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ABSTRACT As mixed traffic between automated vehicles and human drivers in inner city becomes more
prevalent in the near future understanding and predicting drivers’ behavior is important. Additionally, there
is a wide variety of inner city intersections. They can differ greatly in traffic density, visibility, number of
objects and many more aspects. This difference in complexity has an influence on the behavior of human
drivers at intersections. To further understand the effect of complexity we conducted a naturalistic driving
field study in inner city traffic with 34 participants. We focused on unsignalized intersections because there
is a greater range of possibly ambiguous situations at such intersections than compared to e. g. an intersection
regulated by traffic lights. Features describing the behavior (commit distance, drop in velocity and the
minimal velocity) are extracted from the driven trajectories. Additionally, we define intersection complexity
by several features describing an intersection. These features include both the static (street, visible and
driveable width, the visibility of the other streets and the number of trees) and the dynamic environment
(entry location and turning direction, numbers of vehicles, vehicles with interaction, vehicles with priority,
vehicles having to yield and pedestrians). Based on those we show that the entry location and the turning
direction have a significant effect on the behavior features. Additionally, we show that the typical behavior of
human drivers can be predicted by the features describing an intersection’s complexity. Finally, the feature
set is reduced in dimensionality for a more condensed intersection description. For that we test reduced
feature sets as well as feature sets from an autoencoder and show that prediction is feasible with them as
well.

INDEX TERMS Driving behavior prediction, intersection complexity, naturalistic driving, unsignalized
intersection.

I. INTRODUCTION
The introduction of automated vehicles is a promising devel-
opment for several reasons: It has the potential to be safer than
human drivers, thus reducing the number and severity of acci-
dents. It might also lead to better accessibility of mobility for
people who are unable to drive themselves. However, there
are still several challenges to overcome before automated
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vehicles can drive safely in any situation and environment.
One of them is inner city traffic and especially mixed traffic
consisting of both automated vehicles and vehicles driven by
humans at unsignalized intersections.

This work focuses on the scenario of unsignalized inter-
sections, i. e. intersections without traffic lights or priority
signs to regulate traffic flow. This type of intersection is
very common in Germany and other European countries in
places where there is low to medium traffic. There the right
before left rule applies. It states that a driver has priority
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over vehicles coming from his/her left side and that a driver
has to yield to vehicles coming from the right. Additionally,
driving straight has priority over oncoming drivers turning
left. As we assume no direct communication between vehi-
cles, e. g. via vehicle2vehicle communication, drivers are
required to interpret each other’s intention and behavior and
they have to communicate with each other. This is especially
challenging for automated vehicles, as situations may arise
that are not clearly defined or that have some ambiguity in
the regulation. An example of that are deadlock scenarios
in which every driver has to give way to at least one other
driver. One way of dealing with this problem is to gain deeper
knowledge of typical human behavior in such scenarios. Prior
knowledge of typical behavior can be incorporated into the
decision-making process of automated vehicles, since certain
behaviors are more likely in a given circumstance. As this
is an additional information source, decisions could be made
more reliable. It might also allow for earlier decisions if the
observed behavior matches the typical one. A deeper under-
standing of the typical behavior in these situations might
also be of interest for intersection design to avoid collisions
as there are traffic patterns at intersections that provide a
potential for accidents.

For a deeper understanding of the driving behavior we look
at the influence of intersection complexity on that. In this
work the complexity of an intersection is described by fea-
tures for both the static environment of an intersection (e. g.
trees, the spatial surrounding like the visibility into the other
roads and the driveable and perceived width of the street
leading to an intersection) and the dynamic surroundings
(e. g. pedestrians, the number of cooperation vehicles and
the priorities according to traffic regulation). Additionally,
we also consider the entry location and the turning direction
through an intersection. The behavior of a driver is described
by features derived from the driven trajectory. These include
the distance at which a driver committed him-/herself to drive,
the drop in velocity and the minimal velocity during the
approach. Both the intersection and the behavior features are
introduced in detail in section IV-A. To record the necessary
data, we conducted a field study in which participants drove
through inner city traffic while their driving behavior and
data of the surrounding environment was recorded. Based on
that data, we first investigate the influence of both the entry
location and the turning direction on the driving behavior.
We then use the complexity features of intersections to predict
the driving behavior. Finally, several methods for dimension-
ality reduction are investigated to find a more condensed
representation of the intersection complexity.

II. RELATED WORK
The focus of this work is on the influence of both the static
and dynamic environment at an intersection on the behavior
of drivers. External factors, both static (i. e. road infrastruc-
ture, buildings and vegetation) and dynamic (i. e. other traffic
participants), have been investigated before in regard to their
influence on driver behavior.

FIGURE 1. Test vehicle with sensor setup on the roof.

