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1 Introduction

In an increasingly digital world, data has become abundant and research about leveraging
this amount of data is on the rise (Blei and Smyth, 2017; Dhar, 2013). Such data
can be used for measuring success or failure in business, for targeting customers, to
influence public policies, or more generally, to inform any decision-maker (cp. Athey,
2017). Researchers, however, face additional challenges when trying to extract information
from such often unstructured, noisy, and incomplete data, for example, to understand and
identify driving factors of an economic indicator or policy (Bareinboim and Pearl, 2016).
This includes highly correlated, time-dependent data, combinations of unstructured data,
and even high-dimensional situations, where we have very few data points and many
potentially relevant factors. While organizations are beginning to see the value of this
new, non-standard data, the methods to analyze and draw conclusions from it have not
yet been fully adapted (see e.g. Einav and Levin, 2014).

In this thesis, I tackle the above challenges by developing interpretable statistical
machine learning methods to reveal important effects of public policies, to better assess
risks in financial applications, and to quantify market drivers, for example of house prices.
I study causal inference, statistical model selection, and prediction in different social and
economic contexts. More specifically, I concentrate on uncovering statistical relationships
while considering the underlying uncertainty in the data, and on identifying important
contributing factors for such relationships. In the first part (Chapters 2 and 3) of my
work, I analyze financial risk with cryptocurrencies and corporate bonds. For the former,
I identify classes of assets and time periods where flexible machine learning methods, such
as random forests employed within an interpretable statistical framework, significantly
improve predictability of risk. This is vital given the highly volatile return structure
of cryptocurrencies. For corporate bonds, I uncover drivers of the risk of default by
developing robustified version of the knockoff framework (Candès et al., 2018), which is

1



2

able to correctly handle the underlying, highly correlated time series data. Additionally,
focusing on important selected factors improves the predictability of default events while
retaining interpretability. In the second part (Chapter 4), focus lies on the evaluation of
the causal effect of tuition fees on university student enrollment. I develop methods to
deal with the many possible influencing factors given only few observations by combining
subsampling-based methods with regularization in a panel setup. I can show that there
was a causal effect of the short tuition fee period in Germany by disentangling this effect
from other factors and policies. In the third part (Chapters 5 and 6), satellite images are
combined with many noisy, observational data sources to show the impact of crime on
the housing market of New York City on a spatial grid. To overcome the endogeneity of
crime for house prices, I develop a method that leverages satellite data, can be easily
extended to other cities, and highlights the non-linearity of crime on a spatial level.

On a more detailed level, the contributions of each chapter are as follows. Chapter 2
studies the estimation and prediction of the risk measure Value at Risk for cryptocurren-
cies. In contrast to classic assets, their returns are often highly volatile and characterized
by large fluctuations occurring at single events. Analyzing 105 major cryptocurrencies, I
show that Generalized Random Forests (GRF) (Athey et al., 2019), which can be adapted
to specifically fit the framework of quantile prediction, have superior performance over
other established methods such as quantile regression and CAViaR. This is particularly
visible in unstable times and for classes of highly-volatile cryptocurrencies. Furthermore,
I identify important predictors during such times and show their influence on forecasting
over time. Finally, the small-sample prediction properties in comparison to standard
techniques are investigated in a comprehensive Monte Carlo simulation study.

In Chapter 3, I focus on the recent global financial crisis1 with the default of large
corporate bonds. This highlights the importance of detecting macroeconomic factors
that drive recovery rates of such bonds. I propose a purely data-driven method that
transparently and robustly identifies such relevant factor groups despite the strong time
dependence in the large cross-section of recovery rates. The suggested knockoff-type
technique has its focus on detecting interpretable drivers of recovery rates by controlling
the proportion of false discoveries. Moreover, I also show that out-of-sample, the resulting

1The crisis starting in the USA in 2007
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sparse model has similar predictive power to state-of-the-art machine learning models
that use the entire set of predictors.

Chapter 4 considers the empirical evaluation of the fixed, flat, short-period German
university tuition fee episode. This evaluation is challenging due to different implementa-
tion decisions across federal states, few official observations, migration effects and many
potentially influential controls. My transparent data-driven model selection approach
robustly controls for correlation of the policy decision with state characteristics when
the enrollment rate response is only measured with noise. Using this selection approach,
I find a significant and substantial negative causal impact of fees on enrollment and
substantial migration effects. This is contrary to findings in the literature that are based
on ad-hoc covariate choices and no spatial effects.

Chapter 5 and 6 deal with developing and applying a model to assess house prices.
The main contribution consists of connecting image data to observational data using
deep learning methods to better understand drivers of prices and to predict such prices
in New York City. In Chapter 5, I was able to detect from the input images which factors
have a strong impact on the final price using a transfer learning approach that extracts
information from images linked with very accurate crime data. From this trained neural
network model, I could extract features and build a model to predict property prices in
the cross-section. With this transfer learning approach, I combine the best of two worlds:
the socio-economic link between crime and property values for prediction, and machine
learning methods that are able to extract information from images. We show how easily
one can scale the trained model to other cities with the example of Philadelphia. In
Chapter 6, the focus lies on detecting and measuring the influence of each extracted
crime feature for house prices. I therefore extend the model of Chapter 5 and tailor it to
allow for the identification of interpretable factors. Applying generalized additive models,
I clearly identify important drivers of prices and detect heterogeneities in their influence,
depending on the location and the variables themselves. I can visualize the impact of
different factors on prices, clarify how the features correspond to crime, and further show
that this model maintains excellent forecasting performance as in Chapter 5.

Chapter 2 is joined work with Jonas Meirer and Melanie Schienle. Chapter 3 is
joint work with Abdolreza Nazemi and Melanie Schienle and has been submitted to
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Management Science. Chapter 4 is joint work with Melanie Schienle, has been presented
at the 6th IAAE Conference at the University of Cyprus2, the Statistical Week 2019 at the
University of Trier, and has been submitted to Econometric Reviews with the response to
revise and resubmit. Chapter 5 is joint work with Jannik Deuschel and Melanie Schienle
and has been presented at the 6th HKMetrics-Workshop at the University of Mannheim.
Chapter 6 is joint work with Melanie Schienle and Kyusang Yu.

26th Annual Conference of the International Association for Applied Econometrics



2 Predicting Value at Risk for
Cryptocurrencies Using Generalized
Random Forests

2.1 Introduction

Cryptocurrencies are an important and rising part of today’s digital economy. Currently,
the market capitalization of the top 10 cryptocurrencies in the world is close to $2 trillion
and growing1. The use of cryptocurrencies in terms of daily volume exploded from
2016 to 20181, which not only attracts individuals but also business users such as hedge
funds, merchants and long-term investors such as crypto-focused as well as traditional
investment funds (Vigliotti and Jones, 2020). However, the crypto asset market remains
highly volatile. An investment in Bitcoin in 2013 would have seen a return of roughly
20, 000% in 2017, but an investment in 2017 would have led to a performance of -75% in
20191. Consequently, there is a need to monitor the inherent volatility to manage the
risks associated with cryptocurrencies. To address this, we find that classic approaches
such as the historical simulation or CaViaR methods are too restrictive. More general
non-linear methods provide more flexibility to account for such behavior which could be
caused in part by speculators.

In this paper we propose a novel way for out-of-sample prediction of the Value at Risk,
one of the standard and mostly used risk measures in practice. We use a quantile version
of Generalized Random Forests (GRF, see Athey et al., 2019), which builds upon standard
random forests (Breiman, 2001) and extends them to fit quantiles as opposed to the
mean in standard ones. This framework shows to be especially promising when dealing

1See e.g. https://coinmarketcap.com/charts/; accessed at 22nd March 2022.
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with more volatile classes of cryptocurrencies due to the non-linear structure of their
returns. In a comprehensive out-of-sample scenario using more than 100 of the largest
cryptocurrencies, GRF outperforms other established methods such as CAViaR (Engle
and Manganelli, 2004), quantile regression (Koenker and Hallock, 2001) or GARCH-
models (Bollerslev, 1986; Glosten et al., 1993) over a rolling window, particularly in
unstable times. This can be attributed to the nonparametric approach of random forests
that is flexible and adaptable considering important factors and non-linearity. We further
analyze performance in different important subperiods, consider different classes of
cryptocurrencies, and employ different sets of covariates with the forest-based methods
and the benchmark procedures.

Previous studies have confirmed that there exist speculative bubbles (Cheah and Fry,
2015; Hafner, 2020), and we find that our approach assesses risks especially well during
such times. Moreover, we account for a large number of covariates that describe volatility,
liquidity, and supply (Liu and Tsyvinski, 2020). It can be seen that variable importance
differs substantially depending on time, where long-term measures of standard deviation,
that are an important predictor in stable times, are not relevant predictors for VaR
in unstable, volatile times. Furthermore, only few of the additional covariates beside
lagged standard deviations and lagged returns are relevant. We find that for other, less
volatile classes of cryptocurrencies such as stablecoins, especially GJR-GARCH models
and quantile regression can compete with GRF.

Our paper contributes to the growing literature on cryptocurrencies. Analyses per-
formed in the past include GARCH models (Chu et al., 2017) as well as ARMA-GARCH
models (Platanakis and Urquhart, 2019), approaches using RiskMetrics (Pafka and
Kondor, 2001) and GAS-models (Liu et al., 2020), application of extreme value theory
(Gkillas and Katsiampa, 2018), vine copula-based approaches (Trucios et al., 2020),
Markov-Switching GARCH models (Maciel, 2020), non-causal autoregressive models
(Hencic and Gouriéroux, 2015) and also some machine learning based approaches (see
e.g. Takeda and Sugiyama (2008)). Additionally, cryptocurrencies can be used for diver-
sification in investment strategies with other, traditional assets (see. e.g Trimborn et al.
(2020); Petukhina et al. (2021)), as the correlation between them and more established
assets tends to be low (Elendner et al., 2017; Platanakis and Urquhart, 2019). This
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again poses the question of assessing the risks of cryptocurrencies, where new methods of
addressing the above mentioned challenges need to be explored.

The paper is structured as follows. Section 2.2 presents the underlying data and
cryptocurrencies we use in our analysis. In Section 2.3, we introduce the main methods
used to analyze the data, specify VaR and present the evaluation tests and framework.
Section 2.4 demonstrates the performance of the different methods under various data
generating processes in a thorough simulation study. Results for the data are shown in
Section 2.5, where we compare the performance of methods directly over all currencies
and using classic backtests in Section 2.5.1. In Section 2.5.2, we analyze representative,
important currencies in detail and look at their variable importance. Finally, we conclude
in Section 2.6.

2.2 Data

We use daily log-returns of 105 of the largest cryptocurrencies2 from coinmetrics by
market capitalization3, with their value compared to US-Dollar (USD), in the period
from 07/2010 to 03/2022. Depending on the currency (i.e. the date of creation), the
number of available observations varies between 261 and 4264. The data is summarized
in Table 2.1. The coinmetrics dataset includes spot-market information from 30 different
exchanges, such as Binance, ZB.COM, FTX, OKX, Coinbase, KuCoin, or Kraken4. We
see that there are some very negative and positive returns in the data, as well as high
excess-kurtosis confirming the observations in the depicted quantiles. Furthermore, there
are some assets with a high skewness, both positive and negative, indicating asymmetry
in the distribution of returns.

We do not detect any stochastic non-stationarities in the data, which is supported by
Augmented Dickey-Fuller (ADF) tests and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests (Kwiatkowski et al., 1992). With Alpha Finance Lab (alpha), Polymath (poly),

2The data was obtained on 23rd March 2022 from https://docs.coinmetrics.io/ using the commu-
nity data set, which can be downloaded from a public Github repository at https://github.com/

coinmetrics/data/.
3All currencies have a maximum market capitalization of more than 15 million USD each.
4See https://docs.coinmetrics.io/exchanges/all-exchanges for an overview of all exchanges in-

cluded.

https://docs.coinmetrics.io/
https://github.com/coinmetrics/data/
https://github.com/coinmetrics/data/
https://docs.coinmetrics.io/exchanges/all-exchanges
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and Synthetix (snx), KPSS tests against level stationarity seem slightly significant, while
trend KPSS tests and ADF tests suggest stationarity. With Algorand (algo), Binance
Coin (bnb), Curve DAO Token (crv), FTX Token (ftt), Internet Computer (icp), Aave
(lend), OMG Network (omg), SushiSwap (sushi), and Monero (xmr), KPSS tests against
trend stationarity are slightly significant, while ADF tests and level KPSS tests again
suggest stationarity. All results of the stationarity tests can be found in Table 2.10 in
the appendix.

Table 2.1: Descriptive Statistics of Log-Returns of Cryptocurrencies
Min 1% 5% Median 95% 99% Max Skewness Excess-Kurtosis Standard Deviation Observations

Min% -1.264 -0.308 -0.168 -0.006 0.001 0.002 0.006 -3.556 1.671 0.001 261.000
1% -1.120 -0.268 -0.158 -0.006 0.001 0.002 0.006 -2.691 1.965 0.001 314.960
5% -0.830 -0.243 -0.139 -0.004 0.002 0.006 0.016 -1.195 3.043 0.002 526.200

25% -0.576 -0.199 -0.114 -0.001 0.089 0.170 0.342 -0.190 6.482 0.060 717.000
50% -0.492 -0.181 -0.104 0.000 0.109 0.209 0.461 0.298 10.708 0.073 1354.000
75% -0.362 -0.160 -0.086 0.001 0.120 0.239 0.704 1.030 23.164 0.080 1669.000
95% -0.022 -0.006 -0.002 0.002 0.153 0.318 1.258 2.241 75.697 0.101 2851.800
99% -0.006 -0.002 -0.001 0.003 0.197 0.412 1.431 3.472 160.129 0.117 3264.120

Max% -0.005 -0.002 -0.001 0.003 0.201 0.539 1.462 3.753 216.567 0.136 4264.000

Notes: The rows show the quantiles of the sample-measures in the columns that are for log-returns of all
cryptocurrencies combined. For example, over all cryptocurrencies, there is a median of 1354 observations per
cryptocurrency.

For the cryptocurrencies, Figure 2.1 illustrates the median returns (black) over all
cryptocurrencies by date. We can see that in the beginning of the time period, only one
currency, namely Bitcoin, was present in the data set. From 2014, we see an incremental
increase (red line), while there is a jump up in 2017 and an consecutively faster increase
in available cryptocurrencies. We also see that the returns are very different between
currencies from 2014 to 2018 (blue), which marks a period of hype leading to a crash
in the beginning of 2018. Later, there a large negative spikes corresponding to the
many waves of the Covid-19 pandemic. Based on these observations, we divide our data
into three periods. The first period ranges from August 2015 (2015-08-22) to the end
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Figure 2.1: Pointwise Median Returns Over All Currencies With 5% And 95% Sample
Quantiles in Blue Over Each Date
Notes: The number of currencies that have a return at the time is indicated in red. The orange,
green, and purple shaded areas correspond to the three periods we analyze closer in Section 2.5.

of 2017 (2017-12-21), while the second period subsequently lasts until November 2020
(2020-11-05). The last period then covers the rest of our data (until 2022-03-20)5.

Since we are in a time series setup, we include classic covariates based on lagged return
in our analysis. Additionally, we employ information specific to each cryptocurrency
in 7 external covariates. The five time-series based covariates consist of the one-day
lagged return and the lagged 3,7,30, and 60 day return standard deviation. The external
covariates are the number of unique active daily addresses (Active_Users), the number
of unique addresses that hold any amount of native units of that currency or at least
10 or 100 USD equivalent (Total_Users, Total_Users_USD10,Total_Users_USD100),

5The specific dates account for the training periods of currencies and creation of new assets to make
sure that we capture a maximum number of cryptocurrencies in each time period.
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the supply equality ratio (SER), i.e. the ratio of supply held by addresses with less than
1/107 of the current supply to the top 1% of addresses with the highest current supply,
the number of initiated transactions (Transactions), and the velocity of supply in the
current year (Velocity), which describes the the ratio of current supply to the sum of the
value transferred in the last year. See also Table 2.13 in the Appendix for details on the
covariates.

Table 2.2: Summary of Covariates for Different Time Periods
Quantile Ret Active_Users Total_Users Total_Users_USD100 Total_Users_USD10 SER Transactions Velocity sd_3 sd_7 sd_30 sd_60 CapMrktCurMUSD
Period 1: 5 Currencies
5% -0.094 7691 233361 7768 32688 0.001 3304 9.321 0.007 0.014 0.022 0.026 17
Median -0.001 127679 2579591 297029 615602 0.013 49170 33.708 0.036 0.044 0.051 0.055 2611
95% 0.104 324662 9697275 3562101 5930594 0.031 110698 109.281 0.137 0.134 0.123 0.124 185407
Period 2: 15 Currencies
5% -0.085 3592 95320 5271 16960 0.001 16618 4.668 0.008 0.015 0.024 0.027 70
Median -0.001 66921 2629309 233835 540993 0.008 128481 16.244 0.034 0.041 0.047 0.049 5008
95% 0.094 179852 8601014 2135275 4469914 0.018 655221 67.849 0.122 0.119 0.111 0.109 99979
Period 3: 77 Currencies
5% -0.082 2138 533215 15647 41396 0.002 25250 5.255 0.008 0.017 0.026 0.030 233
Median -0.000 19371 1218761 80236 215034 0.007 137082 15.325 0.035 0.041 0.047 0.049 1794
95% 0.086 76081 2793940 565048 1195791 0.012 424953 53.743 0.111 0.105 0.101 0.096 26105
Full Data: 105 Currencies
5% -0.089 1857 559862 16964 44887 0.002 19135 5.626 0.009 0.019 0.028 0.033 461
Median -0.000 15406 1095198 72651 186751 0.006 106286 14.371 0.038 0.045 0.051 0.054 2367
95% 0.095 62448 2389786 434200 917576 0.010 339294 44.627 0.120 0.113 0.108 0.102 21085

Notes: Values are means of quantiles over all assets contained in the specific time period. CapMrktCurMUSD
describe the market cap in Mio. USD and is not included as a covariate due to multicollinearity reasons.

Table 2.2 gives an overview of the employed covariates and their values in the different
time periods. We can see that in Period 1, we have the most extreme returns on average
as well as the most extreme lagged standard deviations. This is not surprising looking at
the first period (853 days), which arguably marks the most volatile period, with many
new currencies being created, as well as the second longest period. In the following
period (1050 days), the average median market cap reaches a high as well as the number
of users invested in the currencies, indicating that the market is growing while stabilizing
more. This is followed by a sharp drop in the market cap for the last, shortest period
(500 days), which starts at the beginning of the Covid-19 pandemic. There, the number
of active users as well as the SER decreases, indicating that more smaller addresses are
pushed off the market, while it is the period with the most currencies.

All in all, we therefore have three very distinct periods. The first one is characterized
by a few, rapidly changing currencies and extreme returns and volatilities, while the
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second period is less extreme and more characterized by a strong increase in median
market caps. The third period, in the end, is very short but contains more than five
times the number of currencies in comparison to the second period.

2.3 Methodology

For the prediction of cryptocurrencies, we advocate the use of non-linear machine learning
based techniques. In this way, we intend to accommodate the documented large share of
speculation (Ghysels and Nguyen, 2019; Baur et al., 2018; Selmi et al., 2018; Glaser et al.,
2014) and resulting frequent changes in unconditional volatility which make predictions
in this market peculiar. In particular, we focus on generalized random forest methods
that are tailored for conditional quantiles of returns and thus allow to forecast the VaR.
The flexible but interpretable non-linearity of the approach allows for a direct comparison
to standard linear and (G)ARCH type models. We also argue that the difference in
forecasting performance can moreover be employed to detect periods of bubbles and
extensive speculation.

Recall that for daily log returns rt the V aRt at level α ∈ (0, 1) conditional on some
covariates xt−1 is defined as

V aRα
t (xt−1) = sup

rt

(F (rt|xt−1) < α) , (2.1)

where F marks the distribution of rt conditional on xt−1. Generally, the conditioning
variables could consist of past lagged returns, standard deviations but also external
(market) information or other assets. We employ these as covariates that are explained
in Section 2.2.

We propose the use of two different types of random forest based techniques which
directly model the conditional VaR in (2.1). Both build on the classic random forest
(Breiman, 2001) which is an ensemble of (decorrelated) decision trees (see e.g. Hastie
et al. (2009)) for the mean of rt. In a decision tree, each outcome rt is sorted into leafs of
the tree by binary splits. These splits are performed based on different xt−1 components
falling above or below specific adaptive threshold values that need to be calculated, for
example by the Gini Impurity or MSE-splitting in Classification and Regression Trees
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(CART) (Breiman et al., 1984), or using other criteria. Finally, the prediction for a new
rt is a weighted version of each tree prediction.

In the proposed method that we employ, the generalized random forest (GRF) from
on Athey et al. (2019), the random forest split criterion is adapted to mimic the task of
quantile regression rather than minimizing a standard mean squared loss criterion for
mean regression tasks. Intuitively, the splits in each leaf are conducted by minimizing
the Gini-loss, which separates the returns rt as best as possible at different quantiles. To
transform the minimizing problem in the splits into a classification task, the response
variable rt is transformed in each split to obtain pseudo-outcomes ρt =

∑K
k=1 1{rt > θk},

where Θ = (θq1 , . . . , θqK ) describe a set of K pilot-quantiles of rt in the parent node. These
quantiles with levels τ = q1, . . . , qK are then used to calibrate the split6. In Athey et al.
(2019), this is formally motivated by moment conditions and gradient approximations,
but practically, rt is relabeled to a nominal scale depending on the largest quantile
it does not exceed. In a final step, the optimal split on a variable component p of
xt−1 and j = 1, . . . , J observations in the parent node is then based on minimizing the
above-mentioned Gini impurity criterion for classification. For a separation into two
possible leaf sets v = l, r, the Gini impurity for one leaf v is Gv

p = 1−
∑K
k=1 p2

k,v, where
pk,v =

∑J
j=1 1{ρj = k and ρj ∈ v}/|v| is the proportion of ρj in group v with value

k = 1, . . . , K. The full loss is then an average weighted by leaf size, yielding

Gp = (|l|Gl
p + |r|Gr

p)/(|l|+ |r|) . (2.2)

We choose the Gini-loss since it is fast and, for certain configurations, produces purer
nodes than for example using entropy as a splitting criterion (see e.g Breiman, 1996). This
can be particularly helpful when dealing with changing variance (and thus time-varying
quantiles) of returns, where we would like to detect single extreme events. For our specific
case of α = 0.05, this implies that values larger than θ0.05 in the parent node are given the
value 1, while others are 0. Algorithm 1 briefly summarizes the tree building algorithm
from Athey et al. (2019) for the quantile version of GRF, where the main differences
with regard to the splitting regime in comparison to a classic CART occur in every step
the tree is grown.

6We use the tuning parameters K = 1 and τ = α, i.e. the level of VaR we are analyzing, in this
classification pre-step.
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In addition to that, the outcome that is predicted is not the mean but the α-quantile
(i.e. V aRα), which is done in a way that you do not calculate a weighted average of rt

but a weighted average of the empirical CDF F̂ (rt|xt−1) = E[1{rt}|xt−1 ]. Intuitively, log
returns rt that have similar xt−1 in comparison to a new observation xv receive higher
weight in the empirical CDF. Similarity weights wt(xv) are measured as the relative
frequency on how often xv falls in the same terminal leaf as xt−1, for t = 1, . . . , T ,
and averaged over all trees for each xt−1. This last step was originally introduced by
Meinshausen (2006) for random forests.

As a benchmark, we employ the quantile regression forest (QRF) based on Meinshausen
(2006). This random forest, however, uses the same splitting regime as the original CART
random forest and therefore does not account explicitly for situations where the variance
and therefore the quantile changes, as splits are conducted based on a mean-squared
error criterion. Since such volatility changes are to be expected for cryptocurrencies in
our data, we expect GRF to perform better than QRF, but still include both in the
analysis to see potential differences in predictions. Furthermore, GRF uses so-called
“honest” trees, meaning that different data (usually the subsampled data for each tree is
split again in half) is used for building and “filling” each of the trees with values.

As benchmarks we further include two types of standard time series methods. We
use the CAViaR (CAV) methodology by Engle and Manganelli (2004) and standard
quantile regression (Koenker and Hallock, 2001). Both make use of quantile regression
(QR) techniques (Koenker and Bassett, 1978) that do not minimize the squared error
as in ordinary regression, but use the check function ρα(u) = u (α− 1{u ≤ 0}) to mini-
mize Lα(fα(·), xt) =

∑T
t=1 ρα (rt − fα(xt)). For CAViaR, we use a symmetric absolute

value (SAV) component for fα(·), i.e fα(xt, rt) = β1 + β2fα(xt−1, rt−1) + β3|rt−1|, and
fα(rt−1, xt) = β′

4xt+β5rt−1 for the quantile regression. In contrast to the former methods,
they can only capture parametric (non-) linear effects which limits their flexibility.

For comparison we use a GJR-GARCH(1,1) model (Glosten et al., 1993), a
GARCH(1,1)(-X) (Bollerslev, 1986) model, a simple historical simulation (Hist), meaning
that we predict V aRα

t+1 at level α as the sample α-quantile of the preceding returns in
a window of length K, i.e. (rt−K+1, . . . , rt), and one that fits a normal distribution to
the sample data and uses the theoretical fitted α-quantile as the prediction for V aRα

t+1
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Algorithm 1 Generalized Random Forest - Tree Building
Input: Set of “honest”, subsampled observations XT and RT ; minimum node size nm;

quantile probabilities τK = (τ1, . . . , τK)
1: Growing the tree Create root node P0

2: Initialize queue Q with P0

3: while Queue is not empty do
4: Take the oldest element from Q (Parent Node P ) and remove it from Q
5: Take a random subsample of p variables index by set Psub = {1̃, . . . , p̃} from XT

on which to potentially split and take observations x
(Psub)
i = (x(1̃)

i , . . . , x
(P̃ )
i ) from P .

6: Set loss =∞
7: for h in 1 to p do
8: Compute quantiles θk of rt from parent node P at τ1, . . . , τK and compute pseudo

outcomes ρt =
∑K
k=1 1{rt > θk} for each rt ∈ P .

9: For each possible split point in x(h), compute the criterion from Equation (2.2)
10: Save loss sh that minimizes this splitting criterion
11: Save optimal split point splith

12: if sh < loss then
13: loss← sh

14: indh ← h

15: end if
16: end for
17: if Split on variable h with splitindh

succeeded (based on hyperparameters) then
18: Determine children C1, C2 according to optimal split
19: Add both children C1, C2 to a new daughter node each with corresponding

observations left and add these to Q
20: end if
21: end while
Output: One tree of the forest
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(NormFit). We do not expect the latter to perform well as we have high skewness and
excess-kurtosis in the data (see Table 2.1 in Section 2.2).

For the proposed random forest type and all benchmark procedures that allow for
additional covariates (GRF, QRF, QR) we include lagged standard deviations (SD) in
addition to the lagged level rt−1 in the model in order to capture the strongly varying
levels of unconditional volatility in particular for the cryptocurrencies in the non-linear
structure. Additionally, we also employ the above methods and the GARCH(1,1) model
using both the latter covariates as well as the 7 external covariates described in Section
2.2. These methods are GRF-X, QRF-X, QR-X, and GARCH-X. To establish a fair
common ground in used model complexity for the QR, QRF, GARCH-X, and GRF, we
select a common set of different SD lags as covariates from an additional Monte-Carlo
study. In this, we use the simple SAV-model from Section 2.4 as a baseline of which
the respective specification is tailored to regime changes in the unconditional volatilities
as observed form the cryptocurrencies. The model is essentially linear autoregressive
of order 1 in the VaR and thus directly yields the VaRs as outputs. With this, it is
possible to use a MSE-minimizing criterion and select the MSE-minimizing variables for
the subsequent simulations and data analysis. Table 2.3 summarizes the results of this
short simulation study, which is why we use 3, 7, 30, and 60 day lagged SD as covariates.

