response transport properties can then be obtained by
means of either solving the hydrodynamic equations or using the memory matrix for-
malism [323]. The latter has the advantage of being independent of the concept of
quasiparticles and extending beyond the hydrodynamic regime.
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The holographic duality can also be used in the opposite direction, where solutions
of hydrodynamic theories can provide insight into physical properties of gravitational
objects [324].

While they might appear too abstract, the holographic methods can be put to test by
studying the typical condensed matter experiment: optical pump-probe spectroscopy
[325]. The idea is to test one of the characteristic predictions of the bulk (gravity) side of
the duality—instantaneous thermalization [326]. This feature (impossible in the usual
semiclassical description of transport) is the natural consequence of causality and is
related to the “eigenstate thermalization hypothesis” [327, 328]. As a result, measuring
the optical conductivity in a strange metal excited by a short, intense laser pulse that
does not contain a zero-frequency component one should obtain the exact same results
as in the same systemat equilibrium (characterized by the final temperature) at all times
after the pulse.

The linear resistivity has also been interpreted as a signature of “Planckian dis-
sipation” [329, 330] (which is also related to the above proposed bounds). The idea
comes from the fact that the observed optical conductivity in strange metals often
allows for a good fit with the standard Drude expression [311, 315, 331, 332] which
is described by a timescale typically referred to as the “transport scattering time”,
τtr , [10]. The linear temperature dependence of the resistivity thus translates into the
τtr being inverse proportional to temperature or, in other words, proportional to the
“Planckian” timescale

τtr ∝ τP = �

kB T
, (65)

where the Planck’s and Boltzmann’s constants (� and kB) are restored for clarity.
While completely natural in neutral graphene, see Eqs. (30), where the temperature
dependence (65) follows already from dimensional analysis (in graphene at charge
neutrality, T is the only energy scale), application of the concept of the scattering
time to strongly correlated systems is more problematic. One possibility is that one
can trace the decay of correlation functions (which can be characterized through a
“transport” time scale) to the decay of local operators, as suggested in Ref. [330].

The hypothesis of the near-hydrodynamic behavior in strangemetals (at least, at low
temperatures where the measured optical conductivity has a Drude form) might sound
attractive, but it certainly does not solve all the problems [329]. At higher temperatures,
there appears the state of a “bad metal”, where the optical conductivity is no longer
of the Drude form [333], while the temperature dependence of the resistivity is still
linear. QuantumMonte Carlo simulations [334] suggest that this state is accompanied
by hints of spin-stripe correlations [335]. While there might be a way to include
that physics into holographic modeling [336], the role of electron–phonon coupling,
quantum criticality, and their relation to the seemingly “universal” linear resistivity
across several distinct families of materials remains to be understood.

The above ideas on applying holographic methods to strange metals (in particular
in cuprates) remain controversial. For a recent critique of this approach, see Ref. [337].

A detailed discussion of relativistic hydrodynamics on the basis of the AdS/CFT
correspondence was offered in Ref. [338]. In the 2D wire (channel) geometry with
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no-slip boundary conditions, this theory yields the Poiseuille behavior (see Sect. 2) for
all velocities up to the ultrarelativistic limit u → vg . In the latter case, however, the
differential resistance of the channel vanishes as a consequence of the kinematics of
special relativity. The theory of Ref. [338] also offers further insights into the impor-
tance of the shear viscosity to entropy density ratio, η/s. First, the channel resistance
strongly scales with η/s, such that “holographic strongly coupled fluids” (either at or
near the proposed bound η/s � 1/(4π) [232]) are characterized by smaller resistance
in comparison to conventional fluids. Second, the boundary relaxation time (i.e., the
timescale describing the rate of the loss of momentum at the channel boundaries with
no-slip boundary conditions) is inverse proportional to η/s.

7 Open questions and perspectives

The scope of this reviewwasmostly limited to observable effects that can be interpreted
as evidence of electronic hydrodynamics in graphene and other 2Dmaterials as well as
theoretical work exploring hydrodynamic phenomena in electronic systems. Several
important topics were purposefully left out, most notably the hydrodynamic behavior
of non-electronic excitations in solids, topological hydrodynamics, and generalized
hydrodynamics in 1D systems.