Many authors use features that describe static aspects
of the driving environment in their work to define com-
plexity. Imbsweiler et al. [1] argue, based on experimental
results, that a T-junction can be considered as more complex
than a narrow passage. A more general distinction between
more and less complex environments has been used by
Faure et al. [2] where an urban environment was seen as most
complex, a rural road as medium and a highway section as
least complex. Further external features for environmental
complexity include the difference between signalized and
unsignalized intersections [3] and the presence of parked
vehicles on the street [4]. Wijnands et al. [5] analyzed inter-
section designs from satellite images. For that they define a
complex intersection to have at least one multi-lane street,
a slip lane, traffic islands or more than four legs. Comparing
turning to driving straight through intersections is another
aspect that can be considered [6], as well as visual clutter of
traffic scenes [7].

It is reasonable to assume that besides the static environ-
ment of a traffic scene also dynamic aspects are influencing
driving behavior and should thus be modeled as part of traffic
complexity. Patten et al. [8] distinguish between three route
complexity classes by assessing the demands on information
processing and vehicle handling: A highly complex route
has high demands in both categories. A medium complex
route has high a demand in one category and a low demand
in the other category. A route with a low complexity has
low demands in either category. Jahn et al. [9] use the same
definition but only the two extreme cases. Examples for
high complexity are driving in an inner city or at signal-
ized intersections where a driver has to give way. Medium
complexity is assumed at signalized intersections with the
right of way and at intersections regulated by traffic lights
and low complexity is defined as situations where driving
without interaction is possible [8], [9]. Further aspects of
dynamic intersection features include traffic density and the
occurrence of lane changes [10].Manawadu et al. [11]manip-
ulated complexity by varying the density of both vehicles
and pedestrians at an intersection in a driving simulator.
Lowest complexity in their work is the situation with both
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the lowest density of pedestrians and vehicles, the high-
est complexity is assigned to the situation with the highest
density of either parameter. Driving after a traffic conges-
tion as compared to regular driving has been investigated as
well [12]. For that a simulator study containing congested
and non-congested intersectionswas conducted.Werneke and
Vollrath [13] investigated the influence of traffic density and
whether a zebra crossing was present at an intersection as part
of intersection complexity.

Some authors also considered both static and dynamic
influences: Oviedo-Trespalacios et al. [14] classify scenarios
in an urban environment, car-following on suburban roads
and driving on curved roads as complex. Cantin et al. [15]
defined driving on a straight road as least complex. Their
study also included intersections at which participants had to
stop and an overtaking maneuver which they considered as
most complex. Horberry et al. [16] varied environment com-
plexity along a highway in a driving simulator by varying the
number of billboards, buildings and other road infrastructure
elements and the traffic density. In general one can conclude
that there exists a wide variety of complexity definitions for
road traffic. There is some consistency within them, most of
those definitions do however only consider a small subset of
all conceivable features that might contribute to the perceived
complexity. Additionally, many of those definitions are either
not specific to intersections or consider aspects of driving that
are not related to intersections at all. In this work we intend to
address this by using several features to describe intersection
complexity.

Using the aspects of traffic environment complexity above,
a wide range of influences on driver behavior has been
investigated. Higher complexity has been shown to increase
mental workload [2], [4], [6], [8]–[10], [14], [15]. Physiolog-
ical parameters (electrocardiogram, electro-dermal activity,
electroencephalography and gaze behavior) can be used to
predict the perceived workload at intersections with vary-
ing complexity [11]. The influence of age and complexity
on the driving behavior has also been of some interest [7],
[15], [16]. Older drivers drive slower in more complex envi-
ronments [16] and show increased workload compared to
younger drivers in more complex driving contexts [15]. With
increased visual clutter and age search efficiency for identi-
fying traffic signs decreases [7]. There are differences in the
visual scanning behavior while driving between signalized
and unsignalized intersections [3]. Intersection complexity
also has an influence on the driving behavior and the attention
allocation [13]. When looking at deadlock situations drivers
feel safer driving through the less complex symmetrical nar-
row passages than through T-intersections [1]. The driving
behavior after a congestion is negatively influenced as it
becomes more aggressive and drivers are less aware [12].

There exist several methods for assessing and quantizing
driver behavior. A concept for which they are commonly
used is the traffic conflict technique (TCT) [17]–[19]. The
goal of the TCT is to assess traffic scenarios with regard
to the conflicts occurring there and not only with data

FIGURE 2. Top down view of a T-intersection with lanelets and tracks of
the test vehicle (black) and one other car (red). Grid spacing: 10 m.

of actual accidents. A commonly used measure for driver
behavior is the time to collision (TTC) [17]–[20]. Further
behavior measures for drivers are the post-encroachment
time (PET) [18] and the deceleration to safety (DST) [18],
[19]. Minderhoud and Bovy [20] introduce extensions to
the TTC concept to enable further and more detailed analy-
ses. Domeyer et al. [19] employ TTC, PET, DTS and several
other behavior features to investigate the interaction of drivers
and pedestrians.