Table 2.3: MSE Prediction Error for Different Covariate Combinations
Lagged SD (in days) 3 7 30 3 and 7 3 and 30 7 and 30 3, 7 and 30 3, 7, 30, and 60

GRF-MSE 0.124 0.095 0.089 0.075 0.070 0.069 0.059 0.057

Notes: MSE prediction error for a simulated SAV-model as in Section 2.4 for GRF (QRF). The minimum MSE is
marked in bold.

To compare the performance of the above methods, we use two types of evaluation
approaches. First, we test how well each model predicts the conditional α-VaR over
the entire out-of-sample horizon using three different sets of evaluation techniques.
The simplest way of checking whether a model predicts V aRα correctly over a time
horizon is to look at its coverage meaning the number of times rt is smaller than
the predicted V aRα

t . In a well calibrated model, this should be exactly αT times.
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This measure is called Actual over Expected Exceedances (AoE) and is computed
as AoEα = 1/(αT )

∑T
t=1 1{rt < V aRα

t }. To test this intuition formally, we employ
three tests, the DQ-test7 from Engle and Manganelli (2004), the Christoffersen-test
(Christoffersen, 1998) and the Kupiec-test (Kupiec, 1995). All three tests assume that
under the null hypothesis the forecasts have correct coverage. The Kupiec-test is
simply the formalization of the above intuition, the Christoffersen-test is robust against
serial correlation by assuming that gt = 1{rt < V aRα

t } ∼ Bern(α), and the DQ-test
additionally accounts for problems with conditional coverage due to clustering of the
hits exceedance sequences gt with a regression-based approach. In the empirical analysis,
we only report the values of the DQ-test, which is the strictest of the tests, for reasons
of clarity. Results for the other tests do not differ substantially and are available upon
request from the authors.

Secondly, for comparing the forecast performance of two models 1 and 2 directly,
we implement the one-step ahead test for conditional predictive ability (CPA) from
Giacomini and White (2006), Theorem 1, that assumes under the null hypothesis that
forecasts of model 1 and model 2 have on average equal predictive ability conditional
on previous information. As suggested by Giacomini and Komunjer (2005), we use the
quantile loss function Lα for the test. This tests assumes under the null hypothesis
that H0 : E [∆Lt|Ft−1] = E

[
Lα(f (1)

α , rt)− Lα(f (2)
α , rt)|Ft−1

]
≡ E [ht−1∆Lt] = 0 and

that this loss difference is a martingale difference sequence, where Ft−1 contains all
information up to time t − 1 and f

(1)
α and f

(2)
α are two competing forecasts. The test

statistic is computed using a Wald-type test with a set of factors ht−1 that can possibly
predict the loss difference ∆Lt and is χ2

q-distributed under H0. More specifically, we
choose ht−1 = (1, ∆Lt−1) (i.e. q = 2), i.e. using the lagged loss difference and an intercept
as predictors in a linear regression with parameter β0 for the simulation and application.

2.4 Simulation

As both the GRF and the QRF have so far have been mostly studied for cross-section
data, we provide simulation results on their out-of-sample performance for VaRα-forecasts

7We use the implementation from the GAS-package in R (Ardia et al., 2019) including 4 lagged Hit-values,
a constant, the VaR-forecast, and the squared lagged (log-)return.
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in a financial time series set-up. Overall, we find that as expected, GRF performs best
in all settings, in particular in settings which are designed to mimic the cryptocurrency
behavior over time but also in those similar to stock index behavior. For QRF, the
performance is entirely different, at least for the chosen parsimonious model specification
and the relatively short estimation intervals.

We study two different types of DGPs. The first one is a standard GARCH(1,1)
process, i.e

rt = ztσt (2.3)

σ2
t = ω + β0ε2

t−1 + β1σ2
t−1 , (2.4)

where the parameters are estimated on the full Bitcoin data to mimic the behavior of
cryptocurrencies (with zt ∼ N(0, 1)). We denote this setting as sim GARCH Bitcoin
fit. Moreover, we also consider the specification with β0 = 0.1, β1 = 0.8, ω = 10−4

and zt ∼ N(0, 1) (sim GARCH ) and with zt as t5-distributed (sim GARCH t), which
corresponds to standard stock index data. Secondly, for the Sim SAV-Model setting, we
fit a symmetric absolute value (SAV) model to normal returns, i.e.

VaRt+1 = γ0 + γ1VaRt + γ2|r(init)
t − γ3| , (2.5)

with r
(init)
t ∼ N(0, σ2

t ) and σt
65 ∼ χ2

2, where new draws of σt are only taken every 100
observations, keeping σt constant meanwhile. We then generate the final return as

rt ∼ N

(
0,

V̂ aRt

Φ(α)−1

)
from the fitted SAV-model, where Φ(α)−1 is the quantile function

of a standard normal variable. We do this to obtain returns that have exactly the VaR
that we obtained from the SAV model before.

For all settings, we generate 2000 return observations and forecast the one-step ahead
VaR over the different rolling window lengths l = 500, 1000. We repeat this generation
process 200 times for α = 0.01 and α = 0.05. For comparison of the different methods
described in Section 2.3, we use the DQ-test, the Kupiec test, the Christoffersen-test,
and the AoE. Note that for all tests, we present aggregate results from two-sided t-tests
of the empirical versus the nominal coverage. The results are therefore rejection rates
of t-tests against the nominal level of 5%. Therefore, a lower rejection rate and higher
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Table 2.4: Simulation: 5% VaR
Rolling Window l = 500 l = 1000

DQ Kupiec Christoffersen AoE DQ Kupiec Christoffersen AoE

Sim GARCH Normal
QRF 0.940 (0.008) 0.325 (0.200) 0.200 (0.275) 1.185 0.725 (0.063) 0.160 (0.377) 0.090 (0.393) 1.148
GRF 0.495 (0.163) 0.000 (0.583) 0.015 (0.549) 1.040 0.225 (0.317) 0.020 (0.547) 0.030 (0.525) 1.030
QR 0.760 (0.048) 0.085 (0.441) 0.090 (0.438) 1.095 0.305 (0.270) 0.040 (0.537) 0.040 (0.496) 1.042
Hist 0.835 (0.045) 0.015 (0.554) 0.195 (0.365) 1.047 0.630 (0.110) 0.060 (0.490) 0.195 (0.368) 1.030
NormFit 0.740 (0.071) 0.040 (0.551) 0.205 (0.329) 1.006 0.555 (0.130) 0.065 (0.475) 0.195 (0.345) 1.001
CAViaR 0.785 (0.051) 0.025 (0.514) 0.010 (0.545) 1.073 0.275 (0.286) 0.055 (0.513) 0.025 (0.511) 1.032
GARCH(1,1) 0.445 (0.209) 0.030 (0.511) 0.155 (0.394) 1.046 0.205 (0.327) 0.055 (0.531) 0.095 (0.428) 1.028

Sim GARCH t
QRF 0.920 (0.018) 0.315 (0.203) 0.210 (0.277) 1.188 0.655 (0.085) 0.175 (0.348) 0.100 (0.399) 1.162
GRF 0.435 (0.188) 0.010 (0.579) 0.025 (0.537) 1.029 0.260 (0.341) 0.030 (0.522) 0.020 (0.518) 1.022
QR 0.770 (0.060) 0.130 (0.407) 0.105 (0.407) 1.109 0.275 (0.303) 0.040 (0.507) 0.035 (0.468) 1.049
Hist 0.725 (0.077) 0.020 (0.573) 0.200 (0.360) 1.036 0.580 (0.121) 0.115 (0.440) 0.185 (0.334) 1.016
NormFit 0.695 (0.090) 0.310 (0.271) 0.370 (0.220) 0.839 0.550 (0.155) 0.340 (0.275) 0.370 (0.239) 0.817
CAViaR 0.525 (0.135) 0.010 (0.523) 0.010 (0.542) 1.059 0.175 (0.331) 0.055 (0.499) 0.040 (0.502) 1.032
GARCH(1,1) 0.405 (0.232) 0.135 (0.381) 0.210 (0.316) 0.893 0.270 (0.308) 0.200 (0.368) 0.220 (0.344) 0.862

Sim SAV-Model
QRF 0.960 (0.010) 0.315 (0.188) 0.180 (0.265) 1.187 0.735 (0.071) 0.150 (0.352) 0.115 (0.413) 1.158
GRF 0.495 (0.148) 0.005 (0.571) 0.025 (0.570) 1.047 0.210 (0.317) 0.040 (0.518) 0.035 (0.548) 1.048
QR 0.895 (0.024) 0.050 (0.435) 0.045 (0.452) 1.102 0.310 (0.234) 0.045 (0.490) 0.045 (0.530) 1.064
Hist 0.290 (0.220) 0.035 (0.595) 0.070 (0.523) 1.047 0.165 (0.353) 0.070 (0.525) 0.080 (0.496) 1.048
NormFit 0.215 (0.360) 0.040 (0.539) 0.110 (0.502) 0.994 0.145 (0.418) 0.080 (0.501) 0.070 (0.474) 0.999
CAViaR 0.775 (0.053) 0.030 (0.525) 0.030 (0.563) 1.067 0.235 (0.289) 0.045 (0.527) 0.045 (0.563) 1.038
GARCH(1,1) 0.135 (0.338) 0.030 (0.567) 0.065 (0.528) 1.021 0.065 (0.469) 0.045 (0.546) 0.040 (0.524) 1.018

Sim GARCH Bitcoin fit
QRF 0.875 (0.018) 0.325 (0.200) 0.200 (0.275) 1.185 0.585 (0.110) 0.160 (0.377) 0.090 (0.393) 1.148
GRF 0.255 (0.303) 0.000 (0.583) 0.015 (0.549) 1.040 0.160 (0.454) 0.020 (0.547) 0.030 (0.525) 1.030
QR 0.635 (0.095) 0.085 (0.441) 0.090 (0.438) 1.095 0.170 (0.380) 0.040 (0.537) 0.040 (0.496) 1.042
Hist 0.600 (0.102) 0.015 (0.554) 0.195 (0.365) 1.047 0.385 (0.269) 0.060 (0.490) 0.195 (0.368) 1.030
NormFit 0.540 (0.159) 0.040 (0.551) 0.205 (0.329) 1.006 0.330 (0.299) 0.065 (0.475) 0.195 (0.345) 1.001
CAViaR 0.970 (0.007) 0.375 (0.178) 0.280 (0.224) 0.814 0.655 (0.055) 0.305 (0.236) 0.270 (0.273) 0.791
GARCH(1,1) 0.230 (0.319) 0.030 (0.536) 0.180 (0.399) 1.054 0.100 (0.458) 0.040 (0.545) 0.080 (0.438) 1.032

Notes: The table displays rejection rates of t-tests of empirical quantile levels against the nominal level of 5% for
DQ-, Kupiec- and Christoffersen-tests and mean p-values in parentheses. Thus higher p-values and lower rejection
rates indicate better model performance. The GARCH case uses predictions from the QMLE-fit of a GARCH(1,1)
specification with normally distributed errors and can therefore be seen as an oracle for the GARCH-simulated
specifications.
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mean p-values (in parentheses) indicate better performance. For GRF, QRF, and QR,
we use a common set of lagged covariates as described at the end of Section 2.3.

Table 2.4 summarizes the results of the simulation for the 5% V aR. According to the
more advanced DQ- and Christoffersen-tests for evaluation, GRF consistently outperforms
the other methods in almost all cases, indicating superior predictive quality. This is
very much in contrast to the QRF which is consistently dominated by the other models.
For the Sim GARCH and Sim GARCH t cases which mimic standard stock indices, the
performances of GRF, CAV and QR appear in a similar range with mostly advantages for
GRF in particular for smaller sample sizes. This holds generally for normally distributed
as well as heavy tailed innovations which lead to similar results also in magnitude of the
rejection rates. As expected, forecasting performance increases throughout all models
with larger estimation windows, though with CAV often profiting the most from the
larger sample sizes. For these settings with GARCH as true DGP, the performance of
the GARCH model serves as an oracle reference. In the t-innovation case, it has coverage
problems and GRF is even able to outperform it in Christoffersen-tests.

For the Sim SAV Model and the Sim GARCH Bitcoin fit the situation, however, differs
substantially. In these cryptocurrency-like cases, the GRF clearly dominates the QR
and CAViAR particularly strongly in the small 500 observations setting. Considering
our application where only a relatively small time span is available, this seems crucial.
Moreover, CAViaR runs into coverage problems according to the AoE results which even
deteriorate for larger sample sizes for Sim GARCH Bitcoin fit. In the latter case, the
GRF rejection rates are close to the GARCH benchmark while the strong conditional
dependence structure in the tails of the Sim SAV Model setting shows that for such
extreme cases, the unconditional coverage of GRF is still excellent, but the conditional
coverage measured by the DQ-test is only average among all models for the larger
estimation samples and even below for the smaller ones. These relative findings generally
prevail for the 1% VaR forecasts, but absolute performance is generally worse for all
methods, especially with a smaller rolling window of 500 (see Table 2.17 in the appendix.).
Intuitively, this finding is reasonable, since relevant observations for the 1% level should
in theory only occur in 5 of the 500 observations, making it harder for the data-driven
methods to predict such unlikely events.
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Additionally, we conduct direct pairwise comparison tests between the superior random
forest type method GRF against the best performing non-oracle other parametric methods
via CPA-tests for each scenario. The respective results are reported in Table 2.5. In the
majority of cases, GRF outperforms its competitors on average, however, mean p-values
are mostly not significant. For example, GRF has a smaller loss (i.e. quantile loss) than
QR in about 90% of the forecasts (aggregated over all runs) but a mean p-value of 0.298,
which would not qualify as a significant out-performance (on average). This of course
does not mean that the test never rejects but is likely be caused by high variances in the
p-values over different simulation runs. Furthermore, the competing methods are also
slightly improving with window length, which further implies that GRF can deal better
with a smaller training time frame.
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Table 2.5: CPA-tests on Predictions of 5% VaR for Different Window Lengths and
Different Models

Rolling Window l = 500 l = 1000
GRF vs: QR Hist CAV QR Hist CAV

Sim GARCH Normal
Mean P-Value 0.429 0.351 0.334 0.491 0.388 0.463
No. P-Values < 0.1 34 55 50 24 44 27
GRF-Performance 0.780 0.755 0.847 0.501 0.744 0.659

Sim GARCH t
Mean P-Value 0.392 0.382 0.396 0.431 0.397 0.446
No. P-Values < 0.1 43 40 34 30 37 15
GRF-Performance 0.732 0.707 0.692 0.439 0.717 0.529

Sim SAV-Model
Mean P-Value 0.298 0.311 0.374 0.471 0.381 0.448
No. P-Values < 0.1 53 63 42 26 50 22
GRF-Performance 0.903 0.279 0.775 0.657 0.321 0.658

Sim GARCH Bitcoin fit
Mean P-Value 0.429 0.351 0.001 0.491 0.388 0.003
No. P-Values < 0.1 34 55 200 24 44 199
GRF-Performance 0.780 0.755 0.995 0.501 0.745 0.994

Notes: The table displays CPA-tests for 5% one-day ahead VaR-forecasts of the best performing random forest
type techniques GRF in Table 2.4 versus the best parametric time series models. We report mean p-values, the
number of significant p-values over 200 iterations and the rate at which GRF outperforms the competing method
(i.e. a value of 0.8 means that GRF has a smaller error loss than the competing method in 80% of the rolling
window forecasts over all runs). Low p-values paired with performance rates larger than 0.5 indicate that GRF
outperforms the competing methods.

2.5 Results

In this section, we highlight the advantages from using non-linear machine learning-based
methods for forecasting the VaR of cryptocurrencies. In particular, we show for a large
cross-section of more than 100 cryptocurrencies that the proposed random forest method
GRF yields superior performance across a wide range of different types of cryptocurrencies
and different time periods. Investigating the underlying drivers, we illustrate that the
non-linear model predictions excel especially for assets that are frequently traded by a
large amount of different users, and for more volatile assets and times.
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More specifically, we predict the 5%−VaR as a key quantity in risk management for our
comprehensive set of cryptocurrencies. In an extensive out-of-sample forecasting study,
we compare the random forest-based machine learning methods to standard linear time
series and GARCH-type models including approaches with exogenous asset information
in covariates. The prediction performance is assessed with the DQ-test to obtain an
overall aggregate picture on the realized coverages as well as pairwise CPA tests across
different time periods and types of cryptocurrencies. Based on these findings, we focus
our analysis on three important selected currencies comprising Bitcoin (btc) as the largest
currency by far regarding market cap, Tether (usdt) as a stablecoin with lower volatility,
and Cardano (ada) as a currency specifically allowing for smart contracts. For these we
also consider predicted loss series by CPA-tests and variable importance measures to
uncover important drivers. We furthermore identify single events that majorly affect the
predictive ability of the procedures.

2.5.1 Aggregated Forecasting Performance

In this section, we provide results on aggregate forecast performance of the different
modeling approaches over all cryptocurrencies.

Direct Pairwise Forecast Comparisons

As a comparison to GRF we use the wide range of standard financial time series methods
as introduced in Section 2.3. For assessing the prediction performance, we conduct
pairwise CPA-tests separately for the three different specified time periods over all
cryptocurrencies. The results of the tests are contained in Table 2.6 and Figure 2.2. Note
that the CPA-tests require the rolling window length to be smaller than the out-of-sample
forecast window to produce valid results, which is why the results from the shortest
period Period 3, where both sizes are equal to 500 might have less power. Specifically
for more recently introduced cryptocurrencies, the out-of-sample size is too low for the
CPA-tests to have high power. Therefore, we additionally look at the direct comparisons
of predicted losses (as suggested by Giacomini and White (2006), Section 4)8, where

8We use the lagged loss difference and an intercept for loss prediction in an auto-regressive setup since
these are the main drivers of the test statistic in the CPA test.
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we compare in the loss series how often GRF is better, i.e. has a smaller loss, than its
competitors (GRF-Performance). Note that a value of one thus indicates that GRF has
a smaller predicted loss over the full loss series.

In general, GRF performs better than its competitors for a majority of crypotocurrencies
over all time periods. Table 2.6 summarizes the results. We can see that QRF is almost
always outperformed, and for around 50% of cryptocurrencies, losses are even significantly
smaller. This is not surprising, as QRF has a similar structure to GRF while not being
tuned to predict the quantiles directly. Thus, we expect it to be less sensitive to changes
that only affect the quantile of the return distribution, for example large shock events.
The same holds for the GARCH-X and Hist, which are clearly outperformed by the GRF,
as well as the QR-X and QRF-X. Adding exogenous information in covariates as part
of the non-linear GRF (i.e. GRF-X) is better especially in later periods (see Figure 2.7
in the appendix). This is interesting, since the other methods cannot benefit as much
as GRF from additional covariates. Generally, for cryptocurrencies, the non-parametric
form of the GRF helps to extract information from exogenous covariates in contrast to
standard parametric methods such as QR and GARCH. As GRF accounts specifically for
the quantiles in the random forest splitting function, this helps to also favorably integrate
additional covariates X in contrast to QRF. Overall, however, both GRF-procedures
seem to perform very similarly, especially in pairwise comparisons. For full results of
the GRF-X, see Table 2.14 and Figure 2.7 in the appendix. While CAV, QR, and
GJR-GARCH are outperformed over the majority of cryptocurrencies, only 20% to 50%
of these out-performances reach significance. In subsection 2.5.2, we will focus on specific
cryptocurrencies for a more in depth understanding.

When considering the single time periods, it is notable how for Period 1 and 2 (bottom
part of Table 2.6), GRF(-X) is constantly outperforming the other methods for most
cryptocurrencies, and only has somewhat worse performance for doge and the stablecoins,
although these are insignificant (see below). For the first two periods, QR is maybe the
most competitive of the other methods, while there is a general tendency for the classic
methods to perform worse with higher volatility of returns, which can be seen in Table
2.6 for Period 2 where the currencies are ordered from highest 30 day lagged SD on the
left to the lowest on the right.
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Table 2.6: Performance and Significance of CPA-tests Over Different Time Periods for
GRF Without Additional Covariates

GRF vs.: QRF QR CAV GJR-GARCH Hist GRF-X QRF-X QR-X GARCH-X

Share of GRF With Better Performance
Period 1 1.00 0.80 0.80 1.00 1.00 0.60 1.00 1.00 1.00
Period 2 1.00 0.73 0.87 0.80 0.93 0.40 1.00 1.00 1.00
Period 3 0.92 0.68 0.71 0.64 0.90 0.44 0.92 0.96 0.70
Full Data 0.91 0.74 0.75 0.71 0.82 0.44 0.90 0.97 0.72
Share of GRF With Significantly Better Performance
Period 1 0.40 0.40 0.20 0.20 1.00 0.00 1.00 1.00 0.60
Period 2 0.53 0.33 0.27 0.33 0.73 0.00 1.00 0.87 0.67
Period 3 0.43 0.21 0.23 0.19 0.51 0.09 0.74 0.78 0.53
Full Data 0.41 0.31 0.24 0.18 0.41 0.12 0.69 0.83 0.54
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Notes: The top part shows summary values that are shares over all cryptocurrencies in the respective time period.
It describes the number of times that GRF had a better performance (i.e. more than 50% of predicted losses by
the CPA test were smaller for the GRF) relative to all crytpocurrencies (in that period), and the number of times
that GRF was significantly better (at least at a 10% level) as judged by the CPA test over all crytpocurrencies (in
that period). The bottom part shows the detailed results of CPA-tests with the color of each box indicating the
performance of GRF. Blue signifies a performance of 1, meaning that GRF has a smaller predicted loss in 100%
of cases. *, **, *** shows significance on a level of 10%, 5%, and 1%. The values are ordered by 30 day lagged
standard deviation from highest to lowest (top/left to bottom/right).

This becomes more apparent in Period 3, where we deal with much more cryptocur-
rencies (77) and a much shorter time horizon (500 out-of-sample observations). Here,
methods such as GJR-GARCH and QR are on par with GRF or even better when
looking at low-volatility (partly regulated) stablecoins such as pax, gusd, tusd, dai, and
usdt with its derivatives (e.g. usdt_eth,usdt_trx). CAV, on the other hand, is only
rarely better here (as indicated by CPA tests), while being significantly outperformed for
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Figure 2.2: Overview of Results for CPA-Tests of GRF vs. All Other Methods for
Cryptocurrencies in the Third Period
Notes: Cryptocurrencies are ordered by 30 day lagged standard deviation from highest to lowest,
left to right. The color of each box indicates the performance of GRF, with 1 (blue) indicating
that GRF has a smaller predicted loss in 100% of cases. *, **, *** indicate significance on a level
of 10%, 5%, and 1%.

important and large assets such as btc, ada, xlm, and most stablecoins where the QR
and GJR-GARCH performed well.

To highlight the specific properties of currencies where GRF outperforms the other
methods, we split the assets into two groups. The first group (Group_low) contains
assets where GRF performance is low in comparison to the three other methods that
were able to compete in some cases with GRF, namely QR, CAV, and GJR-GARCH.
We add an asset into that group when at least two of the methods outperform GRF (in
terms of loss difference) for that asset, separately for each time period. All other assets
are sorted into the second group (Group_high), indicating high performance of GRF.
Table 2.8 summarizes the results over these groups for each time period and covariate.
In each group, we take the mean over all cryptocurrencies of median values for each
covariate. We then divide Group_low by Group_high. For example, An SER of 0.15
in Period 3 indicates that cryptocurrencies in Group_low have, on average, a median
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SER that is only 15% to that of Group_high, or in other words, the median SER for
Group_high is around 6.7 = 1

0.15 times higher than that of Group_low on average.
We see that covariates of cryptocurrencies for which GRF performs better have much

higher volatility (especially for the second and third period), a much higher SER9,
indicating a larger concentration of supply at a lot of small addresses, a higher market
capitalization, a lower rate of turnover (Velocity), and more active and total users. To
summarize, this confirms the observation that GRF performs better for assets with highly
varying returns that are traded by a large amount of users, which could thus also be
prone to speculation. On the other side, methods such as QR or GJR-GARCH are better
with more stable currencies that are used more as a hedging device (e.g. stablecoins).

Table 2.8: Difference Between Covariates of Cryptos Where GRF is Better vs. Worse
Period 1 Period 2 Period 3 Full Data

Ret 1.20 0.16 1.05 0.92
Active_Users 0.34 0.15 0.26 0.34
Total_Users 0.79 0.18 0.13 0.15

Total_Users_USD100 0.22 0.17 0.27 0.35
Total_Users_USD10 0.41 0.17 0.19 0.25

CapMrktCurUSD 0.08 0.11 0.37 0.33
SER 1.07 0.50 0.15 0.21

Transactions 0.42 0.04 1.20 1.53
VelCur1yr 4.68 3.11 1.48 1.43

sd_3 0.89 0.52 0.59 0.58
sd_7 0.91 0.54 0.59 0.57

sd_30 0.90 0.52 0.59 0.58
sd_60 0.91 0.54 0.58 0.57

Notes: Values are shares of groups of cryptocurrencies where at least two of CAV, QR, and GJR-GARCH have
better CPA-performance than GRF divided by the remaining rest. Raw values before division are mean values
over all cryptocurrencies for the median of each covariate in the respective time period.

Backtesting

Apart from directly comparing the methods against each other, we also check their ability
of predicting VaR in general using the DQ-test (see Section 2.3 for details), which is

9Apart from the first period where the only currency belonging to Group_low is doge.
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Figure 2.3: Boxplots of P-Values of DQ-Tests Over All Cryptocurrencies
Notes: P-values are separated over each time period and each method. The dashed horizontal line
depicts a level of 0.1.

representative for all backtests10. The results over the different time periods for the 5%
VaR-predictions are shown in Figure 2.3. We can see that depending on the time period,
the p-values vary strongly, which is not surprising giving the different characteristics of
each period and the increasing number of cryptocurrencies in the later periods. In general,
GRF is the only method with median values consistently over the 10% level, indicating
that is the most consistently calibrated forecasting method. The QRF performs extremely
well in the first time period, but rejects the test often in the third period. Adding external
covariates does not help in general lowers p-values substantially especially for the QR.
Only in the final third period, adding external covariates increases the p-values slightly
for the GRF and QRF (GRF-X, QRF-X). This indicates that those extra covariates are
not necessarily predictive for extreme returns, or rather that the existing measures such
as lagged returns and SD comprise the information already quite well. Compared to
its non-forest counterparts, only CAV and GJR-GARCH can partly keep up with GRF.
GJR-GARCH has slightly higher p-values than GRF in the third period, which is the
shortest and which contains the most currencies. It is also marked by less extreme returns

10Detailed results for the other tests are omitted here for reasons of clarity, do not differ substantially,
and are available upon request from the authors.
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and a large reduction in active users, which could indicate that the forest methods excel
in particular in highly volatile periods, when large shifts in the market are present. On
the other hand, CAV has a similar, slightly worse performance in the second period while
performing much worse than GRF in the other periods. This highlights the inability of
the parametric methods to adapt to rapidly changing situations such as in Period 1 and
3. QR, Hist, and GARCH-X are all fully dominated by GRF throughout the three time
periods as expected, as QR can only incorporate changes linearly, and GARCH-X and
Hist serve as simple baselines.

Investigating the single time periods more in detail, we can see that for all methods
except the QRF, the later time periods are easier to forecast, while only the forest-based
methods seem to benefit from additional covariates in the third period. It is also notable
that the p-values are much wider spread for most methods in the later two periods, which
can be explained by a more heterogeneous structure in cryptocurrencies in Period 2 and 3.
For an overview of DQ-tests over the full period, where achieving good coverage results is
harder in general for all the methods due to the changing dynamics in cryptocurrencies,
see Tables 2.11 and 2.9 in the appendix.

2.5.2 Extension: In-Depth Analysis of Specific Classes of Assets

To identify which specific events drive the performance of these methods, we analyze
the predicted loss series of CPA tests over the full horizon of availability for the three
cryptocurrencies Bitcoin, Cardano, and Tether separately. We furthermore show which
covariates are important over the full data and specific time periods using variable
importance measures of GRF-X.