The initial argument for electronic hydrodynamics requiring the electron–electron
interaction to be the dominant scattering mechanism implies the existence of scale
separation between electronic thermalization and energy relaxation due to, e.g.,
electron–phonon interaction. The latter typically assumes that the phonons are in ther-
mal equilibrium. However, the current-carrying distribution of electrons is generally
non-equilibrium and hence electron–phonon coupling can drive the phonons out of
equilibrium as well [339]. The resulting phenomenon of phonon drag is well studied
[340, 341] and in particular allows for a hydrodynamic description [342]. Recently,
evidence of the coupled electron–phonon fluid was reported in the Dirac semimetal
PtSn4 [343] (for the theory see Ref. [344]), the material characterized by very low
resistivity as well as showing a pronounced phonon drag peak [156] at low tempera-
tures. Moreover, it was argued [345] that near-hydrodynamic behavior of electronic
transport in the delafossitemetals PdCoO2 and PtCoO2 [29, 346] should be understood
in the context of phonon drag.

Another aspect of the strong coupling between the electronic system and the crystal
lattice is the interplay between electronic viscosity and elasticity of the crystal [211,
212, 215, 347, 348]. Moreover, static deformations in graphene are known to lead
to the appearance of giant pseudomagnetic fields [349]. From a general perspective,
elasticity and hydrodynamics belong to a broader class of tensor-field theories that
also includes gravitation theories and the theory of critical phenomena in spaces with
nontrivial metrics [350].

Observations of viscous hydrodynamics in electronic transport raised the question
of whether other excitations in solids might behave hydrodynamically as well. In par-
ticular, the classic proposal for the hydrodynamic behavior of spin waves [19] recently
came under intense scrutiny both experimentally [351] and theoretically [352, 353].
Emergent hydrodynamics in a strongly interacting dipolar spin ensemble (consist-
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ing of substitutional nitrogen defects—P1 centers—and nitrogen-vacancy centers in
diamonds) was studied experimentally in Ref. [354].

Generally speaking, hydrodynamic flows represent amacroscopic, longwavelength
motion governed by global conservation laws [1]. In conventional fluids, these include
the particle number, energy, and momentum conservation allowing for a statistical
description of the system based on traditional Gibbs approach [16]. In two-(and
three-)dimensional electronic systems energy and momentum are conserved only
approximately, which limits the applicability of the hydrodynamic approach to a
relatively narrow temperature interval [23, 24, 176] as well as leads to unconven-
tional behavior [85, 87, 114]. In one spatial dimension, in particular in the context of
integrable (exactly solvable) models, the situation is different: here the system is char-
acterized by a large number of integrals ofmotion leading to the concept of generalized
Gibbs ensembles [355, 356]. Applying the hydrodynamic approach to the general-
ized Gibbs statistics yields generalized hydrodynamics offering new possibilities in
describing quantum transport in systems with predominantly ballistic behavior (due to
the large number of conservation laws). This approach was introduced in the context
of integrable field theories [357] and quantum spin chains [358] and was successfully
applied to a number of other integrable systems [359]. The resulting framework was
used to describe one-dimensional cold atomic gases at large wavelengths [360] and
has been observed experimentally [361]. Generalized hydrodynamics in nonintegrable
systems was studied in Ref. [362].

Another topic outside of the scope of this review is topological hydrodynamics,
see Ref. [363] and references therein. Recently, an optical topological invariant (mea-
surable via the evanescent magneto-optic Kerr effect [364]) was proposed to describe
properties of the viscous Hall fluid [365] suggesting that graphene with the “repulsive”
Hall viscosity (i.e., ωcνH > 0) may be used to create a topological electromagnetic
phase of matter. Especially interesting in this context is the interplay of topologi-
cal band structure and electron–electron interactions (responsible for establishing the
local equilibrium underlying the usual hydrodynamic theory). A related issue is quan-
tum hydrodynamics of vorticity [366] describing vortex–antivortex dynamics in 2D
bosonic lattices pertaining to the superfluid–insulator transition.

