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We analyze the approximation quality of the discrete-time decomposition approach, compared to 
simulation, and with respect to the expected value and the 95th-percentile of waiting time. For 
both performance measures, we use OLS regression models to compute point estimates, and quantile 
regression models to compute interval estimates of decomposition error. The ANOVA reveal major 
influencing factors on decomposition error while the regression models are demonstrated to provide 
accurate forecasts and precise confidence intervals for decomposition error.
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1. Introduction

Queueing models are widely used for performance evaluation 
of production and logistics systems which are subject to the influ-
ence of randomness [23,33,35,39,41]. When applying continuous-
time queueing models, engineers calculate the first and second 
moment of performance indicators of interest (e.g. throughput, 
waiting time, and the number of customers in the queue) using 
the well-known formulas for M/M/1 and M/G/1 queues as well 
as approximation formulas for G/G/1 queues. Books that provide 
an overview of continuous-time queueing models are written by 
Buzacott and Shanthikumar [6] and Wolff [38].

However, production and logistics systems are typically de-
signed to guarantee performance not on average, but with a given 
probability (e.g. 95%), which necessitates the calculation of the dis-
tribution of key performance indicators (such as waiting time) to 
know, for example, which percentage of orders is processed in 3h 
or less, or what promised throughput time will be met in 95% of 
the cases [29]. Applying discrete-time queueing models allows for 
the computation of the entire probability distributions of key per-
formance indicators under very general assumptions. Discrete-time 
modelling means that events are only recorded at moments that 
are multiples of a constant time unit tinc . Thus, the probability 
mass function of a discrete random variable x is denoted by
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P (x = i · tinc) = xi ∀i = 0, ..., imax.

Given the discrete random variables for the inter-arrival and 
service time, the probability distributions of performance measures 
can be computed, for example the waiting time [10] or the inter-
departure time [15] distributions. A comprehensive introduction to 
discrete-time queueing models can be found in [1,5]. The models 
have been successfully applied in various use cases related to lo-
gistics and production systems [7,27–30].

The analysis of discrete-time open queueing networks relies on 
a decomposition approach. As in the continuous-time domain, the 
technique is known to yield approximate results in the case of 
non-Poisson arrivals and generally distributed service times. The 
drawback with approximations is that we cannot quantify the de-
viation of the performance measures calculated with a decompo-
sition approach from their actual values. While the approximation 
quality of decomposition approaches has been studied in the lit-
erature for the continuous-time domain (see e.g. [16,34]), decom-
position error in the discrete-time domain has not yet been com-
prehensively examined. So far, no estimator is available to predict 
decomposition error for a given queueing network in the discrete-
time domain.

In this paper, we investigate discrete-time open tandem queues 
to analyze and forecast the approximation quality of the discrete-
time decomposition technique, compared to simulation. We limit 
ourselves to the analysis of tandem queues with external Poisson 
arrivals that become non-renewal at the downstream queue with 
the aim to reveal fundamental dependencies regarding the approx-
imation quality of the discrete-time decomposition approach.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Theoretical background

Open queueing networks allow for the analysis of systems with 
infinite buffer capacity and generally distributed inter-arrival and 
service times. Generalizations of Jackson’s product form solution 
[12,13] with respect to generally distributed inter-arrival and ser-
vice times are proposed by Reiser and Kobayashi [24] with modi-
fications presented by Kuehn [22], Shantikumar and Buzacott [32], 
Whitt [36], and Bitran and Tirupati [3,4]. Each decomposition ap-
proach relies on two basic assumptions [8]: First, it is assumed that 
the individual queueing systems can be treated as being statisti-
cally independent GI/G/1-queues. Second, it is assumed that the 
point process which forms the input to each GI/G/1-queue can be 
approximated by a renewal process. It is therefore important to 
emphasize that congestion measures obtained by decomposition 
techniques are approximate, since the assumption of independence 
among queueing systems does not properly account for the corre-
lations of the arrival stream which have a significant effect on the 
performance measures [16].

