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Abstract

While the phase-field methodology is widely adopted for simulating two-phase

flows, the simulation of an arbitrary number (N ≥ 2) of fluid phases at physical

fidelity is non-trivial and requires special attention concerning mathematical

modelling, numerical discretization, and solution algorithm. We present our

most recent work with a focus on validation for multiple immiscible, incom-

pressible, and isothermal phases, enhancing further our library for diffuse

interface phase-field interface capturing methods in OpenFOAM (FOAM-

extend 4.0/4.1). The phase-field method is an energetic variational formulation

based on the work of Cahn and Hilliard where the interface is composed of a

physical diffuse layer resembling realistic interfaces. The evolution of the

phases is then governed by the minimization of the free energy of the system.

The accuracy of the method is demonstrated for a number of test problems,

including a floating liquid lens, bubble rise in two stratified layers, and drop

impact onto thin liquid film.

KEYWORD S

Cahn–Hilliard Navier–Stokes, multiphase flows, phase-field

1 | INTRODUCTION

Numerical simulation of technically relevant applica-
tions of fluid dynamics often extends beyond a two-
phase problem formulation. In numerous processes,
more than two phases co-exist with multiple fluid
interfaces dynamically evolving. Of particular interest
to this study are applications linked to drop-film-
interactions in internal combustion engines. In such
combustion processes, fuel droplets collide with a thin
layer of lubricating oil film on the piston that might

weaken/change the oil’s lubricating properties and
cause combustion of a fuel–oil mixture instead of a
pure fuel combustion. A fundamental understanding of
such a complex and dynamic process requires detailed
numerical simulation of the physics involved during
the impact process that includes more than two phases.
To this end, we have extended our two-phase diffuse
interface modelling library for phase-field interface cap-
turing simulations to cover more than two immiscible,
incompressible, and isothermal phases. Here, we refer
to a region of matter surrounded by an adjacent
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medium as a phase, which in the present work can be
liquid or gaseous fluid regions, respectively.

The building block of our approach is the phase-field
interface capturing method, based on a diffuse-interface
model, where the system is described using one field vari-
able in the case of a two-phase flow or multiple field vari-
ables in the case of a multiphase flow problem. Unlike
interface capturing methods based on sharp-interface
modelling, such as volume-of-fluid (VOF) or level-set
(LS), the composition profile across the interface in the
phase-field method is sigmoid in shape, based on the
work of Cahn and Hilliard,[1] that reflects a physically
diffuse profile. The ingenuity of this method stems from
the fact that the free energy of a non-homogeneous sys-
tem contains interfacial energy-related effects in the form
of composition gradient, and the system evolves by mini-
mization of its free energy. This is different from the
aforementioned methods, which underlie a continuum
mechanical rationale; see the work of Brackbill et al.,[2]

for instance. The advantages and challenges of the phase-
field methodology are set out and discussed extensively
in the work of Feng et al.[3]

The fluid dynamics of a system of multiple fluid
phases is governed by the coupled Cahn–Hilliard Navier–
Stokes equations. For the mathematical foundation for
immiscible, incompressible, and isothermal two-phase
flows, one can refer to many available treatises in the lit-
erature, such as the works of Lowengrub and Truski-
novsky,[4] Jacqmin,[5] Jacqmin,[6] Liu and Shen,[7] Yue
et al.,[8] and Ding et al.[9] Extension from two-phase to
ternary-phase systems were proposed for instance in the
works of Kim and Lowengrub,[10] Boyer and Lapuerta,[11]

Kim,[12] Boyer et al.,[13] and He et al.[14] Such models for
ternary systems are available in proprietary software,
like, for instance, in the microfluidics module of COM-
SOL Multiphysics software that is described in the COM-
SOL Multiphysics User’s guide[15] based on the work of
Boyer et al.[13] Open-source code for the simulation of
ternary systems has been made available under the
numerical simulation platform PELICANS.[16] The model
in Boyer et al.[13] was subjected to a study pursued in the
work of Řehoř et al.[17] and implemented using the
FEniCS Project.[18]

