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Abstract
Hard combinatorial problems such as propositional satisfiability are ubiquitous. The holy grail are
solution methods that show good performance on all problem instances. However, new approaches
emerge regularly, some of which are complementary to existing solvers in that they only run faster
on some instances but not on many others. While portfolios, i.e., sets of solvers, have been touted
as useful, putting together such portfolios also needs to be efficient. In particular, it remains an
open question how well portfolios can exploit the complementarity of solvers. This paper features a
comprehensive analysis of portfolios of recent SAT solvers, the ones from the SAT Competitions 2020
and 2021. We determine optimal portfolios with exact and approximate approaches and study the
impact of portfolio size k on performance. We also investigate how effective off-the-shelf prediction
models are for instance-specific solver recommendations. One result is that the portfolios found
with an approximate approach are as good as the optimal solution in practice. We also observe that
marginal returns decrease very quickly with larger k, and our prediction models do not give way to
better performance beyond very small portfolio sizes.
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1 Introduction

1.1 Motivation
Propositional satisfiability (SAT) solving is the archetypal NP-complete problem. Its practical
applications abound, e.g., verification of hardware and software [26, 10], product configura-
tion [23], cryptanalysis [33], or planning [42]. SAT solvers are not only used to solve hard
combinatorial problems in industry but also previously open problems in mathematics [21, 20].

Nowadays, one can observe continuous progress regarding SAT-solving methods, heuristics,
and their implementations in SAT solvers. Evaluation of solvers is commonly based on
compilations of benchmark instances that represent diverse, interesting application scenarios.
An important design objective behind new SAT solvers is stability, i.e., good performance
on many types of instances. At the same time, we observe a recurrent emergence of new
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heuristics and methods that improve performance on only a narrow subset of instances.
Nevertheless, such approaches have merit – one can see them as complementary to solvers
with good average behavior.

One way to leverage the complementarity of solvers is with portfolios, i.e., sets of solvers.
One can combine a solver portfolio with a perfect oracle that selects the fastest solver from
the portfolio for each instance in the benchmark set. This construction is commonly referred
to as the Virtual Best Solver (VBS). One can also rank individual solvers based on their
marginal contribution to the VBS [47].

▶ Example 1 (Special Price in SAT Competition 2021). In the SAT Competition 2021,
the performance of the VBS of all portfolios of size two over the entirety of participating
solvers has been evaluated. The best pair of solvers in terms of their VBS contains the
solver CaDiCaL_PriPro [7]. This solver has not been competitive in the overall evaluation.
However, due to that achievement, it has been awarded the new Special Innovation Price.

While the VBS is a theoretical construct, one might use prediction models to select
solvers from a portfolio in practice. Solver selection that includes runtime predictions usually
outperforms individual best solvers by much [46]. However, the relative performance gains of
such approaches on instances in the very diverse application category are usually much smaller
than the gains in the categories of crafted or randomly generated instances [47, 13]. We argue
that evaluations confined to only a few, very specific sets of instances, such as the one in
[25], let the solvers appear in a better light than ones covering various domains. Moreover,
constructing a prediction-based solver-selection process is complex and time-consuming,
particularly for preparing the necessary training data. In consequence, more often than not,
comparative studies in SAT solving do not include implementations applying this principle
to state-of-the-art solvers and recent benchmarks of interest.

Given the circumstances sketched so far, the following questions are essential when it
comes to the design of portfolios and their evaluation. First, one must decide how many
and which solvers to put in a portfolio. The K-Portfolio Problem is to determine an optimal
k-portfolio (cf. Section 4). Searching for a solution to the K-Portfolio Problem is an NP-
complete optimization problem [36]. Second, one must decide how to select a solver for
each instance. In particular, this includes choosing a type of prediction model and instance
features used to learn the model.

1.2 Contributions
This current article features a study that captures and evaluates the state-of-the-art in SAT
solving in terms of portfolio performance. Our study is unique in that it addresses all points
raised so far, as follows: We systematically construct k-portfolios and analyze the impact of
the portfolio size k on portfolio performance. For exact search, we encode the K-Portfolio
Problem as an integer optimization problem (which is faster than alternative approaches,
according to preliminary experiments of ours). Spurred by the complexity of the problem,
we also analyze the quality of various approximate and random solutions.

In a subsequent step, we analyze the quality of solver runtime prediction that one can
achieve with off-the-shelf prediction models and instance features. For each portfolio size k,
we train random forests and boosted trees as prediction models, using the widely known
instance feature records of SATzilla 2012 [48]. Next, we apply these models to select portfolio
members automatically for each instance.