We choose Bitcoin since it is the largest currency by market cap, with the longest
data availability, Tether as the largest stablecoin by daily volume and market cap, and
Cardano as a fairly new (i.e. fewer observations), however large currency (again by
market cap), which can be used for smart contracts, identity verification, or supply chain
tracking11. Since we deal with VaR-predictions, the initial loss function is the quantile
loss with a quantile α = 0.05.

11See e.g. https://cardano.org/enterprise/, accessed 19/05/2022.

https://cardano.org/enterprise/
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Figure 2.4: Rolling 180-Day Mean of Predicted Loss Difference Series for Bitcoin
Notes: Predicted loss difference htβ̂0 (red) of CPA tests on Bitcoin (btc) predicted 5% VaR with
l = 500 for GRF vs. CAV (left), GJR-GARCH (right), and QR (bottom center) with rolling mean
10-day log-returns in gray. A positive predicted loss difference indicates that the prediction error
of GRF is smaller than of the compared method.

First, we look at Bitcoin (btc), the largest and most popular currency, where GRF
largely outperforms QR, CAV, and GJR-GARCH in the CPA-tests. Figure 2.4 shows the
predicted loss difference for each of the different methods. GRF outperforms the other
methods consistently for most time frames. This is most likely due to the specific tailoring
of the methodology to quantiles, as it outperforms QRF (not plotted) consistently here.
For the parametric methods GJR-GARCH and QR, there are two short time periods
where they have a smaller loss. For GJR-GARCH, this happens in the very beginning of
the out-of-sample periods in April 2013, where btc crashed with negative log-returns of
up to −0.66. Since this was the first drop of that magnitude for btc, GRF, as a forest
based-method, had never seen such an extreme event, therefore could have technically
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not predicted it. GJR-GARCH, on the other hand, as a parametric method, has no range
restriction in that regard. In the following crashes, GRF correctly predicts these extreme
events better than GJR-GARCH, which is visible from the loss series. For QR, the short
time frame is only caused by the predictions of the CPA test itself, while actual losses
are smaller for GRF12.

Secondly, as summarized on the left in Figure 2.5, we look at Cardano (ada), a large
and fairly new currency offering e.g. smart contracts or supply chain tracking. There,
GRF is significantly outperforming GJR-GARCH and CAV, while being slightly better
than QR, although not reaching a significant level. This lack of power for QR is likely
due to the small out-of-sample size (roughly 1000) for the fairly new asset compared to
the training window of l = 500. Again, we can see that for the most extreme event in
March 2020, GJR-GARCH is slightly better, as GRF has not yet seen such an extreme
event, therefore is not able to correctly predict the size of the loss. One normal solution
would be to increase the training length, which is not possible in this case with a fairly
new currency. Interestingly, in the later extreme events in May 2022, GRF increases in
performance compared to GJR-GARCH, confirming the challenge with lacking training
data.

Finally, we also look more closely at Tether (usdt) as the largest stablecoin that is
roughly bound to the USD13. The right part of Figure 2.5 shows the 30-day rolling
means of the predicted loss differences. Notably, the rolling loss difference and rolling
mean-return are already around 10 times smaller than those of btc or ada, indicating
that usdt substantially differs from the other two currencies. While the losses of QR are
very similar to those of GRF, CAV is significantly worse. Only GJR-GARCH consistently
has lower predicted losses than GRF, although they are deemed not significant by the
CPA tests (see Figure 2.10 in the appendix for detailed results for the full time frame).
We can see, however, that for the relatively rare tail events in 2017, which are still
not too extreme, there is some variation in the predicted loss difference. For the first
event that is quite extreme, GJR-GARCH reacts too late, and only the second event is
correctly detected by GJR-GARCH, as there is some limited information of anticipation.
12It might indicate, however, that the methods perform quite equally during that specific time, since

there is no predictable difference.
13As it is backed by USD cash reserves, see https://tether.to/en/.

https://tether.to/en/
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In general, GRF tends too overshoot less in these situations, although both methods are
somewhat badly calibrated according to DQ-tests (see Table 2.11 in the appendix for
details).
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Figure 2.5: Rolling 30-Day Mean of Predicted Loss Difference Series for Cardano and
Tether
Notes: Predicted loss difference htβ̂0 of CPA tests on Cardano/Tether (ada/usdt) predicted 5%
VaR with l = 500 for GRF vs. CAV (orange), GJR-GARCH (green), and QR (purple) with rolling
mean 10-day log-returns in gray. A positive predicted loss difference indicates that the prediction
error of GRF is smaller than of the compared method.

To further understand the drivers of the GRF performance, we obtain variable impor-
tance measures that depict the frequency of inclusion in splits of the forest14. In Figure
2.6, the importance difference of certain covariates over time for the three currencies is
clearly visible. Overall, the lagged return is very important for predicting VaR when
returns are quite extreme relative to all returns in a specific asset, in the case of btc
in times of hypes and crashes. Intuitively, this finding seems reasonable as in times of
bubbles, when the volatility is driven by some short, bubble-like events and returns are
highly variable, volatility lagged over a longer time horizon is less predictive for VaR
and predictions are driven by events happening shortly before the prediction. In rather
unstable times, but not in extreme crashes, the lagged SD-measures gain importance,

14We use a maximum depth of dmax = 5 corresponding to the number of covariates and a weight decay
of 2, meaning a split further down in each tree receives less weight wl in the final frequency as it is
less important for the three specific currencies analyzed in the previous section. Specifically, for layer

l = 1, . . . , 5, wl = l−2∑5
l=1 l−2

.
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while the extra covariates only play a role for assets with relatively small volumes, e.g.
when new currencies are created. This also explains why GRF-X performs much better
for new, low-market-cap assets in Period 3 (see e.g. Figure 2.9 in the appendix).
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Figure 2.6: Rolling 30-Day Mean of the GRF Variable Importance
Notes: Values are for the out-of-sample period on the full data of ada, btc, and usdt, for predicted
one-day ahead 5% VaR with l = 500. The 5 most important variables for each cryptocurrency are
plotted. Variable importance of covariate xp is measured as the proportion of splits on xp relative
to all splits in a respective layer l (over all trees in a trained forest), weighted by layer l. Variable
description can be seen in Section 2.2.

Starting with ada, we see that it is the only asset of the three where the number of
active addresses play an important role, where for the other two assets, the 60-day lagged
standard deviation is more important. The importance of variables can be split into two
periods. The period until the beginning of 2021 is largely dominated by measures that
somehow account for trading activity (Active_Users,Total_Users/_USD100/_USD10,
Transactions). For reasons of clarity, we only plot the most important one of these
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measures, Active_Users. The spike of the latter in importance at the beginning of
2021 is likely caused by the massive increase in price and market cap during that time,
representing a period of hype with many actively trading users15. For the rest of the
time period, lagged SD, mostly 3-day lagged SD, followed by 30-day and 60-day SD, is
dominating the predictions of GRF. This change of importance seems reasonable as the
structure of the asset fundamentally changes with the price increasing tenfold and the
volume increasing strongly at the same time.

For btc, we have much more data covering 10 years, which is why the important
variables change frequently in different periods. Lagged return is naturally important in
phases of extreme hype and crashes that are characterized by large positive and negative
returns, e.g. in the very beginning (where the price was still quite low), at the end of
2013 (the first time btc had a price of USD 1000), at the end of 2017 (with a price over
USD 19,000), and from mid 2020 to the mid 2021, where there were multiple hypes and
crashes during the Covid-19 pandemic. Between these hype periods, the lagged SDs are
most important. In 2014-2015 and from the end of 2019 to mid 2021 , 30-day SD is
contributing most to the GRF-predictions, followed by 7-day SD in 2016-2018 and 60-day
SD 20 from 2018 to the end of 2019. This changing scheme is interesting, as 30-day SD
seems to be a good predictor especially in very unstable times (return-wise), while 7-day
and 60-day SD are more important in relatively stable times.

Finally, usdt is an exceptions, being largely dominated by lagged return, which makes
sense considering the performance of GJR-GARCH in that asset, where lagged-returns
play an important role in terms of leverage. From mid 2019, the prices and returns
are rather stable and the volume increases strongly, and the influence lagged 7-day
SD increases slightly, while still being less important than lagged return. This is not
surprising, as usdt is quite stable in comparison to btc and ada.

2.6 Conclusion

In this paper, we show that random forests can significantly improve the forecasting
performance for VaR-predictions when tailored to the task of quantile regression. In

15See also Figure 2.11 in the Appendix for an overview of the log-returns of the three currencies.
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both simulations and analyzing return data of 105 of the largest cryptocurrencies, the
proposed random forest (i.e. GRF) proves to be the most reliable method. This can
be attributed to the non-linear form of the return data with large time-variations of
volatility that call for methods that can adapt to changes in a nonparametric way, while
other classic methods break down. We further show that the GRF is better in assessing
the tail risk of cryptocurrencies in times where speculation and therefore volatility in
returns is high, e.g. when there is a speculative bubble. There, more simple procedures
perform especially bad and the comparison of predicted losses could thus GRF could
serve as an easy, empirical alternative to detect such bubbles.

Our findings are highly relevant for the risk assessment of cryptocurrencies, where
high volatility changes and large returns are often found. Classic methods can therefore
lead to false security and miss-assessment of risks (and chances) of these assets. We
further identify periods and assets where GRF performs especially well, which is especially
with volatile assets that have a high number of active users and could thus be prone
to speculation and hypes. On the other hand, for the class of stablecoins that are
usually bound to some large, classic currency such as the USD, and where markets are
usually dominated by a smaller number of large accounts, other classic methods such as
GJR-GARCH or quantile regression are on par with GRF.

The random forest methodology allows us to identify important factors which we
show to be time-varying and that are changing particularly in unstable times. For
future research, an interesting extension would therefore be to even augment this set of
covariates with other potentially driving real-time factors, such as for example social
media information. The relevance of such factors might also provide additional guidance
for relevant exogenous information to be included in standard parametric models such as
CAViaR.
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2.7 Appendix

Table 2.9: Summary of P-Values of DQ-Tests Over All Cryptos
GRF QRF QR CAV GJR-GARCH Hist GRF-X QRF-X QR-X GARCH-X

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.010 0.000 0.000 0.000 0.005 0.000 0.008 0.001 0.000 0.000
50% 0.081 0.006 0.001 0.011 0.086 0.003 0.063 0.032 0.000 0.007
75% 0.296 0.105 0.139 0.160 0.341 0.045 0.353 0.159 0.000 0.246

100% 0.939 0.784 0.937 0.939 0.987 0.884 0.980 0.866 0.528 0.794

Notes: Rows depict the quantiles of p-values of DQ-tests aggregated over all cryptos for the full available time
frame and each method, respectively.
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Figure 2.7: Overview of Results for CPA-Tests of GRF-X vs. All Other Methods in the
Third Period
Notes: Results are ordered by 30 day lagged standard deviation from highest to lowest, left to
right. The color of each box indicates the performance of GRF-X, with 1 indicating that GRF-X
has a smaller predicted loss in 100% of cases. *, **, *** indicate significance on a level of 10%, 5%,
and 1%.
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Figure 2.8: Overview of Results for CPA-Tests of GRF vs. All Other Methods in the
First and Second Period Ordered by Market Cap
Notes: Results are ordered from highest to lowest. The color of each box indicates the performance
of GRF, with 1 indicating that GRF has a smaller predicted loss in 100% of cases. *, **, ***
indicate significance on a level of 10%, 5%, and 1%.

*
*

*

*

*

*

* *

*
* *

*
*

*

*

*

*
*

*

*

**

**
**

**

**

**

**

** **

**
**

**

**
**

**

**

** **

**
**

**

**
**

**

***

***

***
***
***

***

***
***
***

***

***

***
***
***

***

***
***
***

***
***

***

***
***

***
***
***

***
***
***

***
***

***
***

***
***

***
***

***
***

***

***
***

***
***
***

***
***
***

***
***
***
***

***

***
***
*** ***

***

***
***

***
***

***

***
***

***

***
***
***

***
***
***

***
***
***

***

***

***

***
***
***

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bt
c

et
h xr

p
ad

a
cr

o
xlm us

dt
_t

rx

us
dt

_e
th

us
dc

bc
h

lin
k

ftt alg
o
wet

h
bu

sd
m

at
ic_

et
h

do
ge

wbt
c
ht ltc da

i
ne

o
xtz sn

x
et

c xm
r

QRF
QR

CAV
GJR−GARCH

Hist
GRF−X
QRF−X

QR−X
GARCH−X

GRF vs Rest,  Period 3: 1 of 3: sorted by CapMrktCurUSD

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

**

**

**

**

**

**

** **

**

**

**

**

**

**

**

** **

**

**

**

**

**

*****

***

***

***

***

***

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

qn
t

leo
_e

th

len
d
m

kr xe
m

us
dt

us
dt

_o
m

ni

gn
o

da
sh
m

an
a
hb

tc
ze

c
om

g
zr

x
leo

_e
os

ba
t
bt

g
re

v_
et

h

re
nb

tc

pa
x

sn
t

re
n xv

g
hu

sd
lpt

QRF
QR

CAV
GJR−GARCH

Hist
GRF−X
QRF−X

QR−X
GARCH−X

GRF vs Rest,  Period 3: 2 of 3: sorted by CapMrktCurUSD

*

*

*

*

*
*

* *

*

*

*

*

*
*

*
*

*

*

*

*

**

**

**

**

**

**
** **

**

**

**

**

**
**

**

**

**

**

**

** **

**

**

**

**

**

***

***
***

***
***
***

***

***

*** ***
*** *** ***

***

***
***

***

***
***

***

***
*** ***

***

***
***
***

***

***
***
***

***
***
***
***
***

***
***

***

***

***
***

***
***
***

***

***

***
***
***

***

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dg
b
pp

t
po

wr
re

p
wtc cv

c
pa

xg
po

ly
kn

c
fu

n gn
t

elf qa
sh

xa
ut
ga

s
an

t
m

aidpa
y

gu
sd
dr

gn
loo

m
gr

in
vtc trx eo

s
tu

sd

QRF
QR

CAV
GJR−GARCH

Hist
GRF−X
QRF−X

QR−X
GARCH−X

GRF vs Rest,  Period 3: 3 of 3: sorted by CapMrktCurUSD

Figure 2.9: Overview of Results for CPA-Tests of GRF vs. All Other Methods in the
Third Period Ordered by Market Cap
Notes: Results are ordered from highest to lowest, left to right. The color of each box indicates
the performance of GRF, with 1 indicating that GRF has a smaller predicted loss in 100% of cases.
*, **, *** indicate significance on a level of 10%, 5%, and 1%.
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Table 2.10: Overview of Non-Stationarity Tests
KPSS_level KPSS_trend ADF

algo 0.09 0.02 0.01
alpha 0.02 0.10 0.01

bnb 0.06 0.05 0.01
bnb_eth 0.06 0.05 0.01

btc 0.05 0.10 0.01
crv 0.10 0.03 0.01

dash 0.07 0.10 0.01
dcr 0.10 0.08 0.01
dot 0.10 0.10 0.01
eth 0.10 0.08 0.01
ftt 0.10 0.04 0.01

gno 0.10 0.10 0.01
gnt 0.10 0.04 0.01
icp 0.10 0.02 0.01

lend 0.10 0.02 0.01
loom 0.05 0.10 0.01

neo 0.10 0.08 0.01
omg 0.10 0.02 0.01
poly 0.04 0.10 0.01
ppt 0.10 0.07 0.01
snx 0.02 0.10 0.01

sushi 0.10 0.01 0.01
uni 0.10 0.08 0.01

weth 0.05 0.10 0.01
wtc 0.10 0.09 0.01
xem 0.07 0.10 0.01
xmr 0.10 0.04 0.01
xtz 0.10 0.09 0.01
yfi 0.08 0.10 0.01

Notes: Values in columns show p-values for KPSS-test and ADF-tests as described in Section 2.2. We only show
values for assets that have values smaller than 0.1 for the KPSS-tests. No asset had p-values larger than 0.01 for
the ADF-tests.
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Table 2.11: P-Values of DQ-Tests for Employed Crypto Assets
GRF QRF QR CAV GJR-GARCH Hist GRF-X QRF-X QR-X GARCH-X

1inch 0.006 0.004 0.000 0.010 0.001 0.006 0.006 0.533 0.000 0.007
aave 0.131 0.008 0.000 0.042 0.020 0.010 0.209 0.106 0.000 0.103
ada 0.266 0.000 0.095 0.000 0.645 0.000 0.031 0.001 0.000 0.000
algo 0.820 0.764 0.455 0.000 0.545 0.300 0.673 0.181 0.000 0.001

alpha 0.276 0.095 0.000 0.458 0.000 0.115 0.102 0.239 0.000 0.088
ant 0.189 0.015 0.306 0.024 0.113 0.102 0.368 0.063 0.000 0.566
bal 0.000 0.000 0.000 0.000 0.090 0.000 0.000 0.001 0.000 0.113
bat 0.002 0.000 0.000 0.032 0.072 0.001 0.004 0.036 0.000 0.000
bch 0.366 0.001 0.001 0.104 0.002 0.013 0.944 0.157 0.000 0.000
bnb 0.205 0.000 0.000 0.024 0.488 0.216 0.245 0.022 0.000 0.002

bnb_eth 0.205 0.000 0.000 0.002 0.474 0.216 0.245 0.022 0.000 0.036
bsv 0.041 0.000 0.139 0.013 0.000 0.000 0.300 0.427 0.000 0.000
btc 0.028 0.000 0.000 0.000 0.039 0.000 0.002 0.000 0.000 0.000
btg 0.922 0.165 0.706 0.002 0.138 0.205 0.847 0.186 0.000 0.000

busd 0.939 0.005 0.589 0.011 0.987 0.562 0.931 0.362 0.000 0.001
comp 0.011 0.079 0.000 0.000 0.019 0.010 0.030 0.001 0.000 0.001

cro 0.000 0.000 0.000 0.000 0.278 0.001 0.000 0.000 0.000 0.004
crv 0.047 0.133 0.000 0.065 0.000 0.035 0.031 0.108 0.000 0.546
cvc 0.000 0.000 0.000 0.000 0.377 0.000 0.000 0.001 0.000 0.002
dai 0.011 0.514 0.811 0.407 0.596 0.001 0.010 0.417 0.000 0.000

dash 0.000 0.016 0.000 0.000 0.055 0.000 0.000 0.000 0.000 0.000
dcr 0.885 0.002 0.033 0.075 0.597 0.092 0.729 0.003 0.000 0.007
dgb 0.232 0.000 0.100 0.102 0.029 0.000 0.157 0.003 0.000 0.000

doge 0.172 0.337 0.346 0.753 0.001 0.000 0.026 0.030 0.000 0.000
dot 0.006 0.279 0.000 0.000 0.203 0.003 0.151 0.224 0.000 0.000

drgn 0.788 0.507 0.757 0.023 0.227 0.130 0.704 0.040 0.000 0.542
elf 0.000 0.000 0.000 0.000 0.289 0.000 0.000 0.000 0.000 0.000

eos 0.049 0.006 0.002 0.012 0.000 0.002 0.029 0.003 0.000 0.192
eos_eth 0.037 0.000 0.000 0.001 0.000 0.062 0.635 0.028 0.000 0.383

etc 0.052 0.000 0.000 0.027 0.004 0.001 0.014 0.000 0.000 0.000
eth 0.379 0.000 0.121 0.001 0.009 0.024 0.011 0.000 0.000 0.000
ftt 0.019 0.007 0.001 0.085 0.121 0.000 0.013 0.000 0.000 0.538

fun 0.595 0.096 0.194 0.624 0.051 0.039 0.117 0.399 0.000 0.036
fxc 0.080 0.063 0.000 0.000 0.274 0.001 0.018 0.041 0.000 0.514
gas 0.340 0.003 0.000 0.122 0.115 0.000 0.414 0.348 0.000 0.000
gno 0.482 0.086 0.038 0.131 0.168 0.006 0.249 0.052 0.000 0.639
gnt 0.023 0.099 0.001 0.014 0.347 0.000 0.101 0.032 0.000 0.757

grin 0.000 0.001 0.322 0.000 0.083 0.000 0.002 0.001 0.000 0.037
gusd 0.007 0.016 0.043 0.000 0.215 0.000 0.021 0.032 0.000 0.006
hbtc 0.012 0.007 0.001 0.005 0.003 0.003 0.090 0.074 0.000 0.605
hedg 0.096 0.000 0.000 0.000 0.957 0.000 0.011 0.000 0.000 0.000

ht 0.001 0.006 0.009 0.006 0.109 0.000 0.000 0.004 0.000 0.464
husd 0.296 0.392 0.644 0.490 0.269 0.485 0.330 0.481 0.000 0.000

icp 0.085 0.142 0.000 0.000 0.002 0.077 0.149 0.049 0.000 0.794
kcs 0.013 0.000 0.000 0.376 0.454 0.014 0.013 0.001 0.000 0.000
knc 0.173 0.000 0.075 0.015 0.016 0.000 0.169 0.083 0.000 0.054

lend 0.002 0.003 0.028 0.008 0.000 0.000 0.002 0.008 0.000 0.002
leo_eos 0.900 0.585 0.471 0.302 0.628 0.000 0.980 0.866 0.258 0.340
leo_eth 0.852 0.528 0.554 0.224 0.639 0.000 0.736 0.580 0.023 0.499

link 0.218 0.002 0.005 0.000 0.317 0.005 0.085 0.002 0.000 0.000
loom 0.010 0.021 0.005 0.013 0.008 0.000 0.016 0.007 0.000 0.536

lpt 0.388 0.019 0.409 0.168 0.594 0.277 0.353 0.127 0.000 0.001
ltc 0.149 0.004 0.001 0.029 0.000 0.000 0.038 0.000 0.000 0.000
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Table 2.11: Continued
GRF QRF QR CAV GJR-GARCH Hist GRF-X QRF-X QR-X GARCH-X

maid 0.239 0.000 0.000 0.160 0.013 0.105 0.316 0.000 0.000 0.465
mana 0.006 0.006 0.827 0.001 0.101 0.000 0.001 0.001 0.000 0.007

matic_eth 0.462 0.328 0.554 0.719 0.341 0.296 0.921 0.012 0.000 0.025
mkr 0.001 0.000 0.001 0.431 0.151 0.042 0.114 0.123 0.000 0.005
neo 0.290 0.016 0.182 0.002 0.157 0.006 0.310 0.292 0.000 0.022

nxm 0.052 0.000 0.000 0.002 0.005 0.045 0.046 0.001 0.000 0.244
omg 0.500 0.002 0.197 0.747 0.453 0.029 0.380 0.002 0.000 0.000
pax 0.236 0.272 0.400 0.025 0.651 0.000 0.471 0.652 0.071 0.000

paxg 0.021 0.017 0.000 0.028 0.044 0.086 0.008 0.095 0.000 0.000
pay 0.000 0.000 0.022 0.000 0.016 0.000 0.000 0.000 0.000 0.659

perp 0.581 0.463 0.017 0.599 0.022 0.644 0.627 0.159 0.000 0.126
poly 0.019 0.016 0.016 0.003 0.010 0.022 0.041 0.059 0.000 0.246

powr 0.074 0.003 0.006 0.113 0.004 0.000 0.482 0.247 0.000 0.777
ppt 0.035 0.000 0.008 0.054 0.020 0.000 0.050 0.025 0.000 0.043

qash 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
qnt 0.004 0.083 0.001 0.004 0.007 0.334 0.034 0.116 0.000 0.023
ren 0.150 0.048 0.047 0.001 0.446 0.062 0.028 0.089 0.000 0.163

renbtc 0.060 0.001 0.000 0.000 0.217 0.009 0.031 0.001 0.000 0.552
rep 0.019 0.000 0.002 0.005 0.086 0.000 0.070 0.039 0.000 0.722

rev_eth 0.010 0.060 0.000 0.000 0.760 0.000 0.033 0.030 0.000 0.103
sai 0.727 0.215 0.001 0.319 0.742 0.173 0.866 0.076 0.000 0.001
snt 0.241 0.000 0.062 0.008 0.213 0.000 0.196 0.038 0.000 0.735
snx 0.241 0.047 0.000 0.000 0.000 0.557 0.623 0.014 0.000 0.179
srm 0.198 0.186 0.000 0.000 0.000 0.433 0.499 0.205 0.000 0.265

sushi 0.030 0.000 0.000 0.000 0.000 0.020 0.063 0.000 0.000 0.039
swrv 0.001 0.000 0.000 0.000 0.000 0.001 0.004 0.045 0.000 0.678

trx 0.363 0.271 0.483 0.555 0.010 0.031 0.353 0.050 0.090 0.000
trx_eth 0.853 0.322 0.937 0.268 0.981 0.811 0.958 0.179 0.000 0.654

tusd 0.502 0.094 0.528 0.838 0.374 0.017 0.502 0.380 0.528 0.228
uma 0.000 0.001 0.000 0.000 0.001 0.000 0.010 0.007 0.000 0.062
uni 0.000 0.000 0.000 0.000 0.012 0.000 0.003 0.273 0.000 0.000

usdc 0.367 0.448 0.645 0.568 0.706 0.063 0.213 0.470 0.000 0.000
usdk 0.291 0.710 0.000 0.665 0.773 0.884 0.622 0.810 0.000 0.000
usdt 0.000 0.291 0.000 0.278 0.000 0.000 0.000 0.174 0.000 0.000

usdt_eth 0.001 0.147 0.030 0.635 0.148 0.000 0.002 0.337 0.000 0.000
usdt_omni 0.000 0.291 0.000 0.290 0.000 0.000 0.000 0.174 0.000 0.000

usdt_trx 0.081 0.784 0.258 0.939 0.752 0.004 0.152 0.853 0.000 0.000
vtc 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001

wbtc 0.692 0.169 0.232 0.454 0.309 0.044 0.363 0.014 0.000 0.175
weth 0.171 0.000 0.233 0.000 0.021 0.000 0.000 0.009 0.000 0.000

wnxm 0.052 0.000 0.000 0.001 0.005 0.045 0.012 0.008 0.000 0.394
wtc 0.075 0.000 0.000 0.000 0.064 0.001 0.003 0.025 0.000 0.455

xaut 0.043 0.196 0.000 0.007 0.013 0.005 0.000 0.002 0.000 0.120
xem 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.013
xlm 0.543 0.001 0.005 0.002 0.228 0.000 0.152 0.000 0.000 0.000
xmr 0.082 0.000 0.000 0.182 0.045 0.000 0.092 0.000 0.000 0.246
xrp 0.010 0.000 0.000 0.000 0.022 0.000 0.001 0.000 0.000 0.000
xtz 0.463 0.005 0.133 0.011 0.787 0.007 0.003 0.006 0.000 0.000
xvg 0.177 0.014 0.100 0.234 0.547 0.001 0.518 0.032 0.000 0.000
yfi 0.407 0.105 0.000 0.001 0.000 0.045 0.419 0.087 0.000 0.002
zec 0.347 0.000 0.000 0.018 0.276 0.007 0.741 0.024 0.000 0.000
zrx 0.107 0.039 0.159 0.009 0.226 0.000 0.042 0.002 0.000 0.004
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Table 2.13: External Covariates and Descriptions

Variable Name Coding Coinmetrics Description

Active_Users AdrActCnt The number of unique active daily
addresses

Total_Users AdrBalCnt The number of unique addresses
that hold any amount of native units
of that currency

Total_Users_USD100 AdrBalUSD100Cnt The number of unique addresses
that hold at least 100 USD of native
units of that currency

Total_Users_USD10 AdrBalUSD10Cnt The number of unique addresses
that hold at least 10 USD of na-
tive units of that currency

SER SER The supply equality ratio, i.e. the
ratio of supply held by addresses
with less than 1 over 10 millionth
of the current supply to the top one
percent of addresses with the high-
est current supply

Transactions TxCnt The number of daily initiated trans-
actions

Velocity VelCur1yr The velocity of supply in the current
year, which describes the the ratio
of current supply to the sum of the
value transferred in the last year