Extending the model formulation to systems contain-
ing an arbitrary number of fluid phases (i.e., the general
case of N > 2 phases) is non-trivial and indeed subject to
ongoing research building on continuous efforts during
the last decade.[19–29] One central challenge for an N-
phase model to be of physical fidelity resides in the
requirement to honour thermodynamic and reduction
consistency likewise. Based on the pioneering work of
Boyer and Minjeaud,[20] Dong[24] presented for the first
time a fully reduction-consistent model formulation, that

is, an N-phase model, which reduces to the established
two-phase model, when only two phases are initialized to
co-exist in multiphase setups. Their N-phase model was
moreover reported to be thermodynamically consistent,
that is, to obey conservation of mass, conservation of
momentum, the second law of thermodynamics, and Gal-
ilean invariance.[24] Nevertheless, the model of Huang
et al.[27] then contains several modifications to fulfil con-
sistency conditions and further improve the work of
Dong.[24] Differences are indeed subtle, and these papers
have paved the avenue towards the practical deployment
of the phase-field method for multiphase flow simula-
tions. On these bases, we have implemented a versatile
diffuse-interface model library for multiple phases using
the finite volume method (FVM) with support for
unstructured meshes of general topology in OpenFOAM
(FOAM-extend 4.0/4.1). In future work, we will aim at
the deployment for simulating multiphase flows in geo-
metrically complex domains such as porous media or
fibre mats. This work shall demonstrate our validation
efforts for a broad bandwidth of different literature-
known numerical tests and benchmarks for multiphase
flows including a floating liquid lens, bubble rise in two
stratified layers, and drop impact onto thin liquid film.

2 | MATHEMATICAL
FORMULATION

2.1 | Two-phase Cahn–Hilliard Navier–
Stokes equations

The flow of two immiscible, incompressible, and isother-
mal Newtonian fluid phases is governed by the coupled
Cahn–Hilliard Navier–Stokes equations. Here, only a sin-
gle phase-field variable c � [�1, 1] (volume fraction con-
trast) has to be used to discriminate the presence of the
phases. The concentration in the bulk phases is repre-
sented by c = ±1 and the position of the fluid interface
can be represented as the zero iso-surface c = 0. Follow-
ing the work of Cahn and Hilliard,[1] the total free energy
(Helmholtz free energy functional) of this system consists
of the sum of the bulk and the gradient energy contribu-
tions, which can be written as[8]:

F c,rcð Þ¼
Z
Ω
λ

Ψ cð Þ
ε2

þ rcj j2
2

� �
dΩ, ð1Þ

where Ω is the fluid domain, λ is the interfacial mixing
energy density parameter, ε is the capillary width, and
Ψ(c) is the so-called double-well potential which can be
phenomenologically modelled according to Ginzburg and
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Landau,[30] that is, Ψ cð Þ¼ 1
4 c2�1ð Þ2. Assuming a planar

interface and equilibrium conditions, the interfacial
mixing energy density parameter λ can be shown to be
λ¼ 3

2
ffiffi
2

p σε where σ is the interfacial tension coefficient.
The evolution/kinetics of the system is described by

the minimization of free energy through a variational
procedure,[1] which leads to the chemical potential Φ of
the system:

Φ¼ δF
δc

¼ λ
Ψ0 cð Þ
ε2

�r2c

� �
, ð2Þ

where Ψ
0
(c) is the first derivative of the double-well

potential with respect to the order parameter c. Using
the Ginzburg and Landau double-well potential,
Ψ

0
(c) = c3 � c. From this, the equilibrium interface pro-

file can be obtained when requiring Φ = 0, which yields:

c xð Þ¼ tanh
xffiffiffi
2

p
ε

� �
, ð3Þ

where x is the local coordinate normal to the interface.
The fluid dynamics of two immiscible incompressible

phases are then governed by the Cahn–Hilliard equation
being coupled with the Navier–Stokes equation following
the work of Jacqmin,[5] viz.:

∂ tcþr� cuð Þ¼�r�J, ð4aÞ

r�u¼ 0, ð4bÞ

∂ t ρcuð Þþr� ρcu�uð Þ¼�rep
þr�τþρcg�r� u�Jð Þþ f s,

ð4cÞ

where t is the time, u is the divergence-free velocity field,
and ρc and μc are the volumetric average density and
dynamic viscosity of the two fluids, given as
ρc ¼ 1þc

2 ρ1þ 1�c
2 ρ2 and μc ¼ 1þc

2 μ1þ 1�c
2 μ2. The term ep

denotes a modified pressure, since parts of the known
Korteweg tensor term accounting for interfacial capillar-
ity have been absorbed into the pressure gradient term.
For Newtonian fluids, the viscous stress tensor is
τ = μc(ru+ (ru)T). The gravitational acceleration is
g and J is the phase-field flux that generalizes the Fick’s
law as J = �M rΦ, with M being the mobility parame-
ter. The term fs = Φ rc models the capillarity of the dif-
fusive interfaces on the basis of the Korteweg stress
tensor.[31] Note that (Equation (4a)) is a fourth-order
non-linear parabolic partial differential equation with
respect to c, which renders it challenging to solve
numerically.[32]

2.2 | N-phase Cahn–Hilliard
Navier–Stokes equations

The evolution of the order parameters cp, 1⩽ p⩽N , for N
immiscible fluids is governed by the Cahn–Hilliard trans-
port equations, as[20,33]:

∂ tcpþr� cpu
	 
¼�r�Jp: ð5Þ

Due to isochoric conditions (phase volume conserva-

tion), it applies for multiple phases that
PN
p¼1

cp ¼ 2�N .