All these methods have in common that they investigate
the interaction between drivers. As there are not necessar-
ily other drivers present at the intersections in our work,
we describe driving behavior differently by only considering
the trajectory of the ego vehicle (cf. section IV-B). Features
from only one vehicle have been used before, these include
the velocity [4], [10], [12], [13], [16], the deviation from
the speed limit [14], [16] and the lateral position on the
lane [4], [10], [12]. Some of these authors also use variants
such as mean, minimum and maximum values or the standard
deviation.

There exist previous approaches to predict the intention
and the behavior of human drivers in traffic. Several methods
have been shown to be useful for that purpose. Streubel and
Hoffmann [21] predict the driving path at a signalized inter-
section using a Hidden Markov Model (HMM). Long Short
Term Memory (LSTM) Networks are also used to predict the
turning direction [22], [23]. Ward and Folkesson [24] predict
the driving behavior of drivers who have to yield at a sig-
nalized intersection. For that they apply k-Nearest Neighbors
(k-NN), Support Vector Machines (SVM) and Random
Forests (RF). From these methods we chose RF for this work.

III. DATA ACQUISITION
In order to obtain data of human behavior at inner city inter-
sections, a field study was conducted. The driven trajectories
of the participants were recorded and the passes through
the relevant intersections were extracted for further analysis,
as described in the following sections. The surroundings (i. e.
traffic, buildings and vegetation) were recorded using a lidar
sensor. All subjects were informed about the contents of the
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study and signed a consent form prior to the experiment. The
study was approved by the ethics commission of the KIT.

A. FIELD STUDY
The field study for this work was conducted in Karlsruhe,
Germany. In total 34 participants (25 male, 8 female, one
participant did not answer the questionnaire; average age:
27.9 a, σ = 8.18 a) drove a test vehicle on a predefined path
in the inner city of Karlsruhe. An instructor seated in the rear
of the vehicle guided the participants along the path. The
course included 14 unsignalized T-shaped intersections and
4 unsignalized X-shaped intersections. As the intersections
were unsignalized, the right before left rule applied. At one of
the T-intersections participants were confronted with a dead-
lock situation that was generated by two additional vehicles
driven by instructed drivers. At all remaining intersections
the participants interacted with regular traffic. Four of the
remaining intersections were specifically selected to include
a wide range of traffic, both relatively close and distant sur-
rounding buildings and different grades of overview over the
intersection. The remaining intersections were not selected
explicitly but were included as they were used to travel
between the five selected intersections. The runs through
the deadlock intersection are not subject of this work, the
data set therefore contains the runs through the remaining
17 intersections. There are in total 1818 runs through the
remaining 13 T-intersections and 565 runs through the 4
X-intersections in our data set. It took the participants on
average 73.0min (σ = 6.4min) to complete the course of
approximately 22 km.

The test vehicle that was used for this experiment is a
commercially availableVWPassat that is equippedwith addi-
tional sensors and can be driven with a regular license. These
sensors include a 16-channel lidar sensor with 600RPM,
an IMU with a sample rate of 400Hz and two GPS
receivers (1Hz). Data is recorded using the Robotic Oper-
ating System (ROS) [25]. A picture of the vehicle is shown
in Fig. 1.

B. TRAJECTORY GENERATION
The data from each participant was further processed to
extract the driven trajectory of the test vehicle as well as
the trajectories of surrounding vehicles the participant inter-
acted with. For that a simultaneous localization and map-
ping (SLAM) approach [26] was applied to the measurement
data to generate a precise track. The poses from the SLAM
were then interpolated to 10Hz to get a pose for each lidar
revolution.

To cut the individual runs through the intersections from
the global trajectories, all lidar revolutions were selected for
a given run whose poses lay within a radius of 35m from
the intersection center. We used a simplified version of the
lanelets concept [27], [28] for a comprehensive and accurate
description of the intersections. These were created frommap
data. Our lanelets describe the polygon of a lane segment, its
turning direction and the successor and predecessor lanelets,

thus creating a lanelet graph. For each vehicle the most likely
lanelet sequence is determined by considering the similarity
of the direction of travel and the turning direction of the
lanelet. If the distance between the trajectory and a lanelet
sequence is too large, this sequence is taken out of con-
sideration. Using the lanelet sequence a vehicle has driven
along, the position from which it entered the intersection
and the turning direction through the intersection (left, right,
straight) can be inferred. To generate a consistent definition
of the entry location (left, right and bottom for the T-junction;
there is an additional top direction for X-intersections), all
T-junctions were oriented to resemble the letter ‘‘T’’ and
the labels were assigned accordingly. For the X-intersections
the northernmost road was assigned the top label. Note that,
depending on the entry location, not all turning directions are
possible at a T-intersection. Both entry location and turning
direction are used as features to describe intersection com-
plexity in section V.