Decomposition approaches for discrete-time open tandem
queues are based on these conditions, as well. The arrival stream 
of a downstream queue is approximated as renewal process by the 
inter-departure time distribution of the upstream queue, which 
can be efficiently computed with the algorithm by Jain and Grass-
mann [15]. The waiting time distribution of the resulting GI/G/1-
queue is obtained with the algorithm presented by Grassmann and 
Jain [10]. Further performance measures, such as the distribution 
of customers, can be computed with the approaches presented by 
Hasslinger [11], and Grassmann and Tavakoli [9].

In an effort to investigate the approximation quality of the 
decomposition techniques, tandem lines have been studied exten-
sively in the literature. Suresh and Whitt [34] examine the im-
pact of non-renewal processes on the approximation quality with 
different traffic intensities. Wu and McGinnis [40] introduce the 
intrinsic ratio, a fundamental property of tandem queues that is 
based on the insight that some servers are directly affected by 
the external arrival process. Whitt [37] suggests using a variabil-
ity function (instead of a single parameter as in the QNA) for 
the arrival stream of the downstream queue, which is a function 
of the traffic intensity of the incoming queue. Sagron et al. [25]
extend this method to multi-class systems that address the sce-
nario when the upstream server in a tandem queue experiences 
downtimes (e.g. set-up, maintenance, and repair), events that in-
crease the station’s departure variability, while causing starvation 
of a downstream bottleneck station. To achieve better computa-
tional efficiency, Sagron et al. [26] approximate the between-class 
effect (the variability caused by interactions with other classes) 
in a queue with downtimes using a Regression-Based Variability 
Function (RBVF). RBVF receives the squared coefficient of variation 
of the arrival and service times, as well as the expected value of 
the service process as input and approximates the variability func-
tion using methods of linear regression.

3. Methodology

The object of investigation in this paper is a tandem queue, 
that is, two discrete-time queueing systems are arranged one af-
ter the other. The upstream queueing system is fed by an exter-
nal arrival stream with arrival rate 1/E(Au) of customers. If the 
service station is busy upon arrival of a customer, this customer 
waits for service in the waiting room. After being served at the 
upstream station with service rate 1/E(Bu), all customers enter 
the waiting area of the downstream queueing system. The size of 
the waiting area is infinite, meaning that all customers wait to be 
served with service rate 1/E(Bd) at the downstream station and 
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Table 1
Performance metrics of the tandem queue.

Au , Ad Random variable describing the inter-arrival time
of the external (downstream) arrival process

Bu , Bd Random variable describing the service time at the 
upstream (downstream) queue

ρu , ρd Utilization of the upstream (downstream) queue
W Random variable describing the waiting time of a

customer at the downstream queue

to hereafter leave the tandem queue. We only consider steady-
state systems where the utilization parameters ρu = E(Bu)/E(Au)

and ρd = E(Bd)/E(Ad) are smaller than 1. Since the arrival process 
at the downstream queue is approximated as point process with 
inter-arrival time distribution Ad , only the downstream queueing 
system is prone to decomposition error. For the sake of clarity, 
Table 1 defines the system performance metrics of the tandem 
queue.

In our analyses, we assume that the random variables describ-
ing the service processes are described by discretized gamma dis-
tributions. Let X be a gamma-distributed random variable with 
shape parameter k and scale parameter θ . The probability density 
function of X is given by [2]

f (x;k, θ) = xk−1e−x/θ

θk�(k)
, x,k, θ > 0,

where �(k) is the gamma function. We use the squared coefficient 
of variation (scv) as normalized measure of statistical dispersion to 
measure the process variability. Let E(X) define the expected value 
of X , and V ar(X) its variance. The variability of X is defined as

scv(X) = V ar(X)/E2(X).

In order to generate gamma-distributed random variables X
with predefined values for E(X) and scv(X), we use the well-
known closed-form expressions for the shape and scale parameters 
of the gamma distribution,

E(X) = kθ,

V ar(X) = kθ2.