The phase-field flux in Equation (5) is:

Jp¼
XN
q¼1

�Mp,qQm
p,qrΦq,m¼ 4, ð6Þ

where

Φp ¼
XN
q¼1

λp,q
1
ε2

Ψ0
1 cp
	 
�Ψ0

2 cpþ cq
	 
	 
þr2cq

� �
, 1⩽ p⩽N

ð7Þ

is the chemical potential of phase p, and

Mp,q ¼
�M0 1þ cp

	 

1þ cq
	 


,p≠ q

M0 1þ cp
	 


1� cq
	 


,p¼ q
, 1⩽ p,q⩽N

(
ð8Þ

is the scalar mobility between phases p and q, where M0

is a non-negative mobility constant. In recognition of the
intuitive statement that the mobility should be
tensorial,[34] we devise Qp,q in Equation (6) as a modified
projection operator I � np � np, viz.

[34]:

Qp,q ¼ I� ε2 rcp
	 
2

Ψ1 cp
	 
þΨ1 cq

	 
�Ψ2 cpþ cq
	 
 np�np

	 

: ð9Þ

Note that in the sharp-interface-limit ε! 0ð Þ the
operator r � Mp,qr in Equation (5) reduces to the
Laplace–Beltrami operator Δs in the asymptotic limit.
Details about the exponent in Equation (6), which we
choose to m = 4, are given in the work of Gugenberger
et al.[34] Using the potential according to Ginzburg and
Landau,[30] the phenomenological potential functions are
Ψ1 cð Þ¼ 1

4 c2�1ð Þ2 and Ψ2 cð Þ¼ 1
4c

2 cþ2ð Þ2.
The interfacial mixing energy density parameters λp,q

in Equation (7) are λp,q ¼ 3
2
ffiffi
2

p σp,qε, as a function of pair-
wise interfacial tension coefficients and capillary widths.
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Here, the matrix λp,q
� �N

p,q¼1 is symmetric and zero-diago-
nal. It should be noted that zero gradient (homogeneous
Neumann) boundary conditions are used for both the
order parameters and the chemical potentials on the
computational boundaries in our work.

The coupling with the Navier–Stokes equations,

r�u¼ 0

∂ t ρcuð Þþr� ρcu�uð Þ¼ �repþr�τ
þρcg�r� u�Jð Þ þf s, ð10Þ

is accomplished via constitutive models, which hold the
order parameter and/or the chemical potential. The aver-

age density and dynamic viscosity are ρc ¼
PN
p¼1

ρp
cpþ1
2 and

μc ¼
PN
p¼1

μp
cpþ1
2 , respectively. The diffusive mass flux is

J¼ 1=2ð ÞPN
p¼1

ρpJp. The pressure ep is a modified pres-

sure term,

ep≔ p� eF
2
, ð11Þ

where

eF ≔
XN
p,q¼1

λp,q
2

1
ε2

Ψ1 cp
	 
þΨ1 cq

	 
�Ψ2 cpþ cq
	 
	 
�rcp

 
�rcq

!
,

ð12Þ

which is the total free energy density for N immiscible,
incompressible, and isothermal phases. The chemical
potentials Φp are determined through the variational
derivative of the total free energy with respect to the order
parameter. This results in the well-known Korteweg stress
term, but in the formulation for a multiphase system. This
term is transformed and partially absorbed into the pres-

sure gradient term: 1
2

PN
p,q¼1

r� λp,qrcp�rcq
	 
¼ f s�r eF

2 ,

where f s ¼ 1
2

PN
p¼1

Φprcp.

3 | SOFTWARE DESCRIPTION,
ALGORITHM, AND NUMERICAL
SCHEMES

The diffuse-interface phase-field method for an arbitrary
number of fluid phases, as described in Section 2.2 is

implemented in OpenFOAM (FOAM-extend 4.1) as
model library used by a top-level solver referred to as
phaseFieldFoam. OpenFOAM is a comprehensive
open-source C++ library for computational continuum
physics including computational fluid dynamics
(CFD).[35–37] The code structure follows a rigorous object-
oriented and physics-guided development paradigm,
which results in a versatile code design that is extendable
towards coupled (multi-)physics applications.

