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Abstract

In the present work, we examine a structure that generalizes the causal structure of a
Lorentzian spacetime. In contrast to similar definitions in the literature, we define the
chronological relations locally, that is, on open subsets of a topological space. This has the
advantage that we do not need to employ causality conditions for the whole space. The
space of timelike homotopy classes of paths in such a space X forms an algebraic structure
that we call the fundamental semicategory Πt(X).

We provide a van-Kampen theorem for fundamental semicategories, show that the iso-
morphism class of Πt(X) determines the topology and isomorphism class of X, and put a
topology on the total morphism space of Πt(X) that is locally homeomorphic to X ×X.
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1 Introduction

Lorentzian geometry is the mathematical framework of general relativity, which is, at the
moment, the best available physical theory for gravity at the large scale of planets, solar
systems, galaxies, and up to the size of the observable universe. It was derived from
Riemannian geometry, which was conceived by Bernhard Riemann to describe curved, non-
euclidean geometries. The main difference is that a Lorentzian metric consists of an indefinite
symmetric bilinear form of signature (1, n−1) on every tangent space, whereas a Riemannian
metric consists of scalar products.

Many basic definitions and results are valid in both Riemannian geometry and Lorentzian
geometry, for example, the existence and uniqueness of the Levi-Civita connection, local
existence of geodesics, and the definition of sectional, Ricci- and scalar curvature, see [1,
pp. 22–32]. Nevertheless, the methods in researching Riemannian and Lorentzian geometry
differ vastly. A Riemannian metric can be used to define lengths of curves and a distance
metric between points, while the analogous Lorentzian distance function does not satisfy
the triangle inequality. On the other hand, a Lorentzian metric defines a set of timelike or
causal directions in every tangent space. A Lorentzian manifold is called a spacetime if these
time directions can consistently be classified into future- and past-directed components. On
a spacetime, there are two relations ≤ and � that describe which pairs of points are joined
by a timelike or causal curve.

One broad goal of global differential geometry is the classification of manifolds by using
geometry. An example of an effort toward this goal is the following finiteness theorem:

Theorem 1.0.1 (Perelman, see [2]). Let n ∈ N, k ∈ R, D > 0, v > 0. The class of closed
n-dimensional Riemannian manifolds with sectional curvature ≥ k, diameter ≤ D, and
volume ≥ v has only finitely many topological types of manifolds.

A corollary from this result is that there are only countably many topological types of
manifolds. Perelmans’ proof of the finiteness theorem relies heavily on Alexandrov spaces,
which are length spaces that generalize Riemannian manifolds with a lower bound on their
sectional curvatures. Discussing the details would go beyond the scope of this work, but the
idea is that an Alexandrov space is used to describe a certain kind of limit of a sequence of
Riemannian manifolds with curvature bounds.

Lorentzian length spaces were defined by Kunzinger and Sämann in [3] to provide a gener-
alization of Lorentzian manifolds with curvature bounds analogous to Alexandrov spaces.
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1 Introduction

Several other authors have also defined spaces that generalize either the geometry of space-
time manifolds or only their causal structure. For example, a causal space according to
Kronheimer and Penrose [4] is a topological space with two relations that satisfy certain
axioms.

To the best of the author’s knowledge, all of these generalizations forbid the existence of
closed timelike curves. This postulate makes sense from a physics point of view and ensures
that the causal relations are not trivial. However, it also severely restricts the possible
topologies. For example, every compact spacetime manifold (without boundary) contains a
closed timelike curve, see [1, Proposition 3.10].

The goal of this thesis is to provide a generalization of Lorentzian manifolds that does not
have these restrictions. We will introduce the notion of a locally chronological space that
consists of a topological space and a chronological relation for each open subset. These
relations satisfy a so-called cosheaf condition, which roughly means that the relations on
bigger subsets are determined by those on smaller subsets. As our axioms are local conditions,
we can ensure that every spacetime manifold is a locally chronological space regardless of
causality conditions.

Most of this work is dedicated to the study of the fundamental semicategory Πt(X) of such
a locally chronological space X, which is defined in analogy to the fundamental groupoid of
a topological space.

The definition of locally chronological spaces and fundamental semicategories is inspired by
the directed spaces in [5]. However, directed spaces in general lack some properties that are
important for the investigation of the topology of Lorentzian manifolds, especially openness
of timelike future and past sets.

This work is structured as follows: In Chapter 2 we will give an overview of basic concepts
in Riemannian and Lorentzian geometry, with emphasis on causality theory of Lorentzian
manifolds. Furthermore, we define the necessary notions from category theory and briefly
discuss fundamental groups and groupoids.

In Chapter 3 we will define locally chronological spaces and discuss the reasoning behind
our choice of axioms. We will also show that the class of all spacetime manifolds is a
proper subclass of the locally chronological spaces. Moreover, we define the fundamental
semicategory Πt(X) of a locally chronological space X in this chapter.

In the rest of the chapters, we will derive several interesting properties of Πt(X) by using
three different approaches. In Chapter 4 we will prove that the isomorphism class of Πt(X)
already determines the isomorphism class of X under some mild assumptions. If X is
a spacetime manifold, this means that Πt(X) also determines the conformal class of the
Lorentzian metric, if the differentiable structure is given.
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In Chapter 5 we will view Πt as a functor from the category of locally chronological spaces to
the category of semicategories and prove a theorem analogous to the theorem of Seifert-van
Kampen.

Finally, in Chapter 6 we will see that there is a natural topology on the total morphism set
of Πt(X) that is locally homeomorphic to X ×X. This also induces a local chronological
structure on the total morphism set of Πt(X).
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2 Preliminaries

In this chapter, we will introduce the concepts necessary for understanding and putting
the following chapters into perspective. In Section 2.1, we start with a brief review of the
definition of a Riemannian manifold and see how it generalizes to so-called length spaces. In
Section 2.2, we define Lorentzian manifolds and discuss their length functions and causality
theory. In Section 2.3, we introduce semicategories, categories, semifunctors, and functors.
In Section 2.4, we introduce two invariants from algebraic topology, namely the fundamental
group and the fundamental groupoid.

2.1 Riemannian geometry and length spaces

At the beginning of the 19th century, mathematicians became increasingly interested in
non-Euclidean geometries, particularly in spherical and hyperbolic geometry. Similarly
to Euclidean geometry, these geometries are characterized by a set of axioms about their
points and lines. The geometry of surfaces in R3 was also a topic of active research: In his
Theorema Egregium[6] from 1827, Gauss proved that the Gaussian curvature of a surface
can be expressed purely in terms of lengths measured on the surface. This means that the
curvature describes the internal geometry of the surface and is independent of the chosen
embedding into R3.

In his Habilitationsschrift [7] from 1854, Riemann defined a structure that describes all
the aforementioned geometries and even generalizes to an arbitrary number of dimensions.
To achieve this, he assigned lengths to continuously differentiable curves on a manifold
by integrating their “line element” that he defined to be “the square root of a differential
expression of degree two”. In modern terms, this means:

Definition 2.1.1. Let M be a path-connected smooth manifold.

i) A Riemannian metric g is an assignment of a scalar product gp on the tangent space1

TpM for every point p ∈M that is smooth in the following sense: In any chart with

1Readers unfamiliar with differential geometry should keep the example M = Rn in mind and also identify
the tangent spaces TpM with Rn. The matrix with entries gij(p) is then the Gram matrix, or fundamental
matrix, of the scalar product gp. In the case of Euclidean space, we have gij(p) = δij .
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2 Preliminaries

coordinates (x1, . . . , xn) the scalar product is given by

gp =
n∑

i,j=1

gij(p) dxi dxj ,

where gij are smooth functions on the domain of the chart.

ii) The length of a vector v ∈ TpM is defined to be ‖v‖ =
√
gp(v, v).

iii) The length of a curve c : [a, b]→M is

L(c) :=

∫ b

a
‖c′(t)‖ dt,

where a curve is understood to be piecewise continuously differentiable.

iv) The length metric or distance between two points x, y ∈M is

d(x, y) := inf{L(c) | c is a curve from x to y }.

If we drop the assumption that the space is a smooth manifold, we can still define the length
of a path by approximating the path with finitely many points:

Definition 2.1.2. Let (X, d) be a metric space.

i) Let c be a path, that is, a continuous map c : [a, b]→ X. The length of c is defined as

L(c) := sup

{
k−1∑
i=1

d(c(ti), c(ti+1))

∣∣∣∣∣ t1, . . . , tk ∈ R, a = t1 < t2 < · · · < tk = b

}
.

A path c is called rectifiable if L(c) is finite.

ii) The induced length metric on (X, d) is

λ(d)(x, y) := inf {L(c) | c is a path from x to y}

if there is a rectifiable path from x to y, and λ(d)(x, y) =∞ otherwise

iii) If λ(d) = d holds, then (X, d) is called a length (metric) space.

Remark 2.1.3. In both Definitions 2.1.1 and 2.1.2, we have the following properties:

i) The length of a constant path is zero and the length of a non-constant curve or path is
positive.
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2.2 Lorentzian geometry

ii) The length is invariant under reparametrization: Let c : [a, b] → X be a path and
f : [a′, b′]→ [a, b] a continuous, strictly monotonous function. In the case of Riemannian
geometry, suppose that f and c are piecewise continuously differentiable.
Then, we have L(c) = L(c ◦ f).

In Riemannian geometry, this follows from the fact that the integrand is homogeneous,
which means that ‖λv‖ = |λ| · ‖v‖ for all v ∈ TM , λ ∈ R.

iii) The length is additive: Let c and d be curves that have finite lengths L(c) and L(d) such
that the endpoint of c is the starting point of d. Then, the length of the concatenated
curve is L(c) + L(d).

iv) The length metric on a Riemannian manifold or a metric space is a (possibly infinite)
metric. It is positive definite because of the positive length of non-constant paths
or curves. The symmetry d(x, y) = d(y, x) follows from the invariance of L under
reparametrization, which allows us to reverse the direction of all curves. The triangle
inequality d(x, z) ≥ d(x, y) + d(y, z) follows from the additivity of L and the fact that
d is defined as an infimum of lengths of curves.

The Riemannian distance is indeed a length metric because two notions of length L(c)
coincide for any curve c. In this setting, Definition 2.1.2 is more general because it allows us
to assign lengths to paths that are not piecewise continuously differentiable.

2.2 Lorentzian geometry

2.2.1 Lorentzian manifolds, general relativity, and causal structure

The definition of a Lorentzian metric is analogous to a Riemannian metric:

Definition 2.2.1. Let M be a smooth n-dimensional manifold. A Lorentzian metric g is an
assignment of a symmetric bilinear form gp with signature (n− 1, 1) on the tangent space
TpM for every point p ∈M that is smooth in the same sense as in Definition 2.1.1.

A Lorentzian manifold is called a spacetime if it is connected and has a vector field V such
that g(V, V ) < 0. We say that V defines a time orientation on M .

The key difference between Riemannian and Lorentzian manifolds is that the bilinear forms
gp are not positive definite but indefinite. The most basic example of a smooth spacetime is
the following:

7



2 Preliminaries

Example 2.2.2 (Minkowski space). Let n ∈ N and M = Rn.
With the usual identification TpM = Rn, we define

gp


x1

...
xn

 ,

y1
...
yn


 := −x1 y1 +

1

c2

(
x2 y2 + x3 y3 + · · ·+ xn yn

)
,

where c > 0 is a constant, called the speed of light (usually set to either 1 or the actual
speed of light). This Lorentzian manifold is called the n-dimensional Minkowski space2. It is
time-oriented by the constant vector field V = (1, 0, . . . , 0).

Historically, Minkowski space was developed as the mathematical model of a universe in
Einstein’s theory of special relativity. Einstein later noticed that he needed curvature to
describe gravity in his theory of general relativity, so he generalized from flat Minkowski
space to arbitrary smooth spacetimes.

A Lorentzian metric allows us to classify tangential vectors into the following classes:

Definition 2.2.3. In a Lorentzian manifold M , a vector v ∈ TpM is called

• timelike if g(v, v) < 0,

• lightlike or null if g(v, v) = 0,

• spacelike if g(v, v) > 0,

• causal or nonspacelike if g(v, v) ≤ 0.

If M is time-oriented by a vector field V , a causal vector v ∈ TpM is called

• future-directed if gp(Vp, v) ≤ 0,

• past-directed if gp(Vp, v) ≥ 0.

If one of the above adjectives applies to all tangential vectors c′(t) of a piecewise continuously
differentiable curve c, the curve also has that adjective (e.g. a future-directed timelike curve).

Note that the set of causal vectors is a closed double cone in TpM and the timelike vectors
make up the interior of that double cone. With a time orientation, one of the cones is
future-directed and the other cone is past-directed, as shown in Figure 2.1.

In our definition, the zero-vector is both future- and past-directed causal, which is uncommon,
but has some advantages. First, the set of future-directed causal vectors is now simply the

2Note that there is a multitude of different notations and conventions. In physics, it is customary to set n = 4
and denote the time coordinate by x0 or x4, and the space coordinates by x1, x2, x3 with an upper index.
Signature is often denoted as −+++ for the signs of the coefficients in gp. The signatures +−−−, −−−+,
and +++− are also commonly used by different authors depending on the application.
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2.2 Lorentzian geometry

future timelike

lig
ht
lik
e

spacelike

past timelike

V

Figure 2.1: Light cones in a Lorentzian manifold. Lightlike vectors form the boundary of the
double cone and separate timelike from spacelike vectors.

closure of the future-directed timelike vectors (and analogously for past-directed vectors).
Second, it makes sense that the space of causal curves contains constant curves, as this will
make Definition 2.2.5 more consistent, and constant curves act as identity morphisms in the
fundamental category Πc(X) in [8].

Example 2.2.4. In physics, points of a Lorentzian manifold are called events. An event in
the n-dimensional Minkowski space is described by one time coordinate x1 and n− 1 space
coordinates (x2, . . . xn).

Imagine that a curve γ : [a, b]→ Rn, t 7→
(
γ1(t), . . . , γn(t)

)
in Minkowski space describes the

motion of a particle through space and time. Let us assume that γ is future-directed, which
means that γ1 increases monotonically. This prevents situations in which the particle travels
backward in time, see Subsection 2.2.3 for more discussion on that topic.

The velocity of γ in the coordinate system (x1, . . . , xn) is defined as

v(t) :=

√
γ′2(t)2 + · · ·+ γ′n(t)2

γ′1(t)
,

that is, how fast the spatial position changes over time. The term γ′1(t) in the denominator
is included to make v(t) independent of the parametrization of γ. Without loss of generality,
we can reparametrize γ such that γ1(t) = t .

Because of g
(
γ′(t), γ′(t)

)
= −γ′1(t)2

(
1− v(t)

c

)2
, the curve γ is lightlike if it moves at the

speed of light, that is, v(t) = c for all t ∈ [a, b], causal if v(t) ≤ c for all t, and timelike if
v(t) < c for all t.

There are several theoretical and empirical arguments against particles or waves moving
faster than the speed of light. It is therefore generally assumed that an event x cannot
cause an effect at y unless there is a curve from x to y that does not surpass the speed of

9



2 Preliminaries

x

y

I(x, y)

x2

x1

Figure 2.2: Causal and chronological structure in Minkowski space. The chronological
diamond I(x, y) (interior of the gray area) contains all future-directed timelike
curves from x to y, for example, the thick solid line. The causal diamond J(x, y),
in this case the closure of I(x, y), contains all causal curves from x to y. The
dashed curve is lightlike and therefore has Lorentzian length 0.

light—hence the name “causal curve”. The name “timelike curve” stems from the fact that
the time axis t 7→ (t, 0, . . . , 0) of a coordinate system is such a timelike curve.

Definition 2.2.5. Let M be a smooth spacetime, U ⊆M an open subset, and x, y ∈ U .
The causal relation ≤U and chronological or timelike relation �U are defined by

x ≤U y :⇐⇒ there is a future-directed causal curve in U from x to y,

x�U y :⇐⇒ there is a future-directed timelike curve in U from x to y.

The the chronological and causal future and past of a point x ∈ U is defined by

I+
U (x) := {y ∈M |x�U y} , J+

U (x) := {y ∈M |x ≤U y} ,
I−U (x) := {y ∈M | y �U x} , J−U (x) := {y ∈M | y ≤U x} ,

and the chronological and causal diamonds are defined by

IU (x, y) := I+
U (x) ∩ I−U (y),

JU (x, y) := J+
U (x) ∩ J−U (y).

For brevity, the subscript is left out if U = M .

Remember that, according to our definition, constant curves are causal but not timelike,
so x ≤ x is true for all points, while x � x implies that there is a (non-constant) closed
timelike curve from x to x. The following properties are well known in Lorentian geometry:

10



2.2 Lorentzian geometry

Lemma 2.2.6 ([1, p. 55]).

i) The sets I±(x) are open, but the sets J±(x) might be neither open nor closed.

ii) The relation � is a subrelation of ≤.

iii) The relations ≤ and � are transitive.

iv) The relations satisfy the so-called push-up property

∀x, y, z ∈M : x� y ≤ z or x ≤ y � z =⇒ x� z.

These properties are also true for I±U , J±U , �U , and ≤U , respectively, for every open U ⊆M .

2.2.2 Lengths in Lorentzian manifolds

In Section 2.1, we saw that a Riemannian metric induces a length functional on curves and a
length metric on the manifold. Remember that the length metric of a Riemannian manifold
is invariant under reparametrization because of the homogeneity of the norm ‖v‖ =

√
g(v, v),

as discussed in Remark 2.1.3. A Lorentzian metric induces a similar distance function, but
we will have to work around some issues and it will not be a genuine metric.

In a Lorentzian manifold, g is not positive definite, so we have to use
√
|g(v, v)| in place of a

norm3. Consequently, we have to assign length zero to all lightlike curves even if they are
not constant curves. As any curve can be approximated with a zig-zag lightlike curve, which
is illustrated in Figure 2.2, the definition d(x, y) := inf {L(c) | c curve from x to y} would
assign distance zero to any pair of points on a connected Lorentzian manifold. The supremum
of path lengths, on the other hand, would be infinite because we can find arbitrarily long
paths by just going forward and backward any number of times. Luckily, in a spacetime, we
can forbid this kind of behavior by restricting ourselves to future-directed curves:

Definition 2.2.7 ([9, p. 105]). Let M be a smooth spacetime with Lorentzian metric g.

i) The length of a future-directed causal curve c : [a, b]→M is defined as

L(c) :=

∫ b

a

√
|g(c′(t), c′(t))| dt.

ii) The Lorentzian distance between two points x, y ∈M is defined as

d(x, y) :=

{
sup {L(c) | c future-directed causal curve from x to y} if x ≤ y
0 otherwise

3The function TpM → R, v 7→
√
|g(v, v)| is, up to scaling, the only non-negative homogeneous function that

is invariant under the Lorentz group, which is the group of vector space automorphisms of TpM that leave
gp invariant.

11



2 Preliminaries

Note that d(x, y) is positive if and only if x� y. This is because a future-directed causal
curve from x to y has nonzero length if and only if at least some part of it is timelike. The
push-up property in Lemma 2.2.6 implies that such a curve exists if and only if x� y. The
convention d(x, y) = 0 for x 6≤ y is chosen because it continuously extends d under certain
conditions (namely, if the spacetime is globally hyperbolic, see Definition 2.2.9). However,
without further assumptions on the causal structure of M , the distance function d might be
infinite or non-continuous. We will further discuss this topic at the end of Subsection 2.2.3.