Finally, we define σ τ
X as the τ -percent percentile of the proba-

bility mass function (pmf) of random variable X .
In this paper, we are interested in the error of the waiting time 

W at the downstream queue computed by the discrete-time de-
composition approach, compared to discrete-event simulation. We 
conduct two distinct studies with different dependent variables. In 
Study I, let �(E) be the divergence of the expected value of wait-
ing time

�(E) = E Sim(W ) − E Q ueue(W )

E Sim(W )
, (1)

where E Sim(W ) and E Q ueue(W ) denote the expected value of 
waiting time, computed with the discrete-time queueing approach 
and simulation, respectively. In Study II, let �(σ) be the divergence 
of the 95th-percentile of waiting time

�(σ) = σ 95
W ,Sim − σ 95

W ,Q ueue

σ 95
W ,Sim

, (2)

where σ 95
W ,Q ueue denotes the 95th-percentile of waiting time, com-

puted with the discrete-time queueing approach, and σ 95
W ,Sim the 

95th-percentile of waiting time, obtained with simulation.
In the following, we introduce the methodologies used for the 

computation of point and interval estimates of decomposition error 
and briefly describe the empirical evaluation criteria, the simula-
tion model, and our design of experiments.
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3.1. Point and interval estimates

We use Ordinary Least Square (OLS) multiple linear regression 
to compute point estimates, and quantile regression to compute in-
terval estimates for decomposition error. The methodological back-
ground on OLS regression can be found e.g. in [31]. Quantile re-
gression aims at the estimation of conditional quantile functions-
models in which quantiles (percentiles) of the conditional distri-
bution of the dependent variable are expressed as functions of 
observed covariates [17,20]. Unlike OLS which is used to compute 
the conditional mean of the dependent variable, quantile regres-
sion can be used to explain the determinants of the dependent 
variable at any point of the pmf of the dependent variable.

The dependent variables of the regression models in Study I 
and Study II are �(E) and �(σ), respectively. In both studies, we 
consider the same sample of N observations for the estimation of 
decomposition error. To help simplify the notations introduced in 
the following, we do not differentiate between both studies, but 
instead set yn = �(E) in Study I, and yn = �(σ) in Study II for 
a given data point n. The observations include y and X , where y
denotes the N-vector of decomposition error, and X is the (N × K )

design matrix of the independent variables, with K − 1 dependent 
(explanatory) variables.

Point estimates for decomposition error are computed with the 
well known formula for multiple linear regression

y = Xβ + ε, (3)

where ε is the N-vector of the random error terms of the re-
gression model. The estimates β̂ for problem (3) are found by 
minimizing the sum of squares residuals

β̂ = min
β∈RK

N∑
n=1

(
yn − xᵀ

n β
)2

.

In contrast to OLS, quantile regression finds the estimates β̂(τ )

for a given quantile τ ∈ (0, 1) by minimizing the weighted sum of 
the absolute deviations

β̂(τ ) = min
β(τ )∈RK

N∑
n=1

∣∣∣yn − xᵀ
n β(τ )

∣∣∣ωn, (4)

where the weight ωn is defined as

ωn =
{

2τ yn − xn
ᵀβ(τ ) > 0,

2 − 2τ otherwise.

The quantile regression estimates β̂(τ ) in problem (4) can be 
computed very efficiently by linear programming methods. In this 
paper, we use the modified version of Barrodale and Roberts algo-
rithm [18,19] to calculate the quantile regression estimates.

We always consider the quantile regression models in pairs, so 
that they form the upper and lower endpoints of the 90%, 95% or 
99% confidence interval (CI) of decomposition error, respectively. 
Consequently, we fit quantile regression models Q (τ ) for the pairs 
of τ = .05 and τ = .95 for the 90% CI, τ = .025 and τ = .975 for 
the 95% CI, and τ = .005 and τ = .995 for the 99% CI.