The deprecated two-phase version of phaseField-
Foam has been extensively validated for different physics
in the works of Cai et al.,[38] Cai et al.,[39] Fink et al.,[40]

Wörner et al.,[41] Samkhaniani et al.,[42] and Bagheri
et al.[43] and its solution algorithm is described in the
work of Jamshidi et al.[44] The algorithms for pressure–
velocity coupling lean on other interface capturing
approaches implemented in OpenFOAM and described
in great detail in the work of Deshpande et al.[45] and
have been massively extended in our work to cope with
high-fidelity solution of the coupled Cahn–Hilliard–
Navier–Stokes equations for N immiscible, incompress-
ible, and isothermal phases. The viscous stress tensor τ
implementation is generic in the sense that it allows the
use of any fluid rheology model available in OpenFOAM.
The interfacial Korteweg tensor term fs is implemented
as a volumetric density, whereupon in the context of
phase-field method it substantially reduces the parasitic/
spurious currents by orders of magnitude when com-
pared to methods based on sharp-interface models.[5,44,46]

The basic structure of our diffuse-interface model
library is depicted in Figure 1. It consists of two main
base classes, namely, multiphaseSystem that includes con-
stitutive models and phaseFieldEquations that includes
the transport equations for the order parameters.

The pressure–velocity coupling is carried out using the
PIMPLE algorithm, which is a combination of the Pressure
Implicit with Splitting of Operator (PISO)[47] and the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE)[48]

or the SIMPLE-Consistent (SIMPLEC)[49] algorithms, respec-
tively, which can be selected.

The N-phase system of equations described in
Section 2.2 are discretized using the FVM with support
for unstructured meshes of general topology. Moreover,
the code is equipped with dynamic load balancing (DLB)
along with adaptive mesh refinement (AMR) techniques.
Deploying this solution-adaptive approach allows to
increase the mesh resolution dynamically where needed
(at the interface) while keeping the computational load
approximately balanced on parallel computations on
distributed-memory computer architectures where
domain decomposition is applied.

The system of equations described in Section 2.2 are
applied to a series of validation cases in Section 4 to
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illustrate the capabilities of the software in the simulation
of N > 2 immiscible phases. The discretization of the
equations is performed using second order accurate
schemes for both temporal and spatial terms. The advec-
tion terms (divSchemes), that is, the divergence terms
for the scalar transport of the order parameters, are dis-
cretized using the high-resolution scheme SuperBee,[50]

while the convection term within the momentum equa-
tion is discretized using the second-order accurate Gam-

maV scheme. The temporal discretization scheme
(ddtSchemes) is set to a second-order accurate back-
ward scheme. The gradient terms (gradSchemes) are
discretized using the second order accurate Gauss lin-
ear scheme and the diffusion terms (lapla-
cianSchemes) are discretized using the second order
accurate Gauss linear orthogonal scheme.

4 | SIMULATION RESULTS

4.1 | Floating liquid lens

The floating liquid lens problem, which is considered a
three-phase benchmark problem, is simulated here. This
two-dimensional problem has been also studied in the
works of Dong, Huang et al., and Yuan et al.[21,22,26,27,51]

In this problem, an initially circular liquid oil drop is
floating on the air–water interface (see Figure 2) and will
spread depending on the magnitude of the gravitational
acceleration and interfacial tension coefficients. The sim-
ulation is performed until the oil drop reaches an equilib-
rium configuration. The final thickness of the drop will
then be compared to an exact equilibrium solution given
in the work of Huang et al.[27] for the case when
jgj = 0 m/s2 and an asymptotic analysis provided by
Langmuir and De Gennes et al.,[52,53] viz.:

ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 σ2,3þσ1,2�σ1,3ð Þρ1

ρ2 ρ2�ρ1ð Þ j g j

s
, ð13Þ

for all other values of the gravitational acceleration.
The transport properties of the fluids are shown in

Table 1.
The computational domain is [�L, L] � [0, 0.8 L]

with the length scale L = 0.04 m. The wall (no-slip)
boundary condition is applied to the upper and lower
boundaries, the cyclic (periodic) boundary condition is
applied at the left and right boundaries, and the empty

boundary condition is applied to the front and back
boundaries, given that the computational domain is 2D.

The capillary width is ε = 0.01 L where the Cahn
number is selected to be equal to 0.01 (Cn¼ ε

L). The pla-
nar computational domain is discretized by [201� 81]
cells, which results in approximately 16 interfacial cells
(Nc≈ 16) at the interfaces. The mobility parameter is set
to be M = χ� ε2 with the constant χ = 0.1 m ˙ s/kg. An
adaptive time stepping criteria is utilized where the time
step is adjusted based on the maximum Courant number
(Comax), which is limited to 0.2 with an initial time step

phaseFieldFoam

diffuseInterface

multiphaseSystem

phases interfaces

capillaryInterface

equilibrium relaxation

phaseFieldFluxes

segregated coupled

phaseFieldMobilities

constant Yue

phaseFieldMixture doubleWellFuntionals

GinzburgLandau

phaseFieldEquations

CahnHilliard

segregated coupled

AllenCahn

FIGURE 1 Structure of the diffuseInterface library

FIGURE 2 Schematic of the geometrical details of the floating

liquid lens case
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of Δt = 10 μs. The system is initialized with no initial
velocity at t = 0 s and the simulations are performed until
t = 2 s where an equilibrium state is reached.