The additivity of L, together with the supremum in the definition of d, implies an inverse
triangle inequality

d(x, z) ≥ d(x, y) + d(y, z) for all x, y, z ∈M with x ≤ y ≤ z.

Therefore, in contrast to Remark 2.1.3, taking detours makes the Lorentzian length shorter
instead of longer. We have already seen this kind of behavior in Figure 2.2. The reason is
that

√
|g(v, v)| is convex for a Riemannian metric g but concave for a Lorentzian metric g.

This fact is best demonstrated in Minkowski space:

Example 2.2.8. We calculate the Lorentzian distance function for Minkowski space (M,g),
give another proof for the inverse triangle inequality in this special case, and show that a
straight line has the maximal length among all future-directed causal curves from x to y:

Let us first examine the integrand of the length functional

σ : C → R,

v 7→
√
|g(v, v)| =

√
−g(v, v)

where C ⊆ Rn is the convex cone of future-directed causal vectors. It is not hard to see
that σ is homogeneous, which means that σ(λ v) = λσ(v) holds for all λ > 0 and v ∈ C.
Furthermore, it is concave, which means that

σ
(
(1− α) v + αw

)
≥ (1− α)σ(v) + ασ(w)

holds for all v, w ∈ C and α ∈ [0, 1]. Setting α = 1
2 yields the inverse triangle inequality

σ(v + w) ≥ σ(v) + σ(w) for v, w ∈ C
=⇒ σ(z − x) ≥ σ(z − y) + σ(y − x) for x ≤ y ≤ z.

If c is any future-directed causal curve from x to y, we see

L(c) =

∫ b

a
σ
(
c′(t)

)
dt ≥ σ

(∫ b

a
c′(t) dt

)
= σ(y − x)

12



2.2 Lorentzian geometry

by Jensen’s inequality for integrals4. If c is a straight line, c′ is constant and therefore the
equality L(c) = σ(y − x) holds. The Lorentzian distance is therefore

d(x, y) =

{√
|g(y − x, y − x)| if y − x is future-directed causal,

0 otherwise.

Note that d has finite values and is a continuous function d : M ×M → R.

A straight line c has the property that its tangential vectors c′(t) are parallel along c. In a
general Lorentzian manifold such curves are called geodesics. It is true that any longest curve
between two points in a Lorentzian manifold is a geodesic, but the existence of a longest
curve is not guaranteed.

2.2.3 Causality conditions and Alexandrov topology

Minkowski space has the special property that the time-coordinate x1 increases monotonically
along any future-directed causal curve. Therefore, such a curve can never return to its
starting point.

For general spacetimes, it might well be possible that a closed timelike loop exists. A person
following it would meet themselves at an earlier time and could prevent their journey, so they
would never meet their earlier self, which leads to a paradoxon. Discussing the ramifications
of time-traveling is beyond the scope of this work, but we will discuss some of the causality
conditions that are frequently imposed on spacetimes to prevent this kind of situation.

Definition 2.2.9 ([1, Section 3.2]). Let M be a smooth spacetime with causal and chronological
relations ≤ and �.

i) M is totally vicious if any two points x, y ∈M are joined by a future-directed timelike
curve, hence � is the trivial relation on M .

ii) M is chronological if there is no timelike curve that starts and ends in the same point.
This is equivalent to ∀x ∈M : x 6� x.

iii) M is causal if there is no non-constant5 future-directed causal curve that starts and
ends in the same point. This is the case if and only if ≤ is antisymmetric and therefore
a partial order.

4Note that Jensen’s inequality is usually stated for convex functions, see [10]. As σ is concave, we apply the
inequality to the convex function −σ, which is why the direction of the inequality is reversed.

5Remember that, in our definition, constant curves are causal but not timelike.

13



2 Preliminaries

iv) A subset V ⊆M is called causally convex in M if every future-directed causal curve
that starts and ends in V lies completely in V .
This is equivalent to ∀x, y ∈ V : JM (x, y) ⊆ V .

M is strongly causal if for any neighborhood U ⊆ M of x ∈ M there exists a sub-
neighborhood V ⊆ U of p that is causally convex in M .

v) M is globally hyperbolic if it is strongly causal and J(x, y) is compact for all x, y ∈M .

These conditions (together with other conditions in between) are sometimes called the causal
ladder because of the implications

M is globally hyperbolic

=⇒M is strongly causal

=⇒M is causal

=⇒M is chronological

=⇒M is not totally vicious.

The definition of a strongly causal spacetime formalizes the idea that there are no almost
closed causal curves, that is, curves that start near x, move away, and then come back
arbitrarily close to x, in the sense of topology. Therefore, it makes sense that we can
reconstruct the topology from the causal structure in such a spacetime:

Lemma 2.2.10 ([4, p. 34]). Let M be a smooth spacetime. The topology generated by the
chronological diamonds I(x, y) for all x, y ∈ M , which is called Alexandrov topology,
coincides with the manifold topology of M if and only if M is strongly causal.

Proof. Note that a subset V ⊆M is causally convex if and only if J(x, y) ⊂ V for all x, y ∈ V .
Because � is a subrelation of ≤, this also implies I(x, y) ⊂ V for all x, y ∈ V .

First, assume that M is strongly causal, so for any neighborhood U of x ∈ M , we
can find a causally convex neighborhood V ⊆ U and a future-directed timelike curve c
with c

(
1
2

)
= x. For any small enough ε > 0, we have c

(
1
2 ± ε

)
∈ V , which implies

x ∈ I
(
c
(

1
2 − ε

)
, c
(

1
2 + ε

))
⊆ V ⊆ U because of the causal convexity of V . As U was an

arbitrary neighborhood of x, this shows that the family
{
I
(
c
(

1
2 − ε

)
, c
(

1
2 + ε

)) ∣∣∣ ε > 0
}

is

a neighborhood basis of x.

For the reverse implication, let U be any neighborhood of x ∈M . If the Alexandrov topology
coincides with the manifold topology, there are y, z ∈ M with x ∈ I(y, z) ⊆ U . By the
push-up property in Lemma 2.2.6 the set I(y, z) is causally convex.

14



2.2 Lorentzian geometry

Global hyperbolicity is the strongest and one of the most important causality conditions. Its
name comes from the fact that certain hyperbolic wave equations, e.g. the Klein-Gordon
equation ∑

i,j

gij
∂2ψ(x)

∂xi∂xj
+ µ2ψ(x) = 0

in local coordinates, have a unique global solution for suitable initial conditions on a Cauchy
hypersurface.

Definition 2.2.11. Let M be a smooth spacetime. A curve c : (a, b)→M is called inextendible
if it cannot be continuously extended to the domain [a, b) or (a, b].

A Cauchy hypersurface is a subset S ⊆M that every inextendible causal curve intersects
exactly once.

Theorem 2.2.12 ([11, 12]). Let M be a smooth spacetime. The following are equivalent:

i) M is globally hyperbolic.

ii) M has a Cauchy hypersurface S.

iii) M is diffeomorphic to R× S and every hypersurface {t} × S is a Cauchy hypersurface.

The theorem does not imply that a globally hyperbolic spacetime necessarily carries a product
metric, it is just diffeomorphic to a product manifold. But if M = R × S has indeed a
Lorentzian product metric −dt2 + g, where (S, g) is a Riemannian manifold, then M is
globally hyperbolic if and only if (S, g) is a complete metric space, see [1, p. 50]. In this
sense, global hyperbolicity has the flavor of a completeness condition. Compactness of M ,
on the other hand, is not a very useful condition for Lorentzian spacetimes, as a compact
spacetime cannot be chronological, see [1, Proposition 3.10].

It is also interesting to look at the properties of the Lorentzian distance function d on
spacetimes with different causality conditions. If there is a closed timelike curve that starts
and ends in x ∈M , it is immediately clear that d(x, x) =∞, as we can go around this loop
multiple times to get arbitrarily long curves from x to x. By the inverse triangle inequality
d(x, x) =∞ also implies d(y, z) =∞ whenever y ≤ x ≤ z. For totally vicious spacetimes we
even have d(x, y) =∞ for all x, y ∈M .

Closed timelike loops are not the only cause for infinite Lorentzian distances. Even on a
strongly causal spacetime, there might be points x, y ∈M with d(x, y) =∞. This can only
happen if J(x, y) is not compact, which intuitively means that causal curves from x to y can
go “far out” and spend an arbitrarily long time before coming back to y. Therefore, globally
hyperbolic spacetimes have the most well behaved distance functions:

15



2 Preliminaries

Lemma 2.2.13. ([13, 14]) Let M be a globally hyperbolic spacetime.

The Lorentzian distance between any two points is finite and d : M ×M → R is continuous.

For any two points x, y ∈M , there is future-directed causal curve from x to y with length
d(x, y).

2.3 Semicategories, categories, and groupoids

Category theory has been developed to provide a common description of many different fields
of mathematics, but has later proven to yield interesting and useful algebraic structures in
itself. Semicategories are a generalization of categories in which we do not postulate the
existence of identity morphisms. They are therefore less commonly used, but will be very
useful in our analysis of chronological structures.

To motivate the following definitions, let us point out some analogies between set theory,
group theory and topology:

set theory group theory topology

objects sets groups topological spaces
morphisms maps group homomorphisms continuous maps
isomorphisms bijective maps group isomorphisms homeomorphisms

In these three cases, the objects are sets that might have the additional structure of a
group or a topology. Maps that respect these structures are generally called morphisms
between the objects. The composition of any two morphisms f : X → Y and g : Y → Z is
another morphism gf : X → Z, and this composition is associative. If a morphism f between
sets/groups/topological spaces has an inverse map f−1 that is also a morphism, we call f an
isomorphism. Isomorphic objects are regarded as practically identical: The isomorphism f
only renames the elements but does not change the structure. These common structural
properties are axiomatized in the definition of a category. We will denote the discussed
categories by Set, Grp, and Top.

Definition 2.3.1. A semicategory C consists of

• a class Obj(C), called the class of objects or points,

• a class C(x, y) for any x, y ∈ Obj(C), called the class of morphisms from x to y.

Morphisms are often denoted by f : x→ y or x
f−→ y for f ∈ C(x, y).

16
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• and an operation

C(y, z)× C(x, y)→ C(x, z)
(a, b) 7→ ab

for all x, y, z ∈ Obj(C), such that (ab) c = a (bc) holds whenever ab and bc are defined.

We will denote the total morphism class of a semicategory C by

Mor(C) :=
⊔

x,y∈Obj(C)

C(x, y),

where
⊔

denotes a disjoint union of classes.

The start- and endpoint map of a semicategory is defined as

(s, e) : Mor(C)→ Obj(C)×Obj(C)
a 7→ (x, y) if a ∈ C(x, y).

A semicategory C is called small if Obj(C) and Mor(C) are sets.

Readers who are not familiar with the distinction between classes and sets can use these
terms synonymously, at least for the moment. The main object of interest in this work,
Πt(X), is indeed a small semicategory.

Note that the objects and morphisms of a semicategory are just abstract elements. Despite
the notation, morphisms do not need to be actual maps.

Definition 2.3.2. Let C be a semicategory.

A morphism idx ∈ C(x, x) is called an identity (or identity morphism) of x if

∀y ∈ Obj(C), a ∈ C(x, y), b ∈ C(y, x) : a idx = a and idx b = b.

If an identity of x exists, it is unique.

Two morphisms a ∈ C(x, y) and b ∈ C(y, x) are called inverse to each other if ab = idy and
ba = idx. In this case, we write b = a−1 and call both a and b an isomorphism.

Definition 2.3.3. A semicategory C is called a category if it has an identity morphism idx for
every object x ∈ Obj(C).

A small category is called a groupoid if every morphism in C is an isomorphism.

Structure preserving maps between (semi-)categories are called (semi-)functors:

17
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Definition 2.3.4. Let C, D be semicategories. A semifunctor , denoted by F : C → D, consists
of two maps Obj(C) → Obj(D) and Mor(C) → Mor(D), called object map and morphism
map, that satisfy the following axioms. We will call both maps F , as it will always be clear
from the context which map is meant.

i) For all objects x, y ∈ Obj(C), we have

a ∈ C(x, y) =⇒ F (a) ∈ D
(
F (x), F (y)

)
.

ii) If a ∈ C(y, z) and b ∈ C(x, y), then F (ab) = F (a)F (b).

If C and D are categories, a functor F : C → D is a semifunctor that additionally satisfies

F (idx) = idF (x) for all x ∈ Obj(C).

Remark 2.3.5. Let C be a small semicategory, and x ∈ Obj(C).

The operation C(x, x)× C(x, x)→ C(x, x) is associative, so C(x, x) is a semigroup.

If C is a category, C(x, x) has an identity element, so it is a monoid.

If C is a groupoid, every morphism is invertible, so C(x, x) is a group.

On the other hand, every semigroup, monoid, or group is (the morphism set of) a semicategory,
category, or groupoid, respectively, with one object. A homomorphism (of semigroups,
monoids, or groups) is then the same as a (semi-)functor.

Based on these observations, it might be helpful to regard semicategories, categories, and
groupoids as a generalization of semigroups, monoids, and groups in that the operation
C × C → C is only partially defined. We cannot multiply any two arbitrary elements
(morphisms), but only ones that have compatible start- and endpoints. This also makes it
necessary to introduce multiple neutral elements or identities.

Lemma 2.3.6. The class SemCat of all small semicategories, with semifunctors as morphisms,
is a category.

The class Cat of all small categories, with functors as morphisms, is a category.

The class Grpd of all small groupoids, with functors as morphisms, is a category.

An isomorphism of semicategories, categories, or groupoids C,D is a (semi-)functor that has
an inverse (semi-)functor.

There is also the more general notion of equivalence of categories, which often provides
a more insightful point of view on categories. However, equivalences can only be defined
between categories, not between semicategories, because semicategories do not have identities
and isomorphisms.
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2.4 Homotopies and algebraic topology

Definition 2.3.7. Let C,D be two semicategories and F,G : C → D be two semifunctors.
A natural transformation η from F to G is an assignment of a morphism ηx ∈ D

(
F (x), G(x)

)
to every x ∈ Obj(C) such that for any f ∈ C(x, y) the square

F (x) G(x)

F (y) G(y)

F (f)

ηx

G(f)

ηx

commutes.

If C and D are categories, F,G : C → D are functors, and ηx is an isomorphism for every
x ∈ Obj(C), then η is called a natural isomorphism.

Two categories C and D are called equivalent if there are functors F : C → D, H : D → C
such that there are natural isomorphisms from H ◦ F and F ◦H to the identity functor of C
and D, respectively. In this case, G is called a weak inverse of F and vice versa.

2.4 Homotopies and algebraic topology

The broad goal of algebraic topology is the description of topological spaces by algebraic
invariants, which usually are functors from a category of topological spaces to a category of
algebraic objects like groups, rings, modules, groupoids, etc. Algebraic invariants encode
certain details of the shape of a topological space and therefore can be used to distinguish
topological spaces.

If one has enough suitable algebraic invariants of a space X, one can even hope to reconstruct
the topology of X from these invariants. In Chapter 4 we will accomplish exactly that for
locally chronological spaces.

Algebraic invariants are often invariant under continuous deformations, called homotopy
equivalences. Let us first define how to continuously deform maps and spaces:

Definition 2.4.1.

i) Let X,Y be topological spaces. A family of maps fs : X → Y , for s ∈ [0, 1] is called a
homotopy (of maps) if the map

H : X × [0, 1]→ Y

(x, s) 7→ fs(x)

is continuous. If such a homotopy exists, the maps f0 and f1 are called homotopic to
each other, written as f0 ∼ f1.
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ii) Two topological spaces X,Y are homotopy equivalent if there are continuous maps
f : X → Y and g : Y → X such that g ◦ f ∼ idX and f ◦ g ∼ idY . In this case, the
maps f and g are called inverses up to homotopy.

2.4.1 Fundamental groups

In this section, we will closely follow the beginning of Chapter 1 in [15] and showcase
the fundamental group π1(X), which is one of the simplest and most important algebraic
invariants of a topological space. It is constructed from homotopy classes of closed paths:

Definition 2.4.2. Let X be a topological space.

i) A path in X is a continuous map [0, 1]→ X. The set of all paths in X is called the
path space of X and denoted by P (X). The subset

P (X)(x, y) = {c ∈ P (X) | c(0) = x, c(1) = y}

is the space of paths from x ∈ X to y ∈ X.

ii) For two paths c ∈ P (X)(x, y) and d ∈ P (X)(y, z), their concatenation is given by

dc : [0, 1]→ X

t 7→

{
c(2t) if t ∈

[
0, 1

2

]
d(2t− 1) if t ∈

[
1
2 , 1
]
.

iii) For a path c ∈ P (X)(x, y), its reverse path is defined as

c : [0, 1]→ X

t 7→ c(1− t)

iv) A free homotopy between paths c0 and c1 is a homotopy (cs)s∈[0,1] of maps.

v) A homotopy relative to the endpoints between paths c0 and c1 from x to y is a free
homotopy with cs ∈ P (X)(x, y) for all s ∈ [0, 1].

For brevity, we will often just write “homotopy” instead of “homotopy relative to the
endpoints”, and only use the notation c0 ∼ c1 in this case.

Note that in this work the notation dc means “first c then d”, analogous to the composition
of maps or morphisms in a category. Defining it the other way around, as it is done in [15],
will give an isomorphic group structure on π1(X).

To get an intuitive understanding of homotopies, imagine paths as (infinitely stretchable)
rubber strings on a surface. To indicate the direction, mark the beginning and end of a
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string differently. A free homotopy may deform a string and move the endpoints around. It
is easy to imagine that any two paths in the same path-connected component of X are freely
homotopic to each other. For a homotopy (relative to the endpoints), the start and endpoint
are pinned down at fixed locations. This gives a more interesting equivalence relation because
the string can “get caught” on certain features of the space. If the start and endpoint are
equal, we even get a group structure:

Definition 2.4.3. Let X be a topological space, fix a basepoint x ∈ X and let

π1(X,x) = P (X)(x, x)
/
∼

be the set of homotopy classes [c] of paths from x to x. The operation

π1(X,x)× π1(X,x)→ π1(X,x)

[d][c] 7→ [dc]

is well-defined and turns π1(X,x) into a group, called the fundamental group of X with
basepoint x. The neutral element is represented by the constant path in x, and inverses are
represented by reversed paths, [c]−1 = [c].

Lemma 2.4.4. If there is a path from x to y in X, the groups π1(X,x) and π1(X, y) are
isomorphic to one another. If X is path-connected, one usually just writes π1(X) instead of
π1(X,x)

We will postpone the proof of the lemma until after Definition 2.4.5. For the details of the
proof that Definition 2.4.3 actually defines a group, and for more images see e.g. [15]. We
will only indicate the necessary steps, using the rubber string analogy from above.

Note that concatenation of paths is not associative6, but (ab)c and a(bc) are reparametriza-
tions of the same path. We can write down a homotopy that interpolates continuously
between these two parametrizations, so the operation in π1(X) is indeed associative. A path
or rubber string represents the neutral element if and only if it can be pulled together to
a point. Concatenation means tying the end of one string to the beginning of the other;
the juncture can now be moved around, as it is no longer the start or endpoint of the
concatenated curve. If we concatenate a path with its reverse path, we get a cord with two
strands that is only fixed at one point. After letting go of the junction, the cord will pull
itself to the basepoint x, which illustrates that the concatenated path represents the neutral
element.