3.2. Goodness of fit criteria and likelihood ratio tests

To evaluate the accuracy of the fitted OLS models, we are in-
terested in the empirical distribution of the error term ε in prob-
lem (3). A preliminary evaluation of the data set shows that the 
Gauss-Markov conditions [31], and especially E(ε) = 0, hold for 
our data set. Consequently, mean error measurements for the cu-
mulated error terms of ε (such as MSE and RMSE) will be (nearly) 
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zero and therefore not meaningful for interpretation. Instead, we 
evaluate the absolute values |εn|, n ∈ N and denote |εn| as forecast-
ing error (FE) for observation n. To arrive at the determination of 
the accuracy of the OLS model, we compute the relative frequency 
distribution function of FE for all observations in ε. Interpreting 
the relative frequency distribution of FE, the higher the percent-
age of small values, the better the model fits the data and thus the 
higher the accuracy of the model.

The goodness of fit criterion of quantile regression is calculated 
with the algorithm by Koenker and Machado [21]. Analogous to the 
conventional R2 statistic of OLS regression, we call it Pseudo R2. 
Let β̂(τ ) denote the minimizer of problem (4), and V̂ (τ ) the error 
sum of the conditional quantile function. Further, let Ṽ (τ ) denote 
the error sum of the corresponding conditional quantile function, 
that is restricted to only consider the intercept parameter of β̂(τ ). 
Conventionally, the goodness of fit criterion is defined as

R2
P seudo(τ ) = 1 − V̂ (τ )/Ṽ (τ ).

Note that Pseudo R2 is not comparable to the standard coeffi-
cient of determination R2 although it lies between 0 and 1. It is 
only useful for the comparison between quantile regression mod-
els since it is based on the weighted sum of absolute residuals, 
while R2 is based on residual variance. Finally, it should be noted 
that Pseudo R2 may be a skewed measure as it is not corrected 
by the degrees of freedom. However, a definition for the goodness 
of fit that follows the concept of Adjusted R2 known from OLS re-
gression is not available for quantile regression analyses.

We use likelihood ratio tests to test the overall significance 
of the OLS regression models [31]. We are interested in testing 
whether all the independent variables have any effect on decom-
position error and test the general linear hypothesis

H : Cβ − γ = 0, (5)

where C is a (M × K ) matrix of rank M < K and γ is a M-vector. 
Note that hypothesis (5) allows us to test the overall significance 
of the OLS model, where

H : β1 = 0, β2 = 0, ..., β(K−1) = 0, (6)

as well as the significance of elected independent variables (so-
called nested models), where

H : βm = γm, (7)

for arbitrary values of m and γm . Hypothesis (5) is rejected if

M−1(Cb − γ )ᵀ[C(Xᵀ X)−1Cᵀ]−1(Cb − γ )

s2
≥ F M,N−K−1,α, (8)

where F M,N−K−1,α is the upper α-percent point of the F -
distribution with (M, N − K − 1) degrees of freedom,

b = (Xᵀ X)−1 Xᵀ y,and

s2 = (N − K − 1)−1 yᵀ[I − X(Xᵀ X)−1 Xᵀ]y.

We report the test statistic (8) as well as the p-value of the 
hypothesis test, which is the probability of observing a value of 
F larger than the one observed under H with degrees of freedom 
(M, N − K − 1) and significance level α. Generally speaking, when 
the test statistic is large, and the p-value is small, we can safely 
reject H and conclude that the OLS model provides a better fit to 
the data than a model which contains no independent variables 
(hypothesis (6)) or the nested model (hypothesis (7)).
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3.3. Simulation model

We use a discrete-event simulation model of a tandem queue 
to obtain the waiting time distribution at the downstream sta-
tion. Each simulation run is composed of 50 replications with 
10,000,000 simulated time steps each. In each simulation run, the 
first 100,000 time steps are discarded. The observed width of the 
95%-CI of the expected value of waiting time is 0.0286, which is 
less than 0.5% of the average simulated waiting time. The authors 
therefore feel that the performance metrics obtained with the sim-
ulation model – despite being prone to some variance – are valid 
estimates for the waiting time.