Similar to the work of Huang et al.[27] we have also
considered three different magnitudes for the gravita-
tional acceleration, which are (0, 5, 9.8) m/s2 in the nega-
tive Z-direction.

Figure 3 depicts the final configuration of the three-
phase system after reaching an equilibrium state corre-
sponding to different magnitudes of the gravitational
acceleration. The final shape of the air–oil–water system
depends strongly on the interaction of the magnitude
of the gravitational acceleration, pair-wise interfacial
tension coefficient, and also the influence of fluid den-
sities.[22] As the value of the gravitational acceleration
increases further, the final thickness of the drop at the
centre point in the longitudinal direction reduces. In
the event where the interfacial tension dominates, that
is, jgj = 0 m/s2, the oil drop resembles two circular
‘caps’ in the upper and lower regions, which is in
agreement with the work of De Gennes et al.[53] and
in the event where the gravity dominates, the oil drop
resembles a ‘puddle’.

Figure 4 shows the normalized drop/puddle thickness
versus the normalized gravity. The drop/puddle thickness
is normalized with respect to the length scale L and the
gravity is normalized with respect to jgj = 1 m/s2. The
final maximum thickness is measured between the upper
and lower interfaces of the equilibrium configuration in
the vertical direction. It is observed in Figure 4 that our

numerical results are in excellent quantitative agreement
with the exact and asymptotic solutions.

4.2 | Rising bubble in two stratified
layers

Here we consider the three-phase rising bubble in two
stratified layers problem studied in the works of Boyer
and Lapuerta, Boyer et al., and Fontes[11,13,54] where a
single air bubble of a specified volume rises initially in a
heavy fluid and attempts to cross the interface between a
heavy and a light fluid. Depending on the bubble volume,

TABLE 1 Transport properties–
floating liquid lens

Property Phase 1: Water Phase 2: Oil Phase 3: Air

Density (kg/m3) 998.207 557 1.2041

Kinematic viscosity (m2/s) 1.0038 � 10�6 1.6424 � 10�4 1.4782 � 10�5

Interfacial tension coefficient (kg/s2) σ1,2 = 0.04 σ1,3 = 0.0728 σ2,3 = 0.055

FIGURE 3 Contours of

order parameter–floating
liquid lens
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it can either cross the fluid–fluid interface or remain cap-
tured at the interface. A criterion is proposed in the
works of Greene et al.[55,56] that predicts the state of the
bubble at the interface depending on a critical vol-
ume, viz.

V � ¼ 2π 3
4π

	 
1
3σ1,2

j g j ρ2�ρ3ð Þ

" #3
2

: ð14Þ

For Vbubble > V* the air bubble will penetrate across
the interface, while for Vbubble < V* it will be trapped at
the interface. The criterion is based on ‘macroscopic bal-
ance between buoyancy and interfacial tension forces’[13]

and has been validated experimentally. It should be
noted that the criterion only considers Archimede’s and
interfacial tension forces and ignores hydrodynamic
effects.[11]

A schematic diagram illustrating the geometrical
details of the rising bubble case setup is shown in
Figure 5. The computational domain considered in this
study is axisymmetric and has a dimension of [0, D] � [0,
10D], where D is the bubble initial diameter and the

gravity is applied in the negative Z-direction. The initial
barycenter position of the air bubble is at [0, 1.25D]. The
wall (no-slip) boundary condition is applied at the
lower, upper, and the right boundaries, and the wedge
boundary condition is applied at the left boundary.

The capillary width is ε = 0.025D and the computa-
tional domain is discretized by [80 � 800] cells, resulting
in Nc ≈ 8 interfacial cells. The mobility parameter is set
to be M = χ � ε2 with the constant χ = 0.01 m � s/kg. An
adaptive time stepping criteria is utilized with the maxi-
mum Courant number Comax = 0.25 and initial time step
of Δt = 0.001 s. The computational domain is initialized
with zero initial velocity at t = 0.

The transport properties of the fluids are shown in
Table 2.

Based on the transport properties of the fluids given
in Table 2, Relation (14) gives the critical bubble radius
r* ≈ 2.7664 mm. In other words, an air bubble of radius
rbubble > r* can penetrate across the interface and an air
bubble of radius rbubble < r* remains trapped in the
interface.