To detect moving objects within the lidar point clouds we
use a clustering approach rather than a machine learning
approach like PointNet [29] or PointPillars [30], since the
lidar resolution is relatively low. The ground plane is removed
using the matlab function pcfitplane. The point clouds
are segmented into clusters where points of different clusters
are at least dmin = 1.8m apart. Before clustering the point
clouds are cut to include only those points above the lanelets.
By doing so, we can make sure to only cluster objects, and
therefore possible traffic participants, on the streets. We use
an L-shape fitting method [31] to fit an accurate bounding
box to each cluster. Bounding boxes that are implausibly large
are removed. There is no minimum size requirement for a
cluster.

A multi-object tracker using a global nearest neighbor
assignment algorithm (trackerGNN function in Matlab)
and an interacting motion model (IMM) tracking filter
(initekfimm in Matlab) generate tracks from the cluster
center points. The latter maintains three models of the objects
with constant velocity, constant acceleration and constant
turn. A multiple motion model is chosen since the road users
are maneuvering, changing direction and speed. As road
users are detectable for long periods of time and can be
temporarily occluded, the tracker has to be set up to accom-
modate for that. When tracks are occluded, we interpolate
linearly. Stationary tracks are removed and the velocity of
the bounding boxes and their length and width are filtered
with a median filter. The class of a moving object (pedes-
trian, cyclist, car and truck) is determined by the size and
the speed of the clusters. In this work only two classes are
used. Cyclists, cars and trucks are all considered as street
based traffic participants. Pedestrians are viewed separately.
An example of a run through a T-intersection is shown in
Fig. 2. The test vehicle entered from the right and turned left.
It had to interact with another traffic participant arriving from
the left who was driving straight. The downsampled global
point cloud is also shown, houses and some parked vehicles
are visible.
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TABLE 1. Features describing the intersection (top) and the driving
behavior (bottom).

FIGURE 3. Visibility at a T-intersection. Test vehicle enters from the
bottom and turns left. The reference point on the left street is visible from
the start, the right street is blocked by parked cars, trees and a hedge.
Grid spacing: 10 m.

IV. DATA PROCESSING
To investigate the behavior of human drivers at intersections,
we need to be able to describe both the behavior of the drivers
at an intersection and the intersection itself. For both we
defined several features. An overview over all intersection
and behavior features used in this work is given in table 1.

A. INTERSECTION FEATURES
The intersections are represented by features that describe
the traffic and features characterizing the geometry of the
intersection. Both are included here as we assume that both
have an influence on the complexity perceived by a human
driver. The number of pedestrians np includes all pedestrians
that have been identified in the lidar data from a run through
the intersection. Identified vehicles are counted in nv. Both
pedestrians and vehicles are counted if they are visible during
the approach, i. e. their track has to start before the distance
to the intersection of the ego vehicle is zero. To distinguish
between all visible vehicles and the ones relevant for the par-

FIGURE 4. Street width, visual range and available width from 25 m to
7 m before the intersection center. The test vehicle enters from the left
side and turns left. Grid spacing: 10 m.

ticipant, the number of interaction vehicles nvi are counted as
well. These vehicles were within 10m from the intersection
center at the same time as the test vehicle and were observed
to pass the intersection center. These vehicles are further ana-
lyzed as to whether they have to give way to the test vehicle
(ngw) or if they have the right of way themselves (nrw). As we
are only investigating unsignalized intersections the priority
is determined by investigating the relative directions from
which two vehicles enter the intersection and the directions
of travel through the intersection. The analysis is performed
pairwise and includes all pairs the test vehicle is a part of.
If for example a vehicle turns left, it has to yield to a vehicle
entering from straight ahead and driving straight through the
intersection. We assume that more traffic contributes to the
perceived complexity as there are more possible cooperation
partners a driver has to interact with and more information
has to be processed to resolve a situation.

The spatial properties of an intersection are described with
two concepts, the width and the visibility distance. Addition-
ally, the number of trees nt near the intersection and along the
driven street is used as a feature. The visibility at an intersec-
tion is described by the distance from the intersection center
at which reference points are visible. It is assumed relevant
because if a cooperation partner is visible earlier there is more
time left to react to a given situation. The visibility distance
is calculated by two methods, using a ray-tracing approach
or by a polygon based approach. For both versions reference
points pref,i are placed on the streets of the intersection other
than the one the vehicle approached the intersection from.
There are therefore two reference points at a T-intersection
and three at X-intersections. Of these points, those on the
street straight ahead are omitted, as it is always visible at all
intersections in our data set during the approach. One or two
reference points remain in the case of a T-junction, as there is
no street straight ahead when approaching from the bottom.
At X-intersections there are always two points remaining.
The use of the reference points is showcased in Figure 3. The
vehicle approaches from below. As there is no top street at a
T-intersections, the reference points on both the left and right
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street remain. The reference points are placed in the center of
their road at a distance from the intersection center where a
car driving at the speed limit (vmax = 30 kmh−1) can stop
from at the intersection center:

dref = vmax · tr +
v2max

2 · |ab|
. (1)

The calculation is based on the reaction time tr = 1 s and the
breaking deceleration ab = −6m s−2. These values result in
dref = 14.12m. In the following all distances are measured
along the center line of the concatenated lanelet sequence the
test vehicle drove on. For that the start and the end point of
the distance to be measured are projected onto the center line
of the lanelet sequence.