Notes: Variable coding corresponds to https://docs.coinmetrics.io/. Detailed variable descriptions are available
on https://docs.coinmetrics.io/info/metrics.

https://docs.coinmetrics.io/
https://docs.coinmetrics.io/info/metrics
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Table 2.14: Performance and Significance of CPA-tests with GRF-X Over Different Time
Periods

GRF-X vs.: GRF QRF QR CAV GJR-GARCH Hist QRF-X QR-X GARCH-X

Share of GRF With Better Performance
Period 1 0.40 1.00 0.80 0.60 0.80 1.00 1.00 1.00 1.00
Period 2 0.60 1.00 0.67 0.87 0.80 1.00 1.00 1.00 1.00
Period 3 0.55 0.90 0.66 0.75 0.66 0.90 0.94 0.96 0.73
Full Data 0.54 0.89 0.72 0.76 0.73 0.83 0.92 0.97 0.76
Share of GRF With Significantly Better Performance
Period 1 0.00 0.20 0.20 0.00 0.20 1.00 1.00 1.00 0.60
Period 2 0.20 0.40 0.27 0.20 0.40 0.80 0.93 0.93 0.67
Period 3 0.12 0.40 0.19 0.23 0.19 0.58 0.73 0.81 0.51
Full Data 0.13 0.39 0.30 0.24 0.19 0.47 0.69 0.86 0.52
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Notes: The top part shows summary values that are shares over all cryptocurrencies in the respective time period.
It describes the number of times that GRF-X had a better performance (i.e. more than 50% of predicted losses by
the CPA test were smaller for the GRF-X) relative to all crytpocurrencies (in that period), and the number of times
that GRF-X was significantly better (at least at a 10% level) as judged by the CPA test over all crytpocurrencies
(in that period). The bottom part shows the detailed results of CPA-tests with the color of each box indicating
the performance of GRF-X. Blue signifies a performance of 1, meaning that GRF-X has a smaller predicted loss in
100% of cases. *, **, *** shows significance on a level of 10%, 5%, and 1%. The values are ordered by 30 day
lagged standard deviation from highest to lowest.
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Table 2.16: Difference Between Covariates of Cryptos Where GRF-X is Better vs. Worse
Period 1 Period 2 Period 3 Full Data

Ret 1.20 0.63 -0.40 -0.08
Active_Users 0.34 0.22 0.32 0.39
Total_Users 0.79 0.26 0.31 0.34

Total_Users_USD100 0.22 0.23 0.22 0.27
Total_Users_USD10 0.41 0.23 0.16 0.20

CapMrktCurUSD 0.08 0.16 0.45 0.38
SER 1.07 0.72 0.17 0.22

Transactions 0.42 0.06 3.26 3.74
Velocity 4.68 4.44 1.31 1.23

sd_3 0.89 0.31 0.65 0.65
sd_7 0.91 0.32 0.64 0.64

sd_30 0.90 0.33 0.63 0.64
sd_60 0.91 0.34 0.63 0.65

Notes: Values are shares of groups of cryptocurrencies where at least two of CAV, QR, and GJR-GARCH have
better CPA-performance than GRF-X divided by the remaining rest. Raw values before division are mean values
over all cryptocurrencies for the median of each covariate in the respective time period.
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Figure 2.10: Overview of Results for CPA-Tests of GRF vs. All Other Methods for the
Full Data Ordered Alphabetically
Note: The color of each box indicates the performance of GRF, with 1 indicating that GRF has
a smaller predicted loss in 100% of cases. *, **, *** indicate significance on a level of 10%, 5%,
and 1%.
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Figure 2.11: Log-Returns of the Specific Cryptocurrencies Analyzed in Subsection 2.5.2
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Table 2.17: Simulation: 1% VaR
Rolling Window l = 500 l = 1000

DQ Kupiec Christoffersen AoE DQ Kupiec Christoffersen AoE

Sim GARCH Normal
QRF 0.995 (0.002) 0.910 (0.017) 0.855 (0.029) 1.894 0.830 (0.053) 0.580 (0.128) 0.395 (0.180) 1.751
GRF 0.635 (0.121) 0.120 (0.396) 0.115 (0.388) 1.265 0.410 (0.318) 0.100 (0.459) 0.050 (0.518) 1.193
QR 0.945 (0.018) 0.500 (0.122) 0.485 (0.155) 1.575 0.520 (0.235) 0.140 (0.433) 0.090 (0.469) 1.273
Hist 0.830 (0.046) 0.045 (0.421) 0.195 (0.339) 1.231 0.675 (0.171) 0.120 (0.477) 0.140 (0.456) 1.122
NormFit 0.700 (0.116) 0.055 (0.470) 0.200 (0.392) 1.165 0.625 (0.209) 0.130 (0.441) 0.145 (0.450) 1.152
CAViaR 0.890 (0.038) 0.365 (0.181) 0.340 (0.215) 1.486 0.450 (0.304) 0.130 (0.435) 0.080 (0.508) 1.245
GARCH(1,1) 0.440 (0.268) 0.060 (0.468) 0.150 (0.412) 1.128 0.310 (0.408) 0.060 (0.532) 0.075 (0.525) 1.072

Sim GARCH t
QRF 0.990 (0.002) 0.890 (0.016) 0.845 (0.029) 1.942 0.815 (0.060) 0.665 (0.108) 0.500 (0.152) 1.801
GRF 0.625 (0.127) 0.135 (0.372) 0.155 (0.396) 1.286 0.410 (0.297) 0.100 (0.455) 0.055 (0.523) 1.222
QR 0.925 (0.014) 0.570 (0.106) 0.575 (0.134) 1.676 0.565 (0.227) 0.165 (0.393) 0.130 (0.431) 1.290
Hist 0.755 (0.077) 0.080 (0.412) 0.215 (0.385) 1.232 0.665 (0.160) 0.125 (0.454) 0.175 (0.434) 1.133
NormFit 0.890 (0.028) 0.655 (0.092) 0.670 (0.096) 1.693 0.760 (0.083) 0.510 (0.184) 0.450 (0.209) 1.669
CAViaR 0.815 (0.042) 0.320 (0.190) 0.310 (0.230) 1.466 0.425 (0.298) 0.155 (0.410) 0.090 (0.472) 1.248
GARCH(1,1) 0.855 (0.045) 0.750 (0.057) 0.745 (0.068) 1.769 0.595 (0.174) 0.500 (0.176) 0.430 (0.196) 1.680

Sim SAV-Model
QRF 0.990 (0.001) 0.940 (0.015) 0.835 (0.028) 1.891 0.810 (0.063) 0.575 (0.133) 0.405 (0.187) 1.749
GRF 0.585 (0.140) 0.065 (0.417) 0.045 (0.462) 1.251 0.300 (0.352) 0.080 (0.460) 0.035 (0.550) 1.180
QR 0.940 (0.015) 0.445 (0.129) 0.375 (0.179) 1.553 0.560 (0.200) 0.190 (0.406) 0.090 (0.473) 1.289
Hist 0.360 (0.239) 0.060 (0.515) 0.075 (0.534) 1.195 0.275 (0.415) 0.060 (0.513) 0.060 (0.597) 1.097
NormFit 0.215 (0.449) 0.105 (0.452) 0.110 (0.527) 1.166 0.240 (0.520) 0.135 (0.448) 0.090 (0.553) 1.147
CAViaR 0.855 (0.035) 0.255 (0.207) 0.250 (0.239) 1.444 0.485 (0.273) 0.075 (0.439) 0.050 (0.518) 1.221
GARCH(1,1) 0.215 (0.407) 0.090 (0.502) 0.090 (0.532) 1.155 0.210 (0.513) 0.105 (0.471) 0.055 (0.574) 1.122

Sim GARCH Bitcoin fit
QRF 0.975 (0.004) 0.910 (0.017) 0.855 (0.029) 1.894 0.750 (0.090) 0.580 (0.128) 0.395 (0.180) 1.751
GRF 0.470 (0.207) 0.120 (0.396) 0.115 (0.388) 1.265 0.275 (0.424) 0.100 (0.459) 0.050 (0.518) 1.193
QR 0.880 (0.040) 0.500 (0.122) 0.485 (0.155) 1.575 0.370 (0.328) 0.140 (0.433) 0.090 (0.469) 1.273
Hist 0.675 (0.090) 0.045 (0.421) 0.195 (0.339) 1.231 0.530 (0.259) 0.120 (0.477) 0.140 (0.456) 1.122
NormFit 0.540 (0.203) 0.055 (0.470) 0.200 (0.392) 1.165 0.500 (0.296) 0.130 (0.441) 0.145 (0.450) 1.152
CAViaR 0.745 (0.091) 0.105 (0.405) 0.155 (0.400) 1.243 0.435 (0.345) 0.045 (0.486) 0.030 (0.555) 1.046
GARCH(1,1) 0.345 (0.328) 0.065 (0.459) 0.190 (0.385) 1.157 0.215 (0.510) 0.050 (0.537) 0.070 (0.512) 1.082

Notes: Results for 1% VaR show rejection rates of t-tests of empirical levels against the nominal level of 1% for
DQ-, Kupiec- and Christoffersen-tests and mean p-values in parentheses. Higher p-values and lower rejection rates
indicate better model performance. GARCH depicts an oracle GARCH-model that fits an GARCH(1,1) process
with normally distributed errors.



3 Controlling False Discoveries With
Robust Knockoffs: Uncovering
Macroeconomic Factors of Bond
Recovery Rates

3.1 Introduction

In large-scale financial and economic systems with many potentially influencing variables
for a target quantity, there is a key interest in detecting the relevant driving factors in a
data-driven way. Such a fully data-adaptive choice of factors yields transparency in the
identification of important channels avoiding biases from insufficient pre-specification but
also inspiring and complementing future model building. With the availability of new
machine-learning (ML) based techniques, there has recently been considerable effort in
particular in the empirical asset pricing literature to use such approaches for augmented
pricing and prediction results (see e.g. Chen et al. (2019), Freyberger et al. (2020), Chinco
et al. (2019)) but also for bond quality determination (Qi and Zhao, 2011; Nazemi et al.,
2022).

We contribute to this literature by proposing a new knockoff-type methodology building
on e.g. Candès et al. (2018) that offers control over the rate of falsely selected variables.
With the false discovery rate (FDR) as the key hyperparameter, the selection and
prediction performance based on the proposed technology is dominated by the FDR.
It is thus transparent and interpretable while being data-driven since the FDR can be
directly estimated as the empirical proportion of false discoveries (FDP). Note that this
is in contrast to e.g. LASSO-type approaches (see e.g.Tibshirani (1996)), where penalty

47
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parameters can be chosen adaptively but have no stand-alone interpretation and meaning,
which often creates a black-box connotation. Moreover, our technique gains robustness
from simultaneously taking several nominal FDR-levels into account. In this way, we
mitigate hyperparameter pre-selection effects and obtain robustness of results in the
presence of time-dependent data. Both points are key for valid selection results in practice.
We show that the proposed methodology provides interesting insights in detecting novel
relevant factors for corporate bond recovery rates which might be important from a
business but also regulatory perspective. In particular, we study the recovery rates of
2,079 U.S. corporate bonds that defaulted between 2001 and 2016 depending on industry
and stock specific information from Bloomberg Financial Markets and 144 macroeconomic
market variables from the Federal Reserve Economic Data (FRED). For this, we also
document superior out-of sample performance of the resulting sparse model using only
relevant factors comparing them to state-of-the-art machine learning models on the entire
and the selected set of predictors and to LASSO-type specifications. We confirm our
point-wise ranking with results from model confidence sets (Hansen et al., 2011).

In particular, the proposed robustification technique works for the entire set of different
knockoff baseline procedures from model-X (Candès et al., 2018) to deep knockoffs
(Romano et al., 2020) to group versions (Dai and Barber, 2016) and mitigates the
influence of hyperparameter input levels and data dependence challenges. We address the
hyperparameter influence problem by proposing several weighted aggregation schemes
for variable selection rates of different FDR-levels. By considering different weighting
schemes, we account for vanishing scrutiny of the procedures in size of FDR-levels but
extract the information from each level for the overall selection result. Secondly, we use
a repeated subsampling scheme to control for the variability of the knockoff procedures,
which themselves are random. While this shares similarities with Ren et al. (2021),
we employ subsampling (see e.g. Meinshausen and Bühlmann (2010)), which provides
robustness in the presence of correlated observations and high outliers. This is of key
importance for the determination of relevant factors of the considered corporate recovery
rates. In this empirical study, we additionally employ principal component analysis (PCA)
on groups of macroeconomic variables of similar type to reduce cross-sectional correlation
of the knockoff input factors while retaining interpretability on the group level. We
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investigate the performance of the proposed methodology for different baseline procedures
and show that an ensemble yields superior out-of-sample prediction results. Generally
for many financial applications, a rapidly growing literature on ML-based approaches
has emerged in particular in empirical asset pricing. These comprise approaches with a
strong focus on prediction that use neural networks, other general nonparametric and
principal component-type techniques (Chen et al., 2019; Freyberger et al., 2020; Kelly
et al., 2019). In this context, variable selection methods serve as a dimension reduction
device and are mostly based on the lasso framework (Tibshirani, 1996) with respective
sparsity assumptions as e.g. in Chinco et al. (2019); Feng et al. (2020); Freyberger et al.
(2020).

There has also been considerable research on recovery rates and loss given default
(LGD). Studies that focus on prediction of LGD are Leow and Mues (2012) for mortgage
loans, while Qi and Zhao (2011) and Yao et al. (2015) employ machine learning methods
for corporate bonds. Other research focuses on identifying macroeconomic factors of
LGD for various types of loans (Keijsers et al., 2018), often using machine learning
techniques (Bellotti and Crook, 2012; Kaposty et al., 2020; Kellner et al., 2022). Recent
studies on recovery rates focus on prediction mostly employing ML-methods, either for
corporate bonds (Nazemi et al., 2018, 2022) or for other types of loans such as credit
default swaps or consumer credit (Das and Hanouna, 2009; Jansen et al., 2018; Bellotti
et al., 2021). Amongst others, these studies use random forests (Breiman, 2001), vector
regression (Suykens and Vandewalle, 1999), and power expectation propagation (Bui
et al., 2017). Recent studies that identify factors for corporate bond recovery rates are
mainly Jankowitsch et al. (2014) and Nazemi et al. (2022). For a full overview also
about older studies that consider recovery rates for corporate bonds, see Jankowitsch
et al. (2014), Nazemi and Fabozzi (2018), and the references therein. For recovery
rates, we built on initial results of a pre-study in Nazemi and Fabozzi (2018) using a far
more comprehensive data set and a group structure adaptive selection technique without
requiring unrealistic sparsity in any form.

The rest of the paper is structured as follows. Section 3.2 introduces our proposed
methodology in a general setting, while Section 3.3 focuses on the application. Therein,
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Section 3.3.1 introduces the data set of corporate bond recovery rates and Section 3.3.2
presents the main results of our analysis. Finally, we conclude in Section 3.4.

3.2 Model Selection With Knockoffs

For robust data-driven variable selection, we propose a novel knockoff-type procedure
(e.g. Candès et al., 2018) that offers direct control of the false discovery rate (FDR).
The key hyperparameter FDR corresponds to the number of coefficients determined
as non-zero while being truly zero relative to all obtained non-zero factors. FDR is
well-known from the multiple testing literature as the type I error but has also been
shown to directly link to the size of error rates in model estimation and prediction of after
pre-selection with knockoffs (Barber and Candès, 2019). Thus setting the acceptable
(nominal) FDR-level for knockoffs directly controls estimation and prediction performance
of the resulting model, while the performance of other model selection techniques depends
on parameters that lack a direct interpretation. Interpretable hyperparameters, however,
are key for adequate tuning and eventual transparency of the results. Moreover, the
suggested knockoffs work irrespective of the type of underlying sparsity and in particular
for high-dimensional cases, results are not dependent on a specific form of sparsity.
We contribute a robust knockoff version which works in particular in the presence of
strong cross-sectional and time dependence. This is key in many economic and financial
applications and of peculiar importance for our application of the determination of
relevant factors of corporate recovery rates.

We work in the following setting, where yi ∈ R and Xi ∈ Rp are observed for i = 1, . . . , n

but only some unknown subset of the p components in X is relevant for y and forms the
so-called active set S of X, i.e. for j /∈ S, y is independent of component X(j) conditional
on (X(k))k∈S . These components S should be selected in

yi = f(Xi) + ϵi , (3.1)

with an error term ϵi ∈ R and a function f(·) that describes the impact of Xi =
(Xi1, . . . , Xip) = (Xij , Xi−j) for any j = 1, . . . p on yi. In general, we assume that
f(Xi) = Xiβ, with β ∈ Rp for an easily interpretable structure, but we also include
unknown nonparametric versions of f in our application. We set as usual Y = (y1, . . . , yn)′
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and X = (X ′
1, . . . , X ′

n)′ = (X(1), . . . , X(p)) = (X(j), X(−j)) with X(j) ∈ Rn for all j =
1, . . . , p.

In the literature, there exist different procedures for the construction of knockoffs such
as model-X knockoffs (Candès et al., 2018), deep knockoffs (Romano et al., 2020), and
group-knockoffs (Dai and Barber, 2016). They all build on the same main idea to compare
the regressors of interest X with randomly generated knockoffs X̃ = (X̃(1), . . . , X̃(p)) that
fulfill two properties:

(i) pairwise exchangeability, i.e. the distribution of
(X(j), X(−j), X̃(j), X̃(−j)) and (X̃(j), X(−j), X(j), X̃(−j)) is identical

(ii) Y is independent of X̃ conditional on X.

When regressing Y on (X, X̃) jointly, only those regressor components in X which
fundamentally differ from their corresponding ones in the random X̃ according to a
variable importance measure are judged as relevant and are part of the active set S. The
variable importance depends on model and estimation techniques, but for the linear case,
e.g. the difference of absolute lasso coefficients of X(j) and X̃(j) must be large enough.

For model-X knockoffs (Candès et al., 2018), the two knockoff conditions (i) and (ii)
are addressed by matching first and second moments of of X and X̃ in the construction
of X̃ subject to independence of Y and X̃ conditional on X. Matching expectations is
straightforward and the second order construction leads to a convex optimization problem
minimizing pairwise correlations of X and X̃ under the constraint that Cov(X, X̃) be
positive semi-definite. This effectively targets the off-diagonal elements of the covariance
of X and X̃ and leads to the approximate semi-definite program algorithm (ASDP) of
Candès et al. (2018). The obtained model-X knockoffs X̃ approximately fulfill conditions
(i) and (ii), and the construction is exact if (X, X̃) are normal. For a more detailed
description of the construction of the more general deep knockoffs (Romano et al., 2020)
which fully operationalize the distributional form of (i) and (ii) and of group-knockoffs
that use a pre-specified group-structure (Dai and Barber, 2016), see Appendix 3.5.1. In
general, the construction principle of all knockoff techniques is based on the standard
Gaussian results in Barber and Candès (2015) and the non-Gaussian, high-dimensional
extension in Candès et al. (2018) to the model-X knockoff filters.
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Once the knockoffs have been constructed, they can be used as a filtering device
to select the active set. For this, each knockoff feature X̃(j) is compared to its true
counterpart X(j) via a feature-statistic Wj for all j = 1, . . . , p. In the linear case, for
a lasso regression of y on the joint (X, X̃) over a grid of penalty parameters λ with
corresponding coefficients β̂j(λ) we work with λj = sup {λ|β̂j(λ) ̸= 0} as the largest λ

for which variable j is in the active set and define

WLCD
j = |β̂j(λ0)| − |β̂j+p(λ0)| (3.2)

WLSM
j = sgn(λj − λj+p) max(λj , λj+p) . (3.3)

where λ0 is chosen according to some global criterion like cross-validation and the sgn(·)
function returns the sign of the input. Note that the Wj from equations (3.2) and (3.3)
correspond to the lasso coefficient difference (LCD) of the model-X knockoffs and the
lasso signed max (LSM) as described in Barber and Candès (2015), respectively. In
practice, we mostly rely on the LCD measure which was shown to be preferable and
robust to highly correlated features as in our application (Candès et al., 2018). Only for
group knockoffs, we use the proposed adapted version of the LSM as suggested by Dai
and Barber (2016). We only select variable components j as part of the active set S if
Wj is greater or equal to some threshold T with

T = min
{

t > 0 : #{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ α

}
, (3.4)

where α ∈ [0, 1] is the pre-specified level of acceptable (nominal) false discovery rate

FDR = E[FDP ], where FDP = |Ŝ \ S|
|Ŝ|

is the false discovery proportion, with Ŝ as the

set of selected variables1 and S as the set of truly relevant variables. In practice, we
calculate this proportion as F̂DP = #{j : Wj ≤ −t}

#{j : Wj ≥ t}
. Note that for the definition of T

we rely on Candès et al. (2018, Equation 3.9) of the original suggestion of Candès et al.
(2018).

We suggest two routes for robustification of the knockoffs.
First, we propose an adapted version of the baseline knockoff procedures that can deal
with time-dependence and an unknown, possibly non-standard covariate distribution due

1In case Ŝ is empty, we set F DR = 0 as in Candès et al. (2018).
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to high correlations among X. Secondly, we examine the full grid of possible nominal
FDR-levels for the knockoff procedure to uncover dependence of selections on certain
specific FDR-levels. We do this by repeating each robustified baseline procedure K times
over a grid of K nominal FDR-values and combine the results by weighting the selection
probabilities depending on the FDR-level. We call this procedure weighted FDR selection
(wFDR).
With covariate distributions different from normality and possible time-dependence, the
standard assumptions from the Knockoff framework are violated, which could lead to
strong variability of knockoff selections that are per definition random. We therefore
suggest repeated subsampling to stabilize the selection procedure, motivated by the
stability selection of Meinshausen and Bühlmann (2010) and Ren et al. (2021), who suggest
a similar procedure, where the knockoff procedure is repeated without subsampling.. We
repeat the full knockoff procedure B = 100 times only using a subsample of the full n

observations, with subsampling rate θ. The subsampling ensures that large outliers and
data artifacts do not majorly affect the selection, while the repetition of the knockoff
procedure controls the randomness of the knockoffs. This randomness would also allow
no subsampling at all as in Ren et al. (2021). For our application with a substantial
amount of outliers in finite samples, however, we choose to use θ = 0.9. For a fixed
FDR-level α, the procedure ranks variables in decreasing order according to their selection
frequency, i.e. empirical selection probability. The variable with the highest selection
frequency receives rank p, the second most selected variable gets rank p− 1, up to the
least selected variable receiving rank 1. Alternatively, we also directly work with the
selection probability instead of the ranks, which puts a larger emphasis on the variability
of selection probabilities2. See also Method 2 for details. Note that by construction
the proposed subsampling adapted knock-off procedure keeps the fixed FDR-level α but
robustifies the selection result.

Moreover, we propose to conduct each knockoff-baseline selection (Method 2) over a grid
of K different FDR values αk jointly. Thus, for each fixed-level αk, we detect whether
a variable is relevant or not and determine the corresponding selection probability

2Technically, it would also be possible to run a standard knockoff machine without subsampling and
report either zero (no selection) or one (selection) for each variable. We refrain from such an approach
due to the data challenges stated above.
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Algorithm 2 Repeated Subsampling for Knockoffs
Input:

Observation pairs (X, Y ) = (Xi, yi)ni=1 ∈ Rn×p+1

Nominal FDR-level α ∈ [0, 1]
Knockoff procedure Knockproc, e.g. model-X knockoffs or deep knockoffs
Subsampling rate θ and number of repetitions B

1: for b in 1 to B do
2: Draw random subsample (Xsub

b , Y sub
b ) = (Xs

b , ysb)
nsub
s=1 (i.e. without replacement) of

size nsub = ⌊nθ⌋
3: Apply Knockproc based on (Xsub

b , Y sub
b ) and obtain Indb = (indb1, . . . , indbp), where

indbl is one if variable l is selected and zero otherwise, l = 1, . . . , p

4: end for

5: Compute selection probability prl for each variable l = 1, . . . , p as prl =
∑B
j=1 indjl

B
Output: Selection probabilities for each variable Pα = (pr1, . . . , prp)

via subsampling using our methodology. Over the grid of different αk-values, the
corresponding selection probabilities are then weighted depending on the level αk, where
higher values of αk receive lower weights corresponding to the definition of the FDR.
The final selection probability for each variable is then obtained as the weighted sum of
all selection probabilities for this component over all αk. Since the number of selected
variables varies depending on the respective α-level, our procedure prevents situations
where results crucially depend on the pre-setting of one specific α-level. We show explicitly
that such situations happen in our empirical example where high correlations between
variables exist and solve this issue by combining the results from distinct weighting
schemes that control the influence of selections over the grid of possible FDRs. With that,
we transparently control the FDR influence on selections while maintaining flexibility
by not restricting the baseline procedure for selections too strongly. An overview of
our method is given in Method 3. We suggest two different weighting schemes that all
depend on the following observation. By definition, a low nominal FDR implies that the
number of falsely selected variables is small compared to the number of selected variables.
This suggests that weighting should be conducted in a way that low FDRs, for which
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Algorithm 3 Weighted FDR Selection
Input:

Observation pairs (X, Y ) = (Xi, yi)ni=1 ∈ Rn×p+1

Set of nominal false discovery rates FDRk = αk ∈ [0, 1], k = 1, . . . , K

Baseline procedure B((X, Y ), FDRk) that returns selection probabilities for X given
FDRk, e.g. as in Method 2
Weighting scheme ω = (ω1, . . . , ωK) that assigns a weight depending on selection run
k

1: for k in 1 to K do
2: Run baseline procedure B(X, Y, FDRk) for FDRk and obtain selection probabilities

Pk = (pr1k, . . . , prlk) for each variable l = 1, . . . , p

Possible Pk format: 0/1-coding, rank, probabilities, see Method 2 for computation
3: end for
4: for l in 1 to p do
5: Obtain weighted selection probability WPl =

∑K
k=1 prlkωk

6: end for
Output: Final weighted selection probabilities for each variable WPr =

(WP1, . . . , WPp)

selection probabilities are thus more informative, should receive higher weight. Imagine
we have two selection probabilities prlowj and prhighk for variable j and k at nominal levels
αlow = 0.1 and αhigh = 0.95, respectively. For αlow, less than 10% selected variables
should be false selections, while for αhigh less than 95% of selections should be false.
Obviously, when prlowj and prhighk are very similar, one would give variable j a higher
weight in being a true influencing variable compared to variable k. To formalize this
intuition, we propose two weighted averages and compare them with an unweighted
baseline. One average is just based on weights that decay linearly, while the other
one uses weights that decay exponentially and are equidistant on the log-scale. More
specifically, for the value (probability or rank) at FDRk = αk, where k = 1, . . . , K, and
FDRk ∈ (0, 1) on an equidistant grid, the linear weight for position k on the FDR-grid
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is given by

ωlink = K − k + 1∑K
k=1 k

, (3.5)

and the exponentially decaying weight is given by

ωexpk =
exp

(
ln(K)− (k − 1) ln(K)− ln(1)

K − 1

)
∑K
k=1 exp

(
ln(K)− (k − 1) ln(K)− ln(1)

K − 1

) . (3.6)

We compare these weights with an unweighted average, where we expect the weighted
averages to be more informative and thus give better indications of true influencing
variables than their unweighted counterparts.