It is intuitively clear that on a 2-dimensional sphere every loop can be pulled together to
a point, so π1(S2) is a trivial group. On a torus, the same is not possible if the loop goes
through the hole, so π1(T 1) is nontrivial.

6In Subsection 2.4.3, we will give an alternative definition of a path space, in which concatenation is actually
associative and therefore the path space becomes a category.
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2.4.2 Fundamental groupoids

In Remark 2.3.5, we introduced groups as a special case of groupoids with only one object.
In this sense, a fundamental group is the special case of a fundamental groupoid, which we
are about to define. From a historical perspective, this is of course backward: Fundamental
groups were introduced in 1895 by Poincaré [16], while fundamental groupoids were introduced
in the 1930s (see [17]) to overcome certain limitations of fundamental groups, which we will
discuss in Chapter 5.

Definition 2.4.5. Let X be a topological space and let

Π(X)(x, y) = P (X)(x, y)
/
∼

be the set of homotopy classes [c] of paths from x to y ∈ X. For any x, y, z ∈ X, the
operation

Π(X)(y, z)×Π(X)(x, y)→ Π(X)(x, z)(
[d], [c]

)
7→ [d][c] := [dc]

is well-defined and turns Π(X) into a groupoid, called the fundamental groupoid of X.
The identities are represented by constant paths, and inverses are given by reversed paths,
[c]−1 = [c].

For any subset A ⊆ X, called a set of basepoints, we define Π(X,A) to be the subcategory of
Π(X) with Obj

(
Π(X,A)

)
= A and Π(X,A)(x, y) = Π(X)(x, y) for all x, y ∈ A.

To show that Π(X) is a groupoid, we need to take essentially the same steps as we need to
show that π1(X) is a group. In fact we have π1(X,x) = Π(X)(x, x). In this context, it is
now easy to prove Lemma 2.4.4: If there is a path c in X from x to y, the maps

Π(X)(x, x)→ Π(X)(y, y)

[g] 7→ [c][g][c]−1

Π(X)(y, y)→ Π(X)(x, x)

[g] 7→ [c]−1[g][c]

are group homomorphisms (called change-of-basepoint isomorphisms) that are inverse to
each other, so

π1(X,x) = Π(X)(x, x) ∼= Π(X)(y, y) = π1(X, y).

Spaces with trivial fundamental groups are of special interest in algebraic topology:

Definition 2.4.6. A topological space X is simply connected if π1(X,x) is trivial for every
x ∈ X.

A semicategory C is connected if every morphism class C(x, y) contains at least one morphism.
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A semicategory C is simply connected or thin if every morphism class C(x, y) contains at
most one morphism.

Lemma 2.4.7. A topological space X is path-connected if and only if its fundamental groupoid
Π(X) is connected.

A topological space X is simply connected if and only if its fundamental groupoid Π(X) is
simply connected.

Proof. The first statement is clear from the definitions.

If Π(X) is simply connected, then π1(X, x) = Π(X)(x, x) contains idx but no other morphism,
hence π1(X,x) is a trivial group for every x.

If X is simply connected, any two a, b ∈ Π(X)(x, y) satisfy

b−1a ∈ Π(X)(x, x) = π1(X,x) = { idx}

and therefore
a = idy a = bb−1a = b idx = b.

In and of itself, the fundamental groupoid Π(X) of a single space X contains little more
information than the fundamental groups π1(X, x) for all x. Its power as a tool in algebraic
topology mainly comes from the fact that we can relate different topological spaces or
subspaces via arbitrary continuous maps:

Lemma 2.4.8. Any continuous map f : X → Y between topological spaces X,Y induces a
functor

f∗ : Π(X)→ Π(Y )

[c] 7→ [f ◦ c]

The object map X 7→ Π(X) together with the morphism map f 7→ f∗ forms a functor
Π: Top→ Grpd, called fundamental groupoid functor.

Corollary 2.4.9. Let Top• be the category of pointed topological spaces, that is, pairs (X, x)
with x ∈ X. A morphism (X,x)→ (Y, y) is a continuous map f : X → Y with f(x) = y.

The object map (X,x) 7→ π1(X,x) together with the morphism map f 7→ f∗ forms a functor
π1 : Top• → Grp, called fundamental group functor.
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In particular, the functoriality of Π and π1 permits us to calculate the fundamental group
or groupoid of a union of topological spaces X = X1 ∪X2 from the fundamental groups
or groupoids of X1, X2, and X1 ∩X2. This is the celebrated Seifert-van Kampen theorem.
As we will first need to introduce some more constructions for groups and groupoids, we
postpone any further explanation to Chapter 5, in which we will also prove an analogous
theorem for fundamental semicategories.

2.4.3 Path spaces as categories

In Definition 2.4.2, we used the same domain [0, 1] for all paths, and therefore had to
define the composition of paths with an intrinsic reparametrization. As a consequence, the
composition of paths was not associative. We can avoid this blemish by making a slight
change to the definitions:

Definition 2.4.10. Let X be a topological space.

i) Let

P ′(X)(x, y) := {c : [0, `]→ X continuous | ` ≥ 0, c(0) = x, c(`) = y} ,

P ′(X) :=
⊔

x,y∈X
P ′(X)(x, y).

ii) For two paths c ∈ P ′(X)(x, y) and d ∈ P ′(X)(y, z) with domains [0, `c] and [0, `d],
their concatenation is given by

dc : [0, `c + `d]→ X

t 7→

{
c(t) if t ∈ [0, `c]

d(t− `c) if t ∈ [`c, `c + `d] .

iii) Two paths c, d ∈ P ′(X)(x, y) with domains [0, `c] and [0, `d] are equivalent if rep(c) and
rep(d) are homotopic (rel. endpoints) to one another, where rep denotes reparametriza-
tion to the unit interval:

rep: P ′(X)→ P (X)

(c : [0, `]→ X) 7→

(
rep(c) : [0, 1]→ X

t 7→ c (t `)

)
.

It is not hard to see that the composition in P ′(X) is associative and paths with domain
{0} = [0, 0] act as identity morphisms, so P ′(X) is a category with object set X and
morphism sets P ′(X)(x, y). Note that this is a slight abuse of notation because we use the
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symbol P ′(X) for both the category and the set of paths, which is, strictly speaking, the
total morphism set Mor

(
P ′(X)

)
of that category.

If we replace “P (X)” with “P ′(X)” and “homotopy classes” with “equivalence classes” in
Definition 2.4.5, we get the same fundamental groupoid Π(X). This is how the fundamental
groupoid is defined in [18]. Furthermore, the quotient map p : P ′(X)→ Πt(X), c 7→ [c] is a
functor.

While P ′(X) is certainly more appealing than P (X) from a category theory point of view,
we will use P (X) for most of this work. This choice removes the need to keep track of the
domain lengths ` and also avoids special treatment of the case ` = 0.
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3 Locally chronological spaces and timelike
homotopies

In Definition 2.2.5 we already introduced the causal and chronological relations ≤U and �U

on subsets U of a smooth spacetime. Each of these relations conveys a lot of information about
the geometry and topology of a spacetime, which we will later demonstrate in Theorem 4.4.2.
Inspired by this observation, our goal in this chapter is to define a more general structure by
imbuing a topological space, which is not necessarily a manifold, with a system of transitive
relations �U .

In Section 3.1 we will discuss some axioms that relate the chronological structure and the
topology with the goal of defining a useful generalization of smooth spacetimes. On our way,
we will also define timelike homotopies and the fundamental semicategory Πt(X) of a locally
chronological space X, which will be the object of study for the following chapters.

Our Ansatz differs from many others in the literature (for example in [4]) in that we consider
the chronological relations locally, that is, on all (small) open subsets U , and all of our
axioms are local conditions. Therefore, we can show that every smooth spacetime satisfies
these axioms, not just chronological or causal spacetimes.

In Section 3.2, we briefly discuss timelike boundaries. In Section 3.3 we will turn the class
of locally chronological spaces into a category by defining morphisms between them. In
Sections 3.4 and 3.5, we will construct several different examples of locally chronological
spaces that are not manifolds.

3.1 Axioms for locally chronological spaces

3.1.1 Local chronological structure and timelike paths

In this work, we will focus on chronological relations and timelike paths rather than causal
ones because they will be easier to relate to the topology.

Definition 3.1.1. Let X be a topological space.

A system of (transitive) relations �• on X consists of a (transitive) relation �U on every
open subset U ⊂ X.
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3 Locally chronological spaces and timelike homotopies

A continuous path c : [0, 1]→ X is called timelike1 with respect to �• if

∀ open U ⊆ X, a, b ∈ [0, 1], a < b, c
(
[a, b]

)
⊆ U : c(a)�U c(b). (3.1.1)

We define P t(U) to be the set of all timelike paths whose image is contained in U , and
P t(U)(x, y) to be the subset of timelike paths from x to y.

Remember that we only defined piecewise continuously differentiable timelike curves on a
smooth spacetime in Definition 2.2.3 and used these to define the relations �U . All of these
curves are also timelike by the above definition, but there are also timelike paths that are
not piecewise continuously differentiable.

Note that on a smooth spacetime, most authors impose the condition in equation (3.1.1)
only for so-called convex normal neighborhoods U , instead of all open U , see [1, p. 54]. Since
convex normal neighborhoods form a basis of the manifold topology, Lemma 3.1.5 will show
that this leads to an equivalent characterization of timelike paths.

Definition 3.1.2. Let X be a topological space. We say that a system �• of relations on X
is induced by its timelike paths if

P t(U)(x, y) 6= ∅ ⇐⇒ x�U y

holds for all open U ⊆ X and x, y ∈ U .

Smooth spacetimes satisfy this property because �• is defined using timelike curves, see
Definition 2.2.5. In general, only the implication “ =⇒ ” is true in the situation of Defini-
tion 3.1.1.

If equivalence holds, the system of relations has a particular structure:

Definition 3.1.3. Let �• be a system of transitive relations on a topological space X.

i) We call �• a precosheaf of transitive relations if x �U y =⇒ x �V y for all open
U ⊆ V ⊆ X and points x, y ∈ U .

ii) We call �• a cosheaf of transitive relations if it is a precosheaf and satisfies the
following:
For any system {Ui}i∈I of open subsets of X with U =

⋃
i∈I Ui, the relation �U is

the smallest transitive relation that contains each of the relations �Ui .

In other words, �U is the transitive hull of
⋃
i∈I �Ui .

1For brevity, we will stop using the qualifier “future-directed” from now on, as all paths in P t(X) are
understood to be future-directed.

28



3.1 Axioms for locally chronological spaces

Lemma 3.1.4. If a system �• of transitive relations on X is induced by its timelike paths, it
is a cosheaf of transitive relations.

The reverse implication is not true, as we will see in Example 3.5.3.

Proof. If U ⊆ V ⊆ X are open subsets and x, y ∈ U , the implications

x�U y =⇒ P t(U)(x, y) 6= ∅ =⇒ P t(V )(x, y) 6= ∅ =⇒ x�V y

show that �• is a precosheaf.

Let U =
⋃
i∈I Ui. We already know that �U is transitive and contains �Ui for all i ∈ I; we

only need to show that it is the smallest such relation.

For any x, y ∈ U with x �U y, there is a timelike path c : [0, 1] → U from x to y. The
compact domain [0, 1] is covered by the open subsets c−1(Ui), i ∈ I. Using the Lebesgue
covering lemma, we can find 0 = t0 < t1 < · · · < tn = 1 and i1, . . . , in ∈ I such that
c
(
[tk−1, tk]

)
⊆ Uik for all k ∈ 1, . . . , n. As the restriction c|[tk−1,tk] is timelike in Uik , we get a

finite chain
x = c(t0)�Ui1

c(t1)�Ui2
· · · �Uin

c(tn) = y.

If Î is any transitive relation on U that contains all �Ui , we have just shown

x�U y =⇒ ∃x0, . . . xn ∈ U : x = x0 Î · · · Î xn = y =⇒ x Î y,

which means that �U is the smallest of all such relations Î.

If �• satisfies the (pre-)cosheaf condition, certain local conditions are true for all open
subsets if they are true for the open sets in a topological basis:

Lemma 3.1.5. Let �U be a system of transitive relations on X and B be a basis of the
topology of X.

i) If �• is a precosheaf, then a path c : [0, 1]→ X is timelike if and only if

∀U ∈ B, a, b ∈ [0, 1], a < b, c
(
[a, b]

)
⊆ U : c(a)�U c(b) (3.1.2)

ii) If �• is a cosheaf and the equivalence

P t(U)(x, y) 6= ∅ ⇐⇒ x�U y

is true for all x, y ∈ U ∈ B, then it is also true for all open U ⊆ X.
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3 Locally chronological spaces and timelike homotopies

Proof.

i) If c is timelike, equation (3.1.1) implies (3.1.2).

On the other hand, every open set is a union U =
⋃
i∈I Ui of sets Ui ∈ B. If equation

(3.1.2) is satisfied, and there are a, b ∈ [0, 1] with a < b and c
(
[a, b]

)
⊆ U , we can use a

similar argument as in the proof of Lemma 3.1.4 to show

c(a)�Ui1
c(t1)�Ui2

· · · �Uin
c(b) =⇒ c(a)�U · · · �U c(b) =⇒ c(a)�U c(b).

We only used the fact that �U contains all the �Ui , which is the precosheaf condition,
not the cosheaf condition, because �U does not need to be the smallest such relation.

ii) The implication P t(U)(x, y) 6= ∅ =⇒ x�U y is always true by definition. We only
need to show the reverse implication.

Every open set is a union U =
⋃
i∈I Ui of sets Ui ∈ B. For any x, y ∈ U with x�U y

there is a chain of points x0, . . . xn ∈ X with

x = x0 �Ui1
x1 �Ui2

· · · �Uin
xn = y

since �• is a cosheaf. As the relations �Ui are induced by timelike paths, there exists
a timelike path ck ∈ P t(Uik)(xi−1, xi) for each k ∈ {1, . . . , n}. We can concatenate
these paths to get a timelike path c = cn · · · c1 ∈ P t(U)(x, y).

3.1.2 Open future and past

When we have a system of relations�• on a topological space, we can define the chronological
future, past, and diamond in the same way as in Definition 2.2.5:

I+
U (x) := {y ∈ U |x�U y} ,
I−U (x) := {y ∈ U | y �U x} ,

IU (x, y) := I+
U (x) ∩ I−U (y).

Our second axiom for a locally chronological space is that I+
U (x) and I−U (x) are open for any

open U ⊆ X and x ∈ U , just as in a smooth spacetime, see Lemma 2.2.6. This axiom is
essential for most of the theorems in this work because it relates the chronological structure
to the topology. Together with our first axiom (the system �• is induced by its timelike
paths), it tells us that we can slightly change the start- and endpoint of a timelike path in
any direction and still get a timelike path between these new points:

Lemma 3.1.6. Let X be a topological space with a system �• of transitive relations that
is induced by its timelike paths. Let U ⊆ X be an open subset. Then the following two
statements are equivalent:
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3.1 Axioms for locally chronological spaces

i) For all x ∈ U the sets I+
U (x) and I−U (x) are open.

ii) The relation �U is an open subset of U × U .

Proof. If ii) is true, the set I+
U (x) is open because it is the preimage of �U under the

continuous inclusion map U → U × U, y 7→ (x, y). Analogously, it can be shown that I−U (x)
is open.

If x, y ∈ U are two points with x�U y, then there is a timelike path c with c(0) = x and
c(1) = y. The point z := c

(
1
2

)
satisfies x�U z �U y. The inclusions

(x, y) ∈ I−U (z)× I+
U (z)

=
{

(x′, y′)
∣∣x′ �U z �U y

′}
⊆
{

(x′, y′)
∣∣x′ �U y

′}
= �U

demonstrate that I−U (z)× I+
U (z) is an open neighborhood of (x, y) inside �U if ii) is true.

As (x, y) was an arbitrary pair in �U , this shows that �U is an open subset of U × U .

3.1.3 Timelike homotopies

In analogy to Definitions 2.4.2 and 2.4.5, we define:

Definition 3.1.7. Let X be a topological space with a system of relations �•. A timelike
homotopy (relative to the endpoints) between paths c0 and c1 from x to y is a homotopy
(cs)s∈[0,1] with cs ∈ P t(X)(x, y) for all s ∈ [0, 1].

Note that in a timelike homotopy all the paths cs in between c0 and c1 have to be timelike
too. Therefore, two paths might be homotopic to each other, but not timelike homotopic,
see Example 3.5.4.

Definition 3.1.8. Let X be a topological space with a system of transitive relations �• and
let

Πt(X)(x, y) = P t(X)(x, y)
/
∼

be the set of timelike homotopy classes [c] of paths from x to y, for any x, y ∈ X. The
operation

Πt(X)(y, z)×Πt(X)(x, y)→ Πt(X)(x, z)

[d][c] 7→ [dc]

is well-defined and turns Π(X) into a semicategory, called the fundamental semicategory of
(X,�•).
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3 Locally chronological spaces and timelike homotopies

For any subset A ⊆ X, called a set of basepoints, we define Πt(X,A) to be the sub-
semicategory of Πt(X) with Obj

(
Πt(X,A)

)
= A and Πt(X,A)(x, y) = Πt(X)(x, y) for all

x, y ∈ A.

We can prove that Πt(X) is a semicategory in much the same way as for the fundamental
groupoid. The key observation is that the concatenation of timelike paths is timelike again.
Note that Πt(X) is in general not a category, as constant paths, which would represent
identities, are in general not timelike.

The definition of Πt(X,A) is only included for the sake of completeness. The reduction
of the fundamental semicategory to a set of basepoints is not nearly as useful as for the
fundamental groupoid. While the inclusion Π(X,A)→ Π(X) has a left inverse and is an
equivalence of categories if A has at least one point in every path-connected component of X
(see [18, p. 231, p. 245]), the inclusion Πt(X,A)→ Πt(X) has no left inverse except in some
pathological cases. Furthermore, equivalence is not even defined for semicategories. For this
reason, the semigroup Πt(X, {x}) may depend heavily on the choice of x ∈ X, while the
fundamental group π1(X,x) = Π(X, {x}) only depends on the path-connected component
in which x lies.

The following definition is an analogue of Definition 2.4.6 and Lemma 2.4.7:

Definition 3.1.9. Let X be a topological space with a system of transitive relations.

An open subset U ⊆ X is called timelike simply connected if Πt(U) is simply connected,
which means that for any x, y ∈ U and any two paths c0, c1 ∈ P t(U)(x, y) there is a timelike
homotopy in U from c0 to c1.

X is called locally timelike simply connected if it has a topological basis of timelike simply
connected open subsets.

The following lemma is an important observation on which all the main results in [8] rely on:

Lemma 3.1.10 ([8, Lemma 2.1]). Every spacetime M is locally timelike simply connected.

Proof sketch. There is a basis of so-called convex normal neighborhoods U , in which any two
points x, y ∈ U can be joined by a unique geodesic γxy in U . For fixed x, the geodesic γxy
depends continuously on y and is timelike if x �U y holds, see [1, p. 54]. Hence, for any
path c ∈ P t(U)(x, y), the family cs := c|[s,1] γc(0)c(s) is a timelike homotopy from c = c0 to
γxy = c1. This shows that Πt(U)(x, y) is either empty or equal to { [γxy]}.
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3.1 Axioms for locally chronological spaces

γxy

c

cs = c|[s,1]γxc(s)

x

y

c(s)

Figure 3.1: Illustration of the homotopy in the proof of Lemma 3.1.10 from the curve c to
the geodesic (straight line) γxy from x to y. One of the intermediate paths cs is
drawn thicker.