For the ray-tracing approach, the two lidar scans before
and the two scans after are merged with the current scan
to a merged point cloud Pm(d) = [x, y, z], where d is the
distance along the lane center line to the intersection center.
A sight line 1m above ground from the current location to
every reference point is created: si(d) =

[
x(d),pref,i

]
. If there

is no point of Pm(d) within a cylinder Cs,i(d) of radius 0.6m
along si(d), this reference point is considered visible from the
current distance. The visibility distance for reference point i
is then the maximum distance from which it is visible:

dvr,i = argmax
d

(
Cs,i(d) ∩ Pm = ∅

)
. (2)

The calculation is showcased in Fig. 3. Alternatively, the
visibility can also be calculated by only taking stationary
objects into consideration. For that we do not rely on the
recorded point clouds, instead polygon sets of buildings Pb
and trees Pt were generated for each intersection. If the sight
line of reference point i does not intersect with any polygon,
the reference point is considered visible:

dvp,i = argmax
d

(Pb ∩ Pt ∩ si(d) = ∅) . (3)

The visibility distance for a given intersection is the minimal
visibility distance over all its streets:

dvx = min
i
(dvx,i). (4)

To measure the narrowness of the street leading up to an
intersection, we define three widths. The widths are measured
along the normal ns(d) to the driven trajectory parallel to the
ground plane. The width of the street includes the opposite
lane. For that reason the two intersections to the left ps,l(d)
and right ps,r(d) of ns(d) with the street polygon created
from the lanelets are calculated. The street width ws(d) is the
Euclidean distance between the two intersection points:

ws(d) = |ps,l(d)− ps,r(d)|2. (5)

The visual range describes how far a driver can see to the left
and right. The view is usually blocked by parked vehicles,
other traffic participants, signs, vegetation or buildings. Some
of the objects and obstacles that are considered here are also
considered by other features like the number of trees nt. It is
calculated along the normal at sensor height nv(d). The first

points within ±10 deg in horizontal direction and ±5 deg in
vertical direction to the left (pv,l(d)) and to the right (pv,r(d))
determine the limits of the visual range:

wv(d) = |pv,l(d)− pv,r(d)|2. (6)

The available street width represents the width of the street
that is vacant and available to the driver:

wa(d) = min(ws(d),wv,mod(d)). (7)

The visual range wv(d) is modified to include a vertical range
of ±15 deg. All three widths are averaged from 25m to 7m
before the intersection center. The difference between the
three widths is visualized in Fig. 4. The widths are included
to represent both the available space for driving (street width
and available width) and the perceived narrowness of a sit-
uation (visible width) in the feature set. Less space might
increase the perceived complexity of a situation.

It should be noted that the features describing the inter-
section are used as a surrogate for the overall intersection
complexity perceived by a human driver and are assumed to
describe the complexity of an intersection. The selection of
features is based both on features found in literature and on
the authors’ considerations. A subjective rating of complexity
for the intersections could not be recorded reliably in this
study.

B. BEHAVIOR FEATURES
Besides the features that describe the intersection and the
traffic, we additionally need features that describe the driving
behavior of the participants of the study. For that selection,
several aspects have to be considered: These features have
to be applicable to situations with and without cooperation
partners. Additionally, the intersections that were included
in the study have several attributes in common: The speed
limit is always 30 kmh−1, there is one lane per street and
direction and all intersections are located within residential
areas. Finally, typical aspects of driving at intersections have
to be described by them.

In this work we use three features to describe the behavior
of human drivers at an intersection: The minimum velocity,
the velocity drop during the approach and the commit dis-
tance. The features are calculated from the driven trajectory
of the test vehicle. All features are based on the approach
interval from ds = 25m from the intersection center to
de = 0m. This interval starts at a distance shortly before a
majority of drivers started changing their velocity and ends at
the intersection center. The minimum velocity is the lowest
velocity during the approach:

vmin = min(v(d)), ds > d > de. (8)

The second feature is the velocity drop during the approach
to an intersection:

vd =
vmin

va
, (9)

with the mean initial approach velocity va in the interval
from 25m to 20m from the intersection. The final feature
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TABLE 2. Mean of behavior at T-intersections, standard deviation in
brackets.

is the commit distance dc. It describes the distance to the
intersection center at which, given the current velocity, the
test vehicle cannot stop in time anymore:

dc = max
d

(
d < v(d) · tr +

v(d)2

2|ab|

)
. (10)

We found that these features meet the requirements from
above and are well suited for behavior prediction. Minimum
velocity and the velocity drop describe the breaking behavior
at an intersection, the commit distance can be seen as an
indicator of where a decision on the driving behavior has
been made. There are several more possible behavior features
that could be used here like velocity, acceleration or the
distance to the intersection center where the minimal velocity
is reached. In this work, however, we focused on those three
as an example.

