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We compute the photon-quark and Higgs-gluon form factors to four-loop order within massless
perturbative quantum chromodynamics. Our results constitute ready-to-use building blocks for N4LO cross
sections for Drell-Yan processes and gluon-fusion Higgs boson production at the LHC.We present complete
analytic expressions for both form factors and show several of the most complicated master integrals.
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Introduction.—A number of experimental results
obtained at the Large Hadron Collider (LHC) at CERN
have reached a precision below the percent level, often
superseding the original expectations. A fundamental
ingredient to the successful interpretation of precise data is
the computation of higher-order quantum corrections, most
importantly those stemming from the strong interaction. In
many cases next-to-next-to-leading order (NNLO) correc-
tions have become standard. In fact, nowadays 2 → 2
scattering processes are routinely computed at this order,
in some cases even taking into account massive particles in
the loops. Also for 2 → 3 processes more and more results
become available (see, e.g., Refs. [1–7]).
There are a few processes which are known to third order,

or N3LO, in perturbative quantum chromodynamics (QCD).
Among them are the Drell-Yan production of W and
Z bosons [8,9] as well as Higgs boson production in gluon
fusion in the infinite top-mass limit [10,11] at the LHC. In the
latter case the high-order corrections are particularly impor-
tant due to the slow convergence of the perturbative series.
Similar observations have been made for the threshold
production cross section of the top quark pairs in electron
positron annihilation, where third-order corrections are
necessary to obtain theory uncertainties of a few percent
[12]. Formore generic 2 → 2 processes like dijet production,
virtual corrections at third-order QCDbecame available only
recently (see, e.g., Refs. [13,14]), providing first ingredients
to such N3LO cross sections.

In the coming years the precise determination of theHiggs
boson properties will be one of the central topics at the LHC.
In this context it is important to improve the precision for the
production cross section, both experimentally and from
the theory side. First steps towards the N4LO corrections
of the Higgs boson production cross section have been
undertaken in Ref. [15]. In this Letter, we provide the first
ready-to-use ingredient to the N4LO cross section for gg →
H þ X by presenting the virtual corrections to the effective
Higgs-gluon vertex up to four-loop order. Similarly, we
provide the four-loop corrections to the photon-quark vertex
which are a building block of the N4LO corrections to the
process qq̄ → Z=W. Historically, also at N3LO the purely
virtual corrections were the first building blocks to become
available with the calculation of the three-loop form factors
more than a decade ago [16–18]. Subsequently, the real-
radiation contributions have been added step-by-step until
first results for the Higgs production cross section became
available [19–25].
The relevant form factors for the qq̄γ� and ggH vertex

functions Γμ
q and Γμν

g , respectively, are given by the
projections

Fqðq2Þ ¼ −
1

4ð1 − ϵÞq2 Trðq2Γ
μ
qq1γμÞ; ð1Þ

Fgðq2Þ ¼
ðq1 · q2gμν − q1;μq2;ν − q1;νq2;μÞ

2ð1 − ϵÞ Γμν
g : ð2Þ

Here, the overall normalization is chosen such that both form
factors are one at leading order. We employ conventional
dimensional regularization and use ϵ ¼ ð4 − dÞ=2, where d
is the space-time dimension. The outgoingmomentum of the
photon (Higgs) is q ¼ q1 þ q2, where q1 and q2 are the
incoming momenta of the quark and antiquark (gluons) for
Fq (Fg), and we have q21 ¼ q22 ¼ 0 and q2 ≠ 0.
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The two- and three-loop QCD corrections to Fq and Fg
are available from Refs. [16,18,26–32] and in Refs. [33,34]
the three-loop results have been obtained up to order ϵ2. At
four loops, only partial results have been obtained so far. In
Fig. 1 we show sample Feynman diagrams for the purely
gluonic corrections to Fq and Fg in four-loop QCD; sample
diagrams for the fermionic part can be found in Fig. 1 of
Ref. [35]. Altogether 5728 and 43 220 Feynman diagrams
contribute to the quark and gluon form factor at this
perturbative order, respectively.
The results, which are presented in this Letter, finalize a