While some experimental work on hydrodynamics in topological materials was
addressed in Sect. 2.5.2, the theoretical discussion of Sect. 3 focused on the well-
studied cases of the 2D Dirac and Fermi liquids. In contrast, a hydrodynamic theory
of topological materials (including Weyl semimetals [59, 60] and conducting surface
states of topological insulators) has not been hammered out yet. For recent literature
on this subject see Refs. [66, 367–371]. The effects of band topology on the shear
viscosity were considered in Ref. [372].

Despite the impressive amount of recent work on the subject, electronic hydrody-
namics remains a young field with many unanswered questions. So far, the main focus
of the community was on Fermi-liquid-type materials (including doped graphene),
where the hydrodynamic equations are basically equivalent to the standard Navier–
Stokes equation and the velocity field completely determines the electric current.
Even in this simplest setting, the question of boundary conditions remains largely
unresolved, especially in view of the experiment of Ref. [53]. Furthermore, practi-
cal applications of hydrodynamic equations require reliable tools for their numerical
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solution. Although there exists a massive amount of literature devoted to solution
of differential equations (as well as commercial and open source software packages
dealing with their numerical solutions), equations of electronic hydrodynamics have
to be solved together with the equations describing the electrostatic environment of
the system, the electronic circuit into which the system is integrated, and in the case of
spintronics applications—the magnetic environment. Combining all these aspects of
the problem with the realistic boundary conditions and specific symmetries represents
a formidable computational problem that is rather difficult to solve using the available
“canned” solvers [373, 374].

Transport properties addressed with the hydrodynamic approach so far remain at
the semiclassical “Drude” level (which is not surprising given that the hydrodynamic
equations, see Sect. 3.2.6, were derived from the semiclassical Boltzmann equation,
see Sect. 3. In contrast, the traditional transport theory considers also “higher order”
processes leading to the so-called “quantum corrections” [9, 12, 375]. While typically
discussed using field-theoretic methods, these results can also be obtained within
the kinetic approach (for the corresponding “quantum kinetic equation” see Ref.
[12]). It remains to be seen, whether this physics can be included in a macroscopic,
hydrodynamic-type description. Moreover, it is unclear whether one can establish
any relation between the well-known hydrodynamic fluctuations [13] and mesoscopic
fluctuations in conventional diffusive conductors [376–378].

One of the most intriguing promises of the hydrodynamic approach is its supposed
ability to describe properties of more complicated systems, including the “strange
metals” [312]. This direction of research is still in its infancy. Many novel materials
(including van der Waals heterostructures [320, 379], conducting surface states of
topological insulators, and Weyl semimetals) are characterized by strong spin–orbit
coupling. Up until now, a coherent kinetic theory for electrons with spin–orbit interac-
tion has not been established, see Refs. [177, 380–382]. An advance in this direction
could provide a substantial contribution to the application-oriented field of spintronics
[383, 384], which has been under active development in the last 2 decades.

The conjecture of Planckian dissipation does not explain why does the observed
resistivity remains linear (i.e., does not vanish faster) in different materials where
different scattering mechanisms are presumed to be relevant in different temperature
regimes [311]. This could indicate an existence of a universal principle limiting the
decay rate of the longest lived modes in strongly correlated systems (similarly to
the phase space limitations on the quasiparticle properties in Fermi liquids). Such a
principle has not been established yet.

Finally, the issues raised in the course of the rapid development of electronic
hydrodynamics are of fundamental importance for the physics of novel electronic sys-
tems necessary for the future development of functional materials. Future advances
in this field will have far-reaching implications beyond the scope of particular sys-
tems considered in this review. They will substantially improve our understanding
of interrelation of macroscopic transport properties (of charge, spin, and heat) and
microscopic structure (symmetry properties, band structure, electronic correlations)
of materials allowing for material engineering and functionalization.
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