Our study is based on very recent competition datasets, which contain the runtimes
of solvers having participated in the SAT Competitions 2020 and 2021. The instances in
these SAT competitions were selected by stratified random sampling from various instance
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families of interest, considering the categories application and crafted [16]. With a few
exceptions (cf. Example 1), solvers submitted to such competitions are tailored for good
overall performance. Our study highlights the extent to which solvers entering current SAT
competitions are still complementary and if one can leverage this complementarity with
prediction models for solver selection. Our code and data are available online (cf. Section 5.4).

1.3 Results
Our evaluation yields insightful results regarding the various questions. While the marginal
utility is expected to decrease with portfolio size, we did not expect the decrease to be
so early. Regarding the VBS, portfolios of size five already achieve more than 70% of the
maximum possible performance gain over the single best solver, so marginal performance gains
from adding single additional solvers become very small in each case. Another interesting
observation is that the well-known heuristic beam search has given way to good approximate
solutions to the K-Portfolio Problem. These solutions perform very similarly to the optimal
ones, even for a minimal beam width of one.

Relying on an off-the-shelf prediction model has been a mixed bag. On the negative
side, prediction performance has been somewhat low. The actual runtime of model-based
portfolios is not even close to the theoretical improvement one could have with a perfect
oracle. We take this as an indication that more research is necessary; we hypothesize that the
instance features available in our dataset are not sufficiently discriminative. On the positive
side, we have observed considerable performance gains over single-best-solver performance
with runtime prediction for 3-portfolios in both competition datasets. For the solvers in the
SAT Competition 2021 dataset, we observe a further gain in performance for k = 4. For
larger k, the runtimes of model-based portfolios do not improve further. We take this as
a further indication that it might not be beneficial to have many solvers in a model-based
portfolio.

1.4 Outline
In Section 2, we review related work. Preliminaries are given in Section 3. In Section 4,
we introduce the K-Portfolio Problem and several solution approaches. We describe the
experimental design in Section 5 and present the experimental results in Section 6. We
conclude with Section 7.

2 Related Work

In this section, we provide an overview of approaches that deal with portfolios of SAT solvers.
We begin with portfolios in general and continue with instance-specific solver selection,
including approaches to configure and analyze such techniques automatically. Finally, we
discuss related work on systematic investigations of k-portfolios.

In the context of algorithms, the term portfolio refers to a heterogeneous family of
approaches [27]. Portfolio approaches have in common that they operate on a set of
algorithms to exploit the presupposed complementary performance of different methods and
strategies. Some sequential approaches generate schedules to interleave runs of different
algorithms in a static [17] or dynamic [11, 44] fashion. Others use supervised learning for
instance-specific algorithm selection (cf. SATzilla [46]) or rely on unsupervised methods
to select the best algorithm configuration for a given instance (cf. ISAC [25]). Parallel
approaches encompass pure portfolios (cf. PPfolio [24]) as well as parallel portfolios with
information sharing (cf. ManySAT [19]). Our work considers portfolios from which exactly
one solver is selected and run for each instance.

SAT 2022
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Solver complementarity regarding the runtime of solver portfolios has been examined by
Xu et al. [47], who analyze the marginal contributions of solvers, and Fréchette et al. [15], who
analyze the Shapley values of solvers. Both these analyses show that significant contributions
to the runtime of a portfolio can come from solvers that are not competitive when evaluated
as a standalone solver.

Instance-specific solver-selection approaches bring in another perspective on solver com-
plementarity. One of the best-known complex solver-selection approaches is SATzilla, of
which multiple versions exist [46, 48]. In SATzilla, multiple prediction models guide the
selection of a solver from a portfolio. Additional components of SATzilla are pre-solvers,
which are only run for a short time to solve easy instances, and a backup solver, which runs
on instances where computing features for the prediction models takes too long. Other
instance-specific solver selection approaches include ISAC, which is based on clustering in
the instance-feature space [25], and SNNAP, which extends ISAC with runtime prediction
models [13]. Kerschke et al. provide a recent survey on algorithm-selection approaches, also
beyond SAT [27]. For example, algorithm selection is an issues for Constraint Satisfaction
Problems (CSPs) [2, 37] and Satisfiability Modulo Theories (SMT) [39, 43] as well.

Many portfolio approaches have several stages and configuration options, making config-
uring and selecting the best approach difficult. To cope with this, Autofolio by Lindauer et
al. provides an automatic configurator [30]. One can also analyze the impact of configuration
options with tools such as CAVE [8].