long-running effort to compute QCD form factors to four
loops. First results have been obtained in 2016 [36,37]where
planar diagrams for Fq have been presented in the large-Nc
limit. Fermionic corrections with two closed fermion
bubbles are available from [38] and the complete contribu-
tion from color structure ðdabcdF Þ2 has been computed in
[39,40]. For Fq and Fg, all corrections with three or two
closed fermion loops have been calculated in [41,42],
respectively, including also the singlet contributions. The
complete set of poles of Fq and Fg in the dimensional
regulator has been obtained through direct diagrammatic
evaluation in [43]. Finally, the complete fermionic correc-
tions to Fq and Fg have been computed in Ref. [35].
Calculation.—The calculation of the four-loop form

factors presents two major challenges. The first one is
connected to a minimal representation of the form factors.
After generating the Feynman diagrams with QGRAF [44],
we apply the projectors and perform the numerator and
color algebra with FORM4 [45] and COLOR.H [46]. In this
way, we can write the form factors as a linear combination
of a large number of scalar Feynman integrals, each
belonging to one of 100 twelve-line top-level topologies
or a subtopology thereof. Fixing the twelve propagators and

six irreducible numerators of its top-level topology, a scalar
integral can be described by eighteen integers indicating the
exponents of the propagators and numerators. By choosing
the irreducible numerators as suitably defined inverse
propagators, all top-level topologies can be described in
terms of the ten complete sets of denominators described in
[47]. Integration-by-parts (IBP) reductions [48–50] sys-
tematically establish linear relations between the integrals,
allowing us to express the form factors as a linear
combination of a minimal set of so-called master integrals.
For our calculation we use the setup described in [40] based
on the program REDUZE2 [51] and the in-house code
FINRED, employing techniques from [52–58].
The second challenge is the computation of the master

integrals. Here we follow two complementary appro-
aches. The first one is based on the construction of finite
master integrals [34,59,60], in d0 − 2ϵ dimensions where
d0 ¼ 4; 6;…. Provided a linearly reducible [61,62]
Feynman parametric representation can be found, the ϵ
expansions of such master integrals may be computed
analytically using the program HYPERINT [63]. The dimen-
sionally shifted integrals can be related to master integrals
in 4 − 2ϵ dimensions using IBP relations derived with first-
and second-order annihilators in the Lee-Pomeransky
representation [64]. We wish to point out that in this
approach, the integration can be performed at the level
of individual integrals. In practice, evaluating higher orders
of the ϵ expansion gets ever more demanding due to the rise
in algebraic complexity. To determine the form factors Fq

and Fg, we computed a number of integrals to transcen-
dental weight eight in this approach, including computa-
tionally demanding nonplanar integrals with twelve
different propagators. For one such irreducible topology
with a single twelve-line master integral we find
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FIG. 1. Sample Feynman diagrams and color factors for the nonfermionic contributions to Fg and Fq at four-loop order. Straight and
curly lines denote quarks and gluons, respectively. Both planar and nonplanar diagrams contribute.
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in the conventions of Ref. [65]. In particular, the integral is
defined in 6 − 2ϵ and each dot indicates a squared
propagator. We would like to mention that no integral in
this topology was needed for the calculation of the N ¼ 4
Sudakov form factor [47]. Our result above is expressed in
terms of regular zeta values, ζn (n ¼ 2;…; 7), and

ζ5;3 ¼
X∞
m¼1

Xm−1

n¼1

1

m5n3
≈ 0.037 707 672 984 8 ð4Þ

is the only irreducible multiple zeta value at weight eight.
Our second approach for computing master integrals is

the method of differential equations [66–69] based on
“canonical” bases [70]. Since our master integrals only
depend on one kinematic parameter, q2, we have to
introduce a second mass scale such that nontrivial differ-
ential equations can be established. With canonical bases,

this idea was first implemented in [71]. For our application
it is advantageous to make one of the massless external legs
massive. Choosing q21 ≠ 0 has the advantage that the
boundary conditions can be fixed for q21 ¼ q2 since then
the vertex integrals turn into two-point integrals, which are
well studied in the literature [72,73]. The differential
equations are used to transport the information to
q21 ¼ 0, which corresponds to the vertex diagrams we
are interested in. To construct canonical bases we apply
the algorithm of Ref. [74] implemented in [75]. Details of
this approach can, e.g., be found in Ref. [39]. When
constructing canonical bases, we also need IBP reduction
to master integrals. Here, we apply FIRE [76] for this.
For one of the most complicated twelve-line topologies

which did not enter the N ¼ 4 Sudakov form factor we
obtain for its two master integrals
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A feature of our second method is that it provides the
results for all master integrals of a given family. Often the
simpler integrals with less lines could also be computed
with the first approach, which moreover gave results
through to transcendental weight seven for almost all of
the integrals. This provided us with plenty of analytical
cross checks. For all integrals which were not checked by
redundant analytical calculations, we employed FIESTA5

