
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Customer specific, individual products nowadays lead to larger product variance and shorter time to market. This requires efficient  
production system planning. In addition, due to a larger system complexity, each iteration of the planning process itself gets 
soaringly complex. Time constraints and complexity, therefore, emphasize the necessity of supporting humans in planning modern 
production systems. 
Especially the determination of the production sequence holds immense potential and tends to get even more complex within  
specific production technologies. Exemplarily, this article focuses on welding sequences. Here, domain knowledge from product 
development and production planning needs to be holistically integrated. Furthermore, implicit, historic knowledge needs to be 
formalized and used in today’s planning tasks. 
This article introduces a methodical approach and a corresponding toolchain to derive optimal production sequences from custo mer 
product data which is validated using welding processes. For this, firstly, a reference system is build up consisting of historic 
product data (e.g. part list, CAD data) and corresponding production system characteristics (e.g. number and specifications o f 
machines). The main aspect is to use similarities between the new product variant and assemblies from the reference system, to 
determine implications of product specifications on the process sequence. Overall, such restrictions can be displayed using M odel-
Based Systems Engineering. Relevant information (e.g. weld seam lengths) can be used to compute the optimal weld seam order 
regarding minimal cycle times, for example. This requires a parametric encoding of product and production system. In a nutshe ll, 
this approach covers the automated derivation of an optimal production sequence for new product variants, based on system 
information and product similarities, to tackle time constraints and complexity by suggesting initial planning drafts.  
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1. Introduction 

In the age of digitalization, manufacturing companies are 
more than ever confronted with new challenges but also 
opportunities leading to a successful digital transformation [1]. 
Here, success largely depends on operational excellence [2], 
resulting in a high potential in optimizing production processes. 
Due to shorter product life cycles, the frequency of developing 
and planning products and production systems increases . In 
addition, because of the demand for a shorter time-to-market  
and individual products, manufacturers nowadays need to 
reduce time and maximize efficiency in engineering processes. 

[1] To cope with increasing product variants and system 
complexity, new methods and tools supporting humans in 
production planning are required [3]. 

Especially the determination of optimal product variant-
specific production sequences holds immense potential and 
tends to get even more complex within specific production 
technologies. Here, a holistic view of product properties and 
their impact on production is of central importance [4]. 
Detecting these interdependencies between product variants 
and their corresponding production sequences requires an  
integration and formalization of domain knowledge which is 
afterwards reusable in production planning tasks. 
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In the age of digitalization, manufacturing companies are 
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opportunities leading to a successful digital transformation [1]. 
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resulting in a high potential in optimizing production processes. 
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[1] To cope with increasing product variants and system 
complexity, new methods and tools supporting humans in 
production planning are required [3]. 

Especially the determination of optimal product variant-
specific production sequences holds immense potential and 
tends to get even more complex within specific production 
technologies. Here, a holistic view of product properties and 
their impact on production is of central importance [4]. 
Detecting these interdependencies between product variants 
and their corresponding production sequences requires an  
integration and formalization of domain knowledge which is 
afterwards reusable in production planning tasks. 
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features of the product as well as manufacturing and assembly 
processes, machines, and their relations in production [36]. As 
first, Akundi and Lopez [8] review the application of MBSE to 
manufacturing and production engineering systems.  

2.5. Operations Research in Production Planning 

The optimization of production sequences is an important  
part of production system planning [37]. Mathematical 
optimization algorithms, however, are mainly used in 
production control, more specifically scheduling [38,39] and 
sequencing [40] orders. Sparse applications in production 
planning are given by Xue et al. [41] or Wang and Tian [42] 
assessing manual assembly sequence planning optimization. 

2.6. Conclusion of Related Work 

To summarize, the literature study conducted allows for the 
following conclusion: There is a large body of knowledge on 
the subject of automated derivation of production sequences 
from product data. However, the focus mainly lies on assembly 
sequences regarding manual assembly tasks or manufacturing 
sequences based on feature extraction. The consideration of 
(automated) joining processes (referring to DIN 8593-0) 
remains absent. 

The idea of reference systems primarily originates from 
product development. In combination with an automatic 
determination of product similarities, however, this enables a 
data driven classification of product variants in order to look at 
their impact on corresponding production sequences. To 
formalize these correlations, MBSE helps explicitly modeling  
interdependencies between product and production. 

3. Methodical Approach 

Following the findings from the previous section, the 
approach presented in this article supports users in 
automatically planning new production systems based on 
already designed new product variants using knowledge and 
interdependencies from past product variants. 

3.1. Overall Approach 

 

Fig. 2. Visualization of methodical approach. 