A systematic analysis of portfolios with varying size k, which has some similarities to
our study, is conducted by Amadini et al. [1, 2]. They evaluate k-portfolios of CSP solvers
in terms of their average runtime and solved instances. They compare several classification
methods within portfolios, besides adapting complex SAT portfolio approaches like SATzilla.
Amadini et al. focus on different instances and solvers than our study. This different focus
limits the comparability of actual results, but their evaluation procedure shares similarities
with ours. While they only use heuristic search algorithms, our study features a broad
comparison of different search strategies for portfolios, including an exact solution, two
approximate solutions, and random sampling.

Nof and Strichman formalize the K-Portfolio Problem in the form of two maximiza-
tion problems with different objective functions and prove their submodularity and NP-
completeness [36]. They solve the K-Portfolio Problem optimally with an SMT solver and use
greedy search to generate approximate solutions. They evaluate their approach on anytime
algorithms for an allocation problem, focusing on solution quality after one second or less.
While we build on the theoretical results of Nof and Strichman, our evaluation is broader.
We include more solution approaches and analyze portfolios with prediction models.

Our study analyzes two very recent datasets, created from the SAT Competitions 2020
and 2021 [6, 7]. They contain runtimes of state-of-the-art SAT solvers for a very diverse set
of hard SAT instances, which are measured up to a timeout of 5000 seconds. Froleyks et al.
analyze the results of the SAT Competition 2020 in detail [16]. While they also evaluate
portfolios shortly, our study provides an in-depth analysis of portfolios.

3 Preliminaries

Let a set of solvers S = {s1, . . . , sn}, a set of SAT instances I = {i1, . . . , il}, and solver
runtimes r : I × S → [0, T ] with a fixed timeout T be given. A scoring function cT : S → R
estimates solver performance. To score a solver, we use the popular penalized-average-runtime
measure with a penalization factor of two (PAR-2 score). This score offers a trade-off between
solver runtimes and the number of solved instances. It is defined as follows:
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rT (i, s) :=
{

2 · T if r(i, s) = T

r(i, s) otherwise
Penalized Runtimes

cT (s) := 1
|I|

∑
i∈I

rT (i, s) PAR-2 Score

A portfolio P ⊆ S is a non-empty set of solvers. To score a solver portfolio P , we
assume an oracle that always selects the fastest solver for each instance. This construction is
commonly referred to as the virtual best solver (VBS) for P . Accordingly, we extend the
scoring function as follows:

cT (P ) := 1
|I|
·
∑
i∈I

min{rT (i, s) | s ∈ P}

In the following, we refer to cT (P ) as the cost of P .
In reality, one does not have access to an oracle. However, one may train a prediction

model m : I → P for a solver portfolio P . This prediction model recommends a solver for
each instance, using features of the instance. The cost of such a model-based portfolio is
given by the following function:

cT (P, m) := 1
|I|
·
∑
i∈I

rT (i, m(i))

The VBS-based portfolio cost cT (P ) is a lower bound for the actual cost of a model-based
portfolio P .

4 Optimal k-Portfolios

The K-Portfolio Problem is to find a portfolio P of size |P | = k with minimum cost:

arg min
P ⊆S,|P |=k

cT (P )

Note that the portfolio-cost function decreases monotonically under the addition of solvers:
∀s ∈ S, cT (P ∪ {s}) ≤ cT (P ). In particular, adding further solvers only increases the number
of choices for the oracle, which always chooses optimally. In contrast, monotonicity might
not hold if one analyzes cT (P, m) instead of cT (P ). In particular, a prediction model might
choose suboptimal solvers from the portfolio. We will analyze this behavior later.

In the following, we outline three solution approaches for the K-Portfolio Problem, an
exact one based on integer programming, and two approximate methods, namely beam search
and k-best. To the best of our knowledge, the integer programming formulation is novel, while
Nof and Strichman [36] already used a particular variant of beam search to build algorithm
portfolios, and k-best is a baseline from Nof and Strichman as well.

4.1 Integer Programming
To solve the K-Portfolio Problem exactly, we propose an integer linear program. The K-
Portfolio Problem is not linear due to the use of the min() function. However, reformulating
the problem with additional variables can make it linear. In consequence, an off-the-shelf
integer-programming solver can find an exact solution for the problem.

SAT 2022
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Algorithm 1 Beam search.