3.1.4 Local strong causality

We have already seen in Lemma 2.2.10 that the manifold topology of a spacetime M can be
reconstructed from the relation �M alone if M is strongly causal. In a general spacetime,
the same is only possible locally. This fact is a “folk theorem” in Lorentzian geometry and is
hard to attribute to a single author.

Lemma 3.1.11. Any smooth spacetime is covered by open subsets that are strongly causal
submanifolds.

Proof. Let x ∈ M be any point and φ : Ũ → Rn be a chart on a neighborhood Ũ of x.
Fix a constant Lorentzian metric h and a time orientation on Rn such that the cone of
future-directed causal vectors of hφ(x) in Tφ(x)M contains the one of φ∗gx. We denote

this property by hφ(x) > φ∗gx. The set U :=
{
y ∈ Ũ

∣∣∣hφ(y) > φ∗gy

}
is then another open

neighborhood of x.

If c is a future directed causal curve in (U, g), then φ ◦ c is a future directed causal curve in
(φ(U), φ∗g) and therefore also in (Rn, h). This implies that any subset V ⊆ U is causally
convex in (U, g) if φ(V ) is causally convex in (Rn, h). As the spacetime (Rn, h) is time-
oriented isometric to Minkowski space and therefore strongly causal, this implies that (U, g)
is also strongly causal.

We can make a similar definition if we just have chronological relations:

Definition 3.1.12. Let X be a set with a transitive relation �X . We call a subset V ⊆ X
chronologically convex in X if IX(x, y) ⊆ V holds for all x, y ∈ V .

33



3 Locally chronological spaces and timelike homotopies

We say that (X,�X) is strongly chronological if for any neighborhood U ⊆ X of any x ∈ X
there exists a sub-neighborhood V ⊆ U of x that is chronologically convex in X.

Lemma 3.1.13. A smooth spacetime M is strongly chronological if and only if it is strongly
causal.

Corollary 3.1.14. A spacetime M is covered by open subsets that are strongly chronological
submanifolds.

Proof of Lemma 3.1.13. If we revisit the proof of Lemma 2.2.10, we started by noting that
every causally convex subset V is also chronologically convex because �X is a subrelation
of ≤X . In the rest of the proof, we actually showed the following implications:

M is strongly causal.

=⇒M is strongly chronological.

=⇒ The Alexandrov topology on M coincides with the manifold topology.

=⇒M is strongly causal.

Conceptually, the above proof works for any topological space X with two systems �• and
≤• of transitive relations that satisfy the following properties: There is a timelike path
through any point, the relation �X is a subrelation of ≤X , and �X and ≤X satisfy the
push-up property as in Lemma 2.2.6.

3.1.5 Definition of a locally chronological space

Let us repeat all the properties discussed so far and turn them into a system of axioms:

Definition 3.1.15. A locally chronological space or space with a local chronological structure
is a topological space X with a system of transitive relations �• that induces a space of
timelike paths P t(X) and satisfies the following axioms:

(A1) For all open U ⊆ X the relation �U is induced by its timelike paths, which means

∀x, y ∈ U : x�U y ⇐⇒ P t(U)(x, y) 6= ∅.

(A2) For all open U ⊆ X and x ∈ U the sets I+
U (x) and I−U (x) are open.

(A3) X is covered by open subsets U such that (U,�U ) is strongly chronological.

(A4) (X,�•) is locally timelike simply connected. This means that X has a basis B of open
sets such that for any U ∈ B and any two paths in P t(U)(x, y) there is a timelike
homotopy in U between these paths.
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3.2 Timelike boundary

Lemma 3.1.16. A a topological space X with a system of transitive relations �• is a locally
chronological space if and only if there is a basis B of the topology of X such that

(A1’) The system �• is a cosheaf of transitive relations and

∀U ∈ B, x, y ∈ U : x�U y ⇐⇒ P t(U)(x, y) 6= ∅.

(A2’) For all U ∈ B and x ∈ U the sets I+
U (x) and I−U (x) are open.

(A3’) (U,�U ) is strongly chronological for all U ∈ B.

(A4’) All sets U ∈ B are timelike simply connected.

Proof. We have already proven the equivalence (A1) ⇐⇒ (A1’) in Lemma 3.1.4 and
Lemma 3.1.5 ii).

Obviously, (A2) implies (A2’). For the reverse implication, let U ⊆ X be any open set. As B
is a basis, there are sets Ui ∈ B with U =

⋃
i∈I Ui, and the cosheaf-property implies that

I+
U (x) =

⋃
i∈I,

y∈Ui∩I+U (x)

I+
Ui

(y)

is the union of open sets, hence open.

The properties (A3’) and (A4’) imply Axioms (A3) and (A4), respectively, as a basis is also
a cover. For the reverse implication, note that any open subset of a strongly chronological
set is also strongly chronological. Therefore, there is a basis B consisting of all open sets
that are simultaneously timelike simply convex and strongly chronological.

3.2 Timelike boundary

Remember that we used the fact that there is a timelike curve through every point of a
smooth spacetime in the proof of Lemma 2.2.10 and 3.1.13. The same is not true in a general
locally chronological space (or in a smooth spacetime with boundary).

Definition 3.2.1. Let X be a topological space X with a system of transitive relations �•.
The (future or past) timelike boundary of x is defined as

∂+X :=
{
x ∈ X

∣∣ I+
X(x) = ∅

}
,

∂−X :=
{
x ∈ X

∣∣ I−X(x) = ∅
}
,

∂±X := ∂+X ∪ ∂−X.
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3 Locally chronological spaces and timelike homotopies

On a Lorentzian spacetime with boundary, the timelike boundary is a subset of the manifold
boundary because of the following property: Any timelike path that ends in ∂+X or starts
in ∂−X can not be extended further into the future or past, respectively.

In a locally chronological space, the sets

X \ ∂+X =
⋃
x∈X

I−X(x), X \ ∂−X =
⋃
x∈X

I+
X(x), X \ ∂±X =

⋃
x,y∈X

IX(x, y),

are unions of open subsets of X and therefore open, which means that ∂+X and ∂−X are
closed. More importantly, the sets IX(x, y) only generate a topology on X \ ∂±X, not on
the whole space X if ∂±X is nonempty. This fact poses a problem if we want to derive
topological properties from the chronological structure. One could completely avoid this
issue by postulating ∂±X = ∅ as an additional axiom, which is what we will practically do in
Chapter 4. However, such an axiom could be deemed unnecessarily restrictive as Lorentzian
manifolds with boundary may have a non-empty timelike boundary.

A less restrictive approach would be to postulate ∂+X ∩ ∂−X = ∅. If this property holds,
which is the case for Lorentzian manifolds with boundary, any point in X is the start or the
endpoint of a timelike path c : [0, 1]→ X with c((0, 1)) ⊆ X \ ∂±X, so X \ ∂±X is an open
and dense subset of X. Nevertheless, there are different possibilities for fixing the topology
on the boundary, each with their own advantages and disadvantages, see [19] for a review in
a slightly different context.

3.3 Morphisms of locally chronological spaces

To compare different locally chronological spaces, we need to define structure preserving
maps between them:

Definition 3.3.1. Let (X,�•) and (Y,Î•) be locally chronological spaces.
A map f : X → Y is a morphism of locally chronological spaces if f is continuous and

∀ open U ⊆ Y, x, y ∈ f−1(U) : x�f−1(U) y =⇒ f(x) ÎU f(y). (3.3.1)

If “ =⇒ ” can be replaced with “⇐⇒ ” and f is a homeomorphism, we call f an isomorphism
of locally chronological spaces.

This definition is in line with the general principle from Definition 2.3.2 that an isomorphism
is a morphism that has an inverse morphism. It is not hard to see that the class of locally
chronological spaces together with their morphisms forms a category.

Morphisms are much easier to describe in terms of timelike paths:
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Lemma 3.3.2. Let (X,�•) and (Y,Î•) be locally chronological spaces. A continuous map
f : X → Y is a morphism if and only if

∀c ∈ P t(X) : f ◦ c ∈ P t(Y ).

Proof. Let f be a morphism and c ∈ P t(X). We need to check that f ◦ c is timelike in Y ,
so let U ⊆ Y be an open set and a, b ∈ [0, 1] with a < b. Because f is a morphism and c is
timelike, it follows that

f
(
c
(
[a, b]

))
⊆ U =⇒ c

(
[a, b]

)
⊆ f−1(U)

=⇒ c(a)�f−1(U) c(b)

=⇒ f
(
c(a)

)
ÎU f

(
c(b)

)
,

which shows that f ◦ c is timelike in Y .

On the other hand, let f : X → Y be a continuous map that sends timelike paths in X to
such in Y . Because of Axiom (A1) in Definition 3.1.15, we then have

x�f−1(U) y ⇐⇒ ∃c ∈ P t
(
f−1(U)

)
(x, y)

=⇒ f ◦ c ∈ P t(U)
(
f(x), f(y)

)
=⇒ f(x) ÎU f(y).

Morphisms also give us an alternative description of timelike paths:

Lemma 3.3.3. The interval [0, 1] together with the relations

a�U b :⇐⇒ 0 ≤ a < b ≤ 1 and [a, b] ⊆ U. for all open U ⊆ X

is a locally chronological space. A map c : [0, 1] → X to some locally chronological space
(X,Î•) is a timelike path if and only if it is a morphism of locally chronological spaces.

The proof is a simple matter of checking the definitions. Note that the chronological
structure on the interval [0, 1] is inherited from one-dimensional Minkowski space. A path
c : [0, 1]→ [0, 1] is timelike if and only if it is strictly monotonically increasing.

3.4 Constructions of locally chronological spaces

In this section we will demonstrate several ways to construct locally chronological spaces.
In Subsection 3.4.1 we show two methods to construct these spaces “from scratch”. In
Subsection 3.4.2 we show, among other things, that subsets, products, and preimages of
locally chronological spaces under local homeomorphisms are themselves locally chronological
spaces.
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3 Locally chronological spaces and timelike homotopies

3.4.1 General constructions

In order to construct a locally chronological space, we can either start by specifying a set of
timelike paths or a (partial) system of relations, adjust these in such a way that Axiom (A1)
in Definition 3.1.15 is satisfied, and then check the other axioms. For example, in a spacetime

we can start by defining the set P̂ t(X) of piecewise continuously differentiable future-directed
timelike curves and construct the rest from it:

Lemma 3.4.1. Let X be a topological space and fix a set P̂ t(X) ⊆ P (X). Define

P̂ t(U)(x, y) := P̂ t(X) ∩ P (U)(x, y),

x�U y :⇐⇒ P̂ t(U)(x, y) 6= ∅,

for all open U ⊆ X and let P t(U) be the set of timelike paths in U w.r.t. �• as in
Definition 3.1.1.

If P̂ t(X) contains all subpaths2 and concatenations of paths in P̂ t(X), then �• is a system

of transitive relations satisfying Axiom (A1) in Definition 3.1.15 and P̂ t(U) ⊆ P t(U).

Proof. Because P̂ t(X) and P (U) are closed under taking concatenations, so is P̂ t(U), hence
the relations �U are transitive.

For any c ∈ P̂ t(X), any open U ⊆ X, a, b ∈ [0, 1] with a < b and c
(
[a, b]

)
⊆ U we have

c(a) �U c(b) because c|[a,b] is a subpath of c and therefore lies in P̂ t(U)
(
c(a), c(b)

)
. This

shows that c is indeed timelike, hence P̂ t(X) ⊆ P t(X).

On the other hand, x �U y implies P̂ t(U)(x, y) 6= ∅ and therefore P t(U)(x, y) 6= ∅, so
Axiom (A1) in Definition 3.1.15 is satisfied.

Note that the above construction only guarantees the validity of Axiom (A1). In fact, all
the other axioms have to be verified separately, as Example 3.5.2 will show.

In some situations, it is more practical to start by defining a family of relations instead of a
set of paths:

Lemma 3.4.2. Let X be a topological space. Fix an open cover C of X and a transitive
relation �̂U on every U ∈ C.

Let P̂ t(X) be the set of all paths c : [0, 1]→ X that satisfy

∀U ∈ C, a, b ∈ [0, 1], a < b, c
(
[a, b]

)
⊆ U : c(a) �̂U c(b). (3.4.1)

2To simplify notation, a subpath c|[a,b] of a path c : [0, 1]→ x is understood to be reparametrized linearly to
the interval [0, 1].
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3.4 Constructions of locally chronological spaces

As in Lemma 3.4.1, we define x�V y :⇐⇒ P̂ t(V )(x, y) 6= ∅ for any open V ⊆ X.

Then, P̂ t(X) = P t(X) is also the set of timelike paths w.r.t. �•, Axiom (A1) in Defini-
tion 3.1.15 is satisfied, and �U is a subrelation of �̂U for any U ∈ C.

If (U, �̂U ) is strongly chronological for every U ∈ C, then �• satisfies Axiom (A3) in
Definition 3.1.15.

Proof. We can directly apply Lemma 3.4.1 to P̂ t(X), which implies that the relations �V

are indeed transitive, they satisfy Axiom (A1), and P̂ t(U) ⊆ P t(U) holds.

For all U ∈ C and x, y ∈ U with x �U y we have P̂ t(U)(x, y) 6= ∅ and therefore x �̂U y.
It follows that any curve that is timelike w.r.t. �• also satisfies equation (3.4.1), hence

P t(X) ⊆ P̂ t(X). Both inclusions together imply P t(X) = P̂ t(X).

The last sentence of the lemma follows from the fact that the chronological diamonds IU (x, y)
of �U are contained in the ones of �̂U .

3.4.2 Constructions from other locally chronological spaces

The two most basic ways to get a new locally chronological space from an existing one are
by reversing the time direction or by taking open subsets:

Lemma 3.4.3. If (X,�•) is a locally chronological space, then reversing all relations yields
another locally chronological space (X,�•).

Proof sketch. For any open U ⊂ X and x ∈ X, the timelike future I+
U (x) in (X,�•) is the

timelike past I−U (x) in (X,�•) and vice versa. Furthermore, a path is timelike in (X,�•) if
and only if its reversed path is timelike in (X,�•). A timelike homotopy in (X,�•) induces
a timelike homotopy in (X,�•) between the reversed paths. Using these observations, the
rest of the proof is straightforward.

Lemma 3.4.4. Let V ⊆ X be an open subset of a locally chronological space (X,�•).
The restriction of �• to V , which consists of the relations �′U :=�U for all open U ⊆ V ,
turns V into a locally chronological space. We call (V,�′•) a locally chronological subspace
of (X,�•).

The inclusion map V → X is a morphism of chronological spaces.
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3 Locally chronological spaces and timelike homotopies

Proof. Any path c : [0, 1]→ V that is timelike in (X,�•) is also timelike in (V,�′•) because
the latter space has fewer relations.

On the other hand, for any open U ⊆ X, the relation�U contains the relation�U∩V =�′U∩V
because �• is a precosheaf. Therefore, if c is timelike w.r.t.�′•, it is also timelike w.r.t.�•.

We have just shown that the timelike paths in (V,�′•) are exactly the timelike paths
in (X,�•) whose image happens to be contained in V . Furthermore, �′• inherits the
cosheaf-property from �•. Therefore, if B is a basis of (X,�•) as in Lemma 3.1.16, then
B′ := {U ∈ B |U ⊆ V } is such a basis for (V,�′•).

Note that the above lemma only holds for open subsets and cannot be generalized to arbitrary
subsets. For example, take the two-dimensional Minkowski-space as a locally chronological
space (R2,�•). We can endow V := R2 \Q2 ⊆ R2 with the subspace topology and define a
system of relations on V by x�′U∩V y ⇐⇒ x�U y for all open U ⊆ R2. However, (V,�′•)
is not locally timelike simply connected, as the only timelike homotopies in this space are
reparametrizations.

The fact that all axioms in Definition 3.1.15 are local properties allows us to build up bigger
locally chronological spaces from smaller ones:

Lemma 3.4.5. Let X =
⋃
i∈I Ui be an open cover of a topological space X and let (Ui,�i,•)

be locally chronological spaces.

If for all i, j ∈ I the restrictions of �i,• and �j,• to Ui ∩ Uj agree with one another, then
there is a local chronological structure �• on X such that (Ui,�i,•) are locally chronological
subspaces of (X,�•).

Proof. For an arbitrary open subset U ⊆ X, we define �U as the smallest transitive relation
that contains �i,V for all i ∈ I and open V ⊆ U ∩Ui. With this definition, it is immediately
clear that �• is a cosheaf of transitive relations.

If U happens to be a subset of Uj , any open V ⊆ U ∩ Ui is a subset of Uj ∩ Ui, hence
�i,V =�j,V , by assumption. As �j,U is itself the smallest transitive relation that contains
all such �j,V , this implies �U=�j,U . Therefore �j,• is indeed the restriction of �• to Uj .

If we combine the bases of all the spaces (Ui,�i,•) from Lemma 3.1.16, we get a basis of X
with the same properties, hence (X,�•) is indeed a locally chronological space.

Lemma 3.4.6. If f : X̂ → X is a local homeomorphism from a topological space X̂ to a locally
chronological space (X,�•), there is a local chronological structure on X̂ such that f becomes
a local isomorphism of locally chronological spaces.
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3.4 Constructions of locally chronological spaces

Proof. Remember that f is a local homeomorphism if and only if X̂ has an open cover
X̂ =

⋃
i∈I Ui such that f(Ui) is open and f |Ui : Ui → f(Ui) is a homeomorphism for each i ∈ I.

We can turn f |Ui into an isomorphism of locally chronological spaces (Ui,�i,•)→ (f(Ui),�•)
by defining the relations

x�i,V y :⇐⇒ f(x)�f(V ) f(y)

for all i ∈ I and open V ⊆ Ui.

For all V ⊆ Ui ∩ Uj , we have x �i,V y ⇐⇒ f(x) �f(V ) f(y) ⇐⇒ x �j,V y, so we can
apply Lemma 3.4.5 to finish the proof.

Lemma 3.4.7. Let (X1,�1,•), . . . , (Xn,�n,•) be finitely many locally chronological spaces.
The product space

∏
iXi together with the product relations

x�∏
i Ui

y :⇐⇒ ∀i ∈ {1, . . . , n} : pi(x)�i,Ui pi(y)

for any open U1 ⊆ X1, . . . , Un ⊆ Xn is itself a locally chronological space and the canonical
projections pk :

∏
iXi → Xk are morphisms.

Proof. For each i ∈ {1, . . . , n}, let Bi be a basis of Xi as in Lemma 3.1.16. As we already
have defined relations on the open sets of the product basis

B :=

{∏
i

Ui

∣∣∣∣∣U1 ∈ B1, . . . , Un ∈ Bn

}
.

We can use the first half of the proof of Lemma 3.3.2 to see that any path c : [0, 1]→
∏
iXi

that respects these relations is mapped to timelike paths pi ◦c ∈ P t(Xi) for all i ∈ {1, . . . , n}.
The reverse implication is also true. If we have paths ci ∈ P t(Xi)(xi, yi), then

(c1, . . . , cn) ∈ P t
(∏

i

Xi

)(
(x1, . . . , xn), (y1, . . . , yn)

)
holds. From this, it follows that we can use Lemma 3.4.2 to extend this system of relations
to every open subset of

∏
iXi and that Axiom (A1) in Definition 3.1.15 is satisfied.

It is evident that the projections pk :
∏
iXi → Xk satisfy equation (3.3.1), so they are

morphisms if (
∏
iXi,�) is a locally chronological space.