3.4. Design of experiments

Each tandem queue is parameterized with rate and variability 
parameters of the external arrival stream and the service processes 
in both queueing systems. For the sake of conciseness, we limit 
ourselves to experiments where the arrival process at the first 
queue is Poisson, and the service times at both queues are gamma-
distributed. Given its flexibility, the gamma distribution allows for 
the modelling of a wide range of dispersion and is therefore well 
suited to represent the stochastic behaviour of the service process. 
Further, it is well known that the exponential distribution is a spe-
cial case of the gamma distribution when the scv-value equals 1. 
We first consider tandem queues where the utilization parame-
ters at the upstream and the downstream queue are equal. This 
allows us to define a generic utilization parameter ρ for the tan-
dem queue, ρ = ρu = ρd . A relaxation of this assumption will be 
discussed in Section 5.

Based on these conditions, we parameterize each tandem queue 
with four parameters, the external arrival rate, the service rate, and 
the variability parameters of both service processes. We define the 
utilization of the tandem queue ρ , the variability parameters of 
both service processes scv(Bu) and scv(Bd), and the variability of 
the arrival process at the downstream queueing system scv(Ad) as 
independent variables (IVs) of the regression models. We partition 
the data set into two subsets, the training data set which consists 
of 932 randomly chosen data points, and the test data set which 
consist of the remaining 234 data points. The data sets are accessi-
ble in a repository [14] and described in detail in the accompanied 
data article.

4. Results

We first consider the distribution of decomposition error in the 
overall data set. The empirical cumulative distribution of decompo-
sition error reveals that both, positive (meaning that discrete-time 
queueing theory underestimates the waiting time) and negative 
errors (overestimation of the waiting time) are found. We find 
the relative errors in the range of -21.9% and 32.5% (referring to 
Study I) and -30.8% and 36.7% (referring to Study II). The mean ab-
solute values of decomposition error equal 3.93% and 4.51% regard-
ing the expected value and the 95th-percentile of waiting time, 
respectively.

4.1. Study I: Expected value of waiting time

The OLS regression coefficients for Study I are presented in the 
accompanied data article. Recall that in Study I, the dependent 
variable is �(E), cf. equation (1). The OLS regression analysis is 
found to be statistically significant (F (10,921) = 2123, p < .001), 
explaining the majority of the variance of the relative error of 
the expected value of waiting time (R2

Adj. = 0.958). The ANOVA 
reveals all direct and the majority of the interaction effects to 
be statistically significant. Since the non-significant coefficient is 
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small, we did not find evidence for the regression model to per-
form significantly better without incorporating this interaction 
(F (921,922) = 1.234, p = .267). We identify the service process 
variability at the upstream queueing system and the arrival pro-
cess variability at the downstream queueing system, as well as the 
utilization as major impact factors. Despite being statistically sig-
nificant, the effect of the variability of the service process at the 
downstream queueing system is found to be a minor influencing 
factor.

The Pseudo R2 of each quantile regression model is well above 
0.8. All quantile regression equations show similar patterns of 
changes in coefficient values as the OLS regression. We find the 
majority of direct and interaction effects to be statistically signifi-
cant. As in the OLS regression, the interaction effect between the 
service process variability (at the upstream queueing system) and 
the utilization is found to be non-significant among each model. 
While the absolute sizes of the coefficients for most factors vary 
little across the equations, it should be noted that the weights of 
the service process variability at the upstream queueing system, 
and the arrival process variability at the downstream queueing sys-
tem rise with increasing quantile.

4.2. Study II: 95th-percentile of waiting time

The regression coefficients for Study II are presented in the ac-
companied data article. In Study II, the dependent variable is �(σ), 
cf. equation (2). We find a statistically significant OLS regression 
equation (F (10,921) = 1064, p < .001), which explains the major-
ity of the variance (R2

Adj. = 0.920) of decomposition error regard-
ing the 95th-percentile of waiting time. The impact patterns of 
the interaction effects are the same as in Study I. Again, we did 
not find evidence for the OLS estimate to better perform with-
out incorporating the non-significant interaction effect between 
the service process variability and utilization (F (921,922) = 0.917, 
p = .339). Analogous to Study I, the service process variability 
(at the upstream queueing system), the arrival process variability 
(downstream queueing system), and the utilization are found to be 
the major direct effects. Despite being statistically significant, the 
service process variability at the downstream queueing system is a 
minor impact factor.