Input: Set of solvers S, Portfolio size k, Portfolio cost function cT , Beam width w

Output: Portfolio P with |P | = k

1 T0 ← {∅}
2 for i← 1 to k do

// Candidate i-portfolios:
3 U ← ∅
4 foreach P ∈ Ti−1 do
5 foreach s ∈ S \ P do
6 U ← U ∪ {P ∪ {s}}

// Select w best i-portfolios:
7 Ti ← ∅
8 for j ← 1 to w do
9 Ti ← Ti ∪ {arg min

P ∈U\Ti

cT (P )}

10 return arg min
P ∈Tk

cT (P )

We introduce two sets of binary decision variables. The variables ys ∈ {0, 1} indicate
whether a solver s ∈ S is in the portfolio, and the variables xi,s ∈ {0, 1} indicate whether
solver s ∈ S is selected for instance i ∈ I. Equation 1 specifies the cardinality constraint
on the number of solvers. Equation 2 stipulates that exactly one solver is chosen for each
instance. Equation 3 ensures that a solver can only be chosen for an instance if it is part of
the portfolio. Ultimately, Equation 4 specifies the optimization target.∑

s∈S

ys ≤ k (1)

∀i ∈ I :
∑
s∈S

xi,s = 1 (2)

∀s ∈ S :
∑
i∈I

xi,s ≤ |I| · ys (3)

min
x,y

1
|I|
·
∑
i∈I

∑
s∈S

rT (i, s) · xi,s (4)

As another exact solution for the K-Portfolio Problem, Nof and Strichman present an SMT
encoding of the problem and solve it with Z3 [36]. However, we found our re-implementation
of their encoding to be slower than our integer-programming formulation. Also, all exact
approaches should yield solutions with the same portfolio cost anyway.

4.2 Beam Search
Beam search is an approximate method that iteratively finds portfolios. Algorithm 1 specifies
the approach. In each iteration, the algorithm combines w portfolios from the previous
iteration with individual solvers that are not part of these portfolios. In other words, the
algorithm expands existing portfolios by adding individual solvers. Thus, the algorithm
considers the marginal contribution [47] of solvers to the current portfolios.
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Before the next iteration, only the w portfolios with the lowest cost are retained. The
beam width w is an input parameter. For w = 1, only one portfolio remains at the end of
each iteration. We refer to this special case, which also Nof and Strichman used for algorithm
portfolios [36], as greedy search.

For reasonably small w, beam search has a clear runtime advantage compared to an
exhaustive search over all k-portfolios. In particular, beam search only evaluates O(|S| · w)
out of

(|S|
k

)
possible portfolios per iteration.

Though the algorithm does not necessarily find the optimal solution to the K-Portfolio
Problem, there is a bound on the cost of a portfolio found by greedy search. To this end, one
can use a result from [34], which applies to greedy algorithms on non-negative monotone
submodular set functions. Nof and Strichman show that their K-Algorithms Max-Sum
Problem for portfolios is submodular, and thus a bound on greedy algorithms holds [36].
We can transform the K-Portfolio Problem (minimization) into the K-Algorithms Max-Sum
Problem (maximization) by replacing the cost function with a utility function as follows:

uT (P ) := cW − cT (P )

In this transformation, cW is an upper bound on portfolio cost, the single worst solver:

cW := max{cT (s) | s ∈ S}

As uT (P ) is non-negative, monotone, and submodular, we get a lower bound on the utility
of a portfolio found by greedy search P greedy

k [34, 28]:

uT (P greedy
k ) ≥ (1− 1

e
) · max

|P |≤k
uT (P )

One can transform this into an upper bound on the cost of a portfolio found by greedy search:

cT (P greedy
k ) ≤ (1− 1

e
) · min

|P |≤k
cT (P ) + 1

e
· cW (5)

4.3 K-Best
K-best is a baseline from the study of Nof and Strichman [36]. It sorts all solvers by their
individual performance and then picks the top k from this list. Unlike beam search, it does
not consider how solvers within a portfolio interact, i.e., if they complement each other. Thus,
k-best only needs to evaluate |S| intermediate portfolios to determine a solution, compared
to the O(|S| · w · k) portfolios of beam search.

5 Experimental Design

In our experiments, we evaluate the solution approaches just presented. Besides analyzing
the VBS, we combine the found k-portfolios with prediction models for instance-specific
solver selection. In both cases, we are interested in the influence of the portfolio size k on
portfolio performance, measured as portfolio cost cT (P ) or cT (P, m), respectively.