Fig. 2 visualizes the procedure which consists of three main  
steps: Based on the variant to produce, firstly, similarities  

between the new product variant and the reference system – 
consisting of past variants – are determined (Sec. 3.2). The 
resulting parametric encoding of the product is combined with  
relevant information from the model-based reference 
architecture (Sec. 3.3) which formalizes interdependencies 
between product and production system. Lastly, the optimal 
production sequence corresponding to the new variant is being 
derived and a rough visualization of the resulting production 
system is generated (Sec. 3.4). Further details regarding the 
three steps are given in the following sections. 

3.2. Reference System and Similarity Determination 

A key first step in deriving production sequences is to 
determine similarities between product variants. This approach 
follows the assumption that similar products are accompanied 
by similar production sequences. Existing approaches (see Sec. 
2) are mostly limited to extract features from product data 
(CAD) and afterwards match features to production processes. 
CAD feature extraction reaches its limits when it comes to 
joining features such as weld seams. This approach explicit ly  
considers joints between parts and (sub-) assemblies. That 
proposes a central challenge: In most CAD assemblies, other 
than screw connections, weld, solder or adhesive joints for 
example are not explicitly modeled. Therefore, in order to 
consider these features as well, one needs to know which  
assembly parts shall be connected. This necessity calls for a 
classification of parts of the new customer variant using a 
reference system, containing information about past product 
variants and their corresponding production sequences. 

Here, a standardized, parametric encoding of product and 
production properties as well as their interdependencies is 
advantageous and should contain all relevant information for 
planning. Examples include the assembly structure, parts and 
their features and connections on product side as well as the 
number of operations, their order and the assignment of 
features to production steps on production side. With this 
information available, there are four key steps in order to 
automatically consider e.g. weld, solder or adhesive joints 
based on past product variants: 

Investigation of differentiators: A preprocessing of part 
properties helps determining attributes in which the parts differ.  

Classification of parts: To make sense of the parts of the 
new product variant, s imilar parts from new and past variants 
must be identified. This matching can be based on geometric, 
semantic (e.g. same or similar part names) or property-based 
(e.g. material or weight) similarities. 

Transferring part joints: For past product variants, joints 
between parts are known. Once all parts from the new variant 
are classified and assigned to the reference system, joints 
known from past variants are transferred to the new variant. 

Determination of feature and joint properties: In the same 
way as extracting features (e.g. holes) alone is not sufficient, 
specific feature/joint properties need to be derived from CAD 
data (e.g. diameter with holes/length with weld seams [32]). 

The resulting standardized, parametric encoding of the new 
product variant is also necessary in order to select the relevant 
planning restrictions supported by the reference architecture, as 
discussed below. 
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Finally, not only the generated optimal production 
sequences but also the optimization of planning processes and 
the resulting increase in efficiency, quality and sustainability 
by means of Zero Defect Manufacturing [5] brings immediate 
competitive advantages for manufacturing companies [2].  

Problem Description: 

Production process planning deals with the question of how 
requirements and features of the product to be manufactured 
can be implemented and realized [6]. It also involves the 
product-related, repetitive activity of planning production 
systems. Here, the term production system is much discussed 
and can be used in many ways: In general, production can be 
divided into four levels: production network, site/factory, 
area/process sequence and process/workstation [7]. Within this 
article, a production system contains several process steps and, 
therefore, refers to the level of process sequences.  

In planning process sequences and especially with product 
variant-specific production systems, there are many repetitive 
activities. This article, thus, aims at supporting users in 
automatically planning new production systems based on 
already designed new product variants  (Fig. 1.).  

 

 

Fig. 1. Problem Description: Production system planning. 

Here, the overall goal is to generate optimal production 
sequences by means of maximizing or minimizing a target 
function. Disciplines such as Operations Research (OR) 
provide methods for solving optimization problems in general. 
With deriving variant-specific production sequences it is 
necessary to efficiently use the knowledge generated by 
repetition and follow the assumption that similar products are 
accompanied by similar production sequences. Therefore, a 
determination of product similarities could help making sense 
of variant-specific parts and their impact on production using a 
reference system, containing information about past product 
variants. In addition, a formalization of planning rules by 
explicitly modeling interdependencies between product and 
production system is missing in practice. [8] Here, Model-
Based Systems Engineering (MBSE) represents a methodology 
established in product design that could also lead to advantages 
in the planning of production systems.  

In a nutshell, due to an increasing number of product 
variants production system planning is a repetitive but complex 
process that calls for an integrative approach to support 
automatically deriving variant-specific production sequences 
from product data utilizing knowledge from past variants. 