Based on the calculated r*, we have performed
numerical simulation for four different bubble radii,
which are rbubble = 2.5, 3.0, 5.0, and 7.0 mm. The numeri-
cal results are depicted in Figures 6–9, respectively. It
should be pointed out that since the computational
domain is axisymmetric, a rotational extrusion is per-
formed for illustration of the bubble during the post-
processing phase.

Both bubble penetration and entrapment are pre-
dicted successfully in our numerical simulations. It can
be seen from Figure 6 that since rbubble < r*, the bubble is
entrapped at the liquid–liquid interface. Figures 7–9
show bubble penetration through the liquid–liquid inter-
face since rbubble > r*. It can also be seen that the pene-
trating bubble carries part of the heavy fluid into the
light fluid domain in its wake (trailing edge), which is
also seen in the works of Boyer and Lapuerta, Boyer
et al., and Fontes[11,13,54] and as the radius of the air bub-
ble increases further, the length of the ‘heavy fluid tail’
becomes longer.

4.3 | A four phase problem

To illustrate the capabilities of the N-phase solver, the
four phase fluid mixture problem proposed in the work
of Dong[22] has been simulated and the results are
reported in this section. Here, the dynamics of four
immiscible incompressible phases with transport proper-
ties as given in Table 3 is considered.

A schematic of the computational domain is illus-
trated in Figure 10. The computational domain is [�L/2,

FIGURE 5 Schematic of the geometrical details of the rising

bubbles case
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L/2] � [0, 8 L/5] where the length scale L = 0.02 m and
the gravity is applied in the negative Z-direction. The
upper and lower boundaries are set to be wall (no-slip),
the left and right boundaries are set to be cyclic (peri-
odic), and the front and back boundaries are set to be
empty since the case is 2D. The system is assumed to
have zero initial velocity at t = 0 s.

The capillary width is ε = 0.005 L and the planar
computational domain is discretized by [400 � 640] cells,
resulting in Nc ≈ 8 interfacial cells. The mobility parame-
ter is set to be M = χ � ε2 with the constant
χ = 0.001 m � s/kg. We used an adaptive time stepping
criteria where the time step is adjusted based on the max-
imum Courant number Comax, which is limited to 0.2

TABLE 2 Transport properties–
rising bubble in two stratified layersProperty

Phase 1: Heavy
fluid

Phase 2: Light
fluid

Phase 3: Air
bubble

Density (kg/m3) 1200 1000 1

Kinematic viscosity (m2/s) 1.25 � 10�4 1.0 � 10�4 1.0 � 10�4

Interfacial tension
coefficient (kg/s2)

σ1,2 = 0.05 σ1,3 = 0.07 σ2,3 = 0.07

FIGURE 6 Contours of

order parameter rbubble
r� ¼ 0:9037

FIGURE 7 Contours of

order parameter rbubble
r� ¼ 1:0844
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with an initial time step of Δt = 0.25 μs. The system is
initialized with no initial velocity at t = 0 s.

At t = 0 s, the upper half of the domain is filled with
air, which contains the F2 drop, and the lower half of the
domain is filled with water, which contains an air bubble
and the F1 drop. When the system is released, the F2

drop free falls into the water through air and the air bub-
ble and F1 drop move upward through the water.

Figure 11 depicts sequential time instances of the
dynamics of the four phase mixture problem. In the
upper half of the computational domain, gravity causes
the F2 drop to descend rapidly through air, while

FIGURE 8 Contours of

order parameter rbubble
r� ¼ 1:8074

FIGURE 9 Contours of

order parameter rbubble
r� ¼ 2:5304

TABLE 3 Transport properties–four phase mixture

Property Phase 1: Air Phase 2: Water Phase 3: F1 Phase 4: F2

Density (kg/m3) 1.2041 998.207 400 870

Kinematic viscosity (m2/s) 1.4782 � 10�5 1.0038 � 10�6 5.0 � 10�5 1.0517 � 10�4

Interfacial tension coefficient (kg/s2) σ1,2 = 0.0728 σ1,3 = 0.06 σ1,4 = 0.055 σ2,3 = 0.045

σ2,4 = 0.044 σ3,4 = 0.048

BAGHERI ET AL. 9



maintaining its original circular shape, and impact the
water surface. In the lower half of the computational
domain, buoyancy causes the air bubble and the F1 drop
to slowly ascend through water while deformation of the
original circular shape of both phases is observed. At the
moment of the impact of the F2 drop onto the water sur-
face, an air pocket (trapped air) is formed beneath the F2
fluid. The air pocket remains trapped during the entire
span of the simulation. The impact also generates
outward-moving waves or ripples on the water surface.
As a result of the small density contrast, fluid F2 remains
floating but mostly submerged in water. The air bubble
rises through water trying to join the air side of the com-
putational domain. As the air bubble approaches the sur-
face, it touches the F2 fluid, disconnects a portion of it
from the water, escapes the water interface, and joins the
air side of the domain. At the same time, the F1 fluid
rises to the water surface and stays floating. By the end of
the computation, the surface of the water is mainly cov-
ered by floating fluids of F1 and F2, which includes an
air pocket. It is important to note that the characteristic
features described in this section have been observed in
the work of Dong.[22] But a close inspection also reveals
minor differences, such as the dynamics of the air bubble
rupture at the free-surface at t = 125 ms (Figure 11E),
which might be due to different numerical schemes used

and subtle differences in the underlying models related
to reduction-consistency.