For evaluation purposes, we conduct five-fold cross-validation over SAT instances. Thus,
we only use SAT instances from the training folds to search for k-portfolios and subsequently
train prediction models. In particular, neither portfolio search nor prediction models have
access to solver runtimes on the test instances. The prediction models need to recommend
a solver from the portfolio only based on instance features. We compute all evaluation
metrics on training instances and on test instances. We average evaluation metrics over the
cross-validation folds.

SAT 2022
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5.1 Solution Approaches
We employ the three solution approaches from Section 4 to determine k-portfolios for each
k ∈ {1, . . . , |S|}. We also generate an additional baseline via random sampling of k-portfolios.

Optimal solution: We solve the K-Portfolio Problem as an integer optimization problem
to exactly determine the best portfolio.
Beam search: We search for good portfolios heuristically in a bottom-up manner. We
compare w ∈ {1, 2, 3, . . . , 10, 20, 30, . . . , 100} as beam widths.
K-best: We build portfolios from the k best individual solvers as a simple baseline.
Random sampling: To get an idea of how the performance of arbitrary portfolios is
distributed, we randomly sample 1000 portfolios for each k.

The optimization goal for all approaches is the PAR-2 score cT (P ). In preliminary
experiments, we also analyzed two slightly different objectives: the number of unsolved
instances and the PAR-2 score normalized for each instance. However, general trends in the
results were similar to those with the PAR-2 score, so we stuck to the latter.

5.2 Prediction Approaches
We also analyze the performance of the previously determined k-portfolios with prediction
models to select a solver rather than choosing the VBS. For each instance, the prediction
target is the best solver out of the given k-portfolio. Thus, we have a multi-class prediction
problem with k classes. Inputs for the prediction are numeric features characterizing a
SAT instance; we will describe the features later. As prediction models, we leverage two
powerful ensemble methods. First, we use random forests [9], which are also part of the
well-known portfolio approach SATzilla 2012 [48]. Second, we use XGBoost [12], a popular
implementation of gradient boosting. In both cases, we train models with 100 trees.

Our preliminary experiments also included a k-nearest-neighbors classifier, which is
popular for portfolio approaches as well [13, 31, 35, 40], and a simple neural network with one
hidden layer. However, both performed worse than tree-based ensembles. The former might
suffer from the high number of features, while the latter might need parameter tuning, which
would have been too expensive in our study. Further, we tried other prediction approaches
that are part of SATzilla 2008 or SATzilla 2012: First, one can train a classifier for each pair
of solvers instead of one classifier that makes a multi-class prediction. Second, one can weight
instances based on the solvers’ runtime difference instead of using an unweighted training
set. Third, one can train a regression model for each solver from the portfolio, predict the
runtime, and choose the solver with the lowest predicted runtime. However, none of these
changes has helped improve prediction performance in our preliminary experiments.

We evaluate prediction performance in two ways:
Objective value: We evaluate the prediction models with the cost function cT (P, m) for
the recommended solvers (cf. Section 3).
MCC : We evaluate the predictions with Matthews correlation coefficient (MCC) [32, 18].
This metric does not take into account how fast the recommended solvers are, but only if
the fastest solver is recommended or not. We use MCC instead of simpler metrics like
accuracy, as the class labels might be imbalanced, i.e., one solver might be the fastest for
most of the instances, and always predicting this solver would already yield high accuracy.
MCC has a range of [−1, 1]. The value zero occurs with both random guessing and
constantly guessing the same solver. The value one corresponds to a perfect prediction.
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5.3 Dataset
In our experiments, we use two datasets. The first one, SC2020, contains the runtime data of
48 solvers on 400 instances from the Main Track of the SAT Competition 2020 [6, 16]. The
second dataset, SC2021, contains the runtime data of 46 solvers on 400 instances from the
Main Track of the SAT Competition 2021. In both datasets, we filtered out those instances
where no solver finished within the timeout of 5000 s, such that runtimes for 316 instances
remained in SC2020 and for 325 instances in SC2021.

For predictions, we use 138 features to characterize instances, which are from the feature
extractor of SATzilla 2012 [45]. Features come from twelve categories that describe different
aspects of SAT instances. For example, the number of variables and clauses roughly measure
the problem size. Several features summarize graph representations of instances, e.g., the
maximum node degree in the clause graph. As the last example, several features base upon
probing, i.e., running solvers for a short time and quantifying their progress over that period.

Some feature values are missing since the feature extractor exceeded time- or memory
limits. For predictions, we replace missing values with a constant value out of the range of
the features.