The Pseudo R2 of all quantile regression models is well above 
0.6. Except for the service process variability at the downstream 
queueing system, which is non-significant for the models with 
τ � .05, all direct effects are found to be statistically significant 
among each regression model. The majority of interaction coeffi-
cients is found to be significant or marginally significant. However, 
we did find non-significant coefficients among the interaction ef-
fect of the service process variability and the arrival process vari-
ability (both at the downstream queueing system), as well as in the 
Q (.975) model. As in Study I, the absolute sizes of coefficients vary 
little for most factors across the equations. However, the weight of 
the utilization increases by rising quantiles, while (in contrast to 
Study I) the weight of the arrival process variability decreases.

4.3. Performance of point and interval estimates

The accuracy of the point estimates is presented in Table 2. 
For the majority of data points, we find an absolute error of the 
OLS predictions of less than 1 percentage point from the simu-
lated value. The mean absolute forecasting errors are less than 1 
percentage point in Study I and only slightly above 1 percentage 
point in Study II. In both studies, this accuracy is achieved for the 
training and the test data set, which indicates that our OLS predic-
tion approach is robust to overfitting.

Despite the minor mean errors, the results suggest that the ac-
curacy of point estimates decreases when forecasting severe values 
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Table 2
Performance of point estimates: Relative frequency distributions and means of forecasting error for training 
and test data in Study I and Study II.

FE Study I Study II

Train Test Test (a) Test (b) Train Test Test (a) Test (b)

[0.000, 0.005] 40.5% 37.2% 41.9% 8.7% 40.8% 30.8% 34.6% 11.8%
(0.005, 0.010] 30.5% 30.8% 34.6% 13.0% 36.5% 29.5% 33.1% 0.0%
(0.010, 0.020] 20.5% 22.6% 18.4% 34.8% 7.4% 23.9% 19.7% 35.3%
(0.020, 0.050] 8.0% 9.0% 5.1% 39.1% 12.7% 12.8% 11.8% 41.1%
(0.050, ∞) 0.5% 0.4% 0.0% 4.4% 2.6% 3.0% 0.8% 11.8%

Mean 0.0087 0.0092 0.0073 0.0210 0.0118 0.0117 0.0095 0.0260

Notes: Subsets (a) and (b) denote the subsets of test data with absolute decomposition error smaller than 
3% and above 10%. The sample sizes are 136 and 23 (Study I), and 127 and 33 (Study II).

Table 3
Performance of interval estimates: Mean lengths and actual share of values for confidence 
intervals (CI) in Study I and Study II, based on quantile regression models.

90% CI 95% CI 99% CI

Length Share Length Share Length Share

Study I Train 0.0348 90.58% 0.0416 95.07% 0.0506 98.93%
Study I Test 0.0345 86.32% 0.0415 91.45% 0.0509 94.02%
Study I Test (a) 0.0271 87.50% 0.0318 93.38% 0.0374 94.85%
Study I Test (b) 0.0692 78.26% 0.0810 82.61% 0.1006 91.30%

Study II Train 0.0467 90.26% 0.0661 95.50% 0.1343 98.82%
Study II Test 0.0473 91.45% 0.0658 92.74% 0.1303 95.73%
Study II Test (a) 0.0432 92.91% 0.0594 96.85% 0.1442 99.21%
Study II Test (b) 0.0689 81.82% 0.1006 81.82% 0.1281 84.85%