3.3 Empirical Study: Corporate Recovery Rates

3.3.1 Data

Our empirical study uses a data set consisting of 2,079 U.S. corporate bonds that
defaulted between 2001 and 2016 obtained from S&P Capital IQ-similar. We retrieved
industry and stock variables from Bloomberg Financial Markets. Moreover, we collected
144 macroeconomic variables that were used in previous credit risk studies from the
Federal Reserve Bank of St. Louis (FRED, Federal Reserve Economic Data). We
classified these macroeconomic variables into 20 groups as detailed in Appendix C. We
structured the groups according to financial conditions (Loans, Bank Credit and Debt),
monetary measures (Savings, CPIs, Money Supply), corporate measures (Cash Flow
and Profit), business cycle (Unemployment, Industrial Production, Private Employment,
Housing, Income, Real GDP, Inventories), stock market (Index Returns and Volatilities),
international competitiveness (Exchange Rates, Trade), and micro-level factors (Producer
Price Index). These groups are tailored to yield interpretable factors and are more
granular than in Nazemi et al. (2022), who consider a prediction-focused analysis. As
can be seen from Table 3.1, variables within groups are often highly correlated, which
makes it hard to directly analyze them without transforming the data. Although there
are still a few highly dependent groups, the correlation between groups is much smaller
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Table 3.1: Summary Statistics of the Distribution of Pairwise Correlations: Detailed
Within and Schematic Cross-Group

Group Min 25% 50% 75% Max # members
1: Financial Conditions: Loans 0.50 0.78 0.92 0.97 1.00∗ 6
2: Monetary Measures: Savings 0.14 0.29 0.43 0.67 0.91 3
3: Monetary Measures: CPIs -0.91 -0.17 0.63 0.94 1.00∗ 13
4: Monetary Measures: Money Supply 0.90 0.91 0.93 0.96 1.00∗ 4
5: Corporate Measures: Cash Flow and Profit 0.40 0.66 0.76 0.88 0.94 4
6: Business Cycle: Unemployment -0.29 0.51 0.78 0.92 1.00∗ 10
7: Business Cycle: Industrial Production -0.54 0.20 0.51 0.83 0.98 13
8: Business Cycle: Private Employment -0.26 0.20 0.59 0.79 0.98 10
9: Business Cycle: Housing 0.68 0.91 0.96 0.97 0.99 12
10: Business Cycle: Income -0.32 -0.28 -0.21 0.48 0.99 4
11: Stock Market: Index Returns and Volatilities -0.66 -0.40 -0.20 0.40 0.99 9
12: International Competitiveness: Exchange Rates -0.66 -0.26 0.68 0.81 0.97 5
13: International Competitiveness: Trade -0.81 -0.65 -0.43 0.34 0.96 5
14: Micro-level: Bond Yields and Rates -0.90 -0.40 0.34 0.86 1.00 20
15: Micro-level: Bond Defaults in Industry - - - - - 1
16: Micro-level: High Yield Default Rate - - - - - 1
17: Financial Conditions: Bank Credit and Debt -0.87 -0.17 0.45 0.90 1.00∗ 11
18: Business Cycle: Real GDP 0.35 0.47 0.59 0.74 0.89 3
19: Micro-level: Producer Price Index 0.81 0.92 0.96 0.98 1.00∗ 6
20: Business Cycle: Inventories 0.29 0.32 0.59 0.83 0.98 4
*These values are only due to rounding. −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
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19
20

Notes: In the table on the left values depict summary statistics of the distribution of pairwise correlations within
each group. The median can be found on the diagonal of the schematic figure on the right which moreover displays
the median of all cross-group correlations. Details on the variable components of each group are listed in Table 3.9.

in general, which can be seen in Figure 3.1. There, the median correlation across groups
is shown, which the diagonal indicating the median correlation in-group, corresponding
to column 50% in the Table on the left of Figure 3.1.

The recovery rate is defined as the mean of trading price between the default day and
data 30 days after default, which we retrieve from Capital IQ. The data is originally from
the Trade Reporting and Compliance Engine (TRACE). In our analysis, all corporate
bonds have debt values, at the time of default, of greater than $50 million. The mean
value of the recovery rate for the 2,079 U.S. corporate bonds in our sample is 45.57
percent, and the sample standard deviation is 35.04 percent. The empirical distribution
of the recovery rates of defaulted US corporate bonds naturally peaked in the financial
crisis from 2008-20103. Around 30 percent of defaulted bonds have recovery rate less

3A more detailed figure on the distribution of defaults over time can be found in Figure 3.4 in Appendix
3.5.2. A large share of defaults was caused by both the Lehman Brother bankruptcy in September
2008, and the CIT Group Inc. bankruptcy in November 2009.
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Figure 3.1: Recovery Rate Frequency and Density (Red) for the Defaulted US Corporate
Bonds From 2001 to 2016
Notes: Mean recovery rate is depicted in dashed blue lines. The rightmost class is truncated in the
plot for reasons of clarity.

than 10 percent. There is another distribution peak in the range of values between 60
percent and 70 percent, which is visualized in Figure 3.1.

In addition, our bonds consist of four seniority levels for the bonds: (i) senior secured,
(ii) senior unsecured, (iii) senior subordinated, (iv) subordinated, and junior subordinated.
An overview over the distributions over the different bond types can be found in Appendix
3.5.2 in Figure 3.5. Since most defaults (82.5%) occurred in the class of senior unsecured
bonds, which is driving the distribution of recovery rates, we decided to not distinguish
between groups of seniority levels in our analysis. Additionally, the sample size would be
too small for such a sub-analysis.

3.3.2 Empirical Results

In this subsection, we use our methodology to identify and quantify the recovery rates of
corporate bonds in a data-driven way. This is key in practice for investments, hedging,
and supervision but also for model building and interpretation. As an extension in a
comprehensive out-of-sample forecasting study, we also demonstrate that simple linear
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predictions based on variables selected by the knockoff procedures can compete with
and often improve upon nonparametric methods that employ the full set of variables.
Moreover, we show that the obtained knock-off selection of variables is robust to discarding
certain time subperiods, e.g. after the financial crisis.

Identification of Important Groups and Effects on Recovery Rates

To determine the driving factors of corporate bond recovery rates, we use our proposed
methodology on the full sample from 2001 to 2016 for the data-driven selection of relevant
components. We show results of our suggested combined subsampling and weighted FDR
selection technique (see Method 2 and 3) across all types of different baseline-knockoff
methods, i.e. in particular, we study model-X knockoffs, deep knockoffs with two different
neural network architectures, and group knockoffs.

Since our data is highly correlated within groups (see Table 3.1) and we are mainly
interested in group effects and selections, we transform our data using principal component
analysis (PCA)4. To retain interpretability on a group level, we conduct one PCA per
group and only use the most important principal components (PC) to describe that
specific group, i.e. a maximum of four PCs that explain at least 90% of the variability
in the group. This helps to reduce high correlations among variables and break down
large groups of variables to one or two components to see their main effects, avoiding
multicollinearity issues in post-selection linear models. Additionally as a robustness check
for the model-X knockoffs, we employ a smaller version using a maximum of two PCs
("2comp").This group-PCA step greatly reduces the dimensionality of the data and serves
as a viable alternative to other pre-screening procedures such as omitting variables with
high pairwise correlations. With that, the variables are scaled by their standard deviation
and centered around zero. Similar approaches in reducing dimensions have also been
taken by Kelly et al. (2019) in an asset pricing application.

Figure 3.2 graphically shows the most important PCA-features for model-X knockoffs
over all possible nominal FDRs, while similar figures for the other procedures can be
found in Appendix 3.5.2 (Figure 3.6). Most prominently, the selection probabilities of
important features are rather high (with selection frequency of 0.6) already at a nominal

4See e.g. Hastie et al. (2009, Chap. 14.5).
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FDR = 0.2 and rise to 0.8 at nominal FDR = 0.4 for the model-X procedures, where
other, less important factors only attain similar levels from a nominal FDR = 0.8 onward.
Such levels of FDR clearly undesirable, but investigating the entire grid of FDR-levels
jointly and with appropriate weighting is beneficial and yields robustness due to the
rather high variability of selection probabilities for minimal changes at a considered
specific nominal FDR-level. For the deep knockoff procedures, however, we see high
selection probabilities for relevant features throughout all FDR levels (see Figure 3.6
(bottom)). Comparing different structures for the neural networks in the deep knockoffs,
this effect is more pronounced for narrower networks with only 5 neurons per layer. Since
a wider network can learn more complex structures, it can build more accurate knockoffs
and with that, identify variables that are less likely to be true influencing variables,
especially for cases where nominal FDR-levels are low. This highlights the importance of
considering multiple methods for generating knockoffs and combining their insights to
identify the most important groups.

To finally select appropriate variables over all five methods and FDRs, we compare two
different ranking procedures for variables at each FDR-level. To combine the different
rankings from each FDR-level to a final selection (probability), we employ three distinct
weighting approaches. First, we distinguish between using ranking of variable selections
(from 20 to one) or selection probabilities from our procedures. The subsequent weighting
of ranks/probabilities for each variable over all nominal FDR-values is conducted as in
Section 3.2 using either equal weighs, linear decaying weights (ωlink , Lin-decreasing), or
exponentially decaying weights (ωexpk , Log-decreasing). The weights assign the highest
weights to low FDR-values and decrease with higher FDR-levels (see Section 3.2 for
details). Figure 3.3 shows boxplots over selections from different methods by both ranking
procedures and the three weighting schemes. In general, we can see that group 14, 11,
and 12 are always among the top four in each procedure, while group 5 only appears as
important when looking at probabilities, and group 20 vice versa only when looking at
ranks. Table 3.2 highlights the influence selection probabilities and ranks, where both
group 5 and group 20 are given higher relative importance in the weighted schemes that
focus on low nominal FDRs. Otherwise, results for the most selected groups are mostly
stable over both schemes and all weights. This is largely in line with the literature that
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Figure 3.2: Model-X Knockoff Selection Probabilities for Different Nominal FDR Using
Group Principal Components
Notes: Selection probabilities are obtained rerunning the full knockoff procedures using repeated
subsampling of 90% of the data (100 iterations). Highlighted groups have the highest mean
selection rank, i.e. the mean over the rank in each FDR-scenario. The PCA component with the
highest probability receives the highest rank (= 41) and vice versa (= 1).

also determines the factors in group 14, 11, 20, and 5 as relevant with a more simplistic
and less robust data-driven selection technology (Jankowitsch et al., 2014; Nazemi et al.,
2018)5. Though different from the existing studies, however, our methods additionally
also detect group 12 as important, that consists of exchange rates.

Note that group 14 describes bond yields of major bonds and rates of different general
indicators such as mortgage, treasury, and loans, which might be considered naturally

5Other, less important groups that have been selected often by our approach include high yield default
rates, defaults in the respective industry, and GDP measurements. These findings are also in line
with Nazemi et al. (2018) and Jankowitsch et al. (2014), who report similar factors to be important.
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Figure 3.3: Boxplots of Weighted Mean Selection Probabilities/Ranks of Each Group
Using Different Procedures
Notes: In each subplot, the red squares represent the means of each procedure. Groups are sorted
by highest probability/rank from left to right. For PCA procedures, the group probability/rank is
assigned as the highest value over all group-principal components. In case of ranks, the PCA-ranks
are rescaled linearly to lie between 1 and 20.

predictive for the state of the economy and thus of bonds. The data-driven selection
therefore confirms the intuition that these indicators have an influence on recovery
rates. Similarly, the selection of the other groups can be explained. These describe
international exchange rates against the USD (group 12) and stock market indicators
such as returns and volatilities of the most important indices (group 11). Furthermore,
capacity utilization of industries and change in inventories of private and businesses play
an important role (group 20), as well as corporate measures such as profit of the firm
and cash flow (group 5). More specifically, in the light of the financial crisis in 2008
and the following euro crisis, exchange rates were strongly affected (see e.g. McCauley
and McGuire, 2009; Kohler, 2010), which might explain their connection to recovery
rates in regard to globally active firms. The capacity utilization group, on the other
hand, measures how much of total potential output is actually utilized by industry and
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Table 3.2: Most-Selected Groups Over Different Weighting Schemes
Rank: 1 2 3 4

Group Mean Score Group Mean Score Group Mean Score Group Mean Score
Prob_unweight 14 0.826 11 0.783 12 0.781 5 0.742
Prob_exp 14 0.741 5 0.687 11 0.676 12 0.651
Prob_lin 14 0.775 11 0.726 12 0.709 5 0.708
Rank_unweight 14 17.768 12 17.156 20 16.276 11 16.100
Rank_exp 20 17.479 14 17.300 12 16.808 11 16.139
Rank_lin 14 17.547 20 17.172 12 16.880 11 16.117

Notes: In the columns, Group depicts the selected variable group, while Mean Score shows the (weighted) mean
over all five procedures for the four most selected groups. Prob and Rank refer to whether probabilities or ranks are
used, while unweight, exp, and lin refer to the weighting scheme of equal weighting, linear-decreasing weighting,
and exponentially decreasing weighting. The ranks for groups are rescaled linearly to lie between 1 and 20 (20
being the best score), while the selection probabilities lie between 0 and 1.

additionally contains information about inventories (and their change over time). This is
highly relevant for recovery rates when thinking of a firm’s business model in general
and inventories of firms that could indicate how much can be recovered given default.
Naturally, returns and volatilities of the most important indices such as the S&P 500
or the NASDAQ 100 describe the general situation of the economy and the value of
companies, which again is an indicator of recovery rates of these firms. Finally, profit
and cash flow are probably the most direct factors for short-term companies finances,
and are thus a good predictor for the default of a firm.

As a robustness check, we also computed variable importance measures from a random
forest model using mean variance reduction as a measure for the importance of a group6.
Computational details of this model can be found in Appendix 3.5.1. Table 3.10 in
Appendix 3.5.2 shows the mean values aggregated on a group level of variance reduction
and corresponding p-values from the PIMP procedure of Altmann et al. (2010). There,
we can confirm that especially group 12, 14, and also 11 have high importance, while
group 20 and group 5 are not deemed important. This can be explained by the predictive
nature of the measure and method that favors groups such as group 15, which measures
the bond defaults within the industries. Interestingly, group 15 is also in the top 6 groups

6To give the nonparametric random forest maximum flexibility, we used the the raw data as input
instead of using the aggregated PCA-groups.
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of many of the other procedures, although mostly ranked below all the other selected
groups.

Post-Selection Performance

To obtain an unbiased quantification of the effect of each factor, we re-estimate a linear
model using only those groups that were selected in the first part of Section 3.3.2. We
show the effect of the most important principal components (PCs) for each group in
Table 3.3. While the effects of selected variables appear mostly significant, it has to be
noted that assuming a linear model might be too optimistic and effects between groups
might be affected by some remaining multicollinearity between similar groups.

Using the PCs allows using and working with the strong correlation within groups,
and facilitates the interpretation and comparison of effects between different groups since
variables in each group are centered and scaled. The results of Table 3.3 show that most
of the selected coefficients seem highly significant, where focus should lie on the first
and second PC which capture the largest share of the variance in each group. Group
14 has a largely negative impact on recovery rates, although especially the last PC is
affected by inclusion of more variables switching signs. Group 11 has a primarily positive
impact (in the first two PCs), while adding large explanatory power (Adjusted R2), It is,
however, also correlated with group 12, which adds little explanatory power, but also
has a significant positive first PC. Group 20 and 5 have a negative impact but appear
to affect the coefficients of other components, which is why we consider their inclusion
rather as a robustness check, since they also do not add as much to an increase in R2 as
for example group 14 and 11. Group 12 is a special case, having both positive (PC1) and
negative (PC2) significant coefficients. Taking a closer look at the weights of the PCs7,
the first PC assigns a large negative weight to the exchange rates of Canadian dollar,
Swiss franc against one USD, and the real broad effective exchange rate for the US, while
the second PC gives large negative weight to the rate of USD against one British pound.

It is in line with intuition that higher bond yields and rates such as mortgages have
a negative impact on recovery rates (group 14), since they might indicate a riskier
environment. The positive impact of group 11 can be attributed to the fact that higher

7A complete list of the PCA-weights can be found in Table 3.12 in the Appendix.
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Table 3.3: Linear Regression with PCA-Components of Most-Selected Groups
Most Selected Groups Additional Groups

Group 14 Group 14,11 Group 14,11,12 Group 14,11,12,20 Group 14,11,12,20,5

PC5.1 −14.225∗∗∗ (2.456)
PC5.2 1.751 (4.604)
PC11.1 1.895∗∗∗ (0.544) −0.973 (0.646) −0.922 (0.645) 0.467 (0.651)
PC11.2 9.386∗∗∗ (0.594) 8.524∗∗∗ (0.675) 8.782∗∗∗ (0.784) 8.841∗∗∗ (0.717)
PC11.3 −4.464∗∗∗ (1.150) −1.316 (1.242) 0.285 (1.474) −1.337 (1.530)
PC11.4 −8.865∗∗∗ (1.426) −1.936 (1.737) 0.232 (2.205) −1.551 (2.274)
PC12.1 3.953∗∗∗ (0.706) 2.925∗∗∗ (0.738) 4.402∗∗∗ (0.748)
PC12.2 −6.158∗∗∗ (1.387) −7.384∗∗∗ (1.663) −7.530∗∗∗ (2.035)
PC14.1 −1.346∗∗∗ (0.205) −3.428∗∗∗ (0.309) −1.826∗∗∗ (0.499) −2.032∗∗∗ (0.562) −0.694 (0.595)
PC14.2 3.254∗∗∗ (0.363) 3.312∗∗∗ (0.605) 3.888∗∗∗ (0.636) 4.201∗∗∗ (0.995) 8.411∗∗∗ (1.062)
PC14.3 −1.352∗∗ (0.567) 0.238 (0.992) −3.044∗∗∗ (1.016) −2.684∗ (1.467) −2.816∗ (1.501)
PC20.1 1.373 (1.181) −0.643 (1.991)
PC20.2 −5.211∗∗∗ (1.769) −18.210∗∗∗ (4.366)
Constant 45.574∗∗∗ (0.748) 45.574∗∗∗ (0.691) 45.574∗∗∗ (0.682) 45.574∗∗∗ (0.681) 45.574∗∗∗ (0.672)

Observations 2,079 2,079 2,079 2,079 2,079
R2 0.056 0.170 0.188 0.223 0.244
Adjusted R2 0.055 0.168 0.185 0.219 0.239
Residual Std. Error 34.070 (df = 2075) 31.958 (df = 2073) 31.637 (df = 2071) 30.964 (df = 2067) 30.574 (df = 2065)
F Statistic 41.139∗∗∗ (df = 3; 2075) 85.117∗∗∗ (df = 5; 2073) 68.351∗∗∗ (df = 7; 2071) 54.053∗∗∗ (df = 11; 2067) 51.147∗∗∗ (df = 13; 2065)

Notes: PCX.Y stands for principal component Y of group X. Variables were selected taking all groups among the
four most-selected groups over all weighting schemes. See Table 3.2 for details on group selection. We include PCs
in each group until they explain more than 90% of total variability in that group. Coefficients are shown with
stars according to their significance in t-tests. SEs in parentheses are HC3 robust. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

returns and smaller volatilities in the stock indices result in larger recovery rates. At the
same time, the positive impact of exchange rates (group 12) in the first PC indicates
that when the USD is weak against other major currencies, recovery rates are higher,
while the opposite effect is observed in PC2. This effect could be explained by defaulted
companies holding assets in foreign currencies that are more valuable when the USD is
weak. On the other hand, we cannot fully rule out that this effect is caused by the USD
exchange rate dropping against other major currencies (see e.g. Kohler, 2010) because of
large crash events that are connected to bond defaulting.

Extension: Out-of-Sample Prediction Performance

In addition to the identification and interpretation of important factors explaining recovery
rates, we also assess the out-of-sample forecasting performance of the reduced models
in various scenarios. Here, we distinguish between two main cases: firstly, we check the
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infeasible forecasting scenario as reference point, where we use the determined models
from the first part of Section 3.3.2 employing information from the full data comprising
2001-2016 in the model selection step when forecasting for the year 2012-2016 (Table
3.4). Additionally, we also provide results for the “completely” out-of-sample forecasting
case , where we re-determine all models on a limited time period from 2001-2011 and
predict 2012-2016 (see Table 3.5). For the post-selection estimation step, we use a wide
variety of models ranging from simple linear methods, standard and penalized, up to
flexible fully nonparametric methods such as random forests (see Appendix 3.5.1 for
implementation details). Moreover, we consider both cases with the full raw data and
group-PCA-transformed data in different settings. In all settings, we clearly confirm that
knockoff pre-selection improves prediction performance. The results also highlight that
this cannot be achieved with lasso pre-selection, thus confirming the importance of our
robust approach. After knockoff pre-selection, simple (penalized) linear forecasting models
often achieve quite competitive forecasting performance with only slight improvements by
a non-linear fit. This highlights that forecasting with a data-driven selection of important
predictors pays-off, while maintaining easy interpretation in comparison to their fully
nonparametric counterparts.

We assess the forecasting performance by calculating the root-mean-squared forecasting

error RMSE =
√

1
K

∑T
τ=k(ŷτ − yτ )2 and the mean-absolute error MAE = 1

K

∑T
τ=k |ŷt−

yτ | for a prediction ŷτ of yτ at forecasting time τ = k, . . . , T , and forecast length K = T−k.
We use different forecast constructions with fixed, expanding and rolling windows on
annual and daily horizons. For the fixed window type, we set the training data to
2001-2011 and provide daily predictions for 2012-2016. In the expanding window case, we
use data from 2001 up to a certain year τ in the set {2011, 2012, 2013, 2014} and predict
daily values in τ +l where l ∈ {1, 2}8. For daily rolling windows, we set the training length
to 10 years as in the initial expanding case and the fixed window setting and predict
one corporate default observation ahead (Daily)9 We estimate either cross-validated

8We use an expanding window here to account for the difficulty of predicting two full years at once.
9This does not necessarily mean that this is one day ahead ahead, as some defaults occurred on the

same day. We chose to always jump to the next day containing a default to maintain a realistic time
structure in that scenario (see also Nazemi et al. (2022)).
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elastic nets (mixing parameter α = 0.5)10, cross-validated lasso regressions, or simple
linear models, and use random forests as nonparametric benchmarks. For each window
construction, we employ the post-selection methods either with the full raw data or
the group-PCA transformed data (as described in the first part of Section 3.3.2, we
use as many PCs to explain 90% of the variance in each group, see also Table 3.11).
We either use the above data without pre-selection or employ the pre-selected set of
variables according to the different setups in the first part of Section 3.3.2. This comprises
using our proposed weighted FDR selection (wFDR)11 combining all baseline knockoff
procedures or using only our repeated-subsampling procedure (see Procedure 2 in Section
3.2) in combination with the baseline-methods. These are either model-X knockoffs (MX,
or MX 2 Comp. using a maximum of 2 PCs) or deep knockoffs with 5 (Narrow) and 25
(Wide) neurons per layer.

For the infeasible reference scenario in Table 3.4 and the group-PCA-transformed data,
we use PCs that are estimated over the full data set. In the “completely out-of-sample”
forecasting case in Table 3.5, the out-of-sample PCs for time points after 2011 are created
using the weights from the PCs with only data up to the end of 201112.

Table 3.4 shows that generally simple linear models with limited pre-selected variables
from our proposed weighted FDR procedure that combine different knockoff selections
works best for forecasting both longer and shorter time horizons. Moreover, as a single
selection techniques, also, the model-X procedure within our robustified framework yields
excellent results with a simple linear post-selection fit. Determining variables with the
Deep Knockoff robustified framework generally performs slightly worse also for non-
linear post-selection models, with the relative best performance for shorter forecasting
horizons. This is not unexpected since for the deep knockoffs, selection probabilities were
generally much higher, meaning they could contain more noise variables that would bias
predictions for longer time horizons (i.e. they do not generalize as well as the weighted

10More specifically, the penalty in the objective function is specified as
∑p

j=1(α|bj | + (1 − α)b2
j )

11For the wFDR, we use all PCA-components from the three most-selected groups, i.e. 14,12,11. See
also Table 3.3 for comparison.

12For comparability, scaling/centering uses information of the entire sample. But scaling with weights
from data up to the end of 2011 does not substantially change the prediction performance. Results
are available from authors upon request.
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Table 3.4: Out-Of-Sample Predictions (Theoretical Infeasible Case: Model Selection and
Principal Component Construction Based on the Entire Sample))

Group-PCA Selection Method Post-Selection Fixed Annual Daily
RMSE MAE RMSE MAE RMSE MAE

✓ wFDR Knock. Elastic Net 28.74 23.41 30.21 24.92 29.14 24.33
✓ wFDR Knock. OLS 28.50 22.30 30.05 24.40 29.23 24.41
✓ MX Knock. Elastic Net 28.85 21.71 30.01 23.61 29.26 23.44
✓ MX Knock. OLS 28.93 21.63 30.02 23.52 29.33 23.29
✓ MX Knock. Random Forest 30.87 26.87 33.19 28.51 30.87 25.80
✓ MX Knock. 2 Comp. Elastic Net 29.86 24.78 31.50 26.63 30.09 25.13
✓ MX Knock. 2 Comp. OLS 29.79 24.67 31.02 25.89 30.00 24.98
✓ Deep Knock. Narrow Elastic Net 44.52 40.07 36.61 32.59 33.07 28.89
✓ Deep Knock. Narrow OLS 43.88 39.46 36.50 32.49 33.03 28.83
✓ Deep Knock. Wide Elastic Net 37.17 32.47 35.20 29.86 32.87 28.13
✓ Deep Knock. Wide OLS 36.78 32.08 34.64 29.27 32.87 28.16
✓ No Selection Elastic Net 183.94 162.04 50.25 37.34 30.87 23.89
✓ No Selection Lasso 192.16 169.71 52.67 38.49 31.07 24.11
✓ No Selection Random Forest 35.52 31.29 34.29 29.82 29.53 23.54

Group Knock. Elastic Net 223.40 194.16 68.30 51.22 31.48 24.01
No Selection Elastic Net 268.10 237.02 79.04 58.49 34.18 25.47
No Selection Lasso 240.53 213.98 74.75 56.47 35.01 26.18
No Selection Random Forest 36.23 32.03 33.17 28.99 29.42 23.55

Notes: The table shows the predictive performance after different pre-selection or no pre-selection occurred, for
PCA or pure data components and across different post-selection methods. In each forecasting scheme, the best
two models are marked in bold.

FDR counterparts). The baseline linear models using the full raw data perform poorly
for large time horizons, especially for fixed windows, which can be explained by potential
overfitting on noisy data. Interestingly, this cannot be fully countered by regularization
using elastic nets for forecasting tasks. Only for very short time horizons as the daily
rolling window, the baseline procedures can compete. These findings are highly in favor
of using our proposed statistical model selection techniques also for forecasting tasks. The
machine learning (ML) benchmarks with selection on the full raw data perform similarly,
but always slightly worse than the knockoff counterparts with the generally downside of
lacking transparency and interpretability of the influence of certain groups and factors.
Using the PCs instead of raw data only significantly improves the random forest model
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Table 3.5: (Completely) Out-Of-Sample Predictions (Practically Feasible Case): Model
Selection and Principal Component Construction Based Only on Period up
to 2012

Group-PCA Selection Method Post-Selection Fixed Annual Daily
RMSE MAE RMSE MAE RMSE MAE

✓ wFDR Knock. Elastic Net 31.38 27.26 31.95 27.52 31.28 26.44
✓ wFDR Knock. OLS 31.12 26.98 32.01 27.60 31.39 26.49
✓ MX Knock. Elastic Net 38.67 32.68 35.18 29.61 34.80 29.43
✓ MX Knock. OLS 38.88 32.83 35.29 29.70 34.89 29.49
✓ MX Knock. Random Forest 31.17 25.37 33.15 26.78 29.59 23.77
✓ MX Knock. 2 Comp. Elastic Net 38.62 32.64 35.18 29.61 34.72 29.35
✓ MX Knock. 2 Comp. OLS 38.88 32.83 35.29 29.70 34.89 29.49
✓ No Selection Elastic Net 107.07 91.70 62.32 49.33 43.14 32.00
✓ No Selection Lasso 94.93 80.22 57.54 46.40 41.31 31.74
✓ No Selection Random Forest 30.80 26.45 31.77 27.08 28.84 23.13

Group Knock. Elastic Net 223.40 194.16 68.30 51.22 31.48 24.01
No Selection Elastic Net 268.10 237.02 79.04 58.49 34.18 25.47
No Selection Lasso 240.53 213.98 70.55 50.16 34.83 25.81
No Selection Random Forest 36.23 32.03 33.17 28.99 29.42 23.55

Notes: In contrast to Table 3.4, variable selection and PCA is only performed with data up to the end of 2011.
The best two models for each forecasting scheme are again marked in bold.

for the fixed window. Note that for this study, we used the standard recommended
data-driven choice of tuning parameters for the machine learning benchmarks but did
not additionally fine-tune from there in order to maintain comparability between the
simple baselines, the knockoff procedures, and the benchmark models.13.