To finish the proof, we will now show that the product basis B satisfies the properties in
Lemma 3.1.16. For the rest of the proof, fix sets U1 ∈ B1, . . . , Un ∈ Bn and let U :=

∏
i Ui ∈ B.

(A1’) We already proved that Axiom (A1) in Definition 3.1.15 is satisfied, which implies (A1’).

(A2’) For any x ∈ U , the sets I+
U (x) =

∏
i I

+
Ui

(xi) and I−U (x) =
∏
i I
−
Ui

(xi) are finite products
of open sets and therefore open.
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3 Locally chronological spaces and timelike homotopies

(A3’) The product of chronologically convex subsets Vi ⊆ Ui is chronologically convex in U
because for any x, y ∈

∏
i Vi we have

IU (x, y) =
∏
i

IUi(xi, yi) ⊆
∏
i

Vi.

From this, it follows that U is strongly chronological.

(A4’) We have to show that any two paths c0, c1 ∈ P t
(
U
)
(x, y) are timelike homotopic to

one another. We already know that pi ◦ c0, pi ◦ c1 ∈ P t(Ui)(xi, yi) are timelike for all
i ∈ {1, . . . , n}, and because Ui ∈ Ui is timelike simply connected, there is a timelike
homotopy

Hi : [0, 1]× [0, 1]→ Xi

(t, s) 7→ ci,s(t)

from ci,0 := pi ◦ c0 to ci,1 := pi ◦ c1. We can put these together to get a timelike
homotopy

(H1, . . . ,Hn) : [0, 1]× [0, 1]→
∏
i

Xi

(s, t) 7→ (c1,s, . . . , cn,s)

from c0 to c1.

Readers familiar with category theory can check that the above construction is indeed a
product in the category of locally chronological spaces. Note that the above proof fails if
we take an infinite product, as

∏
Vi =

⋃
p−1
i (Vi) is an infinite intersection of open sets and

therefore in general not open. It is not clear to the author if infinite products of locally
chronological spaces exist apart from some very special cases, for example if all but finitely
many factors have trivial topology.

The following Lemma is the analogue of a Lorentzian product metric in our setting:

Lemma 3.4.8. Let (X, dX) be a length space that has a basis B such that any U ∈ B
has the following property: For any two points x, y ∈ U , there is a unique shortest path
γx,y ∈ P (U)(x, y), and γx,y depends continuously on x and y.

Then, R×X has a local chronological structure �• with(
t1
x1

)
�R×X

(
t2
x2

)
:⇐⇒ t2 − t2 > dX(x1, x2).

For all

(
t1
x1

)
,

(
t2
x2

)
∈ R×X.
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3.4 Constructions of locally chronological spaces

Proof. We will check the four axioms in Definition 3.1.15:

(A1) We apply Lemma 3.4.2 to the cover C = {R×X } and the relation �R×X given
in the lemma. This immediately implies that Axiom (A1) is satisfied and that a
path is timelike if and only if it respects the single relation �R×X . Remember that
the application of Lemma 3.4.2 might make it necessary to replace �R×X with a
subrelation. We will now prove that this is not actually the case here, by showing that
�R×X is induced by timelike paths:

Any timelike path in X has a strictly monotonically increasing time coordinate and
therefore can be reparametrized to the form

c̃ : [0, 1]→ R×X,

τ 7→
(
t1 + τ (t2 − t1)

c(τ)

)
where c is some path in X. As dX

(
c(a), c(b)

)
≤ (b− a)(t2 − t1) holds for all a, b ∈ [0, 1]

with a < b, we can easily see3 L(c) < t2 − t1.

On the other hand, for any pair of points with
(
t1
x1

)
�R×X

(
t2
x2

)
we can find a path c

from x1 to x2 of length L(c) < t2 − t1, because dX(x1, x2) < t2 − t1 is the infimum of
the lengths of all such paths. By reparametrizing c proportionally to its arc length, we
can ensure L

(
c|[0,τ ]

)
= τ L(c) for all τ ∈ [0, 1]. As the length functional L is additive,

see Remark 2.1.3, we get the inequalities

dX
(
c(a), c(b)

)
≤ L

(
c|[a,b]

)
= L

(
c|[0,b]

)
− L

(
c|[0,a]

)
= (b− a)L(c)

< (b− a) (t2 − t1)

=
(
t1 + b (t2 − t1)

)
−
(
t1 + a (t2 − t1)

)
,

which shows that the induced path c̃ is indeed a timelike path from
(
t1
x1

)
to
(
t2
x2

)
.

(A2) Now, let U ⊆ R × X be an arbitrary open subset and assume that
(
t1
x1

)
�U

(
t2
x2

)
holds. Our goal is to prove the existence of an open neighborhood of

(
t2
x2

)
in I+

U

(
t1
x1

)
.

As U is open, there is an ε > 0 with

(t2 − ε, t2 + ε)×Bε(x2) ⊆ U,

where Bε(x2) = {y ∈ X | dX(x2, y) < ε} is the metric ball around x2 with radius ε.

3Remember that dX is a genuine metric, not a Lorentzian distance function, and L(c) is the length of c in the
sense of Definition 2.1.2.
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3 Locally chronological spaces and timelike homotopies

By Axiom (A1), there is a timelike path in U from
(
t1
x1

)
to
(
t2
x2

)
, which has to go

through some point
(
t3
x3

)
∈ (t2 − ε, t2 + ε)×Bε(x2) with

(
t3
x3

)
�U

(
t2
x2

)
. We can now

choose an ε′ > 0 with t2− t3 > dX(x3, x2) + 2ε′. By definition of a length metric, there
is a path c in X from x2 to x3 of length L(c) < t2 − 2ε′ − t3 < ε. By the triangle
inequality, this path stays within Bε(x2) and the induced timelike path c̃ from

(
t3
x3

)
to(

t2−2ε′
x2

)
therefore stays within (t2−ε, t2 +ε)×Bε(x2) ⊆ U . By an analogous argument,

we can construct a timelike path in U from
(
t2−2ε′
x2

)
to any point in

(t2 − ε′, t2 + ε′)×Bε′(x2).

The latter set is therefore an open subset of I+
U

(
t3
x3

)
⊆ I+

U

(
t1
x1

)
, which finishes the

proof.

(A3) The whole space R×X is strongly chronological because for any neighborhood U of a

point ( tx ) ∈ R×X, there is an ε > 0 with

IR×X

((
t− ε
x

)
,

(
t+ ε
x

))
⊆ (t− ε, t+ ε)×Bε(x) ⊆ U

and the chronological diamond IR×X is open and chronologically convex. This implies
Axiom (A3).

(A4) The lemma asserts that B is a basis of X, hence {(a, b)× U | (a, b) ⊆ R, U ∈ B} is a
basis of R×X.

For any
(
t1
x1

)
,
(
t2
x2

)
∈ (a, b)× U with

(
t1
x1

)
�(a,b)×U

(
t2
x2

)
, there is a unique shortest

path γx1,x2 in U from x1 to x2, from which we construct the timelike path

γ̃( t1
x1

)
,
(
t2
x2

) : [0, 1]→ (a, b)× U,

τ 7→
(
t1 + τ (t2 − t1)
γx1,x2(τ)

)
Just like the paths γx1,x2 , the paths γ̃( t1

x1

)
,
(
t2
x2

) depend continuously on their start-

and endpoints. We can now show that (a, b)× U is timelike simply connected in the
same way as we did in Lemma 3.1.10.

3.5 Examples and non-examples

The following examples of spaces with transitive relations are chosen to illustrate the interplay
between the axioms in Definition 3.1.15.
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3.5 Examples and non-examples

Example 3.5.1 (Basic examples).

i) Let X be an arbitrary topological space, �U be the empty relation, and P t(X) = ∅.
This system satisfies all of the axioms in Definition 3.1.15 and has ∂+X = ∂−X = X.

ii) Let X be an arbitrary topological space and define P t(X) = P (X). To satisfy Ax-
iom (A1),�U must be the equivalence relation whose equivalence classes I+

U (x) = I−U (x)
are the path-connected components of U . The timelike boundary is ∂+X = ∂−X = ∅.

Axiom (A2) is satisfied if and only if X is locally path-connected, that is, if X has a
basis of path-connected open subsets.

Axiom (A3) is satisfied if and only if every path-connected component of X consists
only of topologically indistinguishable points.

Proof. Assume that X is locally strongly chronological and there is a path in X
between topologically distinguishable points. By a covering argument, we can find
a subpath that lies entirely in some strongly chronological open subset U and still
joins topologically distinguishable points x, y ∈ U . This means that there is an open
subset U ′ ⊆ X that contains x but not y. As U is strongly chronological, there is
a chronologically convex neighborhood V of x in U ∩ U ′. However, V must contain
IU (x, x), which contains y, in contradiction to y 6∈ U ′.

On the other hand, if every path-connected component of X consists only of topologi-
cally indistinguishable points, then every open subset of X is a union of path-connected
components and therefore chronologically convex in X. This means that the whole
space (X,�X) is strongly chronological.

Axiom (A4) is satisfied if and only if X is locally simply connected.

iii) As a special case of the example above, let X be an arbitrary set with the discrete
topology and x�U y ⇐⇒ x = y ∈ U . This satisfies all the axioms and P (X) = P t(X)
is the set of constant paths.

Note that this is an example of a space that is strongly chronological but not chrono-
logical.
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3 Locally chronological spaces and timelike homotopies

Example 3.5.2 (The shrinking wedge of circles as a counterexample).

Let X be the shrinking wedge of circles,

X =

∞⋃
n=1

S 1
n

(
1
n

0

)

where Sr(p) denotes the circle with center p and radius r in R2.

We define P̂ t(X) to be the set of all paths in X that travel strictly
counterclockwise through arbitrary many of the circles and apply
the construction from Lemma 3.4.1. Figure 3.2

In the subspace topology of R2, any neighborhood U of 0 contains at least one full circle,

hence P̂ t(U)(0, 0) is nonempty and therefore 0�U 0. It follows that the constant path in 0

is timelike w.r.t. �•, even though P̂ t(X) did not include constant paths.

By construction, this structure satisfies Axiom (A1) in Definition 3.1.15, but none of the
other axioms are satisfied: For any neighborhood U of 0, the set IU (0, 0) = I+

U (0) ∩ I−U (0)
is the union of all circles that are completely contained in U . This is not an open subset
of X unless U = X, so Axiom (A2) is violated. As IU (0, 0) has to be contained in any
chronologically convex neighborhood of 0, the set (U,�U ) cannot be strongly chronological
either, so X does not satisfy Axiom (A3). The constant path in 0 is not homotopic to any
nonconstant timelike path from 0 to 0, which violates Axiom (A4).

Example 3.5.3. (The extended long ray as a counterexample) In this example, we will
construct a space with a cosheaf of transitive relations that does not satisfy Axiom (A1) in
Definition 3.1.15, but does satisfy the other three axioms.

Let X be a space with strict total order < and the order topology, which is generated by the
open intervals

(−∞, b) := {x ∈ X |x < b} , (a,∞) := {x ∈ X |x > a} , (a, b) := (−∞, b) ∩ (a,∞),

for all a, b,∈ X. Note that ±∞ are only used to simplify notation; they are not actual
elements of X. Suppose that X is connected and all closed intervals [x, y] = (x, y) ∪ {x, y}
are compact. In analogy to Lemma 3.3.3, we define the relation

x�U y :⇐⇒ x < y and [x, y] ⊆ U.

on any open set U ⊆ X. This relation is obviously transitive. If U ⊆ V ⊆ X are open
subsets, x�U y implies x�V y. Hence, �• is a precosheaf.

We will now show that �• is a cosheaf: If we have an open cover U =
⋃
i Ui and x�U y,

we need to find a chain x = x0 �Ui1
x1 �Ui2

· · · �Uik
xk = y. As every open set is

a union of open intervals, and [x, y] is compact, we can choose finitely many intervals
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3.5 Examples and non-examples

(a1, b1) ⊆ Ui1 , . . . , (ak, bk) ⊆ Uik that cover [x, y]. We can reorder the intervals such that
b1 ≤ · · · ≤ bk and we can also assume a1 < · · · < ak without loss of generality. If the latter
were not the case, there would be an i ∈ {1, . . . , k − 1} with ai+1 ≤ ai < bi ≤ bi+1. In this
case, we could remove the interval (ai, bi) and still have a cover of [x, y].

For any i ∈ {1, . . . , k − 1}, we can write X as a union of two open subsets:

X = (−∞, x) ∪ [x, y] ∪ (y,∞)

=
(
(−∞, x) ∪ (a1, b1) ∪ · · · ∪ (ai, bi)

)
∪
(
(ai+1, bi+1) ∪ · · · ∪ (ak, bk) ∪ (y,∞)

)
= (−∞, bi) ∪ (ai+1,∞).

As X is connected, there is at least one point xi ∈ (−∞, bi) ∩ (ai+1,∞) = (ai+1, bi) for all
i ∈ {1, . . . k − 1}. Because of [xi−1, xi] ⊆ (ai, bi) ⊆ Uii we have found a chain

x = x0 �Ui1
x1 �Ui2

· · · �Uik−1
xk−1 �Uik

= xk = y,

which completes the proof that �• is a cosheaf.

The relation �X is identical to the total order < on X, so if X is not path-connected, there
are points x, y with x�X y and P t(X)(x, y) = ∅, which implies that (A1) in Definition 3.1.15
is not satisfied. The extended long line (see [20, p. 71]) is an example of such a totally
ordered, compact, connected, but not path-connected space.

It is not hard to check that Axioms (A2) and (A3) in Definition 3.1.15 are satisfied. A path
c : [0, 1]→ U from x to y in U ⊆ X is timelike if and only if it is strictly monotonous with
respect to <, which means it is a homeomorphism onto its image [x, y]. Any two timelike
paths from x to y are therefore related by a strictly monotonous reparametrization and there
is a timelike homotopy that interpolates between these two parametrizations. This implies
that (X,�•) also satisfies Axiom (A4).

The following example is meant to show some aspects of the fundamental semicategory that
might be unintuitive at first sight.

Example 3.5.4.

This example is explained in greater detail in [8, Example 6.1]. We will
only motivate the essential steps, as as the proofs involve the use of Morse
theory, which is beyond the scope of this work.

Let S =
{

(x, y, z) ∈ R3
∣∣x2 + y2 + (z/2)2 = 1

}
be an elongated rotational

ellipsoid with the standard Riemannian metric g induced from R3.

The points p = (1, 0, 0), q = (0, 1, 0) ∈ S decompose the equator into two
geodesics c1 and c2 of length `1 = 1

2π and `2 = 3
2π, respectively, as shown

in the figure to the right. The curve c1 is the unique shortest geodesic
from p to q, and c2 is the unique second-shortest geodesic.

c1

p q

c2

Figure 3.3
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3 Locally chronological spaces and timelike homotopies

Now, we define the Lorentzian product space X := (R × S,−dt2 + g). As we have seen
in the proof of Lemma 3.4.8, timelike paths c̃ ∈ P t(X)

(
(t1, p), (t2, q)

)
correspond to paths

c ∈ P (S)(p, q) of length L(c) < t2 − t1. Therefore, the path c1 induces a timelike path c̃1 for
`1 < t2 − t1 and c2 induces a second timelike path c̃2 for `2 < t2 − t1.

If we visualize paths as rubber strings with fixed ends on the surface S, we can deform the
path c1 into c2 by pulling the string over one of the poles of the ellipsoid. This homotopy
induces a timelike homotopy in X between c̃1 and c̃2 if the length of the rubber string stays
below t2− t1 during the deformation. However, we cannot deform c1 to c2 without stretching
the string at least to some critical length `3 > `2 before letting it shorten again. The number
of timelike homotopy classes is therefore

∣∣Πt(X)
(
(t1, p), (t2, q)

)∣∣ =


0 if t2 − t1 ≤ `1
1 if `1 < t2 − t1 ≤ `2
2 if `2 < t2 − t1 ≤ `3
1 if `3 < t2 − t1

Note that this means that X is not timelike simply connected despite being simply connected
in the usual sense.

If we choose t1, t2 such that `2 < t1 < `3 < t2, there are morphisms

[a], [a′] ∈ Πt(X)
(
(0, p), (t1, q)

)
with [a] 6= [a′],

[b] ∈ Πt(X)
(
(t1, q), (t2, q)

)
.

As both [b][a] and [b][a′] lie inside Πt(X)
(
(0, p), (t2, q)

)
, they are equal despite of [a] 6= [a′].

For readers familiar with category theory, this means that [b] is not a monomorphism.
Analogously, we can show that [b] is not an epimorphism. This is of course in contrast to
the fundamental groupoid, in which every morphism is an isomorphism.
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4 Isomorphisms of locally chronological
spaces and fundamental semicategories

The goal of this chapter is to show that the fundamental semicategory Πt(X) of a locally
chronological space (X,�•) contains enough information to reconstruct the topology of X and
the local chronological structure �• under the condition that the topology is regular and the
timelike boundary ∂±X is empty. To be more precise, Theorem 4.3.2 will demonstrate that
there is a one-to-one correspondence between isomorphisms of locally chronological spaces
that satisfy these conditions and isomorphisms between their fundamental semicategories.

In this sense, the fundamental semicategory Πt(X) is a much more rigid algebraic invariant
than the fundamental groupoid Π(X). As the latter is invariant under homotopy eqivalences,
it can only encode information on the homotopy type of X. In Section 4.1 we demonstrate
this fact by means of a concrete example.

In Section 4.2, we will develop an algebraic description of the topology of a locally chrono-
logical space purely in terms of timelike homotopy classes of paths. Afterward, we will prove
Theorem 4.3.2 in Section 4.3.

To further demonstrate the rigidity of the fundamental semicategories, we will look at the
special case of smooth spacetimes in Section 4.4. In this case, we can reconstruct the
Lorentzian metric up to a local scaling factor from its local chronological structure together
with the differentiable structure of the manifold.

4.1 Comparison to the fundamental groupoid

Example 4.1.1. Let X and Y be path-connected and simply connected topological spaces,
and let f : X → Y a bijective, not necessarily continuous map. For example, take any
bijection between X = R2 and Y = R.

As we have seen in Lemma 2.4.7, homotopy classes of paths in a simply connected space are
uniquely determined by their endpoints. We denote

Π(X)(x, y) = { [cxy]} and Π(Y )(x′, y′) =
{

[dx′y′ ]
}

for all x, y ∈ X and x′, y′ ∈ Y .
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4 Isomorphisms of locally chronological spaces and fundamental semicategories

The map f : Obj(Π(X))→ Obj(Π(Y )) together with the morphism map

F : Mor
(
Π(X)

)
→ Mor

(
Π(Y )

)
[cxy] 7→

[
df(x)f(y)

]
is then an invertible functor, hence an isomorphism of groupoids.

We have just seen that Π(X) and Π(Y ) have isomorphic groupoid structures despite having
very different topologies. In this sense, we cannot reconstruct the topology of X if we only
know the groupoid structure of Π(X)—except in the case that X consists of only one point.

To encode more information about the topology, we could use higher groupoids, which are
a generalization of higher homotopy groups. The idea is to introduce paths as morphisms,
homotopies between paths as 2-morphisms, homotopies between homotopies as 3-morphisms
and so on.

Analogously, we could define higher fundamental semicategories and they might be a useful
tool. However, we will not develop these it in this work because the (1-)semicategory Πt(X)
already contains all information about the local chronological structure of X.

4.2 Refined Alexandrov topology

Most of the statements in this chapter are only true if the topology of our locally chronological
space X is not “too wild”.