Notes: Subsets (a) and (b) denote the subsets of test data with absolute decomposition 
error smaller than 3% and above 10%. The sample sizes are 136 and 23 (Study I), and 127 
and 33 (Study II).
of decomposition error. To investigate this effect, we examine the 
subsets of test data with minor decomposition errors, that is, all 
data points with absolute decomposition errors smaller than 3% (in 
the following referred to as subset (a)), and with severe decompo-
sition errors, that is, all data points with absolute decomposition 
errors above 10% (subset (b)). The sample sizes of subsets (a) and 
(b) are 136 and 23 in Study I, and 127 and 33 in Study II, re-
spectively. The relative frequency distributions of FE and its mean 
errors (cf. Table 2) suggest that subset (a) is forcasted with signifi-
cantly higher accuracy than the data points from subset (b) in both 
studies. Further, the share of data points that is forecasted with a 
FE greater than 0.05 is significantly higher in subset (b). However, 
it cannot be concluded that data points with severe absolute de-
composition errors are frequently predicted with minor accuracy. 
In the test data from Study I, we find 96% of the data points with 
an absolute decomposition greater than 10% to be forecasted with 
a FE less than 0.05 (in Study II the share is 89%).

Interval estimation compensates for this effect. By providing the 
90%, 95%, and 99% confidence intervals, we evaluate the precision 
of the point estimates. Table 3 presents the performance of the in-
terval estimates for Study I and Study II, listing the mean interval 
lengths and the actual shares of decomposition errors included in 
the respective confidence intervals. As expected, the average inter-
val lengths increase with rising confidence in finding a data point 
in the corresponding interval. In both studies, the average inter-
val lengths differ only marginally between training and test data 
which indicates that the approach of interval estimation is robust 
to overfitting. In the training data set, the confidence intervals con-
tain exactly the respective share of values they were determined 
for. These shares are only slightly undermined for the test data.

The interval estimates are designed to indicate uncertainty in 
the forecast of point estimates. The results are presented in Ta-
ble 3. In subset (a), the precision of interval estimations increases, 
compared to the entire test data set. This is indicated by the nar-
rower intervals, as well as the high shares of values that are in-
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cluded in the respective intervals (which is especially to be empha-
sized for Study II). As discussed above, in subset (b), the forecast 
uncertainty of the point estimates increases, which is indicated by 
longer mean intervals and a smaller share of values contained in 
the intervals.

We conclude that minor decomposition errors are predicted 
with satisfactory point estimation accuracy and great precision. 
Predicting severe decomposition errors is subject to uncertainty: 
the absolute error of the point estimate might be considerable, 
which is indicated by large confidence intervals. By combining the 
methods, the authors feel to satisfy both, the aspect of an accu-
rate point estimation forecast, as well as the quantification of its 
uncertainty.

5. Bottlenecks and longer lines

The investigations of the heavy-traffic bottleneck phenomenon 
in open queueing systems [34] suggest that the performance of 
bottleneck downstream queues is strongly related to the variabil-
ity of the non-renewal arrival process variability, which impacts 
the approximation quality of decomposition methods. Therefore, 
we extend our analyses to tandem queues and longer lines with 
bottlenecks. As Suresh and Witt [34] mention, in a narrower sense, 
the bottleneck is the queue with the highest traffic intensity. How-
ever, increasing the traffic intensity of a queue by only a small 
amount may shift the bottleneck position. Therefore, it is intuitive 
to state that either of the queues is the bottleneck if it’s utilization 
is substantially greater than some ε , |ρu − ρd| > ε .

We create a further data set containing 969 data points, follow-
ing the procedure described in section 3.4, but with the relaxation 
that the expected values of service times are now independent. 
We choose ε = 0.1 and find 403 data points where the down-
stream queue is the bottleneck. We use OLS and quantile regres-
sion to identify the major and minor effects on decomposition 
error in bottleneck queues. The coefficients of the regression anal-
yses, where the dependent variables are �(E) (Study I), and �(σ)
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Table 4
Absolute mean decomposition errors for Study I and Study II in longer lines.