V. ANALYSIS
Using the intersection complexity, in the form of the fea-
tures derived from the data set, several aspects are analyzed.
First, we investigate how the driving behavior is dependent
on the entry location and turning direction at intersections.
Additionally, we look at how the features that constitute the
intersection complexity influence a driver’s behavior and how
to predict it. We finally investigate several lower dimensional
representations of intersection complexity. For all variants the
behavior features from the previous section are used.

A. INFLUENCE OF ENTRY LOCATION AND TURNING
DIRECTION ON THE DRIVING BEHAVIOR
First we analyzed the drivers’ behavior depending on where
they entered or how they drove through the intersection. For
both intersection types the turning direction (left, right or
straight) has to be considered. Depending on the direction
drivers might have the right of way or have to give way and
therefore show different behavior. For the T-intersection the
entry location (left, right or bottom) also has to be considered
as different traffic constellations can occur and visibility
differs between entry locations. As the X-intersection is sym-
metrical the entry location can be neglected.

For analysis, ANOVAs on mixed linear-models were
calculated using R in version 4.0.4 with the package
lmertest [32]. Normal distribution was not given for neither
the X-intersection nor the T-intersection, but studies show

TABLE 3. Mean of behavior at X-intersections, standard deviation in
brackets.

that linear mixed-models are robust against violations of
normal distribution [33], [34]. For the X-intersection linear
models with turning directions as predictor were calculated,
for the T-intersection turning direction and entry location
were used as predictors. Mean and standard deviation for
commit distance, minimal speed and relative speed drop
at the T-intersections can be found in table 2 and at the
X-intersections in table 3.

For both the X-intersections (F(2, 532.02) = 153.47,
p < .001) as well as the T-intersections (F(2, 1780.9) =
917.05, p < .001), the turning direction shows a signif-
icant effect on the commit distance. Bonferroni corrected
post-hoc tests revealed a significant difference between all
the turning directions for the X-intersections as well as for
the T-intersections (p < .001). For the T-intersections the
entry location also showed a significant effect on the commit
distance (F(2, 1780.6) = 446.76, p < .001). The commit
distance was significantly lower when entering from the bot-
tom of the intersection compared to the left (p = .032) or
the right (p < .001). The commit distance from the right was
significantly higher than that from the left (p < .001).

The minimal speed while approaching the intersec-
tion differed significantly between turning direction at the
X-intersections (F(2, 531.86) = 119.12, p < .001) as well
as at the T-intersections (F(2, 1780.9) = 473.15, p < .001).
Post-hoc tests showed that at the X-intersections minimal
speed was significantly higher when driving straight com-
pared to left (p < .001) or right (p < .001) and when
driving right compared to left (p < .001). The same pattern
could be observed for the T-intersections (p < .001 respec-
tively). Entry location at the T-intersections also has a signif-
icant effect on the minimal speed (F(2, 1780.6) = 366.60,
p < .001). Minimal speed was significantly lower when
entering from the bottom compared to left (p < .001) or right
(p < .001) as well when comparing left to right (p < .001).

The relative speed drop is significantly different between
turning directions for the X-intersections (F(2, 531.74) =
140.47, p < .001) as well as the T-intersections
(F(2, 1781.0) = 342.28, p < .001). Post-hoc tests
showed that the relative speed drop is significantly higher
when driving straight compared to left or right and driv-
ing right compared to left for both types of intersec-
tion (p < .001 respectively). The entry location at the
T-intersections also has a significant effect on the relative
speed drop (F(2, 1780.6) = 272.66, p < .001). It is signif-
icantly higher when entering from the right compared to left
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TABLE 4. Regression parameters for the T-intersection models for all
behavior features. p < .001 for all entries but the one marked with an
asterix which has a value of p = .011.

TABLE 5. Regression parameters for the X-intersection models for all
behavior features. p < .001 for all entries.

(p < .001) or bottom (p < .001) and left compared to bottom
(p < .001). The regression parameters for these models are
listed in Table 4 for the T-intersection models and in Table 5
for the X-intersection models.