Definition 4.2.1. A topology on a space X is called regular if it satisfies one of the following
equivalent conditions:

i) For any point x ∈ X and any closed set F that does not contain x, there is an open
neighborhood V of x and W of F such that V ∩W = ∅.

ii) A topology on a space X is regular if and only if every open neighborhood U of any
point x ∈ X contains an open neighborhood V of x with V ⊆ U .

The equivalence of both statements is easily seen by defining F := X \ U or U := X \ F ,
respectively, and using that complements of open subsets are closed and vice versa.

To reconstruct the topology of a locally chronological space X from Πt(X), we need an
algebraic description of open sets in X. A first observation is that we can retrieve the
chronological diamonds

IX(x, y) =
{
z ∈ X

∣∣ ∃[a] ∈ Πt(X)(x, z), [b] ∈ Πt(X)(z, y)
}
.

We can refine these by restricting the homotopy classes:
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4.2 Refined Alexandrov topology

Definition 4.2.2. Let (X,�•) be a locally chronological space. For an open subset U ⊆ X
and a timelike homotopy class [c] ∈ Πt(U)(x, y), let

IU
(
[c]
)

:=
{
z ∈ U

∣∣ ∃[a] ∈ Πt(U)(x, z), [b] ∈ Πt(U)(z, y) : [b][a] = [c]
}
.

Theorem 4.2.3. Let (X,�•) be a locally chronological space with a regular topology. Then,
any open subset of X \ ∂±X is a union of open sets IX

(
[c]
)

for suitable [c] ∈ Πt(X).

Corollary 4.2.4. If (X,�•) is a locally chronological space with a regular topology and empty
timelike boundary, then

B :=
{
IX
(
[c]
) ∣∣ [c] ∈ Πt(X)

}
is a basis of the topology of X.

The proof for Theorem 4.2.3 is analogous to the one of [8, Theorem A], which is the
corresponding statement in the setting of smooth spacetimes instead of locally chronological
spaces. It is split up into two Lemmata, which also translate well to the setting of locally
chronological spaces.

Note that IU
(
[c]
)

is exactly the set of points z for which there is a timelike path in the
homotopy class [c] from x via z to y. This means that the image of all paths in the class [c]

is contained in IU
(
[c]
)
∪ {x, y} ⊆ IU

(
[c]
)
.

Lemma 4.2.5. Let (X,�•) be a locally chronological space, U ⊆ X a timelike simply connected
open subset, x, y ∈ U , and c ∈ P t(U)(x, y).

Then we have IU (x, y) = IU
(
[c]
)
⊆ IX

(
[c]
)
. Moreover, the equality IU

(
[c]
)

= IX
(
[c]
)

holds if

IU (x, y) ⊆ U , where the overline denotes the closure in X.

Proof. Remember the equivalences

Πt(U)(x, y) 6= ∅ ⇐⇒ P t(U)(x, y) 6= ∅ ⇐⇒ x�U y.

If U is timelike simply connected, the condition [b][a] = [c] in Definition 4.2.2 is always
fulfilled, as [c] is the only element of Πt(U)(x, y), so IU

(
[c]
)

coincides with IU (x, y).

It is important to note that the equation [b][a] = [c] in Πt(U)(x, y) means that there is
a timelike homotopy in U from ba to c. Any timelike homotopy in U is also a timelike
homotopy in X, therefore IU

(
[c]
)
⊆ IX

(
[c]
)
.
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4 Isomorphisms of locally chronological spaces and fundamental semicategories

x

yU

IU (x, y) IU (x, y)

U

x

y

Figure 4.1: Illustration of chronological diamonds IU (x, y) ⊆ U in the proof of Lemma 4.2.5.
In the left picture, IU (x, y) ⊆ U holds and a timelike homotopy of paths from
x to y cannot leave U without leaving IU (x, y) first, which would lead to a
contradiction.
The right picture shows a situation in which the diamond IU (x, y) touches the
boundary of U , so IU (x, y) is not contained in U .

If we now assume IU
(
[c]
)
6= IX

(
[c]
)

there must be a timelike homotopy (cs)s∈[0,1] in X that
starts in c0 = c and is not a timelike homotopy in U . Consider the sets

S1 :=
{
s ∈ [0, 1]

∣∣∣ ∀t ∈ [0, 1] : cs(t) ∈ U
}
,

S2 :=
{
s ∈ [0, 1]

∣∣∣ ∀t ∈ [0, 1] : cs(t) ∈ IU (x, y)
}
.

By assumption, 0 ∈ S1 ( [0, 1]. Since [0, 1] is compact, U is open and IU (x, y) is closed, we
see that S1 is open in [0, 1] and S2 is closed.

The images of all paths in P t(U)(x, y) are contained in IU (x, y), thus we have S1 ⊆ S2. The
assumption IU (x, y) ⊆ U implies S2 ⊆ S1, hence S2 = S1 6= [0, 1] is a closed and open subset
of [0, 1], which is the desired contradiction.

Note that the assumption IU (x, y) ⊆ U in the above lemma ensures that IU (x, y) does not
touch the boundary of U , as illustrated in Figure 4.1.

Lemma 4.2.6. Let (X,�•) be a locally chronological space with a regular topology, and
c ∈ P t(X). For t ∈ (0, 1) and 0 < ε < min(t, 1− t), let cε be the reparametrization of the
path c|[t−ε,t+ε] to the unit interval.
Then the sets IX

(
[cε]
)

form an open neighborhood basis of c(t).

Proof. Let U be a timelike simply connected and strongly chronological neighborhood of c(t).
This means there are arbitrarily a small neighborhoods V of c(t) that are chronologically
convex with respect to�U . Since X has a regular topology, we can assume V ⊆ U . For small
enough ε the points c(t± ε) lie in V , and therefore we have IU

(
c(t− ε), c(t+ ε)

)
⊆ V . This
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4.3 Isomorphism rigidity of fundamental semicategories

implies IU
(
c(t− ε), c(t+ ε)

)
⊆ V ⊆ U and, by Lemma 4.2.5, IX

(
[cε]
)

= IU
(
c(t− ε), c(t+ ε)

)
.

This shows that the sets IX
(
[cε]
)

form a neighborhood basis of c(t).

Corollary 4.2.7. For any [c] ∈ Πt(X), the set IX
(
[c]
)
⊆ X is open.

Proof. For any [c] ∈ Πt(X) and z ∈ IX
(
[c]
)
, there is a path c in the class [c] with c(t) = z

for some t ∈ (0, 1). For small enough ε > 0, the sets IX
(
[cε]
)

are open due to Lemma 4.2.6
and we clearly have IX

(
[cε]
)
⊆ IX

(
[c]
)
. We have just found an open neighborhood of any

point z ∈ IX
(
[c]
)

inside IX
(
[c]
)
, which shows that IX

(
[c]
)

is open.

Proof of Theorem 4.2.3. Every point p ∈ X \ ∂±X has a nonempty timelike future and past.
By Axiom (A1) in Definition 3.1.15 this implies that there is a timelike path ending in p and
another timelike path starting in p. We can concatenate these paths to get a timelike path c
with c

(
1
2

)
= p and apply Lemma 4.2.6 to finish the proof.

4.3 Isomorphism rigidity of fundamental semicategories

In Lemma 2.4.8, we have seen that the assignment of fundamental groupoids to topological
spaces is a functor Top→ Grpd. The same statement, with the necessary changes, is true
for fundamental semicategories:

Lemma 4.3.1. Let X, Y be locally chronological spaces. Any morphism f : X → Y of locally
chronological spaces induces a semifunctor with object map f and morphism map

f∗ : Πt(X)→ Πt(Y )

[c] 7→ [f ◦ c].

The object map X 7→ Πt(X) together with the morphism map f 7→ f∗ forms a functor from
the category of locally chronological spaces to the category of small semicategories. We call
this functor Πt the fundamental semicategory functor.

Proof. Lemma 3.3.2 implies that f ◦ c is a timelike path in Y if c is timelike in X. For the
same reason, if H : [0, 1]× [0, 1]→ X, (t, s) 7→ cs(t) is a timelike homotopy in X, then the
map f ◦H : (t, s) 7→ (f ◦cs)(t) is a timelike homotopy from f ◦c0 to f ◦c1 in Y . Therefore, the
assignment [c] 7→ [f ◦ c] does not depend on the choice of representative c. It is the morphism
map of a semifunctor Πt(X)→ Πt(Y ) because if c ∈ P t(X)(x, y) and d ∈ P t(X)(y, z), we
have

f∗
(
[d]
)
f∗
(
[c]
)

= [f ◦ d][f ◦ c] = [(f ◦ d)(f ◦ c)] = [f ◦ (dc)] = f∗
(
[dc]
)
.

If f : X → Y and g : Y → Z are morphisms of locally chronological spaces, then it is clear
that (g ◦ f)∗ = g∗ ◦ f∗, which finishes the proof.
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4 Isomorphisms of locally chronological spaces and fundamental semicategories

The above lemma also implies that an isomorphism of locally chronological spaces induces
an isomorphism of their fundamental semicategories. Surprisingly, the reverse is also true for
a broad class of locally chronological spaces. This is the main result of this chapter:

Theorem 4.3.2. Let (X,�•) and (Y,Î•) be locally chronological spaces with a regular topology
and empty timelike boundary.

Any isomorphism F : Πt(X) → Πt(Y ) of semicategories is induced by an isomorphism
f : X → Y of locally chronological spaces.

Proof. We will first show that the object map f : X = Obj
(
Πt(X)

)
→ Obj

(
Πt(Y )

)
= Y of

an isomorphism F is a homeomorphism.

For any [c] ∈ Πt(X)(x, y), we have

z ∈ IX
(
[c]
)
⇐⇒ ∃[a] ∈ Πt(X)(x, z), [b] ∈ Πt(X)(z, y) : [b][a] = [c]

(∗)⇐⇒ ∃[a′] ∈ Πt(Y )
(
f(x), f(z)

)
, [b′] ∈ Πt(Y )

(
f(z), f(y)

)
: [b′][a′] = F

(
[c]
)

⇐⇒ f(z) ∈ IY
(
F
(
[c]
))

hence f
(
IX
(
[c]
))

= IY
(
F
(
[c]
))

. The starred equivalence is obtained by setting [a′] := F
(
[a]
)

and [b′] := F
(
[b]
)
, or [a] := F−1

(
[a′]
)

and [b] := F−1
(
[b′]
)
, and using that both F and F−1 are

semifunctors. We have just shown that f and f−1 map the basis of X from Corollary 4.2.4
to a basis of Y and vice versa, hence f is a homeomorphism.

We will now show that f is a morphism of locally chronological spaces. Let U ⊆ Y be
open and x, y ∈ f−1(U) with x �f−1(U) y. Because of Lemma 4.2.6 and the regularity

of the topology, we can subdivide any timelike path c ∈ P t
(
f−1(U)

)
(x, y) into finitely

many subpaths c1, . . . , cn such that IX
(
[ci]
)
⊆ f−1(U). To reach the desired conclusion

f(x) ÎU f(y), we only need to show f
(
ci(0)

)
ÎU f

(
ci(1)

)
for any i = 1, . . . n. This follows

from the existence of the timelike homotopy class F
(
[ci]
)
∈ Πt(Y )

(
f(ci(0)), f(ci(1))

)
, which

consists of timelike paths in

IY
(
F ([ci])

)
= f

(
IX ([ci])

)
⊆ U.

Analogously, f−1 is also a morphism of locally chronological spaces.

By further refining our decomposition, we can ensure IX
(
[ci]
)
⊆ f−1(Ui) for some timelike

simply connected open subset Ui ⊆ Y . Therefore, there is a timelike homotopy from f ◦ ci to
any representative of F

(
[ci]
)
, which implies f∗

(
[ci]
)

= [f ◦ ci] = F
(
[ci]
)
. Taking everything

together, we see

f∗
(
[c]
)

= f∗
(
[cn]) . . . f∗

(
[c1]) = F

(
[cn]) . . . F

(
[c1]) = F

(
[c])

for any [c] ∈ Πt(X).
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4.4 Consequences for spacetime manifolds

Remark 4.3.3. While the object map of an invertible semifunctor is an isomorphism, the
object map of a non-invertible semifunctor F : Πt(X)→ Πt(Y ) is not necessarily a morphism
of locally chronological spaces.

For example, let R be the one-dimensional Minkowski space. A path in R is timelike if and
only if it is continuous and strictly monotonously increasing and therefore R is timelike
simply connected. For any x, y ∈ X with x < y, we denote the only timelike homotopy class
in Πt(R)(x, y) by [γxy]. The object map

f : R→ R

x 7→

{
x if x < 0

x+ 1 if x ≥ 0

together with the morphism map

F : Mor
(
Πt(R)

)
→ Mor

(
Πt(R)

)
[γxy] 7→

[
γf(x),f(y)

]
is a semifunctor, but f is not continuous.

4.4 Consequences for spacetime manifolds

We have just seen that a local chronological structure on topological space X (including
its topology) can be reconstructed from the semicategory Πt(X) under quite general condi-
tions. In Chapter 3, we also discussed that smooth spacetimes are a special case of locally
chronological spaces. Naturally, the question arises whether an isomorphism also preserves
the differentiable structure or the geometry of spacetimes.

Definition 4.4.1. A global conformal transformation between two smooth spacetimes (X, g),
(Y, h) is a time orientation preserving diffeomorphism f : X → Y such that f∗h is conformal
to g. This means that there is a smooth function Ω: X → (0,∞) such that

hp(f∗v, f∗w) = Ω(p) gp(v, w)

for all p ∈ X and v, w ∈ TpM .

Theorem 4.4.2. A diffeomorphism f : X → Y between smooth spacetimes (X, g) and (Y, h) is
a global conformal transformation if and only if it is an isomorphism of X and Y as locally
chronological spaces.
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4 Isomorphisms of locally chronological spaces and fundamental semicategories

Proof. Any global conformal transformation f maps future-directed timelike vectors, and
hence also curves, in X to such in Y . As f−1 is also a global conformal transformation, we
have the equivalence x�U y ⇐⇒ f(x)�f(U) f(y). This implies that f is an isomorphism
of locally chronological spaces.

On the other hand, if f maps future-directed timelike paths in X to such in Y , its differential
also maps the future cone of gp in TpX to that of hf(p) in Tf(p)Y , for every p ∈ X. If this is
the case, f is a conformal transformation, as described in [1, Section 2.3].

Corollary 4.4.3. Let (X, g) and (Y, h) be two spacetimes and F : Πt(X) → Πt(Y ) an iso-
morphism of semicategories. If the object map of F is a diffeomorphism, then it is a global
conformal transformation.

The lemma above means that if we are given a manifold X, a smooth atlas on X, and a
local chronological structure that is induced by a time-oriented Lorentzian metric g, we can
reconstruct g unambiguously up to a conformal factor.

Unfortunately, we cannot reconstruct the differentiable atlas from the local chronological
structure alone because isomorphisms of locally chronological structures are not necessarily
diffeomorphisms:

Example 4.4.4. Let X = R2. The Lorentzian metric g = −(dx1 dx2 + dx2 dx1) on X is time-
oriented by the constant vector field V = (1, 1). This spacetime results from two-dimensional
Minkowski space after a rotation of the coordinates by π/4.

It is not hard to check that the future cone of a point is its upper right quadrant,(
x1

x2

)
�X

(
y1

y2

)
⇐⇒ y1 > x1 and y2 > x2,

and a path c : [0, 1]→ X, t 7→ (c1(t), c2(t)) is future-directed timelike if and only if both c1

and c2 are strictly monotonously increasing functions, as in Lemma 3.4.7. Therefore, both

the continuous map f : X → X,

(
x1

x2

)
7→
(

3
√
x1

3
√
x2

)
and its inverse map f−1 :

(
x1

x2

)
7→
(
x1

3

x2
3

)
preserve timelike paths, hence f is an isomorphism of locally chronological spaces. However,
f it is not differentiable, and therefore not a diffeomorphism.

56



5 Cosheaves and the theorem of Seifert-van
Kampen

In algebraic topology, one of the most important and foundational theorems is the one of
Seifert and van Kampen [21, 22]. It allows us to calculate the fundamental group π1(X) of a
topological space X = X1 ∪X2 from the groups π1(X1), π1(X2), and π1(X1 ∩X2) under
certain conditions. There is an even more powerful version for fundamental groupoids instead
of groups. The goal of this chapter is to provide an analogous statement for fundamental
semicategories of locally chronological spaces.

We will introduce some necessary constructions in Section 5.1 before reviewing the theorems
for fundamental groups and groupoids in Section 5.2.

In Section 5.3, we will take a different point of view and regard Πt and Π not only as functors
from the category Top but restrict them to the category Op(X) of open subsets of a fixed
topological space X. In this sense, the theorem of Seifert-van Kampen essentially states
that the fundamental groupoid functor Π is a cosheaf, as it maps unions of open subsets to
(generalized) pushouts. We will discuss the definition and some special cases of cosheaves,
including the cosheaves of transitive relations from Definition 3.1.3.

Finally, in Section 5.4, we will prove a generalization of the theorem of Seifert-van Kampen
for the fundamental semicategory functor of a locally chronological space.

5.1 Category theoretic constructions

In order to understand the theorem of Seifert-van Kampen, we first need to know the
definition of a pushout. Coproducts and coequalizers will also be helpful along the way:

Definition 5.1.1. Let C be a category and I be some set.

i) Let (Xi)i∈I be a family of objects in C.

A coproduct of (Xi)i∈I is an object
∐
i∈I Xi with morphisms ιk : Xk →

∐
i∈I Xi that

satisfies the following universal property:

If there is another object K ∈ Obj(C) with morphisms fk : Xk → K, there is exactly
one morphism φ :

∐
i∈I Xi → K with fk = φ ◦ ik for all k ∈ I.
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5 Cosheaves and the theorem of Seifert-van Kampen

The morphisms ιk are called canonical inclusions. The universal property is often
expressed by saying that the morphisms fk “factor through

∐
i∈I Xi”.

ii) Let X,Y ∈ Obj(C) and let f, g : X → Y be two morphisms.

A coequalizer of f and g is an object coeq(f, g) ∈ Obj(C) with a morphism
p : Y → coeq(f, g) such that p ◦ f = p ◦ g that satisfies the following universal property:

If there is another object K ∈ Obj(C) with a morphism q : Y → K such that q◦f = q◦g,
there is exactly one morphism φ : coeq(f, g)→ K such that q = φ ◦ p.

iii) Let (Xi)i∈I and (Xij)i,j∈I be two families of objects in Obj(C) that satisfy Xij = Xji,
together with morphisms αij : Xij → Xi.

A generalized pushout1 of the morphisms
(
αij
)
i,j∈I is an object P ∈ Obj(C) with

morphisms αi : Xi → P such that αi ◦ αij = αj ◦ αji holds for every i, j ∈ I, and P
satisfies the following universal property:

If there is another object K with morphisms fi : Xi → K such that fi ◦ αij = fj ◦ αji,
there is exactly one morphism φ : P → K such that the diagram

Xij Xi

Xj P

K

αij

αji αi
fi

αj

fj

φ

commutes for every i, j ∈ I with i 6= j.

For I = {1, 2}, the generalized pushout of α12 and α21 is just called the pushout of X1

and X2 over X12 and written as P = X1
∐
X12

X2, if the morphisms α12 and α21 are
clear from the context.