In the “completely” out-of-sample scenario, we repeat the model selection step from
Section 3.3.2, but only use data up to the end of 2011 to determine the relevant variables
with our proposed methodology for all different knockoff-baseline procedures. This
represents the most realistic but also most challenging scenario for the knockoff procedure,
where post-crisis recovery rates are not contained in the training set but must be predicted.
The resulting stability in selections and in forecasting performance therefore indicates

13While tuning all hyperparameters cautiously could improve ML-forecasts to some extent, previous
studies for recovery rates show that expected changes are minor (see e.g. Nazemi et al. (2022) with
additional news-based variables).
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that our choices are important also for non-crisis periods. Table 3.5 summarizes the
new results14. As expected, our proposed methodology (“wFDR") is on par with the
top-performing machine learning methods in this case as well, although the random
forest with the full raw data is slightly better for the daily window. In comparison to
the infeasible full-sample selection results in Table 3.4, the single model-X knockoffs
perform slightly worse, with less variability between the different knockoffs employed
within the subsampling knockoff framework. This can be explained by the smaller data
set, where fewer variables are selected in general and difference between the different
model-X knockoffs is smaller. Selections in general are the same compared to the full
data case for our proposed weighted FDR procedure, and very similar for the single
“baseline" methods, with only a few minor changes (see Table 3.8 in Appendix 3.5.2 for
details). In terms of forecasting performance, the ranks for the different procedures are
stable, meaning that our proposed weighted FDR methodology together with the random
forest are still performing best, while using no or no robust selection still performs worst
overall. The margin between the latter and our procedure is smaller only for the daily
rolling window and the MAE, where very bad predictions (e.g. in cases of large default
events) are not punished as heavily as with the MSE. Using the usual MSE-measure, the
raw data with an elastic net (or lasso) still perform considerably worse.

As an additional robustness check for the predictive performance of our methods, we
compute model confidence sets (Hansen et al., 2011) for the same forecasting combinations
as before and for both the infeasible scenario and the “pure forecasting case”. As suggested
in Hansen et al. (2011), we use B = 5000 bootstrap replications, the TMax test-statistic,
and test-level α = 0.15. Please see Appendix 3.5.1 for details. The displayed results
are robust across different α test levels in the standard range [0.1; 0.2]. 15 Although
the model confidence sets differ over the various forecasting schemes, we can identify
models that consistently fall into the model confidence set. Please see Table 3.6 and Table
3.7 for full-sample selection and completely out-of-sample forecast results, respectively.
We want to highlight that our proposed wFDR procedure always belongs to the model
confidence set, together with the random forest procedure in the full-sample selection
14We did not include the Deep Knockoff procedures here since the sample size is significantly reduced for

selections.
15Results are omitted here but are available upon request from the authors.
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Table 3.6: Model Confidence Sets for α = 0.15 and Different Methods With Full-Sample
Selection and Principal Components

Fixed Annual Daily
Group-PCA Selection Method Post-Selection TMax P-Value TMax P-Value TMax P-Value
Selected Into All Model Confidence Sets
✓ wFDR Knock. Elastic Net −5.11 1.00 -0.27 1.00 -2.53 1.00
✓ wFDR Knock. OLS -1.36 1.00 -0.74 1.00 -2.36 1.00
✓ MX Knock. Elastic Net -0.78 1.00 −0.99 1.00 −2.95 1.00
✓ MX Knock. OLS -0.61 1.00 -0.86 1.00 -2.94 1.00
✓ MX Knock. 2 Comp. OLS 0.88 0.73 1.70 0.17 -1.47 1.00
Selected Into Two Model Confidence Sets
✓ MX Knock. Random Forest 1.22 0.51 - - -0.43 1.00
✓ MX Knock. 2 Comp. Elastic Net 0.95 0.68 - - -1.32 1.00
Selected Into One Model Confidence Set
✓ Deep Knock. Narrow Elastic Net - - - - 0.97 0.83
✓ Deep Knock. Narrow OLS - - - - 0.94 0.85
✓ Deep Knock. Wide Elastic Net - - - - 0.91 0.87
✓ Deep Knock. Wide OLS - - - - 0.90 0.87
✓ No Selection Elastic Net - - - - -0.31 1.00
✓ No Selection Lasso - - - - -0.14 1.00
✓ No Selection Random Forest - - - - -2.12 1.00

Group Knock. Elastic Net - - - - 0.19 1.00
No Selection Elastic Net - - - - 1.04 0.80
No Selection Lasso - - - - 1.24 0.66
No Selection Random Forest - - - - -2.37 1.00

Selected Into No Model Confidence Set
Group Knock. OLS - - - - - -

Notes: “TMax” depicts the test statistic and “P-Value” depicts the p-value for the TMax procedure in testing
equal predictive ability in the model confidence procedure of Hansen et al. (2011) implemented with the R-package
from Bernardi and Catania (2018). The TMax-values depict the average loss difference of that method compared
to all other methods (negative value indicating smaller loss). P-values are based on B = 5000 bootstrap samples
with rejection level set to α = 0.15. Losses are squared losses calculated as in Table 3.4 and other details follow
this table. The best model in each confidence set is marked in bold. “-” indicates that the model was not selected,
i.e. had p-value smaller than α.
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Table 3.7: Model Confidence Sets for α = 0.15 and Different Methods for the Completely
Out-Of-Sample Period With Selections up to 2012

Fixed Annual Daily
Group-PCA Selection Method Post-Selection TMax P-Value TMax P-Value TMax P-Value
Selected Into All Model Confidence Sets
✓ wFDR Knock. Elastic Net 0.40 0.81 -1.71 1.00 -1.74 1.00
✓ wFDR Knock. OLS 0.01 1.00 -1.60 1.00 -1.66 1.00
✓ MX Knock. Random Forest 0.06 1.00 -0.35 1.00 -3.32 1.00
✓ No Selection Random Forest −0.61 1.00 −1.81 1.00 −4.04 1.00
Selected Into Two Model Confidence Sets
✓ MX Knock. Elastic Net - - 1.43 0.34 0.42 0.99
✓ MX Knock. OLS - - 1.44 0.33 0.48 0.98
✓ MX Knock. 2 Comp. Elastic Net - - 1.43 0.34 0.37 0.99
✓ MX Knock. 2 Comp. OLS - - 1.44 0.33 0.48 0.98

No Selection Random Forest - - -0.52 1.00 -3.32 1.00
Selected Into One Model Confidence Set
✓ No Selection Elastic Net - - - - 1.51 0.48
✓ No Selection Lasso - - - - 1.62 0.40

Group Knock. Elastic Net - - - - -1.77 1.00
No Selection Elastic Net - - - - 0.01 1.00
No Selection Lasso - - - - 0.24 1.00

Selected Into No Model Confidence Set
Group Knock. OLS - - - - - -

Notes: Compare Table 3.6 for detailed descriptions. Losses are squared losses calculated as in Table 3.5 and other
details follow this table.

scenario. Over the full sample selection, the other model-X procedures can still compete,
while in the “completely” out-of-sample case, they are outperformed by our proposed
wFDR. This is also confirmed by the corresponding test statistics, where a lower value
indicates better performance. More specifically, a negative value of the test statistic
indicates that the average loss is smaller compared to all other methods in the confidence
set, where our suggested method clearly outperforms the other procedures in general
for the full-sample selection, while for the “completely” out-of-sample scenario, the raw
random forest is slightly better when comparing the test-statistic. Using no or non-robust
selection methods (i.e. lasso, elastic net) is always worse, and also the plain group
knockoff does not perform well on our data set, which might be caused by our specific
data structure, where we still have some strong correlations between groups.
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3.4 Conclusion

In this paper, we demonstrate the benefit of connecting the flexibility of the knockoff
framework with repeated subsampling and techniques controlling the proportion of false
discoveries over the full spectrum of possible values. We are able to uncover important
macroeconomic factors of corporate bond recovery rates while maintaining excellent
forecasting performance. We employ a comprehensive set of distinctive knockoff machines,
show that a transparent combination of their results yields optimal ensemble results, and
consider the full grid of possible uncertainties in the methodology, which leads to a more
stable selection.

With that, we identify important groups of variables and show their effect on recovery
rates. Predictive power in various settings using linear models with just the identified
groups is significantly higher than using the full set of variables in similar models.
Furthermore, our procedure outperforms other model selection procedures (Sparse-step,
stability selection, MC+16 and performs similar to flexible machine learning methods. The
latter are developed for prediction tasks but lack easy interpretation and identification of
important factors, which is provided employing the proposed methodology.

For future research, the proposed methodology shows high-potential in other data-rich
empirical finance environments such as e.g. asset pricing. In a separate paper, it would
be of interest to derive conditions for FDR-level components and optimized forms of
parsimonious weighting schemes to theoretically achieve and derive optimal in-sample or
out-of-sample fits and respective statistical rates.

16See e.g. Nazemi et al. (2022).
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3.5 Appendix

3.5.1 Methods

Deep Knockoffs

Even though the procedure of Candès et al. (2018) poses only few assumptions on Y and
X together, namely that the observations are identically and independently distributed,
there is the assumption that the distribution FX of X is known beforehand. This
procedure can be ineffective in producing reliable knockoff variables when the covariance
structure of X is hard to replicate, e.g. when variables in X are highly correlated.
This problem arises due to often conflicting requirements of X and X̃ to have a similar
covariance structure but to be uncorrelated at the same time. Romano et al. (2020)
propose to solve these issues by replacing the model-X algorithm by an artificial neural
network. They define the covariance matrix of the combined (X, X̃) G and t:

G = Cov[(X, X̃)] =

GXX GXX̃

GX̃X GX̃X̃

 . (3.7)

We apply this approach to improve the creation of knockoffs and to provide a robustness
check of the model-X knockoffs. In contrast to the model-X construction, a deep neural
network is used to generate knockoff variables. We use different structures of neural
networks and compare their performance. In the final analysis, we include one wide
network (25 neurons per layer) and one narrow network (5 neurons per layer), each
of them with six layers, and otherwise the same structure as in the implementation
of Romano et al. (2020)17. The advantage of the Deep Knockoff procedure lies in the
creation of the knockoffs. Since we use neural networks, we can model more complex
relations and control specifically for higher moments in the knockoff distribution as well
as the correlation of X and X̃.

Given X and a random noise matrix V , the network outputs knockoff copies X̃ that
are then evaluated using a customized loss function. Also define X ′, X ′′ ∈ Rn/2×p as a
random partition of X. This loss function J can be defined as follows (see Romano et al.
(2020) for details) given M as a p× p-matrix with zero diagonal and ones everywhere

17See https://github.com/msesia/deepknockoffs for details.

https://github.com/msesia/deepknockoffs
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else, ◦ as element-wise multiplication of two matrices:

Jγ,λ,δ(X, X̃) = γJMMD(X, X̃) + λJsecond−order(X, X̃) + δJdecorrelation(X, X̃)

JMMD(X, X̃) = D̂MMD

[
(X ′, X̃ ′), (X̃ ′′, X ′′)

]
+ D̂MMD

[
(X ′, X̃ ′), (X ′′, X̃ ′′)swap(S)

]
Jsecond−order(X, X̃) = λ1

∥GXX −GX̃X̃∥22
∥GXX∥22

+ λ2
∥M ◦ (GXX −GX̃X̃)∥22

∥GXX∥22
+

λ3
p

∥∥∥∥∥
∑n
i=1(Xi − X̃i)

n

∥∥∥∥∥
2

2

Jdecorrelation−order(X, X̃) = ∥diag(GXX̃)− 1 + s∗
ASDP (GXX)∥22 .

λ = (λ1, λ2, λ3), s∗
ASDP (Ω) is a function returning the optimal s∗ = (s∗

1, . . . , s∗
p) from the

ASDP-procedure for model-X knockoffs given a covariance matrix Ω. D̂MMD(X, ZX̃)
is the empirical version of the maximum mean discrepancy using a Gaussian kernel for
comparing two matrices X and X̃. (X, X̃)swap(S) stands for matrix (X, X̃) with entries
of X and X̃ swapped in dimensions S ∈ {1, . . . , p}, where each dimension j is contained
in S with probability 0.5. This loss function contains three parts. Jsecond−order(X, X̃)
measures the deviation from the first moment in λ3, and the deviation from the diagonal
(λ1) as well as the off-diagonal elements (λ2) in G. JMMD(X, X̃) penalizes discrepancies
in the two covariate-distributions in general, i.e. targeting higher moments. This is
done in computationally efficient way by computing the MMD-distance on differently
arranged versions of the two independent samples X ′, X ′′. Finally, Jdecorrelation(X, X̃)
is added to ensure that the knockoffs X̃ are not highly correlated with X. Otherwise,
the algorithm could easily find an optimal trivial solution in just setting X = X̃. The
degrees of influence of each of these parts are set by γ, λ, and δ, which should be set
depending on the underlying data.

Group Knockoffs

We additionally employ the group knockoff filter from Dai and Barber (2016) as a
robustness-check, since it is supposed to handle highly correlated variables better by
imposing a group structure. The selection step using the lasso-signed max statistic is
taken over a group-lasso regression, encouraging group-sparsity in the selection. WLSM

j

is changed accordingly so that groups of variables can are selected in the end. This is
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simply done by replacing the individual coefficients by their group counterparts and
thus recording at which λ those are included into the model. The construction of good
knockoffs, however, is easier due to the imposed structure, and is an extension to what is
done in Barber and Candès (2015). Intuitively, variables that are highly correlated should
be in the same group, and the procedure should work well correlations among groups are
low. In our case, this is not fully fulfilled, which is why we expect the performance to be
lower than for the other methods.

Random Forest

We also use random forests (Breiman, 2001) both for prediction as a fully nonparametric
machine learning benchmark with a tree-size of 2000. We can extract variable importance
from this procedure based on mean variance reduction as a robustness check. This
measures the mean reduction in mean squared error by splitting on a certain variable.
To aggregate this on a group level, we take the mean over the reduction of all the
variables in the respective group. We additionally extract p-values using the PIMP-
procedure suggested in Altmann et al. (2010). There, we use 200 permutations of the
response variable and measure the variable importance for each permutation to obtain
200 base-importances for each variable. We can then fit a distribution to these null
importance to obtain a null distribution against which we compare the extracted true
variable importance to obtain the p-value. We use a simple and fast nonparametric
approach to obtain the p-values by simply measuring the fraction of null importances that
exceed the true measured importance relative to the number of permutations. With that,
we follow the suggestion of Altmann et al. (2010) and the subsequent implementation in
the R-package ranger.

Model Confidence Sets

While our focus is on interpretation of data-driven selected model components, we also
study the predictive ability of the resulting knock-off determined models. In this setting,
we compute model confidence sets proposed in Hansen et al. (2011) and implemented
in Bernardi and Catania (2018). Such model confidence sets provide practitioners with
more robust statistical guidance on which models to apply rather then using simple
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prediction errors. Intuitively, the procedure proceeds iteratively, testing whether all
models have the same predictive ability, eliminating the worst model, until equal predictive
ability cannot be rejected. Define the loss series as in Bernardi and Catania (2018), i.e
dijt = lit − ljt,i, j ∈ M = {1, . . . , m}, as the difference of the squared loss lit and ljt

at time point t = 1, . . . , T for model i and j out of m available models. To construct
the test statistic, we compute di·t = (m − 1)−1∑

j∈M\i dijt, the average loss difference
between model i and all other (remaining) models. We then construct the statistic

ti· = di·√
v̂ar(di·)

, where di· = 1
T

∑T
t=1 di·t. v̂ar(di·) is the bootstrapped variance using the

block-bootstrap with B = 5000 bootstrap samples and a block length k that is equal to
the number of selected parameters in an auto-regression of the the loss difference series
dijt using the Akaike information criterion to select the model order. The test statistic
we use is Tmax,M = max

i∈M
ti·, and the test rejects if this value is larger than the 1 − α

quantile of the bootstrapped distribution of Tmax,M .

3.5.2 Tables and Figures

Table 3.8: Most-Selected Groups Over Different Weighting Schemes for Completely Out-
Of-Sample Selections

Rank: 1 2 3 4
Group Mean Score Group Mean Score Group Mean Score Group Mean Score

Prob_unweight 14 0.648 12 0.631 11 0.596 5 0.534
Prob_exp 5 0.407 12 0.402 14 0.376 20 0.354
Prob_lin 12 0.506 14 0.493 5 0.462 11 0.458
Rank_unweight 14 17.460 12 15.747 11 15.032 15 14.636
Rank_exp 20 16.876 14 16.495 12 15.919 11 14.853
Rank_lin 14 16.990 20 16.014 12 15.779 11 14.951

Notes: In the columns, Group depicts the selected variable group, while Mean Score shows the (weighted) mean
over all five procedures for the four most selected groups. The ranks for groups are rescaled linearly to lie between
1 and 20 (20 being the best score), while the selection probabilities lie between 0 and 1.
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Figure 3.4: Default Frequency and Density (Red) Over Time for the Defaulted US
Corporate Bonds From 2001 to 2016
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Figure 3.5: Recovery Rate Frequency and Density (Red) for the Defaulted US Corporate
Bonds From 2001 to 2016
Notes: Mean Recovery Rates are depicted in dashed lines (Blue). Defaults are sorted by bond
type, i.e. senior unsecured bonds (SenUnsec, n = 1715), all subordinate bonds (AllSubord, pooled
because of insufficient data, n = 178, from subordinate bonds: n = 158 and senior subordinate
bonds, n = 21), and senior secured bonds (SenSec). Please also notice the different scaling of the
x-axis.
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Table 3.10: Variable Importance From Random Forests Aggregated on Group Level

Variance Reduction P-Value
Group_15 4.533 0.005
Group_12 2.411 0.005
Group_11 1.678 0.008
Group_19 1.481 0.005
Group_2 1.433 0.085

Group_14 1.162 0.008
Group_13 1.046 0.027
Group_17 0.902 0.046
Group_3 0.870 0.016

Group_20 0.763 0.091
Group_4 0.602 0.007
Group_8 0.574 0.020
Group_6 0.535 0.008
Group_7 0.529 0.071
Group_5 0.393 0.139
Group_1 0.321 0.112
Group_9 0.298 0.140

Group_10 0.247 0.128
Group_18 0.138 0.320
Group_16 0.085 0.075

Notes: Variance reduction is the mean variance reduction (i.e. influence) of a variable in the random forest,
measured by the mean reduction in mean squared error by splitting on this variable, averaged over all groups.
For ease of presentation, we show values relative to the average of variance reduction taken over all variables
(i.e. a value larger than 1 indicates higher importance). P-Value depicts the mean p-values obtained by the
PIMP-procedure from Altmann et al. (2010) given 200 permutations.
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Table 3.11: Mean Selection Probabilities for Each Procedure Over All Weighting Schemes
Method: modelX_PCA deep5_PCA deep25_PCA modelX2comp_PCA Group gKnock_Data
PC1.1 0.125 0.695 0.357 0.212 G_1 0.081
PC1.2 0.884 0.990 0.980 0.279 G_2 0.313
PC2.1 0.298 0.990 0.899 0.227 G_3 0.195
PC2.2 0.116 0.952 0.561 0.137 G_4 0.099
PC3.1 0.103 0.526 0.354 0.085 G_5 0.080
PC3.2 0.129 0.683 0.336 0.105 G_6 0.073
PC4.1 0.125 0.677 0.239 0.087 G_7 0.148
PC5.1 0.926 0.990 0.980 0.587 G_8 0.079
PC5.2 0.170 0.888 0.591 0.116 G_9 0.179
PC6.1 0.107 0.606 0.350 0.084 G_10 0.157
PC6.2 0.193 0.950 0.551 0.129 G_11 0.202
PC7.1 0.159 0.990 0.852 0.103 G_12 0.264
PC7.2 0.259 0.990 0.970 0.384 G_13 0.112
PC7.3 0.361 0.990 0.980 G_14 0.294
PC8.1 0.113 0.662 0.317 0.105 G_15 0.464
PC8.2 0.115 0.958 0.612 0.085 G_16 0.120
PC9.1 0.294 0.990 0.905 0.131 G_17 0.098
PC10.1 0.109 0.468 0.194 0.089 G_18 0.321
PC10.2 0.227 0.990 0.846 0.200 G_19 0.256
PC11.1 0.065 0.985 0.750 0.004 G_20 0.388
PC11.2 0.709 0.990 0.977 0.763
PC11.3 0.310 0.990 0.871
PC11.4 0.262 0.990 0.938
PC12.1 0.141 0.990 0.889 0.215
PC12.2 0.721 0.990 0.977 0.616
PC13.1 0.111 0.722 0.386 0.093
PC13.2 0.184 0.990 0.830 0.100
PC13.3 0.306 0.990 0.976
PC14.1 0.489 0.990 0.843 0.116
PC14.2 0.793 0.990 0.980 0.848
PC14.3 0.025 0.688 0.376
PC15.1 0.361 0.990 0.783 0.422
PC16.1 0.307 0.990 0.840 0.496
PC17.1 0.109 0.535 0.268 0.084
PC17.2 0.127 0.609 0.266 0.125
PC17.3 0.119 0.880 0.376
PC18.1 0.111 0.598 0.389 0.389
PC18.2 0.208 0.990 0.905 0.264
PC19.1 0.120 0.601 0.267 0.086
PC20.1 0.372 0.990 0.980 0.182
PC20.2 0.118 0.769 0.384 0.130

Notes: Mean selection probabilities over the three weighting schemes for each procedure and variable. For ranking
the variables, e.g. in the forecasting, the higher index is chosen first in case two probabilities are exactly the same
(only relevant for the deep knockoff procedures).
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Table 3.12: PCA-Weights for Groups of Our Proposed Procedure
PC1 PC2 PC3 PC4

Group_14

DCPN30 -0.267 0.046 0.088 -
DGS10 -0.217 -0.244 -0.22 -
DCPN3M -0.267 0.043 0.108 -
TermStructure -0.267 0.043 -0.008 -
FEDFUNDS -0.266 0.033 0.059 -
BAA10YM 0.117 -0.27 0.463 -
DAAA -0.176 -0.37 -0.109 -
MORTGAGE30US -0.222 -0.265 -0.009 -
DBAA -0.103 -0.433 0.249 -
DPRIME -0.266 0.052 0.072 -
DGS1 -0.268 0.016 0.061 -
DGS5 -0.244 -0.16 -0.161 -
DTB6 -0.268 0.039 0.061 -
TB3MS -0.268 0.027 0.037 -
AAAFF 0.203 -0.313 -0.157 -
BAAFF 0.194 -0.343 0.104 -
CPFF 0.002 -0.05 0.71 -
AaaBbbSpread 0.203 -0.313 -0.157 -
HYMSIZE 0.165 0.342 0.192 -
DGS3MO -0.267 0.043 -0.008 -

Group_11

SPRet 0.427 0.189 -0.053 0.053
VolSP500 -0.351 0.365 -0.292 -0.191
VXDCLS -0.374 0.31 -0.258 -0.171
NasdaqRet 0.357 0.352 -0.208 -0.391
VXNCLS -0.331 0.211 0.21 0.664
RussellRet 0.38 0.357 0.097 0.1
Russell2000Vol1m 0.154 -0.097 -0.833 0.479
WilshireRet 0.384 0.05 0.173 0.266
WilshireVol1m 0.049 -0.654 -0.155 -0.164

Group_12

DEXCAUS -0.51 0.131 - -
DEXJPUS -0.4 -0.561 - -
DEXSZUS -0.476 -0.222 - -
DEXUSUK 0.305 -0.785 - -
RBUSBIS -0.51 0.047 - -

Group_20

CAPUTLB00004SQ -0.568 0.134 - -
CBI -0.531 0.176 - -
TCU -0.564 0.173 - -
BUSINV -0.278 -0.96 - -

Group_5

CP 0.54 -0.072 - -
CPATAX 0.545 0.193 - -
DIVIDEND 0.418 -0.805 - -
CNCF 0.487 0.556 - -
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Figure 3.6: Selection Probabilities for Different Baseline Knockoff Procedures
Notes: The knockoff methods are the group knockoff (top-left), model-X knockoff (top-right)
with a maximum of two PCs per group, and deep knockoffs using 5 neurons (bottom-left) or 25
neurons (bottom-right) per Layer. Selection Probabilities are obtained rerunning the full knockoff
procedures using repeated subsampling of 90% of the data (100 iterations). Highlighted groups
have the highest mean selection rank, i.e. the mean over the rank in each FDR-scenario. The
group with the highest probability receives the highest rank (= 41 or = 20 for the Group knockoffs)
and vice versa (= 1).



4 How Have German University Tuition
Fees Affected Enrollment Rates:
Robust Model Selection and Inference
in High Dimensions

4.1 Introduction

In this paper, we study the causal effect of the introduction of a flat state-dependent
tuition fee on university student enrollment behavior using official data for all 16 federal
German states. In particular, we show how to derive a common federal average causal
effect of tuition fees for limited administrative state-level data in the presence of a large
amount of potentially influencing attributes also on the policy decision. In Germany,
universities have generally been public and essentially free of charge but during the
years 2006-2014 a maximum tuition fee of 1000 Euros per year was allowed. Only
some states chose a tuition fee for their universities, and if they did they generally
set it to the maximum level. Moreover, the implementation and timing of the fees,
both, were no exogenous shock but driven policy decisions on the federal state level
(“Bundesländer”, denoted as states in the following) and thus varied among states. At
the same time, however, major policy changes in different federal states also significantly
impacted the cohort size of prospective university students.1 This spatial time delay in
the implementation of both tuition fees and different federal reforms induced substantial

1This comprises a decrease for the required compulsory years to high school graduation from nine
to eight years of which the introduction varied on the state level, and the general German-wide
abolishment of the 9 month compulsory military service for men in the age of 17-23.
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migration effects which potentially impacted state-level student enrollment in addition
to the many standard socio-economic state characteristics.

We thus suggest a stability post-double selection methodology (cp. Belloni et al.
(2014a)) to robustly determine the causal effect in such a high-dimensional setting with
many potentially influential controls and few observations with measurement problems.
With a robust subsampling-augmented Lasso procedure (cp. Meinshausen and Bühlmann
(2010)), we adaptively select the relevant controls not only in the outcome equation, but
also crucially augment this set with the Lasso selection choices in an auxiliary propensity
score equation. Given the strong correlation of the tuition fee decision and the control
variables, this double-selection-type strategy ensures that underspecification and resulting
biased estimates are not an issue. Overall, with these tailored data-driven techniques,
we detect a significant negative effect of tuition fees inducing an up to 4.5 percentage
point (pp) reduction in enrollment rates. Since the exact enrollment rate suffers from
measurement problems, we show the stability of our results over a large grid of values.
While spatial cross-effects have been ignored in the previous literature on German tuition
fees (see e.g. Dwenger et al., 2012; Bruckmeier and Wigger, 2014; Mitze et al., 2015), we
identify them as important drivers for enrollment rates by the Lasso, besides state specific
factors such as the student-to-researcher ratio. We explicitly show that without Lasso
pre-selection of variables, the signal to noise ratio of the problem is too low for detecting
the correct magnitude of the effect. Generally, these insights and our methodological
solution are highly relevant for all cases of policy evaluation, where implementation occurs
in a spatially time-delayed manner, as for example environmental policies that target
global warming or financial regulations in different countries. In addition, we believe
that our empirical findings cannot only contribute to the active ongoing discussions on
reintroducing tuition fees in Germany, but might also be of independent interest for other
countries such as the United Kingdom, where fees are on the rise.