Structure of Work:  

Section 2 summarizes a comprehensive review of relevant 
literature. The methodical approach for the automated 
derivation of production sequences is outlined in Section 3. 
Early findings from applying the method are described in 

Section 4. Section 5 gives an overview about current research 
activities extending the approach. 

2. Literature Research 

This section provides an overview of literature describing 
the relevant state of the art in deriving production sequences 
and the sub-domains stated above. 

2.1. Automated Derivation of Production Sequences  

As early as 1989, algorithms for generating mechanical 
assembly sequences are developed [9]. Nowadays, the focus 
mainly lies on automatic assembly sequence planning by 
means of manual assembly tasks [10–12]. Eng et al. [13] use 
various criteria based on the feasibility of the assembly 
direction, the assembly itself, and costs. Dini and Santochi [14] 
describe an assembly scheduling software system. Most 
literature uses data from Computer-Aided Design (CAD) 
Software as an input description of the product. Following this, 
Leo Kumar [15] reviews the state of the art regarding artificial 
intelligence in Computer-Aided Process Planning (CAPP). 
Trommer [16] proposes a method for an early evaluation of 
production sequences in product development. 

2.2. Reference System 

In literature dealing with product development, reference 
systems are often found in general [17,18]. Albers et al. [17] 
describe a method for developing products in generations based 
on a reference model. With a focus on product variants rather 
than product generations, shared modular product designs are 
used [7,19], with the most prominent example being 
Volkswagen’s “MQB”. In production, the usage of reference 
systems such as Demeester et al. [20] remains rare. 

2.3. Determination of Product Similarities 

There are many ways to determine product similarities . 
Linguistic methods compare standardized text modules of 
quantitative and qualitative requirement types  [21–23]. Krahe 
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a minimization of the cost of change by comparing products’ 
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similarities is based on extracting features from CAD. There is 
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systems [33,34]. Gönnheimer et al. [35] propose to derive 
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a traceability analysis between functions, components, and 
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features of the product as well as manufacturing and assembly 
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manufacturing and production engineering systems.  
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attributes. Fig. 6 consists of an excerpt from the reference 
architecture that shows besides general references (i.e. parts 
can contain weld seams which are realized by welding  
processes): (1) how product dimensions influence machine 
installation space, (2) how material restricts usable production 
technologies and (3) how weld seam length and welding robot 
speed results in the time needed to complete the weld seam. 
The latter is particularly important for determining the cycle-
time-optimal production sequence. 
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in which order features and joints should be realized. For this, 
a given number 𝑛𝑛 of features and joints need to be assigned to 
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predecessor features/joints 𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)  with 𝑖𝑖, 𝑗𝑗 = 1, … , 𝑛𝑛 . This 
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ℎ𝑖𝑖,𝑚𝑚 ≔ 1∀𝑚𝑚𝑤𝑤𝑖𝑖𝑡𝑡ℎ0 < 𝑥𝑥𝑖𝑖,𝑚𝑚 ≤ 1,𝑝𝑝𝑒𝑒𝑠𝑠𝑝𝑝0
and the exemplary secondary conditions: 

𝑥𝑥𝑖𝑖,𝑚𝑚 ∈ [0,1];∑𝑚𝑚
𝑀𝑀𝑥𝑥𝑖𝑖,𝑚𝑚 = 1

𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚∗ ℎ𝑖𝑖,𝑚𝑚 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚 ∗ ℎ𝑗𝑗,𝑚𝑚 ≤ 0
∀ℎ𝑖𝑖,𝑚𝑚, ℎ𝑗𝑗,𝑚𝑚 ≠ 0,∀𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗),∀𝑚𝑚 ∈ 𝑀𝑀

In order to minimize cycle time and machine invest, a search 
algorithm can be used to determine the minimum number of 
machines 𝑀𝑀 . Maximum and minimum values known from 
customer cycle time, processing time and maximum invest 
limit solution space and calculation effort. The algorithm 
recursively increases the number of machines, compares 
adding parallel and sequential machines regarding throughput 
time and can be implemented using e.g. Python. This results in 
a NP-hard problem which can be solved using a solution 
heuristic that assigns features and joints to machines. 

Ultimately, given the variant-specific production sequence 
and the needed machine properties, a visualization of the 
solution as an early planning draft is to be generated. To give 
the reader a better idea of the desired result, Fig. 7 (a) gives a 
3D-visualization of the Learning Factory at wbk using Visual 
Components. Fig. 7 (b) especially shows the modular structure 
of resources that allows for an automatic generation. 

 

 

Fig. 7. (a) Learning Factory Global Production; (b) Modular cells. 