In both datasets, the number of features is relatively large compared to the number of
instances. However, the prediction models in our experiments are tree-based and, therefore,
implicitly select features during their training. Further, these models are not affected by
monotonic transformations of features, making the experimental results more robust.

5.4 Implementation
We implement our experimental design in Python and make our code available online1.
The code also allows downloading and preparing the datasets. Additionally, we publish
the complete experimental data, including datasets and results2. To obtain the instance-
and solver data, we use the package gbd-tools [22]. For predictions, we use the package
scikit-learn [38]. To solve the K-Portfolio Problem exactly, we use the package mip [41] with
its integrated mixed integer linear-programming solver COIN-OR branch-and-cut (Cbc).

6 Evaluation

We evaluate the solution approaches for the K-Portfolio Problem first and the use of prediction
models for solver recommendation second.

6.1 Optimization Results
The datasets seem promising for portfolios, as in both datasets, there is no single solver that
is fastest for all or even for most instances. For the 316 instances in SC2020, the three overall
fastest solvers win on only 46, 38, and 26 instances, respectively. For the 325 instances in
SC2021, the three overall fastest solvers win on only 25, 22, and 20 instances, respectively.
These observations indicate that combining solvers in portfolios can improve overall runtime.
See [16] for details how single solvers performed in SC2020. In this section, we focus on
portfolios as a whole, particularly the portfolio performance cT (P ).

1 https://github.com/Jakob-Bach/Small-Portfolios
2 https://doi.org/10.5445/IR/1000146629
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Figure 1 Training-set VBS performance of k-portfolios determined by different solution approaches
for the SC2020 dataset (left) and the SC2021 dataset (right).

Figure 1 displays the cost in terms of the PAR-2 score of the best k-portfolios for the
different solution approaches. The optimal solution is the exact optimum. Greedy search
denotes beam search with the smallest beam width w = 1. We will discuss other beam widths
as well. K-best stands for portfolios comprised of the top k single best solvers. For random
sampling, we average over repeated samples of portfolios. The upper bound limits the cost of
greedy search according to Equation 5. If we report numbers for the solution approaches in
the following, we refer to the training set, where all solution approaches conduct their search.

6.1.1 Optimal Solution
The PAR-2 score improves rapidly for the first few k, not only for the optimal solution but for
all approaches and both datasets. However, marginal gains become smaller with increasing k.
For the dataset SC2020, the optimal 1-portfolio, i.e., the single best solver, has a penalized
runtime 5.51 times as high as the 48-portfolio, i.e., the set of all solvers. This ratio reduces
to 1.89 for the best 5-portfolio and 1.25 for the best 10-portfolio. For SC2021, the respective
ratios are 4.74 for k = 1, 1.58 for k = 5 and 1.17 for k = 10.

The solver Cbc was able to find these optimal solutions within a reasonable time. The
mean optimization time was 15 s, and the maximum optimization time was about 5 min.
Most of the variance in optimization time occurred for small portfolios. For k ≥ 10, all
optimization runs took less than 14 s.

6.1.2 Beam Search
Figure 1 also shows the cost of the best k-portfolios found by greedy search to be very close
to that of the optimal solution. These results are remarkable, considering that the runtime
of greedy search is linear in k as well as the total number of solvers n, whereas finding the
optimal solution is NP-complete. In contrast, the theoretical, submodularity-based upper
bound for greedy search is clearly higher than the actual portfolio cost and, thus, too loose to
serve as a reasonable estimate.
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Figure 2 Test-set VBS performance of k-portfolios determined by different solution approaches
for the SC2020 dataset (left) and the SC2021 dataset (right).

To bring the beam search solution even closer to the optimal solution, one can increase
beam width w. For example, the best 2-portfolio found by greedy search has a 14.7% higher
cost than the optimal solution for SC2020. For all other k, the greedy search portfolio has
less than 4% higher cost than the optimal solution. In comparison, for w = 10 and for all k,
cost is never more than 2% higher than for the optimal solution.

Regarding the set of the w best portfolios maintained in each iteration of beam search,
we observe a convergence of portfolio performance with increasing k. In particular, there
is a substantial variance in the PAR-2 score of portfolios in the beam for small k. This
variance becomes smaller in later iterations, i.e., the top w portfolios become more similar
in performance. A similar phenomenon also occurs for random sampling portfolios: With
increasing k, the standard deviation of the PAR-2 score in a sample of portfolios decreases.
The expected value of portfolio performance improves as well. Thus, carefully selecting the
solvers for a portfolio matters most for small k.