4.4 | Drop impact onto thin liquid film

The drop impact process of identical liquids is widely
studied both experimentally[43,57–71] and numeri-
cally.[43,72–87] On the contrary, experiments conducted to
describe the drop impact process onto thin liquid film of
non-identical immiscible liquids are limited.[88–92] By
non-identical immiscible liquids, we explicitly mean that
the film liquid is different from that of the drop and a
homogeneous mixture is not formed when the liquids are
mixed. The majority of the experimental studies focus on
the impact morphology of miscible systems[92–98] and typ-
ically the impact parameters are selected such that they
lead to rim instabilities and, consequently, the generation
of secondary droplets. To the best of our knowledge, even
fewer numerical investigations of this complex process
have been performed so far, such as the works of Yega-
nehdoust et al. and Wang et al.[99,100] This can be due to
complex impact dynamics of interfaces and the presence
of triple-junction points.[99,101] The work of Yeganeh-
doust et al.[99] is concerned with a numerical study of the
entrapped air layer when a water droplet of D = 2 mm
impinges (Dupont Krytox103) film layer at three different
Weber numbers and film thickness parameters. Wang
et al.[100] consider numerical computations of impact
dynamics of a microsized water droplet falling onto an
oil layer. Both studies utilize the VOF method for captur-
ing the dynamics of interfaces.

The above discussion clearly shows the lack of
numerical analysis covering drop impact process onto
thin liquid films of immiscible liquids. Therefore, in this
section we perform numerical computations of a silicone
oil drop impacting onto a thin liquid film of water dyed
with fuchsine (maroon coloured). Fuchsine does not bias
the transport properties of water. The numerical results
are compared to the in-house experimental results quali-
tatively. This study is a direct continuation of our previ-
ous work on drop-film interaction.[43]

The experimental setup is shown in Figure 12. The
setup consists of a drop generator system, an impact sub-
strate wetted by a liquid film, as well as an optical system
for recording the drop impact. The drop generated by the
drop generator system is accelerated by gravity and
impinges onto the liquid film. The substrate is a sapphire
plate. A foil made of polyvinyl chloride with a recess of
50 mm in diameter and 0.6 mm in height is applied to
the plate to contain the liquid film. The film thickness is
precisely controlled by a confocal-chromatic film thick-
ness sensor (Micro Epsilon confocalDT 2421 IFS 2405-1).

FIGURE 10 Schematic of the geometrical details of the four

phase mixture case
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The optical system consists of a Photron SA-X2 chromatic
high-speed camera and two high-performance LEDs
(Constellation 120E). The LEDs in combination with a
white screen in the background provide uniform

illumination. The drop impact is captured with a frame
rate of 20 000 fps and a resolution of 16.5 μm per pixel.
The surface tension between maroon coloured water and
air σ1,2 = 0.0728 ± 0.003 kg/s2 as well as the interfacial

FIGURE 11 Contours of order parameter–four phase mixture problem
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tension between maroon dyed water and silicone oil
σ2,3 = 0.027 ± 0.003 kg/s2 are measured with the DCAT
25 tensiometer from Dataphysics.

The transport properties of the liquids are shown in
Table 4. In our study, the film height is h = 0.5 mm and
the drop diameter is D = 1.44 mm. This results in the
film thickness parameter of δ = h/D = 0.35 and the
Ohnesorge number of Oh = μ3/(ρ3Dσ1,3)

1/2 = 0.059. The
drop velocity is U = 2 m/s and, accordingly, the Weber
number is We = ρ3U

2D/σ1,3 = 292.88 and the Reynolds
number is Re = We0.5/Oh = 288.