5. Summary and Outlook 

This article describes a methodical approach and examples  
from its application to automatically derive production 
sequences from variant-specific product data. Here, it uses 
knowledge from past product variants and explicitly considers 
joints (e.g. weld seams) in addition to classic features. The 
approach supports humans in production system planning 
based on already designed new product variants. To address the 
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3.3. Reference Architecture 

The aim of this approach is to utilize implicit knowledge 
from past product variants and their corresponding production 
sequences. Since an extraction of this knowledge solely from 
the reference system (Sec. 3.2) would need an extensive 
amount of data, which – in industrial practice –is typically not 
available, this approach suggests the explicit modelling of a 
product and production architecture as well as their 
interdependencies. Coming from current distributed document-
based planning processes, a holistic model-based approach 
brings consistency and the opportunity to formalize planning 
rules. The reference architecture, hence, consists of at least: 

 Product model in general, consisting of e.g. assembly 
structure, parts, feature classes, attributes  and relations. 

 Production model in general, consisting of e.g. site-
dependent information, processes according to DIN 
ISO 8085, modules, resources, attributes and relations. 

 Interdependences between product features and 
production processes (e.g. hole and drilling). 

 Effects of product specifications on the necessity of 
specific production processes (e.g. variant drivers and 
associated process steps). 

 Interactions between several production processes (e.g. 
restrictions and sequence). 

 Specific relationships between attributes of the product 
and attributes of the production resources (e.g. part 
dimensions and machine installation space). 

The combination of variant-specific information from Sec. 
3.2 and complementary planning rules from Sec. 3.3 forms the 
input for the determination of the optimal production sequence 
corresponding to the new product variant. 

3.4. Determining Optimal Production Sequences 

When looking at production processes, there are a lot of 
possibilities to formulate optimization targets. With the 
planning scenario assessed in this article (Sec. 1) where product 
properties are already determined and fixed, optimality  
regarding production cycle times and resource investment costs 
are of central importance. Based on the variant-specific 
features and joints, three key questions need to be considered 
to determine optimal production sequences: 

(1) Which production steps are necessary at all and how 
long will they take? 

(2) In what order should the steps be performed? 
(3) Which resources are necessary and what specifications 

must these have? 
The answers to question (1) and (2) arise from the 

combination of variant-specific parts and joints (Sec. 3.2) and 
their model-based connection to related process steps and 
resources (Sec. 3.3). Question (2) results in an optimization  
problem where all resulting operations from question (1) need 
to be assigned to as little resources as possible still lacking  
behind the targeted customer cycle time. 

Given the optimal solution is determined and properties of 
the necessary resources are known (3), the resulting 
standardized parametric encoding of the production system can 
be visualized as an early planning draft.  

4. Method Application and Toolchain 

Following the methodical approach presented above, this 
section touches upon some examples of the current state of the 
art regarding its application. The built toolchain can be taken 
from Fig. 2 and will be further assessed in the following. 

4.1. Reference System and Similarity Determination 

An initial step in order to build up the reference system is to 
determine suitable parameters for a standardized encoding of 
product variants, corresponding production sequences and their 
interdependencies. A standardized comma-separated value 
(CSV) representation allows for easily reading and writing files  
using different applications  later on. Fig. 3 shows an excerpt  
from an example encoding. This demonstrates the generality of 
the method by including several joint types  (DIN 8593-0), 
where type 1 refers to weld seams as the application example. 

 

 

Fig. 3. Excerpt from the standardized parametric encoding. 

Another key step before determining variant similarities is 
to investigate how the individual parts differ. Using part 
properties from Fig. 3, a clustering of the data reveals which  
attributes are suitable to separate functional part types  that each 
product variant has. Quick wins can be scored here using a data 
analytics software, such as  KNIME [43]. Fig. 4 shows an 
exemplary KNIME workflow and Fig. 5 one resulting scatter 
plot, which reveals that the attributes part_width and 
part_length are helpful to distinguish part type 1 from type 2 
and 3. However, to reliably separate types 2 and 3 without 
misclassifications other attributes (e.g. weight or material of 
the parts) are necessary. 
 

 

Fig. 4. KNIME workflow. 
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demand for shorter time-to-market, once a software 
demonstrator has been implemented, a quantitative efficiency  
analysis will be conducted to prove the validity of the approach. 

Current and future research shall focus on implementing  
machine learning classifiers (e.g. Decision Trees) with KNIME 
in order to classify customer variant-specific parts using the 
reference system. In addition, the reference architecture is 
constantly extended by adding new planning rules and 
references. Equally, more secondary conditions (e.g. late 
increase in weight or quality aspects) are added to the 
optimization problem which is implemented using Python. 
Lastly, an interface for an automatic initialization of the 
modular visualization using Visual Components is built up. 
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