The three definitions above are instances of a more general universal construction called
colimit . As every colimit, a coproduct, coequalizer, or pushout is unique up to an isomorphism
in C if it exists. Therefore, it is justified to speak, for example, of “the” coequalizer of f and
g.

For explicit constructions, it is often easier to express pushouts in terms of coproducts and
coequalizers:

1The term “generalized pushout” is not commonly used in the literature. Pushouts are usually defined with
only two objects.
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5.1 Category theoretic constructions

Lemma 5.1.2. In the situation of Definition 5.1.1 iii), the generalized pushout of
(
αij
)
i,j∈I

is the coequalizer of the two morphisms
∐
i,j∈I
i 6=j

Xij →
∐
i∈I Xi, induced by the maps αij or

αji, respectively, if these coproducts and coequalizers exist.

Proof. Let K be as in Definition 5.1.1 iii) and consider the commuting diagram

Xi Xij Xj

∐
Xi

∐
Xij

∐
Xi

coeq(φ1, φ2)

K

ιi

fi

αij αji

ιij ιj

fj

p

φ

φ1 φ2

p

φ

ψ

for all i, j ∈ I with i 6= j, while ignoring all the dashed arrows at first.

By universality of the coproduct, the morphisms ιi ◦ αij and ιj ◦ αji both factor through∐
Xij and give rise to the morphisms φ1 and φ2, respectively—these are the two induced

morphisms that the lemma refers to. The morphisms fi also factor through
∐
Xi and give

rise to a unique morphism φ with φ ◦ ιi = fi for every i ∈ I. Taking everything together, we
see

φ ◦ φ1 ◦ ιij = φ ◦ ιi ◦ αij = fi ◦ αij = fj ◦ αji = φ ◦ ιj ◦ αji = φ ◦ φ2 ◦ ιji,

but by universality of
∐
Xij , there is exactly one morphism φ′ :

∐
Xij → K such that

fi ◦αij = fj ◦αji = φ′ ◦ ιij , which implies φ′ = φ◦φ1 = φ◦φ2. By definition of the coequalizer,
there is exactly one morphism ψ : coeq(φ1, φ2) → K such that φ = ψ ◦ p. We have now
proven that the above diagram, including all dashed arrows, commutes. Leaving out the
coproducts yields the commuting diagram

Xij Xi

Xj coeq(φ1, φ2)

K

αij

αji p◦ιi fi
p◦ιj

fj

ψ

for all i, j ∈ I with i 6= j. Note that p does not depend on K or fi.
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5 Cosheaves and the theorem of Seifert-van Kampen

On the other hand, if ψ is any morphism for that the second diagram commutes, we can
define φ := ψ ◦ p and get back the first commuting diagram. As φ is uniquely determined by
the family (fi) and ψ is uniquely determined by φ, this shows that ψ is unique. Therefore,
coeq(φ1, φ2) is indeed the generalized pushout of (αij)i,j∈I .

As with all category theoretic constructions, it is instructive to look at examples from known
categories.

Example 5.1.3 (Coproducts and pushouts in Set and Top).

i) The coproduct of a family (Xi)i∈I of sets (i.e. in the category Set) is their disjoint
union, which can be formally defined as⊔

i∈I
Xi := {(x, i) | i ∈ I, x ∈ Xi}

with the canonical inclusions ιk : Xk →
⊔
i∈I Xi, x 7→ (x, k).

Proof. If K is any other set with maps fi : Xi → K, the map

φ :
⊔
i∈I

Xi → K

(x, i) 7→ fi(x)

is obviously the only one that satisfies fi = φ ◦ ιi.

ii) Let (Ui)i∈I be a family of subsets of a set X. The generalized pushout of the inclusion
maps ιij : Ui ∩ Uj → Ui is the union U :=

⋃
i∈I Ui ⊆ X.

Proof. For brevity, we write ιi : Ui → U for the inclusion maps. If there is a set K
with maps fi : Ui → K that satisfy fi ◦ ιij = fj ◦ ιji, we have fi|Ui∩Uj = fj |Ui∩Uj for all
i, j ∈ I. Therefore, the map

φ :
⋃
i∈I

Ui → K

x 7→ fi(x) if x ∈ Ui

is well-defined and the only map that satisfies φ ◦ ιi = φ|Ui = fi for all i ∈ I.

iii) The same is true in the category Top if all the sets Ui are open because φ is continuous
if all the maps φ|Xi = fi are continuous.
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5.2 The theorem of Seifert-van Kampen for fundamental groups
and groupoids

The Seifert-van Kampen theorem is often stated in its most simple form for the union of
just two subsets, but there is also a variant for an arbitrary (not necessarily final) number of
subsets:

Theorem 5.2.1 (Seifert-van Kampen, see [15, Theorem 1.20]).

Let X =
⋃
i∈I Xi be an open cover of a topological space X and fix a basepoint x ∈

⋂
i∈I Xi.

If Xi, Xi ∩Xj, and Xi ∩Xj ∩Xk are path-connected for all i, j, k ∈ I, then π1(X) is the
pushout of the group homomorphisms ιij∗ : π1(Xi ∩Xj)→ π1(Xi) induced by the inclusions
ιij : Xi ∩Xj → Xi.

In the above theorem, the subsets need to be connected and contain the basepoint x because
a fundamental group only depends on the path-connected component in which the basepoint
lies. In other words, the fundamental groups contain no information about any other path-
connected components, but this information is necessary to correctly reassemble π1(X,x).
The usage of fundamental groupoids with multiple basepoints allows us to get rid off this
restriction:

Theorem 5.2.2 (Seifert-van Kampen for unreduced groupoids, see [23]).

Let X =
⋃
i∈I Xi be an open cover of a topological space X.

The fundamental groupoid Π(X) is the pushout of the functors ιij∗ : Π(Xi ∩Xj)→ Π(Xi)
induced by the inclusions ιij : Xi ∩Xj → Xi.

For practical calculations, it is useful to restrict the number of objects in the groupoids by
choosing a suitable set of basepoints:

Theorem 5.2.3 (Seifert-van Kampen for groupoids, see [23]).

Let X =
⋃
i∈I Xi be an open cover of a topological space X and fix a set A ⊆ X that contains

at least one point out of each path-connected component of Xi, Xi ∩Xj, and Xi ∩Xj ∩Xk

for all i, j, k ∈ I.

Then, Π(X,A) is the pushout of the functors ιij∗ : Π(Xi ∩Xj , A ∩Xi ∩Xj)→ Π(Xi, A ∩Xi).

The proof for these two theorems, in the special case of only two subsets, is also nicely
explained in [18].
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5 Cosheaves and the theorem of Seifert-van Kampen

5.3 Precosheaves and cosheaves

The attempt of generalizing the Seifert-van Kampen theorem naturally leads to the definition
of a cosheaf :

Definition 5.3.1. Let C be a category and X a topological space. Let Op(X) be the category
whose objects are the open subsets of X and whose morphisms are the inclusion maps U → V
for any open U ⊆ V ⊆ X.

i) A C-valued precosheaf on X is a functor F : Op(X)→ C.

ii) A C-valued cosheaf on X is a functor F : Op(X)→ C such that for any family (Ui)i∈I of

open subsets of X, the object F
(⋃

i∈I Ui
)

is the generalized pushout of the morphisms

F (ιij) : F (Ui ∩ Uj)→ F (Ui) induced by the inclusions ιij : Ui ∩ Uj → Ui.

Note that Op(X) is a subcategory of Top because the subsets of X carry the subspace
topology and the inclusion maps are continuous. If we restrict the functor Π: Top→ Grpd
from Lemma 2.4.8 to Op(X), Theorem 5.2.2 is equivalent to the statement “The functor
Π: Op(X)→ Grpd is a cosheaf”.

Remark 5.3.2. For readers who are familiar with sheaves: If coproducts and coequalizers
exist in the category C, a functor F : Op(X)→ C is a cosheaf if and only if for all covers
U =

⋃
i∈I Ui, the sequence ∐

i,j∈I
F (Ui ∩ Uj)⇒

∐
i∈I

F (Ui)→ F (U)

is exact. This means that F (U) is the coequalizer of the two morphisms induced by F (ιij)
and F (ιji), respectively, as in Lemma 5.1.2. This property is dual to the definition of a sheaf.

The (pre-)cosheaves of transitive relations from Definition 3.1.3 are a special case of the
general (pre-)cosheaves from Definition 5.3.1. To see this, we have to define the target
category first, whose objects should be “sets with transitive relations”. But instead of
defining a new category, we can also identify these with small thin (or simply connected, see
Definition 2.4.6) semicategories:

Remark 5.3.3. From now on, we regard any set with a transitive relation (X,�) as a
semicategory with object set X and total morphism set2 �. A pair (x, y) is considered to be
a morphism from x to y whenever x�X y, and there is only one possible multiplication rule

2Remember that we adopted the definition that a relation � is a subset of X ×X and “x� y” is just an
abbreviation for (x, y) ∈ �.
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(y, z)(x, y) := (x, z). The transitivity of � ensures that the morphism (x, z) exists whenever
the morphisms (x, y) and (y, z) exist.

If (X,�X) and (Y,�Y ) are two sets with transitive relations, a map f : X → Y is the object
map of a functor (X,�X)→ (Y,�Y ) if and only if

∀x, y ∈ X : x�X y =⇒ f(x)�Y f(y).

If this is the case, the morphism map is (x, y) 7→
(
f(x), f(y)

)
, so any such functor is uniquely

determined by its object map.

We can slightly generalize the last statement:

Lemma 5.3.4. Let C,D be semicategories, and let D be thin.
A map f : Obj(C)→ Obj(D) is the object map of a semifunctor if and only if

∀x, y ∈ Obj(C) : C(x, y) 6= ∅ =⇒ D(f(x), f(y)) 6= ∅.

and in this case, the semifunctor is uniquely determined by its object map f .

Proof. For any x, y ∈ Obj(C), there is at most one map C(x, y) → D
(
f(x), f(y)

)
because

D
(
f(x), f(y)

)
contains at most one element. Such a map exists if and only if the implication

C(x, y) 6= ∅ =⇒ D
(
f(x), f(y)

)
6= ∅ holds.

All of these maps together form the morphism map of a semifunctor because for any
morphisms mxy ∈ C(x, y) and myz ∈ C(y, z), both F (myz)F (mxy) and F (myzmxy) are in
D(f(x), f(z)), which contains at most one element, so they are equal.

Lemma 5.3.5. Let thinSemCat be the category of small thin semicategories (with semifunc-
tors as morphisms).

Any precosehaf �• of transitive relations according to Definition 3.1.3 on a topological space
X induces a thinSemCat-valued precosheaf according to Definition 5.3.1 with object map
U 7→ (U,�U ) and the morphism map that is induced by the inclusion maps in Op(X).

This precosheaf is a thinSemCat-valued cosheaf if and only if �• is a cosheaf of transitive
relations.

Proof. Let �• be a precosheaf of transitive relations and U ⊆ V ⊆ X be open subsets.
Remember that a precosheaf of transitive relations satisfies x �U y =⇒ x �V y for all
x, y ∈ U . By Remark 5.3.3, this implies that every inclusion map ιUV : U → V induces a
semifunctor F (ιUV ) : (U,�U )→ (V,�V ) with object map ιUV . If W is another open set
with V ⊆W ⊆ X, we have F (ιVW )F (ιUV ) = F (ιUW ). Additionally, the identity ιUU = idU
gets mapped to F (idU ) = id(U,�U ), hence F is a functor.
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5 Cosheaves and the theorem of Seifert-van Kampen

Now let �• be a cosheaf of transitive relations, U =
⋃
i∈I Ui be an open cover, K be another

thin small semicategory with morphisms fi : (Ui,�Ui)→ K. We need to show that there is
exactly one semifunctor φ such that the diagram

(Ui ∩ Uj ,�Ui∩Uj ) (Ui,�Ui)

(Uj ,�Uj ) (U,�U )

K

F (ιij)

F (ιji)
fi

F (ιi)

F (ιj)

fj

φ

in thinSemCat commutes for all i, j ∈ I.

If we assume the existence of φ, its object map is the one with φ|Ui = fi for all i ∈ I, as in
Example 5.1.3 ii). Because a semifunctor into a thin semicategory is uniquely determined by
its object map, this implies that φ is unique if it exists.

For the existence proof of the semifunctor φ, we define the object map of φ as above by
φ|Ui = fi for all i ∈ I. To apply Lemma 5.3.4, we only need to show that K

(
φ(x), φ(y)

)
6= ∅

for any x, y ∈ U with x�U y. As �• is a cosheaf of transitive relations, there is a chain of
points x0, . . . , xn ∈ U with

x = x0 �Ui1
x1 �Ui2

· · · �Uin
xn = y

for suitable i1, . . . , in ∈ I. From this, it follows that there is a morphism

fin(xn−1, xn) . . . fi2(x1, x2) fi1(x0, x1) ∈ K
(
fi1(x), fin(y)

)
= K

(
φ(x), φ(y)

)
,

so Lemma 5.3.4 implies that there is indeed a semifunctor φ with the required properties.

Now let F be a thinSemCat-valued cosheaf and let Î be a transitive relation that contains
all relations �Ui . If we set K = (U,Î) and let fi be the semifunctor with object map ιi, we
can apply the argument from above again to see that the object map of φ is idU . From this,
it follows that �U is contained in Î. Therefore, �U is the smallest relation that contains
all relations �Ui and �• is indeed a cosheaf of transitive relations.

Note that in the proof above, we only showed that (U,�U ) is a pushout in the category
thinSemCat. In the category SemCat, the pushout of thin semicategories is in general
not thin anymore.

In a similar fashion, we can see that the locally chronological space (X,�•) that we
constructed in Lemma 3.4.5 is actually the (generalized) pushout of

(
(Ui,�i,•)

)
i∈I over their

pairwise intersections in the category of locally chronological spaces.
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5.4 A generalization of Seifert-van Kampen for fundamental
semicategories

We will now work toward the proof that the fundamental semicategory functor is a cosheaf
of semicategories. This statement is analogous to the theorem of Seifert-van Kampen. For
this purpose, the alternative definition of a path space that was discussed in Subsection 2.4.3
will be useful:

Definition 5.4.1. Let (X,�•) be a locally chronological space and P ′(X) be the path space
category as in Definition 2.4.10. A path c ∈ P ′(X) is called timelike if its reparametrization
to the unit interval rep(c) is timelike.

We define P ′t(X) to be the sub-semicategory of P ′(X) with object set X and whose
morphisms are the timelike paths.

Note that if U ⊆ V ⊆ X are locally chronological subspaces of (X,�•), the path space
P ′t(U) is actually a sub-semicategory of P ′t(V ) because of Lemma 3.4.4. The inclusion
map U → V induces the inclusion semifunctor P ′t(U) → P ′t(V ), which turns P ′t into a
semCat-valued precosheaf on X. We will show that these path spaces actually form a
cosheaf before proving that the fundamental semicategories form a cosheaf:

Lemma 5.4.2. Let X =
⋃
i∈I Xi be an open cover of a locally chronological space (X,�•).

The semicategory P ′t(X) is the pushout in the category semCat of the inclusion semifunctors
ιij : P ′t(Xi ∩Xj)→ P ′t(Xi).

Corollary 5.4.3. For a locally chronological space X, the functor P ′t : Op(X)→ semCat is
a cosheaf.

Proof of Lemma 5.4.2. We are going to check the universal property of the pushout, so let
K be a semicategory with semifunctors fi : Xi → K such that fi ◦ ιij = fj ◦ ιji for all i, j ∈ I.
We need to show that there is a unique semifunctor φ : P ′t(X)→ K that satisfies fi = φ ◦ ιi
for all i ∈ I, where ιi is the inclusion semifunctor P ′t(Xi)→ P ′t(X).

By the same argument as in Example 5.1.3, there is only one possible object map for such a
semifunctor:

φ : Obj
(
P ′

t
(X)

)
=
⋃
i∈I

Xi → Obj(K)

x 7→ fi(x) if x ∈ Xi.

Any timelike path c ∈ P ′t(X) has a compact trace in X, so by the Lebesgue covering lemma
we can decompose its domain into finitely many intervals [tk, tk+1] with c

(
[tk, tk+1]

)
⊆ Xik .
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5 Cosheaves and the theorem of Seifert-van Kampen

This leads to a decomposition c = ιin(cn) · · · ιi1(c1) such that ck := c|[tk,tk+1] ∈ P ′
t(Xik). If a

semifunctor φ with fi = φ ◦ ιi for all i ∈ I exists, its morphism map has to satisfy

φ(c) = φ
(
ιin(cn)

)
· · ·φ

(
ιi1(c1)

)
= fin(cn) · · · fi1(c1),

which shows that it is uniquely determined.

In order to prove the existence of φ, we take this equation as a definition for the morphism
map of φ and show that φ(c) does not depend on which decomposition of c we choose:
If any path cik lies in both P ′t(Xi) and P ′t(Xj), it also lies in P ′t(Xi ∩ Xj), hence
fi(cik) = fi

(
ιij(cik)

)
= fj

(
ιji(cik)

)
= fj(cik). For any two decompositions of c, we can

find a common refinement of these two decompositions and see that these lead to the same
image in C, hence the morphism-map of φ is well defined. With these definitions, φ is indeed
a functor because we can just concatenate decompositions of multiple paths in the defining
equation.

Theorem 5.4.4. Let X =
⋃
i∈I Xi be an open cover of a locally chronological space (X,�•).

The fundamental semicategory Πt(X) is the pushout of the semifunctors
ιij∗ : Πt(Xi ∩Xj)→ Πt(Xi) induced by the inclusions ιij : Xi ∩Xj → Xi.

Corollary 5.4.5. For a locally chronlogical space X, the fundamental semicategory functor
Πt : Op(X)→ semCat is a cosheaf.

Proof of Theorem 5.4.4. Let K be a semicategory with semifunctors fi : Xi → K such
that fi ◦ ιij∗ = fj ◦ ιji∗ for all i, j ∈ I. Let us assume that there is a semifunctor
φ : Πt(X) → K with fi = φ ◦ ιi∗ for every i ∈ I. If we denote the quotient semifunc-
tor by p : P ′t(X)→ Πt(X), c 7→ [c] (and analogously pi, pij) and define ψ = φ ◦ p, we get a
commuting diagram

P ′t(Xi ∩Xj) P ′t(Xi)

P ′t(Xj) P ′t(X)

Πt(Xi ∩Xj) Πt(Xi)

Πt(Xj) Πt(X)

K

ιij

pij

ιji
pi

ιi

ιj

p

ψ

ιij∗

ιji∗

fi

ιi∗

pj

ιj∗

fj

φ
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for any i, j ∈ I. As Lemma 5.4.2 states, P ′t(X) is the pushout of the inclusion semifunctors
ιij , so there is exactly one semifunctor ψ with fi ◦ pi = ψ ◦ ιi for all i ∈ I. The semifunctor φ
is then determined by φ

(
[c]
)

= ψ(c), so φ is unique if it exists.

For proving the existence of φ it is therefore sufficient to prove ψ(c0) = ψ(c1) whenever
c0, c1 ∈ P ′t(X) are equivalent. The functoriality of φ is then inherited from ψ. We can
assume without loss of generality that c0 and c1 have the domain [0, 1] and there is a timelike
homotopy

H : [0, 1]× [0, 1]→ X

(s, t) 7→ cs(t)

from c0 to c1.