For the analysis we study the years 2005-2014 and all 16 federal states in Germany. We
include a comprehensive set of 18 covariates, covering all potentially important controls of
the national and international literature on tuition fee effects (e.g. Dynarski (2003); Kane
(1994) and Baier and Helbig (2011); Dwenger et al. (2012); Bruckmeier and Wigger (2014);
Mitze et al. (2015)). The variables are collected from different sources, but public data
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on student enrollment behavior is only available on the state level and not on a university
level, which is due to strict German data protection laws.2 In addition to standard
economic, social and educational factors from the literature on student enrollment rates,
we also include specific effects for Germany which play a major role in the considered
period. Particularly, policy changes such as the abolishment of mandatory military
service or the heterogeneous introduction of a one-year reduced secondary education
("G8") in different states are key policies. Moreover, in addition to the above standard
list of controls, we construct spatial variables that capture state cross-effects in the policy
decisions for or against fees as the proportion of students migrating to each state from
states with and without tuition fees based on their proximity. These are crucial to control
for migration effects due to heterogeneous implementation and time delay of policies
across states that could otherwise bias the estimated effect of tuition fees. We work with
relative enrollment rates instead of absolute numbers as the dependent variable to ensure
compatibility of effects across federal states of different population sizes. For correct
ratios, however, we require the population size of all high school graduates affected by the
introduction of tuition fees in a specific state. This quantity is hard to measure and thus
prone to measurement errors as it consists not only of recent and less recent high school
graduates from this specific state, but also of parts of cohorts from other states and
abroad from where students migrate to study. We transparently treat this measurement
ambiguity and thus provide results that are robust in this respect. Overall, the limitation
to only state-level data results in a relatively small number of available observations
where single observations could gain substantial influence on the overall result. Thus in
total, we face a situation of many potentially influential but correlated covariates and
relatively few observations with possible outliers due to data quality problems.

We tackle these challenges with a tailored subsampling-augmented variable selection
technique in a fixed effects panel regression with many controls. The Lasso type double
selection is key for avoiding underspecification in the outcome equation since the tuition
fee policy treatment decision is strongly correlated with observed controls (cp. Belloni
et al. (2014b,a) and Belloni et al. (2016) for a panel setup). In this, the data-driven

2Note that across states and universities, individual or household panel data from common sources such
as e.g. the German SOEP is insufficient, incomplete and very unbalanced and cannot be employed for
a general analysis. Please see Appendix 4.7.1 for details.
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choice of covariates from the auxiliary propensity score equation is used to complement
the Lasso-determined active set of relevant regressors in the outcome equation allowing
for unbiased estimation of the causal effect. For both selection steps, we propose a
subsampling based stability selection (see Meinshausen and Bühlmann (2010)) in order
to mitigate correlation effects among covariates and measurement issues in the available
small set of observations. In such cases, pure Lasso might have difficulties in correctly
predicting the influence of each variable, which can lead to the choice of too many
variables. We illustrate in a thorough simulation study for such challenging situations,
that the suggested stability selection substantially improves on the robustness of the
selection results in finite samples leading to augmented post-selection estimation results.
Given the scarcity of the available public data and the complexity of the setting, the
estimated specification in both the outcome and the auxiliary equation is set as linear
which allows for the direct identification of the causal effect. Along with the usual HC3
standard errors (SEs) we additionally report design-based SEs in the simulation and
results (Abadie et al. (2020) and Athey and Imbens (2022)).

Our set-up corresponds to the high-dimensional machine learning driven causal liter-
ature (see Belloni et al. (2014a, 2016) and Athey et al. (2019) for a survey as well as
applications in labor Angrist and Brigham Frandsen (2019)) for the estimation of average
treatment effects. With our aggregate state-level data, we can determine a common
(average) causal effect of a policy or treatment as e.g. Rubin (1974) or Rubin (1977)
in the standard low-dimensional potential outcomes framework. In our case, however,
standard methods as e.g. simple difference-in-differences (Card and Krueger, 1994; Ashen-
felter and Card, 1985), low-dimensional propensity score or matching techniques (see e.g.
Rosenbaum and Rubin (1983) or for an overview on nonparametric, non-linear methods
Imbens (2004)) or simple one-step LASSO variants thereof cannot adapt to the short
available time span and few states in order to detect the tuition fee effect. Similarly,
heterogeneous treatment effects as e.g. in Athey and Imbens (2016); Chernozhukov et al.
(2018); Chang (2020); Athey and Imbens (2022) also require are much larger cross-section
of e.g sub-state, university level data which is not publicly accessible in our case.

Up to our knowledge, the literature on student enrollment behavior generally works
with only small sets of covariates on which there is no consensus and often subset selection
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is only ad-hoc or based on heuristics. Therefore, we propose a data-driven statistical
procedure in order to empirically identify relevant factors. Nevertheless, there are analyses
on effects of tuition fees in various countries that mostly find significant effects only
for certain subgroups of the population. Kane (1994), Noorbakhsh and Culp (2002)
and McPherson and Schapiro (1991) find negative effects of tuition fees3 for low-income
groups or groups with African-American ethnicity for the US. More generally, Neill (2009)
finds that an increase in tuition fees reduces enrollments significantly for the Canadian
system. With the availability of individual data in the presence of much higher fees, but
also an established scholarship system, US and Canadian studies can identify effects
of tuition fees on enrollment that range between −2.5pp and −6.8pp. For countries
where the situation is more comparable to the German system, and the particular case
of Germany, previous studies generally cannot detect significant effects of tuition fees on
enrollment rates (see e.g. for Germany Baier and Helbig (2011); Hübner (2012); Dwenger
et al. (2012); Bruckmeier and Wigger (2014); Mitze et al. (2015), but also Huijsman et al.
(1986) for the Netherlands and Denny (2014) for Ireland). This seems to be caused by
the small number of included covariates, while missing out on the key ones according
to our statistical selection technique. Variables possibly correlated with the tuition fee
decision are mostly ignored, as well as state cross effects through differences in timing,
which we show both to be relevant. Moreover, we cover the comprehensive list of all
German tuition fee periods and states, which helps to increase precision of estimated
effects in contrast to previous studied, who focused only on subperiods, specific states or
subgroups. With mostly insignificant effects between −0.4pp and −2.69pp, the previous
German studies seem to systematically underestimate the true impact of fees.

The remainder of the paper is structured as follows. A description of the data set and
variables is presented in Section 4.2. It also contains the transparent construction of (a
set of) response variables from the limited available information. Section 4.3 introduces
the linear panel model and the Lasso-type selection methods featuring the stability
double selection. In Section 4.4, a Monte Carlo simulation shows the advantages of these

3In the study of McPherson and Schapiro (1991), the authors find that the net costs (tuition fees minus
student aid) have a negative impact, which is an even stronger argument.
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methods with different distortions in a controlled environment. After discussing the main
results of our empirical study in Section 4.5, we conclude in Section 4.6.

4.2 Data

We construct a panel from official, publicly available data on enrollment numbers and
socio-economic and university-related covariates for the 16 German states (n = 16) in
the years 2005 to 2014 (T = 10). We use a widespread set of potential controls for
determining the effect of tuition fees which only existed in the years 2006-2014 in at
least one state (see Figure 4.8 in Appendix 4.7.1 for an overview of the timing of fees in
different states). The years 2005 and 2014 serve as a base for comparison before and after
the introduction and complete abolishment of tuition fees4. Note that we are limited to
state level aggregated data, since available individual or household type survey data from
common sources such as e.g. the German Socio-Economic Panel (SOEP) is very unevenly
distributed across states and universities and suffers from incompleteness (see Appendix
4.7.1 for details). Moreover, strict privacy protection laws prevent the dissemination of
more granular official data beyond the federal state level.

4.2.1 Construction of the Response

As the response variable we study the enrollment rate yi,t of high school graduates into
university in state i at the winter term (WT) of year t to t + 1 (denoted as t/t + 1)
which we perceive as the most directly affected observable quantity by tuition fees.5

As universities we denote all public general university type institutions comprising
universities, specialized technical, arts and music universities but also universities of
applied sciences (Fachhochschule) and cooperative state universities (Duale Hochschule).6

Since the population size among German states varies substantially, relative enrollment
rates yi,t ensure comparability of results across states. This is key for identifying a

4As the only state, Lower Saxony abolished Tuition fees only by the end of the summer term 2014,
which is why we still use 2014 as a base for total abolishment of fees.

5The academic year starts with the winter semester usually beginning in September or October of year
t and ending in February of year t + 1.

6More than 90% of universities in Germany are public.
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meaningful average causal effect of tuition fees across states and in contrast to the simple
absolute number of new enrollments (from anywhere) NE i,t in state i at WT of year
t/t + 1, where actual state-specific effects would vary by size. Though actual enrollment
rates per state are not reported and can only be approximated.

The percentage yi,t is obtained as the quotient of the number of enrollments NE i,t in
state i and the so-called eligible set EHGi,t of high school graduates for year t coming to
or staying in state i, which can generally differ substantially from the own-state high
school graduates HGi,t in i of this specific year. We set

yi,t = NE i,t

EHGi,t
, (4.1)

where we model EHGi,t to consist of three main different groups, namely own i-specific
high school graduates HGi,t, potentially “affected” graduates AHGj,i,t from other German
states and the number of new international enrollments in i, NE (int)

i,t :

EHGi,t = HGi,t +
∑
j ̸=i

AHGj,i,t + NE (int)
i,t . (4.2)

While respective enrollment numbers NE (i)
i,t from i in i, NE (j)

i,t from j to i and NE (int)
i,t of

international students in i are publicly available for any state i in WT t/t + 1, there is,
however, no available direct data for the respective eligible quantities in (4.2). For the
generally dominant from i to i component, this can be well approximated by its upper
bound of the number of all high school graduates in i as in the German federal system,
the “home state” of the high-school diploma is often part of the immediate choice set of
university entrants. Since the share of international students remains stable at around
15% over the years due to effects such as language barriers in German undergraduate
programs, we assume that the low amount of tuition fees in the international context has
no effect and we therefore only use the lower bound NE (int)

i,t in the eligible set. Though
for the eligible part of potential movers AHGj,i,t from j to i within Germany, extreme
approximations by its lower bound of the number of enrollments NE (j)

i,t or the upper
bound of all graduates HGj,t in j are too coarse. In particular in view of tuition fee
interventions, it is clear that AHGj,i,t is affected, but unclear how. We therefore model
it explicitly as a convex combination between the potential extremes.

AHGj,i,t = θNE
(j)
i,t + (1− θ)HGj,t , (4.3)
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with θ ∈ [0, 1]. Of course, choosing θ too low, i.e. giving HGj,t too much influence, will
yield yi,t values that are unrealistically low. An absolute lower boundary would be a
mean enrollment of ȳ0.90 = 0.25, which is achieved at θ = 0.9. Looking at the aggregated
number of all new enrollments (not just first-time students) in all of Germany from
German high schools over 2003-2014 divided by all high school graduations in Germany
at that time in our data, we have a mean enrollment rate of around 0.72, which can serve
as a very rough proxy for where to expect realistic values. If we only look at first-time
enrollments, the rates have monotonically increased from 40% in 2009 over the years.7

We therefore take θ = 0.98 as a reasonable lower θ-boundary, which yields ȳ0.98 ≈ 0.4.
We then conduct our analysis transparently over a grid of θ-values in between 0.98 and 1
which we denote as admissible θs and which yield mean enrollment rates ȳθ ≥ 0.4. Figure
4.7 in Appendix 4.7.1 shows the mean enrollment rates over θ indicating the sensitivity of
y with respect to θ in the considered range. With additional information on the number
of new enrollments NOj,t with graduation in state j enrolling anywhere in Germany at
t and non-public information on the number of postponers, we can also improve the
approximation of EHGi,t yielding EHG∗

i,t which we take as the benchmark case for our
purely public empirical analysis (See Appendix 4.7.1 for the construction). In particular,
for θ∗ = 0.9927, the empirical mean squared and mean absolute deviation of EHG∗

i,t and
EHGi,t over all i and t are minimized and both almost coincide. As a robustness check

to our pure public data analysis, we also report results for a response yextra
i,t = NE i,t

EHG∗
i,t

.

4.2.2 Covariates and Data Challenges

In the covariates, we model the treatment effect di,t of a tuition fee as a dummy, with
di,t = 1 indicating an existing tuition fee in state i in the winter term starting in year t

and di,t = 0 otherwise.8 Because of German laws, each state could strategically decide
on the introduction and timing of fees.

7Data source: Federal ministry of education (BMBF) data web-space http://www.datenportal.bmbf.

de/portal/de/K253.html Table 1.9.3
8In Germany, there were no fees for students studying for their first degree in public institutions from

WT of 2014 and onward. Before that, the maximum amount for first degree studies was limited to
e1000 per year. Almost all universities made use of the maximum amount, thus suggesting a dummy
variable design.

http://www.datenportal.bmbf.de/portal/de/K253.html
http://www.datenportal.bmbf.de/portal/de/K253.html
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Figure 4.1: Overview of the Presence of Tuition Fees (Left) and the G8-Reform (Right)
in the 16 German States Until 2015
Note: Darker colors represent longer presence of the respective variable.

For identification of the model given the different treatment timings, we use observable
spatial controls zi,t that capture migration behavior to each state from other state groups
aggregated in proximity and fee categories. These are key because of the heterogeneity of
introduction and abolishment of tuition fees over states that can be seen in Figure 4.8 in
Appendix 4.7.1. Additionally, there are many cases where fee-states border non-fee states,
which is highlighted in Figure 4.1. We therefore construct the spatial controls as share of
new enrollments in state i that obtained their high school diploma in another state group.
For each state i, we measure the proportion of new enrollments from a specific state group
(e.g. neighboring fee states) relative to all enrollments in i. The groups consist of fee
states that have a shared border with i, fee-states without a shared border with i, non-fee
states, and enrollments from outside Germany (Migration.international). For example,
Migration.neighbor.fees measures the proportion of new enrollments from all fee states
with shared border to i relative to all enrollments in i that year. A detailed description can
be found in Table 4.6 in Appendix 4.7.1. Furthermore, to control for non-constant state
specific effects, we employ 14 control variables xi,t using data from the socio-economic
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panel (SOEP)9 and Destatis10, the Federal Statistical Office in Germany. A detailed
description can be found in Table 4.5 and Table 4.4 in Appendix 4.7.5. Together with the
spatial variables, we have a set of p = 18 potentially relevant covariates plus the binary
variable of tuition fees. Among others, we capture socio-economic variables comprised of
urbanization level, income, rent, life satisfaction, unemployment rate and university and
student related controls on staff and graduation statistics, the student-to-researcher ratio
and data on the funding of universities. In particular, this set of variables contains all
types of relevant controls from similar, previous studies (e.g. Bruckmeier and Wigger
(2014); Mitze et al. (2015)). Moreover, we include two variables on the G8-reform that
reduced the time of secondary education from nine to eight years. The implementation
of this major educational policy change was also heterogeneous across states and is
illustrated in blue in Figure 4.1. This reform almost immediately substantially impacted
the timing and the overall likelihood of much younger high school graduates to enroll to a
university. We control for this effect with a dummy G8 i,t, where positive values indicate
that the G8-reform was implemented in this state i, and additionally mark transition
period years of double cohorts of G8 and G9 cohorts graduating by DC i,t = 1.

We formally determine that our data is characterized by a few single observations
in response and covariates which are highly influential. In particular, we compute the
DFFITS for measuring the impact of each observation k on the resulting fit ŷ and find
that the fitted enrollment rates heavily change when specific single observations are
dropped from the regression estimation. For covariates, these single observational effects
are even more pronounced as measured by DFBETAS for the leverage of on observation
k on the estimated linear effects, and thus largely impact model selection and estimation.
For detailed results and definitions of the considered quantities, please see Figure 4.9 in
the Appendix. In addition to high expected correlations between regressors, it further
encourages the use of stability selection instead of using all data points just once.

9We use the SOEP-long version 31. More information at https://www.diw.de/en/diw_01.c.519381.

en/1984_2014_v31.html; for the usage, see Wagner et al. (2007)
10More information at https://www.destatis.de/EN. Some variables were generated using data from

Genesis-online database of Destatis accessible at https://www-genesis.destatis.de.

https://www.diw.de/en/diw_01.c.519381.en/1984_2014_v31.html
https://www.diw.de/en/diw_01.c.519381.en/1984_2014_v31.html
https://www.destatis.de/EN
https://www-genesis.destatis.de


Model and Methodology 96

4.3 Model and Methodology

4.3.1 Model

The key goal of our study is to determine a finite sample precise estimate of the causal
effect of tuition fees β(0) on enrollment rates y. For this, we work with federal state
size-weighted enrollment rates rather than enrollment numbers to identify a federal causal
effect in a linear panel set-up with spatial effects and many controls for the variety in states.
We propose a model determination procedure with a stable but parsimonious data-driven
selection of controls that is stable with respect to the correlation of the policy decision
with state-specific controls. For our setting with limited data and potential measurement
issues, this not only prevents cherry-picking of variables but also countervails biased
causal effects for particular strong correlations of treatment and controls. Moreover, we
illustrate how correct standard errors can be obtained quantifying the causal uncertainty
when working with a complete population rather than a sample.

We use a two-equation linear panel model with fixed effects αi, where the covariates
in both equations consist of socio-economic variables xi,t and spatial factors zi,t. In
the outcome equation, for each admissible θ in (4.3), the focus is on the linear causal
effect of the tuition fee dummy di,t on enrollments yi,t(θ) given the large set of controls
(xi,t, zi,t).11 The auxiliary propensity score equation is also linear in (xi,t, zi,t) and only
serves as a correction device for data-driven model selection in the outcome equation
due to correlation of di,t and (xi,t, zi,t). Thus we use the following model specification for
i = 1, . . . , n = 16 states and t = 1, . . . , T = 10 years

yi,t = β(0)di,t + βT
(1)

(
xi,t
zi,t

)
+ αi + ϵ

(1)
i,t , (4.4)

di,t = βT
(2)

(
xi,t
zi,t

)
+ ϵ

(2)
i,t , (4.5)

with yi,t, β(0), di,t, αi, ϵ
(1)
i,t , ϵ

(2)
i,t ∈ R and

(xi,t
zi,t

)
∈ Rp with p = 18. The αi are fixed

effects comprising e.g. unobserved regional aspects such as climate conditions, culture, or
the topography of a state which might generally be correlated with at least some of the
covariates (xi,t, zi,t) such as e.g. rent or the urbanization level. Generally, decisions about
11For ease of exposition, we omit θ in the following in yi,t(θ).
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the implementation of tuition fees in each state were taken at least one or two years
ahead of the implementation date, and were thus not influenced by actual enrollment
numbers yi,t. Hence the large set of controls including spatial factors for potential
migration effects, the strict exogeneity conditions for both equations can be assumed as
fulfilled, i.e. it holds that E[ϵ(1)

i,t | di,1, . . . , di,T , xi,1, . . . , xi,T , zi,1, . . . ,i,T , αi] = 0, E[ϵ(2)
i,t |

xi,1, . . . , xi,T , zi,1, . . . , zi,T ] = 0. Linearity in both equations does not only account for
the scarce data situation but also yields β(0) as a causal effect. For identification of this
common average tuition fee effect, we assume that tuition fee decisions in other states
influence the propensity for tuition fees and the enrollment rate in state i only through
the respective migration effects z.

In the following, we work with the standard fixed effects transformation of (4.4) and
(4.5) removing αi by demeaning:

ÿi,t = β(0)d̈i,t + βT
(1)

(
ẍi,t
z̈i,t

)
+ ϵ̈

(1)
i,t , (4.6)

d̈i,t = βT
(2)

(
ẍi,t
z̈i,t

)
+ ϵ̈

(2)
i,t , (4.7)

with ÿi,t = yi,t − yi with yi = 1
T

∑T
t=1 yi,t and similarly d̈i,t, ẍi,t, z̈i,t, ϵ̈

(1)
i,t , ϵ̈

(2)
i,t .

4.3.2 Robust Model Selection and Post-Lasso Inference

The proposed model selection and estimation procedure is two-step, where in step one,
covariates are automatically selected separately in the outcome and the auxiliary equation.
In step two, the union of the two sets of pre-selected covariates is then used to identify
the causal effect of interest. Moreover, in our situation of nT

p = 8.89, observations are so
scarce relative to the dimensionality of the problem that plain OLS-type estimates are
extremely imprecise. Thus for proper estimation of our main coefficient of interest β(0),
we assume approximate sparsity, i.e., in fact only a few sy (sd) of the other p controls xi,t

and zi,t are relevant for each state in the equation of y (d). We start from the reduced
form of the main equation by plugging (4.7) into (4.6)

ÿi,t = ϕT
(

ẍi,t
z̈i,t

)
+ η̈i,t , (4.8)
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with ϕ = β(1) + β(0)β(2) and η̈i,t = ϵ̈
(1)
i,t + β(0)ϵ̈

(2)
i,t . We use the Lasso (Tibshirani, 1996)

as a data-driven tool to select the respective relevant covariates from an ℓ1 penalized
minimization problem. We obtain the Lasso estimates β̂(1), β̂(2) as

β̂(1) = arg min
ϕ

1
2nT

n∑
i=1

T∑
t=1

[
ÿi,t − ϕT

(
ẍi,t
z̈i,t

)]2

+ λ1

p∑
j=1
|ϕ(j)| , (4.9)

β̂(2) = arg min
β(2)

1
2nT

n∑
i=1

T∑
t=1

[
d̈i,t − βT

(2)

(
ẍi,t
z̈i,t

)]2

+ λ2

p∑
j=1
|β(j)

(2)| , (4.10)

with regularization parameters λ1, λ2 ≥ 0 that are estimated by cross-validation and
ϕ = (ϕ(1), . . . , ϕ(p))T 12. Note that we use the reduced form of the main equation (4.8)
and therefore implicitly penalize the treatment also in (4.9). We use the lasso as a model
selection device in both equations, where we denote the index set of selected covariates
for (4.6) by Sy and for (4.7) by Sd. The causal effect can than be obtained from the
post-selection equation using a union of both selected controls

ÿi,t = β(0)d̈i,t + β̃T
(1)

(
ẍSi,t
z̈Si,t

)
+ ϵ̈

(1)
i,t , (4.11)

where S = Ŝy ∪ Ŝd ⊆ {1, 2, . . . , p} , and ẍSi,t, z̈Si,t only contain elements of S. Note that
the post-selection estimation in (4.11) is necessary in order to mitigate estimation biases
from the penalized selection equations.

Instead of determining Ŝy and Ŝd as index set of elements in (ẍi,tz̈i,t) with non-zero β̂(1)

or β̂(2) directly from (4.9) and (4.10)(see Belloni et al. (2014b)), we suggest a subsampling-
based stability selection. We demonstrate in the Section 4.4 that this methodology also
works for strongly correlated variables with measurement issues using the ideas and
features of stability selection (Meinshausen and Bühlmann, 2010) in the Lasso selection
steps (4.9) and (4.10). The procedure works as follows:

1. Generate C subsamples c of size n∗ of the nT data points and obtain C estimates
β̂

(j)
(1,c) and β̂

(j)
(2,c), c = 1, . . . , C for each coefficient j = 1, . . . , p in (4.9) and (4.10).

12In practice, there exist several techniques for solving this problem, while we use coordinate-descent
algorithms (Friedman et al., 2007, 2010) provided in the glmnet package in R.
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2. Compute for each variable j the relative inclusion frequencies Π̂1
j =

1
C

∑1000
c=1 1{β̂(j)

(1,c) ̸=0} and Π̂2
j = 1

C

∑1000
c=1 1{β̂(j)

(2,c) ̸=0}.

3. Only include variable j in the model and thus in S if Π̂1
j > π1 or Π̂2

j > π2.

Note that as in Belloni et al. (2014a,b), S consists of variables either influencing the
treatment di,t or the response yi,t. Hence the selection choice from the auxiliary equation
(4.10) corrects wrong de-selection choices in the main enrollment equation (4.9) due
to highly correlated control variables. In this sense it provides a robustification of the
selection against underspecification and resulting biased estimates by double selection.
In contrast to direct lasso in both selection equations, however, the proposed procedure
reduces the risk of overspecification by the stability selection sub-sampling step. Typically,
the index set S of the stability double selection is a subset of the standard double selected
set and depends on the choice of sufficiently large π1 and π2 and the number of repetitions
C. The stability post-double selection procedure yields a consistent β(0)-estimator from
(4.11), see (Belloni et al., 2014a; Meinshausen and Bühlmann, 2010). In contrast to
standard lasso double selection, it also shows excellent finite sample performance in
particular in settings with a very strong correlation of control variables in combination
with single influential observations as in our data (see simulation study in Section 4.4).

For the empirical results and the simulation, we generally use C = 1000 and n∗ = 0.5nT

in the algorithm above.13 For a data-driven threshold choice, we set minimum thresholds
πmin

1,θ , πmin
2 > 0.9 as lower bounds ensuring that we screen out irrelevant variables. Since

the response values change with θ in (4.9), the corresponding minimum thresholds also
depend on θ. The selection of effective thresholds is then performed over a grid of
threshold values starting from the minima increasing the threshold level to the first points
where small changes in the thresholds do no longer change the model. The algorithm for
the threshold choice can be found in Appendix 4.7.2. In the simulation, we also report
estimates with πmin

1,θ = πmin
2 = 0.5 and 0.7 for comparison. Moreover, for all statistical

13For the robustness checks using only the control year 2008 and 2014, we increase the subsample to
n∗ = 0.8nT to deal with the small data set.
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inference, we use the usual degrees of freedom (df) correction for fixed effects panel
models.14

4.4 Simulation

We conduct a Monte-Carlo Simulation to show the importance of stability selection when
it is hard to disentangle effects of different covariates. This can be further adapted to
our data by including influential observations and by inducing strong correlation among
covariates. Using i = 1, . . . , n, t = 1, . . . , T , and g = 1, . . . , p with T = 10, n = 16,
N = nT , and p = 30, we simulate a linear panel model of the following form15:

ỹi,t = η0di,t + η1x̃i,t + αi + σ1(di,t, xi,t)ϵ(1)
i,t ,

di,t = η2x̃i,t + σ2(xi,t)ϵ(2)
i,t ,

with coefficients depending on g: η0 = 0.5, η
(g)
1 = 5

g1{g≤10}, and η
(g)
2 = 5

g−61{7≤g≤10}

for g ̸= 6, zero otherwise. The coefficients of covariates are up to 10 times higher than
the coefficient of the treatment, since such large differences are also likely to arrive in
our empirical application, where the expected treatment effect is relatively small. We
generate the fixed effects16 as αi ∼ N (0,

√
4
T ) and xi,t ∼ N (0, Σ)17, with Σv,w = 0.5|w−v|,

v representing the rows and w the columns of Σ, v ̸= w. For v = w = 1, . . . , 10, Σv,w = 2,
and for v = w = 11, . . . , 30, Σv,w = 6. The errors are independently distributed as
ϵ
(1)
i,t ∼ N (0, 1) and ϵ

(2)
i,t ∼ N (0, 1) with a heteroskedastic structure given by

σ1(di,t, xi,t) =
√

(1 + η0di,t + η1xi,t + αi)2

EN [(1 + η0di,t + η1xi,t + αi)2] , σ2(xi,t) =
√

(1 + η2xi,t)2

EN [(1 + η2xi,t)2] .

14The df of the residuals reduce from df = nT −|S| to df = n(T −1)−|S|, which is due to the demeaning
process. For each observation i, one degree of freedom is lost because of the error term ϵi,t. The latter
is now comparable to a parameter that needs to be estimated (see Wooldridge (2002)).

15This setup is similar the simulation in Belloni et al. (2014b) Belloni et al. (2016) but adapted to fit
more closely to our application with highly influential observations and strong correlation among
covariates.

16Note that we omit using a fixed effect in the second equation of this data generating process since
using the demeaning framework here, such an effect disappears algebraically.