6.1.3 K-Best
The baseline k-best is worse than greedy search on the training set, but better than random
sampling. While greedy search always is quite close to the optimal solution, the performance
gap between k-best and the optimal solution widens after the first few k and only becomes
smaller for large k later. The performance of k-best relative to the other approaches also
differs between SC2020 and SC2021. For SC2020, k-best is closer to the optimal solution,
while for SC2021, k-best is closer to the expected value of random sampling. These results
indicate that building a portfolio of complementary solvers, rather than picking the best
individual solvers, may be more important for SC2021.

6.1.4 Test-Set Performance
Figure 2 shows the test-set portfolio cost for the different solution approaches. Here, we
take the portfolios found on the training set but evaluate them with the test-set instances.
The overall trends are the same as on the training set, cf. Figure 1. A notable exception
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is that greedy search, k-best, and the optimal solution show similar performance on the test
set of SC2020. In particular, there is no clear winner, and the optimal solution can even
perform worse than portfolios found by the approximate approaches. This is because the
best portfolio on the training set is not necessarily the best portfolio on the test set. For
the test set of SC2021, k-best is markedly worse than greedy search and the optimal solution.
The larger performance gap already on the training set might have caused this effect.

6.1.5 Portfolio Composition
While beam search adds solvers iteratively, the optimal solution might differ in more than one
solver from k − 1 to k, i.e., existing solvers from the portfolio can be replaced. Indeed, we
observe this phenomenon in our results. For example, the optimal 2-portfolios do not contain
the optimal 1-portfolios for both datasets. However, this non-monotonous behavior is not
strong. On average, only one or two new solvers become part of the optimal portfolio when
increasing k by one. I.e., zero or one solver are replaced on average when increasing k by one.
In addition, the replaced solver might only have been slightly worse than its substitute. This
might explain the good performance of beam search, which pursues a monotonous approach
when building portfolios.

6.1.6 Impact of Single Solvers on Portfolios
We have carried out a correlation analysis on the 1000 portfolios that result from random
sampling for a particular value of k. First, we encode the absence or presence of each solver
in a portfolio with 0 or 1, respectively. Next, we compute the Spearman rank correlation
between this occurrence vector and the PAR-2 score. Our analysis highlights the interaction
between solvers. For k = 5, all correlations are in [−0.40, 0.17] for SC2020, and in [−0.24, 0.23]
for SC2021. The mean correlation is zero in both cases. Similar correlation behavior occurs
for other k.

These results indicate that only the presence of some solvers has a moderately negative
correlation to the PAR-2 score of the whole portfolio, i.e., only some solvers can improve the
portfolio performance of our minimization problem on their own. The positive correlations
are even weaker, i.e., there are no solvers which influence portfolio performance in a strongly
negative manner. Overall, this means that the influence of single solvers on portfolio
performance is limited; one needs a combination of solvers to influence the PAR-2 score in
either direction strongly.

6.2 Prediction Results
In this section, we evaluate the prediction performance for instance-specific solver recommen-
dations in the portfolios found earlier. We also evaluate the portfolio performance cT (P, m),
i.e., the PAR-2 score of the recommended solvers.

6.2.1 Matthews Correlation Coefficient
Figure 3 graphs the test-set classification performance of random forests and XGBoost, using
the portfolios from random sampling. We use random sampling results to show the variation
of prediction performance over many portfolios. However, classification results are similar
for beam search with w = 100 and for the optimal solution. We do not display training-set
performance since it consistently is close to the maximum MCC of 1.0.
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Figure 3 Test-set prediction performance (MCC) for randomly sampled portfolios, using random
forests and XGBoost as models, for the SC2020 dataset (left) and the SC2021 dataset (right).
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Figure 4 Test-set performance of model-based portfolios, their VBS, and their SBS for beam
search with w = 100 for the SC2020 dataset (left) and the SC2021 dataset (right). The performance
of the global SBS is shown as a horizontal line.

As Figure 3 shows, test-set prediction performance is rather low for all k and for both
types of prediction models. Prediction performance is clearly higher than with random
guessing, which would yield an MCC of 0.0, but clearly lower than the optimal MCC of 1.0.
Given the nearly perfect training-set performance but a low test set performance, the models
seem to overfit the training set. Overfitting could cause a bad PAR-2 value for model-based
portfolios, which we will analyze next. For small k, the prediction performance varies stronger
between portfolios than for larger k and is slightly higher on average. As random forests and
XGBoost perform similarly, we will only use random-forest results in the following analyses.