We can use the Lebesgue covering lemma and Axiom
(A4) in Definition 3.1.15 to find subdivisions

0 = s0 < · · · < sm = 1,

0 = t0 < · · · < tn = 1,

such that for any values of k ∈ {0, . . . ,m− 1} and
` ∈ {0, . . . , n− 2} the rectangle [sk, sk+1]× [t`, t`+2]
gets mapped by H into a timelike simply connected
subset Uk,` ⊆ Xik,` , as indicated in the figure to the
right.

sk

tl

t`+2

t`+1

sk+10 1

1

H−→

Uk,` ⊆ Xik,`

Figure 5.1

Note that in the bottom or top row, that is, for ` = 0 or ` = n − 1, the rectangle
[sk, sk+1]× [t`, t`+1] gets mapped into a single subset Uk,` or Uk,`−1 while for every other ` it
gets mapped into the intersection Uk,`−1 ∩ Uk,`. To increase readability, let us fix k and ` for
the moment and abbreviate the target set or intersection to U .

By Lemma 3.1.6, the relation �U is an open subset of U × U . Its preimage under the
continuous map

f : [sk, sk+1]× [sk, sk+1]→ U × U
(σ1, σ2) 7→

(
cσ1(t`), cσ2(t`+1)

)
contains the diagonal ∆ := {(σ, σ) |σ ∈ [sk, sk+1]} because cσ|[t`,t`+1] is a timelike path in U .
By compactness, there is an ε > 0 such that the ε-neighborhood of ∆ is still contained in the
open set f−1(�U ), which means that cσ1(t`)�U cσ2(t`+1) whenever |σ2−σ1| < ε. By refining
our initial subdivision in such a way that sk+1 − sk < ε holds for all k ∈ {0, . . . ,m− 1}, we
can therefore ensure that there is a timelike diagonal path in U from csk(t`) to csk+1

(t`+1).
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5 Cosheaves and the theorem of Seifert-van Kampen

Putting all of the subpaths csk |[t`,t`+1] and the diagonal paths together, we get a (not
necessarily commuting) diagram of timelike paths

c0(1) cs1(1) cs2(1) c1(1)

c0(tm−1) cs1(tm−1) cs2(tm−1) c1(tm−1)

c0(t2) cs1(t2) cs2(t2) c1(t2)

c0(t1) cs1(t1) cs2(t1) c1(t1)

c0(0) cs1(0) cs2(0) c1(0)

= = = . . . =

. . .

...
...

...
. . .

...

. . .

=

c0

= = . . . =

c1

in P ′t(X). The equal signs do not denote identity morphisms, as these generally do not
exist in P ′t(X). Instead, the top and bottom row each consists of only one object because
(cs)s∈[0,1] is a timelike homotopy relative to the endpoints.

For any k ∈ {0, . . . ,m− 1} and ` ∈ {0, . . . , n− 2} the arrows in the subdiagram

csk(t`+2) csk+1
(t`+2)

csk(t`+1) csk+1
(t`+1)

csk(t`) csk+1
(t`)

are paths in the timelike simply connected subset Uk,` ⊆ Xik,` . As pik,` identifies paths
that are timelike homotopic in Xik,` , the image of this subdiagram under fi ◦ pik,` = ψ ◦ ik,`
commutes in K. Therefore, the image of the whole diagram under ψ also commutes and
ψ(c0) = ψ(c1) holds, which is what we wanted to prove.

Up to the point where we subdivided the domain of the timelike homotopy H into rectangles,
the above proof is analogous to the one of Theorem 5.2.2. The rest of the proof (see [18,
pp. 243–245]) does not directly carry over to our setting because a timelike homotopy H
only maps the vertical lines in the square [0, 1]× [0, 1] to timelike paths, while there is no
restriction on the horizontal paths other than continuity.

To circumvent this problem, one could define directed homotopies in such a way that both
horizontal and vertical lines of the square are mapped to timelike paths, as done in directed
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algebraic topology [5]. The drawback of this definition is that directed homotopies lead to a
transitive but not reflexive relation.
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6 Fundamental semicategories as topological
spaces

In this final chapter, we will imbue the total morphism set Mor
(
Πt(X)

)
of the fundamental

semicategory of a locally chronological space with a topology. The main result of this chapter
is that the start and endpoint map (s, e) : Mor

(
Πt(X)

)
→ X ×X is a local homeomorphism

if the space X has a regular topology and empty timelike boundary. By Lemma 3.4.6, there
is also an induced local chronological structure on Mor

(
Πt(X)

)
itself.

As any covering map is also a local homeomorphism, this fact bears some resemblance to
the fact that a universal covering of a topological space X can be constructed from the total
morphism set of the fundamental group Π(X), see [8, Lemma 1.2]. However, the start and
endpoint map of the fundamental semicategory Πt(X) is in general not a covering because
the cardinality of Πt(X)(x, y) depends on the position of x, y ∈ X.

In Section 6.1 we define a topology on Mor
(
Πt(X)

)
based on the compact-open topology

on the path space and prove that the map (s, e) is open and continuous. Afterward, in
Section 6.2 we derive an algebraic description of this topology and prove that (s, e) is a local
homeomorphism.

6.1 Compact-open and quotient topologies

The compact-open topology is a commonly used topology on function spaces. We can use it
for path spaces because a path is just a continuous function [0, 1]→ X. For brevity, we will
from now on use the same symbol Πt(X) for the semicategory and the total morphism set of
Πt(X).

Definition 6.1.1. Let (X,�•) be a locally chronological space.

For any open subset U ⊆ X and compact subset K ⊆ [0, 1] we define

Ω(K,U) :=
{
c ∈ P t(X)

∣∣ c(K) ⊆ O
}
.

The compact-open topology on P t(X) is the topology generated by these sets. This means
that the open sets in P t(X) are unions of finite intersections of sets of the form Ω(K,U).
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6 Fundamental semicategories as topological spaces

The quotient map p : P t(X)→ Πt(X), c 7→ [c] induces a quotient topology on Πt(X). This
means that a subset V ⊆ Πt(X) is open if its preimage p−1(V ) is open in P t(X) with respect
to the compact-open topology.

The goal of this chapter is to prove that the start- and endpoint-map (s, e) : Πt(X)→ X ×X
is a local homeomorphism. A local homeomorphism is necessarily continuous and open,
which means that preimages and images of open sets are open.

Lemma 6.1.2. For any locally chronological space (X,�•), the start- and endpoint-map
(s, e) : Πt(X)→ X ×X is open and continuous.

Proof. To avoid confusion, we denote the start- and endpoint maps of P t(X) and Πt(X) by
(s, e)P t(X) and (s, e)Πt(X), respectively. These two maps are related by

(s, e)P t(X) = (s, e)Πt(X) ◦ p.

Any open set in X ×X is a union of products U1 × U2 of open subsets U1, U2 ⊆ X. The
preimage of such a set is

p−1
(
(s, e)−1

Πt(X)(U1 × U2)
)

= (s, e)−1
P t(X)(U1 × U2) = Ω

(
{0} , U1

)
∩ Ω

(
{1} , U2

)
and therefore open in P t(X). This implies that (s, e)−1

Πt(X)(U1 × U2) is open in Πt(X) with

respect to the quotient topology, hence (s, e)Πt(X) is continuous.

One can check that for any path c ∈ P t(X) there is a neighborhood basis of c consisting
of open sets U :=

⋂k
i=1 Ω

(
[ti, ti+1], Ui

)
where 0 = t1 < · · · < tk = 1, and Ui ⊆ X is

an open neighborhood of c
(
[ti, ti+1]

)
for all i ∈ {1, . . . , k − 1}. By construction, any

element of U is a concatenation of timelike paths in U1, . . . Uk−1. This means that a
timelike path from x to y exists in U if and only if there are points x1, . . . , xk such that
x = x1 �U1 x2 �U2 · · · �Uk

xk+1 = y. As the chronological relations �Ui are open by
Lemma 3.1.6, we see that (s, e)P t(X)(U) is open in X ×X. From this, it follows that the
map (s, e)P t(X) is open.

If V is any open set in Πt(X), its preimage p−1(V ) is open in P t(X) by definition of the
quotient topology. Therefore, its image (s, e)Πt(X)(V ) = (s, e)P t(X)

(
p−1(V )

)
is also open.

Note that the above lemma only uses the Axioms (A1) and (A2) in Definition 3.1.15, but
not Axioms (A3) and (A4). We also did not put any restrictions on the topology or timelike
boundaries of X.

Corollary 6.1.3. Let U be a timelike simply connected open subset of a locally chronological
space. Then the map (s, e) : Πt(U)→ U×U is a homeomorphism onto its image�U ⊆ U×U .
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Proof. By definition of a timelike simply connected subset, the preimage of (x, y) ∈ U × U
under (s, e) contains exactly one timelike homotopy class if x �U y holds and is empty
otherwise. Therefore, (s, e) is an open and continuous bijection, hence a homeomorphism,
onto its image �U .

The above Corollary implies that there is a continuous map

{(x, y) ∈ U × U |x�U y} → Πt(U)

if U is a timelike simply connected set. We have already seen this kind of map in the proofs
of Lemma 3.1.10 and Lemma 3.4.8 as (x, y) 7→ [γxy] or (x, y) 7→ [γ̃xy], respectively.

6.2 A topological basis of the fundamental semicategory

The next step in proving that (s, e) is a local homeomorphism is to find a cover of Πt(X) by
open subsets on which the restriction of (s, e) is injective.

Definition 6.2.1. Let (X,�•) be a locally chronological space, w, x, y, z ∈ X,
[a] ∈ Πt(X)(w, x), [b] ∈ Πt(X)(x, y), and [c] ∈ Πt(X)(y, z).

We define U
(
[a], [b], [c]

)
⊆ Πt(X) to be the set of all morphisms [d] for which there are

additional morphisms [a1], [a2], [c1], [c2] (dashed arrows) that turn the following diagram into
a commuting one:

z

q

y

x

p

w

[c2]

[c]

[c1]

[b] [d]∈U
(

[a],[b],[c]
)

[a2]

[a]

[a1]

The idea behind this definition is that the set U
(
[a], [b], [c]

)
will be small if the sets IX([a])

and IX([c]) are small. To be more precise, we will see that the sets U
(
[a], [b], [c]

)
form a

basis of the topology of Πt(X) if X has a regular topology and empty timelike boundary.

Lemma 6.2.2. In the situation of Definition 6.2.1, the set U
(
[a], [b], [c]

)
is open in Πt(X).
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x

d̃(t1)

d̃(t0)

d̃(t−1)

w

[a′2]

[a2]

[a]

[a′1]

[a1]

(a)

z

d̃(tk+1)

d̃(tk)

d̃(tk−1)

y

[c′2]

[c2]

[c]

[c′1]

[c1]

(b)

d̃(ti+1)

d̃(ti) d′(ti)

d̃(ti−1)

(c)

d′(ti+1)

d̃(t1) d′(ti)

d′(ti−1)

(d)

z

d̃(tk+1)

d̃(tk) d′(tk)

d̃(tk−1) d′(tk−1)

y
...

...

...
...

x d̃(t2) d′(t2)

d̃(t1) d′(t1)

d̃(t0) d′(t0)

d̃(t−1)

w

[c]

[b]

[a]

(e)

Figure 6.1: Commuting diagrams in Πt(X) for the proof of Lemma 6.2.2. Unlabeled vertical
arrows are timelike homotopy classes of paths d̃|[ti,ti+1] or d′|[ti,ti+1], respectively.

Proof. We will show that p−1
(
U
(
[a], [b], [c]

))
is open in P t(X) by constructing an open

neighborhood Ud ⊆ p−1
(
U
(
[a], [b], [c]

))
of any path d ∈ p−1

(
U
(
[a], [b], [c]

))
.

As [d] ∈ U
(
[a], [b], [c]

)
, there are timelike paths a1, a2, c1, c2 ∈ P t(X) such that the diagram

in Definition 6.2.1 commutes. We define the path

d̃ : [−1, 2]→ X

t 7→


a1(t+ 1) if t ≤ 0

d (t) if 0 ≤ t ≤ 1

c2(t− 1) if 1 ≤ t ≤ 2.
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Now we choose timelike simply connected open sets U0, . . . , Uk−1 ⊆ X and

−1 < t−1 < t0 = 0 < t1 < · · · < tk = 1 < tk+1 < 2

such that the following properties are satisfied:

i) For every i ∈ {1, . . . , k − 1} we have c([ti−1, ti+1]) ⊆ Ui.

ii) There are [a′1], [a′2], [c′1], [c′2] ∈ Πt(X) such that the diagrams in Figures 6.1a and 6.1b
commute.

We can achieve i) by using the Lebesgue covering lemma and ii) by choosing t±1 and tk±1

sufficiently close to 0 or 1, respectively. The set

Ud := Ω
(
{0} , I−U1

(
d̃(t−1)

))
∩ Ω

(
{1} , I+

Uk

(
d̃(tk−1)

))
∩

(
k⋂
i=2

Ω
(
{ti} , I+

Ui∩Ui−1

(
d̃(ti−1)

)))

∩

(
k−2⋂
i=1

Ω
(
{ti} , I−Ui∩Ui+1

(
d̃(ti+1)

)))

∩

(
k−1⋂
i=1

Ω
(

[ti−1, ti+1], Ui

))
.

is open in the compact-open topology and contains the path d. Now let d′ ∈ Ud. We need to
show that [d′] ∈ U

(
[a], [b], [c]

)
:

The construction of Ud ensures that we can choose the diagonal arrows in Figure 6.1e in such
a way that all arrows in the subdiagrams in Figures 6.1d and 6.1c are timelike homotopy
classes of paths in Ui. As Ui is timelike simply connected, these subdiagrams commute in
Πt(X), which implies that the diagram in Figure 6.1e also commutes. From this, it follows
that [d′] is an element of U

(
[a], [b], [c]

)
.

Lemma 6.2.3. Let (X,�•) be a locally chronological space, w, x, y, z ∈ X,
[a] ∈ Πt(X)(w, x), [b] ∈ Πt(X)(x, y), and [c] ∈ Πt(X)(y, z).

If there are timelike simply connected subsets Up, Uq ⊆ X such that IX([a]) ∪ {w, x} ⊆ Up
and IX([c]) ∪ {y, z} ⊆ Uq, then the start and endpoint map (s, e) maps U

(
[a], [b], [c]

)
homeomorphically onto IX([a])× IX([c]).

Proof. By Lemma 6.1.2, (s, e) is open and continuous and its restriction to the open set
U([a], [b], [c]) inherits these properties. We only need to show that (s, e) maps U([a], [b], [c])
bijectively onto IX([a])× IX([c]).
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6 Fundamental semicategories as topological spaces

By Definition 4.2.2, a point p lies in IX([a]) if and only if there are timelike homotopy classes
[a1] ∈ Πt(X)(w, p), [a2] ∈ Πt(X)(p, x) with [a2][a1] = [a]. Analogously, q lies in IX([c]) if
and only if there are [c1] ∈ Πt(X)(y, q) and [c2] ∈ Πt(X)(q, z) with [c2][c1] = [c].
Therefore, any pair (p, q) ∈ IX([a])×IX([c]) has the preimage [d] := [c1][b][a2] in U

(
[a], [b], [c]

)
.

On the other hand, Definition 6.2.1 implies that for any [d] ∈ U
(
[a], [b], [c]

)
that starts in p

and ends in q, there are such classes [a1], [a2], [c1], [c2], so we have

(s, e)
(
U
(
[a], [b], [c]

))
= IX([a])× IX([c]).

Furthermore, a1 and a2 are subpaths of some path in the homotopy class [a] and therefore
lie completely in IX([a]) ∪ {w, x} ⊆ Up. As Up is timelike simply connected, this means
that the homotopy class [a2] is uniquely determined by p and x. Analogously, the homotopy
class [c1] is uniquely determined by y and q, hence the homotopy class [d] = [c1][b][a2] is the
unique preimage of (p, q) in U([a], [b], [c]). This shows that (s, e)|U([a],[b],[c]) is injective.

We are now in a position to prove the main result of this chapter:

Theorem 6.2.4. Let (X,�•) be a locally chronological space with a regular topology and empty
future and past boundary. Then, the start- and endpoint map (s, e) : Πt(X)→ X ×X is a
local homeomorphism.

Proof. For an arbitrary d ∈ P t(X), let Up, Uq ⊆ X be timelike simply connected neighbor-
hoods of p := s(d) and q := e(d), respectively.

As X has empty timelike boundary, the sets I−X(p) and I+
X(q) are nonempty, so we can

choose a timelike path a′ that ends in p and a timelike path c′ that starts in q. For any
ε ∈

(
0, 1

2

)
> 0, we get a commuting diagram as in Definition 6.2.1 by defining a1 := a′|[1−ε,1],

a2 := d|[0,ε], b := d|[ε,1−ε], c1 := d|[1−ε,1], c2 := c′|[0,ε], a := a2 a1, and c := c2 c1.

Because of Lemma 4.2.6, we can ensure

IX([a]) ∪ {w, x} ⊆ IX([a]) ⊆ Up
and IX([c]) ∪ {y, z} ⊆ IX([c]) ⊆ Uq

by choosing ε small enough. With these choices, Lemma 6.2.3 implies that U
(
[a], [b], [c]

)
is an open neighborhood of [d] that is mapped homeomorphically onto an open subset of
X ×X.

Corollary 6.2.5. Let (X,�•) be a locally chronological space with a regular topology and
empty future and past boundary. The set{
U
(
[a], [b], [c]

) ∣∣w, x, y, z ∈ X, [a] ∈ Πt(X)(w, x), [b] ∈ Πt(X)(x, y), [c] ∈ Πt(X)(y, z)
}

is a basis of the topology of Πt(X).
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Proof. The statement follows directly from Lemma 6.2.3 and the fact that{
IX([a])× IX([c])

∣∣ [a], [b] ∈ Πt(X)
}

is a basis of the topology of X ×X by Corollary 4.2.4.

Corollary 6.2.6. Let (X,�•) be a locally chronological space with a regular topology and
empty future and past boundary. There is a local chronological structure ≪• on Πt(X) such
that the start- and endpoint map (s, e) : Πt(X)→ X ×X is a local isomorphism of locally
chronological spaces.

Proof. By Lemmas 3.4.3 and 3.4.7, the product of the locally chronological spaces (X,�•) and
(X,�•) yields a local chronological structure on X ×X. As (s, e) is a local homeomorphism,
we can apply Lemma 3.4.6 to finish the proof.

Note that we reversed the time-direction of one of the factors, which is not necessary for
the proof. However, using the results of this chapter, it is possible to prove that the set
U
(
[a], [b], [c]

)
is the chronological diamond between [b] and [c][b][a] with respect to ≪• in

certain open subsets U ⊆ Πt(X). It is not clear to the author if all chronological diamonds
are of the form U

(
[a], [b], [c]

)
.

Remark 6.2.7. The topology of Πt(X) is in general not regular, even if X has a regular
topology.

In Example 3.5.4, there are two distinct timelike homotopy classes in Πt(X)
(
(0, p), (`3, q)

)
.

Let U1 be a neighborhood of the first one and U2 be a neighborhood of the second one.

As X is a spacetime without boundary, Theorem 6.2.4 implies that (s, e)(U1) and (s, e)(U2)
are neighborhoods of

(
(0, p), (`3, q)

)
∈ X × X. For a small enough ε > 0 the point(

(0, p), (`3 + ε, q)
)
∈ X ×X is contained in both of them, but since the preimage of this

point only contains one element, the neighborhoods U1 and U2 cannot be disjoint.

We have just proven that Πt(X) is not a Hausdorff space, which implies that it is not regular.
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spacelike

curve, 8
vector, 8
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