From these results we can see that both the turning
direction at and the entry location into T-intersections
have a significant influence on the typical behavior of
drivers. This information is therefore useful when designing
decision-making algorithms for these scenarios. The fact that
the commit distance is smaller, theminimum velocity is lower
and that the velocity drop is more pronounced when entering
from the bottom road indicates that drivers tend to approach
an intersection more cautiously from the bottom and make
their final decision closer to the intersection in this case.

B. BEHAVIOR PREDICTION BASED ON INTERSECTION
COMPLEXITY
To evaluate if the complexity of an intersection has any influ-
ence on the behavior of human drivers, random forest [35],
[36] regression has been applied to predict the behavior based
on the features from section IV-A describing the intersections.
RFs can be used for both, classification and regression and
have been applied to many different fields, e. g. classifying
drivers’ intentions at intersections [24], as part of a system
for link fault identification in networks [37] or for capacity
estimation of lithium-ion batteries [38]. There are many more
methods that could be used for regression here as well. The
goal of this work is to showcase that predicting driving behav-
ior based on intersection complexity features is possible. RFs
are a good fit for that as they allow to model non-linear
dependencies [36] and for their ease of use. For all cases in
our work an RF regression model with 300 trees is trained.
In the remainder of this paper the term regression refers to the
Random Forest regression. In a first step all 11 intersection
features from section IV-A were used. These are the number
of pedestrians np, the number of visible vehicles nv, the

number of vehicles that the participant interacted with nvi,
the number of vehicles that had to give way ngw and those
which had the right of way nrw. The number of trees nt, the
visibility distances based on the point clouds dvr and on the
object polygons dvp, the street width ws, the visual range wv
and the available street width wa are also included. Since
the turning direction pt and in the case of the T-intersection
also the entry location pe have a significant influence on the
behavior of drivers, they were also added to the feature set
describing the intersection complexity. Both the T- and the
X-intersection data set were split into a training and a test set,
the two intersection types were analyzed separately. The test
sets contained 30% of all runs through the intersections. The
training sets were used to train the RF regression models. All
evaluations were performed on the test set and the Root Mean
Squared Error (RMSE)

RMSE =

√√√√ 1
N

N∑
k=1

(ŷk − yk )2 (11)

and the Mean Absolute Error (MAE)

MAE =
1
N

N∑
k=1

|ŷk − yk |2 (12)

of the regression results are calculated for that, with N
being the number of test samples, yk the behavior feature
as extracted from the k-th member of the test set and ŷk
the estimated behavior feature from the regression for the
k-th member of the test set. The results are given in the first
line of Table 6 for the T-intersections and in Table 7 for the
X-intersections. All values in these tables are calculated by
running the RF regression ten times with different training
and test set assignments. The values shown are the average
over the test results of all iterations. Additionally, in the last
line of the tables the reference values are given. These values
are the results of a naive classifier that outputs the mean of
the training set. The scatter plots of the best of the ten runs of
the RF regression are shown in Figure 5a for the data of the
T-intersections and in Figure 5b for the X-intersections.

The scatter plots show that there are few outliers, most test
examples are predicted relatively close to the ideal line. For
both intersection types, it is noteworthy that the regression
of the minimum velocity and the velocity drop are unreli-
able where the vehicle is very slow or even stopped. For
all features the behavior can be predicted reliably using the
complexity features, especially considering that the driving
style and behavior might be influenced by other factors such
as the driver’s personality. Similar results can be obtained
using other behavior features like velocity or acceleration.

C. BEHAVIOR PREDICTION WITH LOWER DIMENSIONAL
COMPLEXITY
As we are ideally interested in a one-dimensional intersection
description (i. e. the complexity of an intersection), an analy-
sis whether a reduction of the complexity feature set is feasi-
ble was conducted. As there are several features in the data set
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FIGURE 5. Normalized regression results on the test set data of the best performing regression using different feature sets.

that are defined similarly, initially a reduction of the features
to only include the most relevant ones was performed. The

resulting reduced feature set is a compromise between the
feature importance of all six RF regressions with the full
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TABLE 6. Mean regression results for T-intersection using different
feature sets (FS) and all behavior features: commit distance dc, minimum
velocity vmin and velocity drop vd. Standard deviation in brackets.

TABLE 7. Mean regression results for X-intersection using different
feature sets (FS) and all behavior features: commit distance dc, minimum
velocity vmin and velocity drop vd. Standard deviation in brackets.

data set and was generated empirically. The turning direction
pt and, in the case of the T-intersection, the entry location
pe, the visibility distances based on ray-tracing dvr and the
polygons dvp, the available width wa, the street width ws,
the number of trees nt and the number of visible vehicles nv
were most important. All features but nv describe the static
environment of an intersection, the only feature describing
the traffic that was included in the reduced set is the number
of visible vehicles nv. This does not necessarily mean that the
dynamic environment is less important for the behavior at an
intersection. As we were driving through normal traffic, most
runs through the intersections happened without any inter-
action partners, thus reducing their overall influence on the
behavior in our data set. The RF regression results using the
reduced feature set are shown in the second row of Table 6 and
Table 7, respectively. The scatter plots are given in Figure 5c
and Figure 5d.