Queue Length 3 Length 5 Length 7 Length 9

Study I Study II Study I Study II Study I Study II Study I Study II

1 0.23 0.39 0.24 0.26 0.24 0.22 0.17 0.16
2 2.43 2.43 2.16 2.32 2.43 2.55 2.18 2.39
3 8.94 10.94 2.56 2.38 2.61 2.39 2.72 2.67
4 2.50 2.45 3.12 3.05 2.82 2.83
5 9.68 12.53 3.04 3.22 2.86 3.11
6 3.24 3.36 3.49 3.28
7 9.24 10.67 3.54 4.10
8 3.48 3.03
9 10.91 12.91

Note: Values for decomposition error in percent.
(Study II) are provided in the accompanied data article. We find 
the previously identified major and minor effects on decomposi-
tion error to apply in this analysis, as well. However, the empirical 
distributions of the decomposition error show that the approxima-
tion quality of the decomposition approach depends significantly 
on which of the queues is the bottleneck. In the case of similar 
traffic intensities, we find mean absolute values of decomposition 
error to be 5.45% (6.51%) for the expected value (95th-percentile) 
of waiting time, which is in line with the expectations of previous 
examinations. When the bottleneck is downstream, the mean ab-
solute values of decomposition error regarding the expected value 
(95th-percentile) of waiting time equal 4.87% (5.50%). In contrast, 
when the bottleneck is upstream, we find mean absolute values of 
decomposition error of 1.36% (1.46%) for the expected value (95th-
percentile) of waiting time.

Similar results are observed in longer lines. We investigate a 
set of lines with i queues in series, where i equals 3, 5, 7, and 9. 
For each line length i, we evaluate 250 data points. The utiliza-
tion parameters of the first i − 1 queues are equal, and the last 
queue in each case is the bottleneck. Table 4 shows the mean ab-
solute decomposition errors for the expected value (Study I), and 
the 95th-percentile (Study II) of waiting time. It can be clearly seen 
that the last queues are prone to significant decomposition errors 
with 9.69% on average in Study I, and 11.67% on average in Study II. 
This is significantly more than the decomposition errors for the 
intermediate queues which are 2.82% on average in Study I, and 
2.85% on average in Study II. The results confirm the long-range 
variability effect formulated by Suresh and Whitt [34], that states 
that variability in the external arrival stream or the service times 
can have a dramatic effect on a downstream queue with a much 
higher traffic intensity.

6. Concluding remarks

From the analyzes of decomposition techniques in the contin-
uous-time domain, it is well known that utilization and variabil-
ity parameters for arrival and service processes are significant for 
the approximation quality of congestion measures. Based on the 
regression coefficients, we identify utilization and arrival process 
variability as major impact factors on decomposition error. Service 
process variability was revealed as a minor impact factor.

Utilization is found to be the enabler for decomposition error: 
In low-traffic queueing systems, the mean absolute decomposi-
tion error is significantly lower than the mean absolute errors in 
the entire data set. Severe absolute decomposition errors are only 
observed in heavy-traffic systems. In tandem queues with bottle-
necks, we find the decomposition error to be significantly higher 
when the bottleneck is downstream. This leads to the conclusion 
that downstream bottlenecks are analyzed with limited accuracy, 
which should be of particular interest since the performance eval-
uation of bottlenecks is obviously particularly critical. The arrival 
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process variability determines the tendency (that is, overestima-
tion or underestimation of the waiting time) of the decomposition 
technique. For scv-values of the arrival process at the downstream 
queue lower than 1.0, the decomposition approach underestimates 
waiting time. Overestimation of waiting time occurs for scv-values 
of the downstream arrival process greater than 1.0. Variability of 
the service process is a minor impact factor. This is indicated by 
the fact that when the arrival process at the downstream queue 
is Poisson, we did not find considerable decomposition errors, re-
gardless of the utilization of the queueing system nor the scv-value 
of the service process.

We conclude the discrete-time decomposition approach to an-
alyze low traffic queueing systems with high accuracy. In heavy-
traffic systems, the approximation quality depends on the arrival 
process variability. The analysis of queueing systems with highly 
volatile as well as deterministic arrival processes is prone to con-
siderable decomposition errors. When the arrival process is Pois-
son, the decomposition approach yields high accuracy, regardless 
of the service process variability.
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