6.2.2 Portfolio Performance
Figure 4 shows test-set PAR-2 scores for portfolios from beam search with w = 100. The
plot compares the PAR-2 score of solvers recommended by the prediction model to two
competitors without a prediction model, computed on the same portfolios. The virtual
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Figure 5 Test-set performance of model-based portfolios, their VBS, and their SBS for the
optimal solution of the K-Portfolio Problem for the SC2020 dataset (left) and the SC2021 dataset
(right). The performance of the global SBS is shown as a horizontal line.

best solver (VBS) provides a lower bound on cost, as its portfolio performance can only
be achieved with perfect prediction. Each portfolio’s single best solver (SBS) serves as
a baseline, corresponding to always recommending one particular solver. Note that the
portfolio performance can even be worse than the SBS, e.g., when always predicting the
slowest solver for each instance. However, we do not show this upper bound here.

As discussed earlier, the VBS score decreases with k. In theory, this also allows model-
based portfolios to improve their performance. However, in our case, the PAR-2 score of
model-based portfolios remains relatively stable with increasing values of k, with the biggest
improvement from k = 2 to k = 3. This observation implies that the prediction model does
not improve its selection of solvers even if the portfolio grows. Given the low prediction
performance in terms of MCC, as seen in Figure 3, this has been expected. Consequently, the
gap between VBS and the predicted solvers grows with k. However, model-based portfolios
tend to be better than the single best solver from these portfolios, i.e., the prediction models
can discriminate between solvers to some extent. In addition, for k > 2, the model-based
portfolios are better than the global single best solver, at least on average.

Figure 5 repeats the same comparison as before for the optimal solution portfolios. The
overall trends remain the same. In contrast to Figure 4, here we have only five portfolios for
each k, one for each fold of cross-validation. We still see a considerable variance for each k,
i.e., the test set performance also depends on the current train-test split of instances.

6.2.3 Feature Importance

Averaging importance over all trained random-forest models, the most important feature has
an importance score of 1.66%, the least important one an importance score of 0.01%. To
reach a cumulated average importance of 50%, one needs 38 out of 138 features. On average,
random forests use 135 features, i.e., nearly all of them. We conclude that no single feature
or small set of features drives prediction performance. Features might be redundant to each
other, as the feature extractor often applies several statistical aggregates to summarize the
same characteristics of the instances. Also, the low prediction performance indicates that the
features are not sufficiently discriminating to recommend solvers on our datasets reliably.
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7 Conclusions and Future Work

7.1 Conclusions

Solution methods for the propositional satisfiability problem are an active area of research,
with continuous advances in methods, heuristics, and their implementations in SAT solvers.
New SAT solvers that improve performance only on a few benchmark instances can never-
theless be assets to solver portfolios. In principle, runtime prediction models can help to
leverage such complementary solvers.

This article has been a comparative study of portfolios that goes beyond previous work
in several respects. Our study includes the runtime data of the latest SAT solvers from
the SAT Competitions 2020 and 2021. It has addressed the essential question of how large
portfolios drawn from that set of solvers should be. There has been a substantial improvement
in the objective value for small portfolios but a negligible impact once a particular size
is reached. We also found that beam search, an approximate solution approach, yields
close-to-optimal solutions. In order to facilitate portfolio analysis for evaluation purposes
and ad-hoc portfolio generation, we integrated our exact portfolio-search approach into the
Python package gbd-tools [22].

As the next step, we have combined portfolios with prediction models to recommend
solvers specific to problem instances. However, these models have not performed satisfactorily
on the given datasets: The objective value of model-based portfolios did not continuously
improve with portfolio size.

7.2 Future Work

We see room for improved prediction performance by adapting the set of instance features in
particular, e.g., by using features describing the community structure of graph representations
of SAT instances. Such new features have correlated well with solver performance on
application instances in recent studies [5, 3, 4, 29]. Efficient implementations of new feature
extractors and studying feature importance on datasets that represent the state-of-the-art
are subject to future work.

Traditionally, SAT competitions incentivize the development of so-called stable solvers by
evaluating the best average performance on benchmarks from diverse applications. This gen-
eral trend has been mitigated in the competitions considered in our study. These competitions
also highlight SAT solvers that perform particularly well on specific instance families [16] or
on a (not further specified) large subset of the benchmark instances (cf. Example 1). Such
additional evaluations provide reference points for more informed portfolio composition and
can even positively impact research on stable solvers [14]. For future analyses, we plan to
increase the number of specialized solvers and configurations targeting well-defined subsets
of benchmark instances.
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