The results of the reduced feature set are very similar to
those of the full set. All features are predicted less accu-
rately, the difference is more pronounced in the case of
the X-intersection. The high importance of those features
describing stationary aspects of an intersection indicates that
the desired path through an intersection and the intersection

itself are important factors affecting the behavior at and
thus the complexity of an intersection. The relatively low
influence of features describing the traffic might in part be
influenced by the fact that there was no additional traffic other
than the test vehicle in several runs.

In section V-A we showed that the entry location pe and
turning direction pt are important factors to the behavior of
a driver at an intersection. We therefore reduced the fea-
ture set further so that it only included the turning direc-
tion and additionally the entry location in the case of the
T-intersections. The results are given in the third line of
Table 6 and Table 7. The results are worse than those of both
the full and the reduced feature sets; this is especially the
case for the X-intersections. One likely cause for the reduced
accuracy is the limited set of possible values of these features.
In the case of the T-intersections there are only six possible
values for the direction features, for the X-intersections this
is further reduced to three values. The regression can only
assume at most as many distinct values as there are possible
combinations of feature values. This can also be seen in the
scatter plots for these feature sets in Figure 5e and Figure 5f.
Considering that the performance of the regression is reduced
but still considerably better than the reference we can again
conclude that the entry location and the turning direction are
important features for predicting the driving behavior.

Finally, an autoencoder (AE) was used to reduce the
dimensionality of the complexity feature set describing the
intersections. For that purpose an AE was trained to gener-
ate a low-dimensional representation of the full feature set.
An AE is a special form of neural network that can be used to
generate a lower dimensional, non-linear representation of a
given feature space [39]. For these reasons and the ability to
include categorical data we chose an AE over e. g. principal
component analysis (PCA). An AE consists of an encoder
and a decoder, the number of neurons is typically lower at
the interface between the two [39]. The dimension at this
bottleneck of the AE was set to either dAE = {1, 2, 3}. The
representation of the complexity features at the bottleneck
was then used to train the RF regression as before. To train
the AE 50% of the data set was used as the training set and
20% as the validation set. The RF regression was then trained
with the compressed representation of the features of both
the training and the validation set. The results were again
obtained by analyzing the test set. Both the encoder and the
decoder consist of three layers. All layers are fully connected
layers with ReLU and batch normalization after each layer.
The input dimension of the encoder is determined by the
dimensionality of the full feature set (17 for the T-intersection
and 14 for the X-intersection; the categorical features are one-
hot encoded). The dimension at the output of the encoder
is determined by dAE and the intermediate layers have the
dimension 15 and 6, respectively. The decoder is set up in
reverse. For each direction feature cross entropy (CE) is used
as the loss function while the loss of the remaining features is
calculated using the mean squared error (MSE). The total loss
is the weighted sum of the partial losses. The results of the RF
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regression based on the AE latent representations are given in
Table 6 and Table 7, the scatter plots for the 1D case are shown
in Figure 5g and Figure 5h, for the 2D case in Figure 5i and
Figure 5j and for the 3D case in Figure 5k and Figure 5l.
These results show that behavior prediction is also feasible

with a low dimensional representation of the intersection
complexity features. It is noteworthy however that the results
for the 1D case are comparable to the case of the entry
location and turning direction only feature set. For the 2D
and 3D case the performance is improved compared to the
1D case but still worse than in the cases of the full or reduced
data sets. This is especially the case for the X-intersections.

VI. CONCLUSION
In this work a data set with runs through unsignalized inner
city intersections was recorded. Based on that data set the
factors that influence the complexity of an intersection were
analyzed. The results show that the desired turning direction
through an intersection has a significant influence on the
behavior of a human driver. At T-intersections the entry loca-
tion also significantly influences the behavior. Additionally,
we showed that the behavior can be predicted by an RF
regression based on features describing the complexity of
an intersection. Besides, a reduction of the feature set and a
dimensionality reduction using an AEwere performed. These
feature sets proved suitable for behavior prediction with RF
regression as well.

To understand and reliably predict human driving behav-
ior at intersections the turning direction and entry location
as well as static and dynamic features of the intersection
environment have to be considered. This knowledge can be
beneficial in decision-making models for example. Here it
could be used as prior knowledge to take typical behavior
of human interaction partners into account depending on the
complexity.

In future work we plan to also assess the perceived com-
plexity of the intersection by human drivers through further
studies. With that we intend to gain a deeper understanding
of the correlations between the perceived complexity and
the multidimensional representation of complexity through
features of intersections used in this work. These results
could then be incorporated into an algorithm for automated
vehicles driving through unsignalized intersections in mixed
traffic.
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