FIGURE 11 (Continued)

FIGURE 12 Schematic

representation of the experimental setup

in side and top view

TABLE 4 Transport properties–
drop impact onto thin liquid filmProperty Phase 1: Air

Phase 2:
Water

Phase 3:
Silicone oil

Density (kg/m3) 1.2041 998.207 930

Kinematic viscosity (m2/s) 1.4782 � 10�5 1.0038 � 10�6 1.0 � 10�5

Interfacial tension
coefficient (kg/s2)

σ1,2 = 0.0728 σ1,3 = 0.01829 σ2,3 = 0.027

FIGURE 13 Schematic of the geometrical details of the drop

impact case
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The computational domain is depicted in Figure 13. The
domain considered is axisymmetric with the dimensions of
[0, 4D] � [0, 2D] where D is the drop diameter. The gravity

is applied in the negative Z-direction. The domain size is
selected such that the effects of boundaries on the hydrody-
namics of the process are excluded and all the topological

FIGURE 14 Recordings from the experiments (left) and simulations results (right)
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changes of the process are captured. The impacting drop is
initialized very close to the liquid film. Justifications regard-
ing the selected domain size and initial position of the
impacting drop can be found in the work of Bagheri et al.[43]

The capillary width is ε = 0.01D and the mobility
parameter is set to be M = χ � ε2 with the constant
χ = 0.001 m � s/kg. The computational grid is generated
with refinement regions that resolve the interfaces with
approximately 16 interfacial cells during the entire time
span of the simulation. This is vital in phase-field simula-
tion of the drop impact onto thin liquid films since the
interface profile affects calculation of the gradients of the
order parameters and, thereupon, computation of the
interfacial energies. The boundary conditions applied
and the time stepping criteria employed are similar to
those of our previous work.[43]

Figure 14 depicts sequential time instances of the
impact process where the experiment (left) is compared
side by side to the simulation (right). Rotational extrusion
is used for the post-processing of the numerical results
and better visualization of the impact process. Moreover,
the liquid film (water-fuchsine) is coloured maroon to
represent the experiment realistically and to be distin-
guished from the grey impacting oil drop. We also
reduced the opacity of the liquid film to 45% so that the
topological changes that the oil drop undergoes can be
visualized clearly in Figure 14.

The topological changes of the drop impact process
for identical liquids include the coalescence of the

impacting drop and the liquid film in the early stages of
the impact phenomenon. This is completely different for
the case of non-identical liquids. Since the liquids are
immiscible, the interfaces experience compression at the
bottom half of the impacting drop and expansion at the
upper half of the impacting drop. This clearly causes
alteration of the initially specified capillary width ε and
directly changes the interfacial energy associated with
the interfaces. To address the accurate calculation of the
interfacial mixing energy density parameter, we utilized
our relaxation methodology developed in previous
work[43] to estimate an out-of-equilibrium mixing energy
density parameter. Through numerical investigation, we
found that the equilibrium formulation of λp,q results in
the incorrect prediction of the dynamics of the impact
process.

As depicted in Figure 14, the crown rises as a result of
a kinematic discontinuity caused by the jump in both the
liquid film thickness and the local velocity field.[102,103]

The crown wall expansion is dominated by both the outer
lamella sheet, which consists of water, and the inner
lamella sheet, which consists of silicone oil. It can be
seen from the simulation results that the crater widening
is mainly due to the existence of the inner oil lamella
sheet. The free rim, which restricts the crown wall expan-
sion from above, consists of two layers of both liquids. In
other words, there exist two free rims in this process. The
crater descends as the interfacial tension forces become
dominant compared to the inertial force. At the end of

FIGURE 14 (Continued)
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the impact process a dome-like structure consisting of the
impacting drop liquid is formed. This structure can
change to a central (Worthington) jet at higher Weber
numbers. The final configuration of this impact process is
an oil disk floating on the water surface. It can be seen
from Figure 14 that the entire process is captured very
well by the numerical method described in this paper.

5 | SUMMARY AND OUTLOOK

In this contribution, we have performed exhaustive vali-
dation of our new phase-field solver for an arbitrary
number (N ≥ 2) of fluid phases against a broad band-
width of different literature-known numerical tests and
benchmarks for multiphase flows including a floating liq-
uid lens and bubble rise in two stratified layers. The accu-
racy of the implemented diffuse-interface model has been
shown for N = 3 phases against the aforementioned prob-
lems. The numerical method also showed a very good
qualitative agreement against in-house experimental
study of drop impact onto thin liquid film for non-
identical immiscible liquids. We have demonstrated the
potential of the method for simulation of N = 4 phases.
The main objective has been to substantiate the physical
fidelity of our new diffuse-interface model library and
solver, demonstrating suitability for flows of multiple
fluid phases, using the FVM with support for unstruc-
tured meshes of general topology in OpenFOAM
(FOAM-extend 4.0/4.1).

In future work, we will build on this development
aiming at simulations of multiphase flows in geometri-
cally complex domains such as porous media or fibre
mats. We will also extend our methodology to simulate
miscible systems and enhance the computational effi-
ciency by proper utilization of load-balanced AMR
techniques.
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