[77] to verify our analytical results within a typical relative
precision of 10−4 using a basis of finite integrals.
Results.—Our calculation of the master integrals through

to weight eight allows us to present complete analytic
results for Fq and Fg. It is convenient to define their
perturbative expansion in terms of the bare strong coupling
constant α0s as

Fx ¼ 1þ
X
n≥1

�
α0s
4π

�
n
�
4π

eγE

�
nϵ
�

μ2

−q2 − i0

�
nϵ

FðnÞ
x ; ð7Þ

with x ∈ fq; gg. Here, γE denotes Euler’s constant, and μ is
the ’t Hooft scale.
While the ϵ expansion of the fermionic corrections

starts at order 1=ϵ7, the purely gluonic corrections also
have 1=ϵ8 poles and, correspondingly, zeta values with
transcendental weight up to eight in the finite part. Since all
pole parts are known analytically from Ref. [43], see also
[15,36,40,78–87], it is sufficient to consider the finite terms
in the following. The complete expressions can be found in
a computer-readable ancillary file attached to this Letter
available on the arXiv. We obtain for the finite part of the
quark form factor
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and for the finite part of the gluon form factor

PHYSICAL REVIEW LETTERS 128, 212002 (2022)

212002-4



Fð4Þ
g jϵ0 ¼C4
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We expressed our results in terms of invariants of a
general Lie algebra, where CR denotes the quadratic
Casimir operator, dabcdR the fully symmetrical tensor origi-
nating from the trace over generators, and NR the dimen-
sion of the fundamental and adjoint representation, R ¼ F,
A, respectively. For a SUðNcÞ gauge group the invariants or
color factors are obtained as

CF ¼ ðN2
c − 1Þ=ð2NcÞ;

CA ¼ Nc;

dabcdF dabcdA =NF ¼ ðN2
c − 1ÞðN2

c þ 6Þ=48;
dabcdA dabcdA =NA ¼ N2

cðN2
c þ 36Þ=24: ð10Þ

All terms shown in Eqs. (8) and (9) are new. The complete
four-loop results for Fq and Fg are obtained after adding the
fermionic contributions given in Eqs. (10) and (11)
of Ref. [35].
We performed several checks of our results, which we

describe in the following. First, the leading-color limit of
Eq. (8) agrees with the result of Ref. [37]. While all color
structures of Eq. (8) contribute in this limit, it can be
derived from just planar loop integrals, see also Ref. [65]
for an independent calculation. Second, we observe that our
weight-eight result for Fð4Þ

g =N4
c agrees with the correspond-

ing expression of the four-loop Sudakov form factor in
N ¼ 4 supersymmetric Yang Mills theory, see Eq. (4.1) of
Ref. [47], after expressing the color factors in terms of Nc
using Eqs. (10). Furthermore, after adjusting the QCD color
factors such that the bosonic and fermionic degrees of
freedom are in the same color representation, i.e.,
CF → CA, NF → NA and dabcdA dabcdF → dabcdA dabcdA , we
obtain identical results for the weight-eight coefficients

of Fð4Þ
q and Fð4Þ

g . These relations between the maximal
transcendental parts involve all nonfermionic color coef-

ficients of Fð4Þ
q and Fð4Þ

g and test both leading and
subleading color contributions.
Conclusions.—In this Letter, we provide the perturbative

corrections to the photon-quark andHiggs-gluon form factors
at relative order α4s. This is the first complete calculation of

vertex functions in four-loop massless QCD. Our analytical
results have been obtained by combining two powerful
multiloop techniques: the direct integration of finite master
integrals and the method of differential equations. The final
expressions are presented in terms of zeta values with
transcendental weight up to eight, allowing for a straightfor-
ward numerical evaluation. Our results constitute the virtual
contributions to a number of cross sections and decay rates at
N4LO, including Drell-Yan processes and gluon-fusion
Higgs boson production at the LHC.
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