17xi,t = (x(1)
i,t , . . . , x

(g)
i,t , . . . , x

(p)
i,t )T: for g, k = 1, . . . , p, x

(g)
i,t represents a covariate that is standard normal

with a correlation of ρ = 0.5k to x
(g+k)
i,t and x

(g−k)
i,t , 1 ≤ g − k ≤ g + k ≤ p.
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Given this structure, we distort the last 10% of observations by a vector γ =
(γ1, . . . , γp)T that is uniformly distributed with regard to a strength inf, where inf = 0
represents no distortion. We report mean values over 1000 replications for the abso-
lute bias of estimators, the RMSE, the number of selected covariates, the true positive
rate (TPR), and the false positive rate (FPR). More details on the distortion and the
evaluation measures can be found in Appendix 4.7.4. We also report the rejection rate,
which is based on conventional t-tests on the estimated η̂0 against the true η0. For the
t-tests and the RMSEη0 , we generally use the classical heteroskedasticity consistent HC3
standard errors (MacKinnon and White, 1985). For comparison, we have also calculated
design-based (Abadie et al. (2020)) and clustered SEs. The design-based SEs reflect
that since the full population rather than a subsample is observed, uncertainty about
the treatment effect does not result from sampling, but from uncertainty about the
unobserved counterfactual. Details on the calculation can be found in Appendix 4.7.3
where we use that the post-double selection outcome and auxiliary equations are both
linear.18 Results for these design-based SEs are found in Table 4.8 in the Appendix and
only differ considering the rejection rates and the RMSEη0 , where the classical HC3 SEs
are more conservative, resulting in smaller rejection rates and larger RMSEη0-values
than their design-based counterparts.19

We report results from post-Lasso and post-double selection20 as described in Section
4.3, using no subsampling at all and using the subsampling similar to stability selection
with πmin ∈ {0.5, 0.7}. Additionally, we report the two extreme cases using all covariates
without selection (Fixed Effects all) and using only the true influencing variables (Oracle).

Table 4.1 summarizes our simulation results. First of all, as expected, the proposed
double selection procedure combined with stability selection performs best overall and
is almost identical to the oracle procedure that knows the true active set. Using of
πmin = 0.7 or πmin = 0.5 does not affect results much in most cases. The non-stable

18We can thus employ Abadie et al. (2020), Assumption 8 and Theorem 1. in the demeaned equation.
19The results for clustered SE are similar and available on request.
20We also ran a scenario using the cluster-robust penalty loadings of Belloni et al. (2016) for the lasso

regression which did not yield superior results. We therefore do not report these additional calculation
in the simulation and results section. Calculations are available from authors upon request.
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versions often include up to twice as many covariates without much improvement on the
TPR, but high increases in the FPR.

Taking a closer look at the different forms of distortion, we do not observe much change
for high inf -values when we distort variables from the inactive set. As expected, when
influential observations are only present in the noise variables, they do not affect the
selection procedures much. When distorting the active set only, however, procedures with
the post-Lasso select fewer (relevant) variables due to the added noise, which leads to a
higher bias (for the stability cases), and increases RMSE values. The double selection
procedures seem to be very robust against such distortions, with all measures remaining
relatively unchanged. This is not surprising, since the double selection procedure helps
to reduce such a bias by taking the second equation into account. Finally, distorting the
response is interesting, since both relevant and irrelevant covariates are affected at the
same time. Even with extremely high distortions, the double selection procedures keep a
lower bias compared to the other methods and double selection with stability selection
has very low FPRs, while selecting almost all variables from the active set. All in all,
the simulation shows that only when we use stability selection, we can select the right
variables without including too many noise variables. In our simulated model, where
it is hard to distinguish between covariates and the treatment effect is relatively small
compared to the effects of other covariates, the non-stable methods perform worse over
all distortion scenarios21. Furthermore, we see that when some covariates explain the
treatment well, but only have a moderate effect on the response (which is the case in the
application), double selection outperforms the post-Lasso in terms of bias and rejection
rate.

4.5 Empirical Results

4.5.1 Main Findings

In this section, we present the results of our empirical study. Generally, with only publicly
available data and the proposed post stability double selection methodology, we find that

21Results are similar using a lower correlation among covariates. Additional simulations are available
upon request.
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tuition fees in Germany significantly reduced the enrollment rate by 3.8pp to up to 4.5pp
on average over all possible cases of response variables. For all admissible values of θ, the
procedure consistently identifies the same one university specific and one educational
policy change control variable in x and the four spatial variables z as important drivers
highlighting the importance of fee induced migration effects. Moreover, we find that
during the considered period, other socio-economic factors only played a minor role.
Given the transparency in θ and the data-driven stability double selection, we judge
these findings are very robust.

Table 4.2: Estimates of the Causal Effect of Tuition Fees β(0) for Different θ-Values

Double Selection + Stability All Controls
Effects on yi,t θ = 0.98 θ∗ = 0.9927 θ = 1 θ∗ = 0.9927

Tuition Fees −4.310 −3.996 −3.808 −1.267
(HC3)

(Design-based)
(1 .243 )
(1 .177 )

(1 .372 )
(1 .278 )

(1 .593 )
(1 .486 )

(1 .229 )
(0 .989 )

Student.to.researcher.ratio −2.763 −2.931 −3.286 0.887
Double.Cohort −1.732 −2.766 / −6.294

Migration.neighbor.fees / 46.443 86.812 31.254
Migration.rest.fees 59.847 83.003 134.509 71.765

Migration.international −3.958 15.621 35.069 −21.623
Migration.no.fees 22.956 46.713 77.884 30.678

... / / /
...

Notes: Response values are scaled to a percentage level. Standard errors in parentheses are calculated based
on heteroskedasticity consistent infinite populations (HC3, see MacKinnon and White (1985)) or on treatment
design and finite populations (Abadie et al. (2020)). Variables in blue appeared similarly in previous studies (not
necessarily together).

Table 4.2 summarizes the post-selection estimation results. Most importantly, we
find a significant negative causal effect over the whole grid of θ-values only when using
post-double selection with repeated subsampling (Double Selection + Stability). The
reference point θ∗ = 0.9927 from additional non-public information in (4.13) suggests in
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Figure 4.2: Estimates for the Causal Effect β0 in (4.4) for Stability Double Selection
Notes: All effects are plotted over the grid of admissible θ in AHGj,i,t from (4.3).“ All Controls”
describes a linear fixed effects regression using all controls. We depict 95%, 92.5% and 90% CIs in
shaded colors, which are calculated on HC3 standard errors (see MacKinnon and White (1985)).

fact that values very close to the right boundary of θ = 1 are the most plausible, i.e. the
number of effective enrollments of migrating students from j to i within Germany almost
coincides with the number of potentially enrolling ones EHGi,t at θ∗. For such large
θ-values in particular, using all controls in a plain panel OLS clearly underestimates the
effect and thus leads to inflated p-values, which is illustrated in Figure 4.222. Post-double
selection Lasso without the stabilizing subsampling does not work as it leads to the same
results as a pooled OLS with all controls. In those cases, the magnitude of the effect
from tuition fees is roughly four times smaller than for the post stability double selection
and the impact becomes insignificant. Across all admissible θ, only about a third of the
controls are selected with our proposed procedure, which indicates that many plausible

22See Figure 4.10 in the Appendix for design-based errors.
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controlling factors from the literature are in fact not relevant and dominated in this
period of heterogeneous changes in educational policies across states.

Since the spatial variables are both among the most selected and have a high power in
explaining variance, it is important to discuss two possible sources of endogeneity that
are, however, not relevant in this case. First of all, the spatial variables are related to
the outcome of enrollments, since they measure migrations from other states −i relative
on the total number of enrollments in state i. In our case, since we look at migration
simultaneously to enrollment, we can rule out reverse causality that might be an issue
if we looked at migration behavior in later years relative to enrollment behavior. Since
this is not the case here, there is no reason why relative enrollment numbers would
drive migration behavior in the same year, since it is simply not observed at the time
of decision. Secondly, the spatial variables are related to the treatment and location.
This split into two variables does not cause an endogeneity issue since it just serves to
disentangle the effect in states that neighbor state i and have (not) implemented tuition
fees vs. other states.

Looking more closely at Figure 4.2, we see that over the entire grid of admissible θ-values,
only the double selection procedure with subsampling guarantees good performance,
whereas with all controls the estimated effect for β0 vanishes with θ approaching the
upper bound 1. With an effect of tuition fees close to zero for the upper θ-boundary, and
only half the size of the one by the stable double selection at the lower θ-boundary, the
pooled OLS appears biased in detecting individual influences in this situation, where
observations are scarce relative to the dimension of the model. This behavior is not
surprising, as many irrelevant controlling factors that might be spuriously correlated with
the response and the treatment are present without selection. This is more critical at the
upper θ-boundary, where the variability of the response is higher. Furthermore, using the
post-Lasso, even with stability selection, gives less stable and often insignificant results.
The insignificance can be traced back to the lack of additional controls that are only
added in the second step of the double selection procedure, whereas the rather unstable
results can furthermore be accounted for by the difference in the selection procedure
in the first step that includes the treatment in the equation. All this emphasizes the
importance of using a post stability double selection as proposed.
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Figure 4.3: Controls With High Inclusion Probabilities in the First Step Depending on θ

(X-Axis)
Green indicates that the respective variable is selected in the final model, which depends on the
threshold that is depicted as a red line. The y-axis shows the selection probability from the Lasso
step.

Figure 4.3 shows all controls that were selected in the main equation (4.9) (i.e. with
yi,t as the dependent variable). We find the spatial variables to be highly relevant,
which implies that mobility and migration effects played a major role for enrollments
in the presence of heterogeneous timing and implementation of tuition fees and major
educational policy decisions across states. In size, they largely contribute in explaining
the variability of the enrollment rates. At the lower boundary of θ, only one of the four
spatial variables Migration.neighbor.fees is included less often over different subsamples
and is thus deselected by the stability selection for low θ-values. As there is only a small
limited number of overall neighbors of each state, their impact on enrollments in state
i is generally much smaller as from the aggregated rest of the country and thus more
sensitive to a variation in the response variable.
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Furthermore, the variable Double.cohort that indicates if there were two cohorts of high
school students graduating in the same year, caused by the G8 reform reducing time to
graduation, is identified as an important controlling factor. Double.Cohort has a negative
sign, which at first might appear counter-intuitive, as with a double cohort, one would
expect enrollment numbers of students to rise. For relative enrollment rates, however,
a negative sign of double cohort seems justified, since universities did not double their
admission numbers when there was a double cohort. Moreover, when the competition for
universities is extremely high in a double cohort situation, fewer people might decide to
actually compete and rather consider outside options or postpone university entrance
with a gap year. Note that for the extreme boundary case (θ > 0.9998), however, the
variable is deselected, which can be attributed to the pre-dominance of the migration
factors with large size effects at the extreme upper θ-boundary. Repeating the analysis
with Double.Cohort in the extreme case for θ > 0.9998, however, does not change results
and only alters coefficient values in an minor insignificant way. This behavior can be
expected when taking into account that the effect of Double.Cohort is relatively small
compared to the other variables close to the upper boundary of θ.

In line with theory, the variables Student.to.researcher.ratio and the share of interna-
tional enrollments Migration.international that are additionally selected in the auxiliary
equation of the double selection procedure only have a minor direct influence on enroll-
ment rates, while having a large impact on tuition fees. Thus, this socio-economic factor
and the financial situation of universities drives the political decision for the introduction
of fees. Overall, the double selection step is key yielding additional necessary variables
for accurate estimation of β0 (see Figure 4.2).

Generally, these findings show that spatial factors and the double cohort variable are
crucial for identifying the effect of tuition fees on enrollments. In the existing empirical
literature, however, they have been largely ignored yielding downward biased insignificant
estimates. Moreover, the auxiliary equation and the stability double selection are key for
detecting the magnitude β0.
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4.5.2 Robustness Checks

Apart from using all available data, we also analyze two subsets that either contain only
periods with tuition fees (2006-2013) or that consist of the peak year 2008 of the presence
of tuition fees and the year 2014 after their abolishment. Furthermore, we work with
the alternative response variable yextra

i,t = NE i,t

EHG∗
i,t

constructed from additional non-public

information in the eligible set EHG∗
i,t in Equation (4.13) in the Appendix. Estimates of

β(0) for these adaptations are summarized in Table 4.3. Results for design-based errors
do not differ substantially, but are slightly less conservative and can be found in Table
4.9 in Appendix 4.7.5.

First, when comparing the effect with θ∗-response values over different time frames, we
find that the main results prevail over the variation in the data set. The double selection
is still the only reliable method, while post-Lasso and pooled OLS with all controls cannot
capture the strength of the effect nor its statistical significance persistently. Post-Lasso
generally de-selects too many relevant controls, yielding smaller effects in absolute values
of tuition fees on enrollments. Omitting the first and last year from the data only causes
mild changes in the amount of included controls, but the size of the estimate for β0 from
double selection decreases in absolute terms, probably due to fewer available observations.
Though, in the extreme case of the smallest data set, where only two years with either “no
fees at all” or “fees in seven states” are considered, the magnitude of the effect increases
substantially. The results of the extra response yextra

i,t confirm the above observations.
The size of the estimates for β0 for different time frames and the amount of included
controls mostly coincide with results for the response yθ∗ . In this case, however, the
pure post Lasso stability selection estimate is much closer to the estimate of the stability
double selection procedure in size and becomes even mildly significant.

In summary, we conclude that the effect is rather robust to changes of the time frame
and double selection consistently identifies the effect, where the other methods mostly fail.
While changes in the strength of the effect arise mostly in very high-dimensional situations
(i.e. small data set), the effect is also identified using the additionally constructed yextra

i,t .
Comparing the strength of the effect to previous studies, which estimated (mostly
insignificant) effects from −0.4pp to −2.69pp, we see that for almost all cases, our
estimated effect lies rather between −3 and −4pp using double selection, and is always
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Table 4.3: Estimates of the Causal Effect of Tuition Fees β(0) for θ∗ in Different Time
Frames With HC3 Standard Errors

Data sets No. of Variables
Tuition Fees All Fees Small All/Fees/Small

min MSD with θ∗: 0 .9927 0 .9924 0 .9934
All Controls −1.267

(1.229)
−1.952
(1.454)

- 19/19/-

Post-Lasso Stability −2.538
(1.354)

−2.599
(1.358)

−6.345
(1.698)

∗∗ 4/4/3

Double Selection Stability −3.996
(1.372)

∗∗ −3.180
(1.388)

∗ −16.468
(3.269)

∗∗∗ 7/6/7

min MAD with θ∗: 0 .9927 0 .9926 0 .9945
All Controls −1.267

(1.229)
−1.941
(1.456)

- 19/19/-

Post-Lasso Stability −2.538
(1.354)

−2.599
(1.363)

−6.126
(1.745)

∗∗ 4/4/3

Double Selection Stability −3.996
(1.372)

∗∗ −3.185
(1.392)

∗ −17.133
(3.349)

∗∗∗ 7/6/7

yextra
i,t with π1/π2: 0 .999/0 .9 0 .9/0 .9 0 .85/0 .91

All Controls −1.722
(0.922)

−2.213
(1.087)

∗ - 19/19/-

Post-Lasso Stability −3.349
(1.369)

∗ −2.234
(0.942)

∗ −11.570
(1.519)

∗∗∗ 3/9/2

Double Selection Stability −3.920
(1.151)

∗∗∗ −2.198
(1.000)

∗ −15.021
(4.415)

∗∗ 6/10/6

Notes: Response values are scaled to a percentage level. Standard errors in parentheses are heteroskedasticity
consistent (HC3, see MacKinnon and White (1985)). ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 indicate p-values from a
t-test on significance from zero. θ∗ is chosen according to minimum mean squared deviation (MSD) and minimum
mean absolute deviation (MAD).
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highly significant. On the contrary, using fixed effects with all controls and without
selection yields estimates that appear to be downwards biased and closer to the lower
bound found in other studies, while in almost all cases, this cannot identify significant
effects.

4.6 Conclusion

In this article, we propose a stabilized double selection technique in order to identify the
effect of tuition fees on enrollment rates from public state-level data in Germany. We
show that such techniques are key for extracting size and significance of the causal effect
for the special German situation. In this setting, where few observations coincide with
varying implementation and timing of tuition fees and other educational policies across
states and time, we are facing correlated covariates and influential observations, which
require carefully chosen, tailored econometric techniques.

With our tailored post-Lasso approach, we are the first to find an overall significant
negative effect of tuition fees in Germany. With the stability double selection we
identify the relevant factors, which are crucial for political decision-making. In particular,
previously neglected spatial migration effects and the major shift in educational policy
by the G8 high school reform appear as key control variables for enrollment rates in the
considered period. The detected effect is robust over a large grid of different response
values and different subsets of the full data set. These empirical findings therefore
contribute to the existing literature on education economics. In the active ongoing
discussion about the reintroduction of tuition fees in Germany, the results might also be
of political interest.

Moreover, this study strongly advocates the use of data-driven variable selection to
choose relevant controls from a broad set of possible influencing factors. We explicitly
show that standard fixed effects panel regressions without selecting variables fails to
detect correct and precise effects for such small sample sizes relative to the dimensionality
of the problem. Furthermore, appropriate statistical selection techniques determine
and justify the relevance of chosen controlling factors, yielding an easily interpretable
post-selection model that outperforms all ad-hoc choices. For future research, it would
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be interesting to use the data-driven identification of relevant controls also for other
countries, e.g. the United Kingdom or France, aiming for a comprehensive European
study with increasingly relevant spatial cross-effects across country borders. This is
particularly relevant given the reintroduction of fees for international students in parts of
Germany, that could trigger such cross-effects.
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4.7 Appendix

4.7.1 Data

Table 4.4: Description of Regression Variables and Socio-Economic Control Variables
Variable Description Source

Regression Variables
yi,t Enrollment rate: new first year students in state i

and winter term of year t/t + 1 divided by affected
graduates. Affected graduates consist of high school
graduates in state i and year t, international first year
students in state i and winter term of year t/t + 1 and
a weighted number of in-country migration from other
German states (

∑
j ̸=i EHGj,i,t). EHGj,i,t is calculated

using convex combinations of NE (j)
i,t and HGj,t.

Own calculation from
Federal Statistical Office
(2014b): TAB-13 and
Federal Statistical Office
(2014d): TAB-06

yextra
i,t Similar to yi,t, but using a different measurement for

EHGj,i,t (see Section 4.2).
Own calculation from
Federal Statistical Office
(2014b): TAB-13 and
Federal Statistical Office
(2014d): TAB-06

di,t: Tuition.Fees 1 if tuition fees were present in state i in winter term
of year t/t + 1, zero otherwise

Mitze et al. (2015)

Socio-Economic Statistics
log.Rent Natural logarithm of average rent in households of state

i in year t excluding heating or extra costs
SOEP: Hgen, Hgrent

log.Income Natural logarithm of average income in households of
state i in year t

SOEP :Hgen, Hghinc

Urbanization.level Share of households living in cities in state i in year t SOEP: Hbrutto, Regtyp
Life.Satisfaction Average life satisfaction per person (0=Completely dis-

satisfied, 1= Completely satisfied) in state i

SOEP: pequiv, P11101

Unemployment.Rate Unemployment rate in state i (0=0%, 1=100%) Genesis
G8 1 if students graduated high school in 8 years in state i

in year t, zero otherwise
Own research

Double.Cohort 1 if there was a double cohort of students graduating
high school in state i in year t, zero otherwise

Own research

Mil.Service 1 if there was mandatory military service for male high
school graduates in Germany in year t, zero otherwise

https://www.

gesetze-im-internet.

de/wehrpflg/__2.html

(German)

Notes: All data sets used to obtain the variables can be found in the SOEP-database at https://www.diw.de/en/

soep with the corresponding variable description and sample (SOEP: sample, variable) at https://paneldata.

org/soep-long. For the Genesis Data, the tables are found at https://www-genesis.destatis.de in the menu
under "Available Data" on the page "Tables". There, a search for a specific coding leads to the desired tables. The
data is gathered by choosing the respective year.

https://www.gesetze-im-internet.de/wehrpflg/__2.html
https://www.gesetze-im-internet.de/wehrpflg/__2.html
https://www.gesetze-im-internet.de/wehrpflg/__2.html
https://www.diw.de/en/soep
https://www.diw.de/en/soep
https://paneldata.org/soep-long
https://paneldata.org/soep-long
https://www-genesis.destatis.de
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Table 4.5: Description of University and Student Control Variables
Variable Description Source

Control Variables regarding Students and Universities

Log.Third.Party.Funds.per.institution Natural Logarithm of the quotient of third
party funds for universities in state i in year
t divided by the number of state accredited
higher institutions, aggregated at a state
level

Federal Statistical Of-
fice (2014a): 2.1.3; www.

hochschulkompass.de

Log.Spendings.per.Student Natural Logarithm of spendings of state i

in year t per student, aggregated over all
universities i

Federal Statistical Office
(2014a): 1.1

Student.to.researcher.ratio Number of students in state i in year t per
scientific employee of higher institutions

Federal Statistical Office
(2014c): ZUS-01

Habilitations Share of habilitations at universities in state
i to habilitations over all states

Federal Statistical Office
(2014c): ZUS-07

Graduates Share of graduates at universities in state i

to relevant population
Federal Statistical Office
(2014b): TAB-02

Women.Studying Share of female students studying at higher
institutions to all students

Genesis: Table 21311-0014

Notes: Data from the Federal Statistical Office are availible in the ".xls" format in German in the respec-
tive sheet (indicated by TAB or ZUS). They can be found at the bottom of the page https://www.destatis.

de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html under "Aus-
gewählte Publikationen", using the name of the report and the reference. Reports from earlier years are in the
report of the respective year. For the Genesis Data, the tables are found at https://www-genesis.destatis.de in
the menu under "Available Data" on the page "Tables". There, a search for a specific coding leads to the desired
tables. The data is gathered by choosing the according year.

Individual SOEP Data

Figures 4.4 and 4.5 give an overview on the lack of observations of individuals in the
SOEP data set. On the x-axis, the number of observations for each state-year tuple
is shown, whereas on the y-axis, the frequency of tuples with the specific number of
observations is depicted. As can be seen in the histograms, there were many tuples with
insufficient number of observations to represent a state. More specifically, 109 tuples out
of 160 have less than 20 observations each (i.e. individuals) in Figure 4.4 (i.e. eligible
high school graduates in state i and year t) and 119 tuples out of 160 have less than 10
observations each (i.e. individuals) in Figure 4.5 (i.e. first year students in state i and

www.hochschulkompass.de
www.hochschulkompass.de
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html
https://www-genesis.destatis.de
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Table 4.6: Description of Spatial Control Variables
Variable Description Source

Spatial Control Variables

Migration.neighbor.fees Enrolling students to state i in year t with high school
diploma from fee neighbor states (i.e. states that
share a border with i and that have tuition fees in
the winter term of year t) minus enrollments to fee
neighbor states by students with high school diploma
from state i, both divided by all new enrollments in
state i.

Federal Statistical Office
(2014b): TAB-13

Migration.rest.fees Enrolling students to state i in year t with high school
diploma from fee non-neighbor states (i.e. states that
do not share a border with i and that have tuition
fees in the winter term of year t) minus enrollments to
fee non-neighbor states by students with high school
diploma from state i, both divided by all new enroll-
ments in state i.

Federal Statistical Office
(2014b): TAB-13

Migration.no.fees Enrolling students to state i in year t with high school
diploma from non-fee states (i.e. states that do not
have tuition fees in the winter term of year t) minus
enrollments to non-fee states by students with high
school diploma from state i, all divided by all new
enrollments in state i.

Federal Statistical Office
(2014b): TAB-13

Migration.international Share of new enrollments of international students
(i.e. students that did not obtain their high school
diploma in Germany) to state i in year t relative to
all new enrollments in state i

Federal Statistical Office
(2014b): TAB-13

Notes: Data from the Federal Statistical Office are available in the ".xls" format in German in the respec-
tive sheet (indicated by TAB or ZUS). They can be found at the bottom of the page https://www.destatis.

de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html under "Aus-
gewählte Publikationen", using the name of the report and the reference. Reports from earlier years are in the
report of the respective year. More details on the calculation and choice of spatial variables in text.

year t). This makes it necessary to use publicly available data aggregated on a state-level
instead of individual data, since the latter cannot be representative for a state’s specific

https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/BildungForschungKultur/Hochschulen/Hochschulen.html


Appendix 116

cohort (i.e. taking less than 20 observations to represent an entire cohort for the majority
of tuples). first year students There were 11 state-year combinations with no observations

Number of Eligible Graduates per State per Year
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Figure 4.4: Histogram of the Number of Eligible High School Graduates in Each State
and Year (i.e. 160 Tuples) in the SOEP Data Set edubio
Note: There was one state-year combination with no observations at all.

at all

Information on Control Variables from the SOEP

The control variables can be split up into socio-economic variables (Table 4.4), variables
describing university statistics (Table 4.5) and spatial variables (Table 4.6).

Even though the number of households can vary, this cannot bias results since we
measure shares of the population. In some cases, there is a substantial amount of missing
values (i.e. "Rent", "Income"), which does not pose a large problem as enough data
points are still available. These pre-chosen variables are all publicly available and are all
potentially correlated with the outcome or the effect.
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Number of First Year Students per State per Year
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Figure 4.5: Histogram of the Number of First Year Students in Each State and Year (i.e.
160 Tuples) in the SOEP Data Set edubio
Note: There were 11 state-year combinations with no observations at all.

For the Destatis-data, the variables are already aggregated on a state level, while for
the SOEP-data, the aggregation is done manually using the HID23, which identifies a
household over different subsamples and over time. All SOEP variables are therefore
mean values (rent, income, life satisfaction).

Approximation of the Response With Non-public Data

With additional information on the number of new enrollments NOj,t with graduation in
state j enrolling anywhere in Germany at t combined with NE

(j)
i,t and HGj,t we can aug-

ment the approximation of EHGi,t. Moreover, in order to additionally control for effects
from postponers HGt−1, HGt−2 in EHGi,t, we employ extra non-public information24 on
the number of new enrollments NE (j)

τ,i,t in state i in WT t/t + 1 with high school diploma
obtained in year τ . With this, we can obtain an alternative approximation AHG∗

j,i,t of

23HID stands for Household-ID. For the variable "Life Satisfaction", data was available on a personal
level. This does not make a difference since mean values are used.

24Provided by the Federal Statistics Office on request for a fee.
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the number of high school graduates in j potentially moving to i at t

AHG∗
j,i,t = max

{ 2∑
l=0

ci,j,t,t−lHGj,t−l , NE (j)
i,t

}
, (4.12)

with share ci,j,t,τ =
NE (j)

τ,i,t

NOj,t
of enrollments from j to i within the cohort of t− l relative

to all enrollments from j in year t, approximating the potentially moving share of the
graduates HGj,τ (See Table 4.7 and Figure 4.6 for a (graphical) overview of involved sets
and their role) .25 We focus on numbers up to a time lag of l = 2 in τ = t− l, which cover
generally more than 75% of enrollments (on the German level), and use this graduation
time specific information also for state i to get a refined approximation of EHGi,t by

EHG∗
i,t = HGi,t +

2∑
l=1

ci,i,t,t−lHGi,t−l +
∑
j ̸=i

AHG∗
j,i,t + NE (int)

i,t . (4.13)

Table 4.7: Summary of Defined Quantities for the Response

Enrollments in state i from any-
where:

NE i,t =
n∑
j=1

NE (j)
i,t + NE (int)

i,t =
n∑
j=1

( t∑
τ=t−ψ

NE (j)
τ,i,t

)
+ NE (int)

i,t

Enrollments from one state j to
anywhere in Germany:

NOj,t =
t∑

τ=t−ψ
NOτ,j,t =

t∑
τ=t−ψ

n∑
i=1

NE (j)
τ,i,t

Eligible set of high school gradu-
ates in i:

EHGi,t = NE (int)
i,t + HGi,t +

∑
j ̸=i AHGj,i,t

International Enrollments to i: NE (int)
i,t

High school graduates from i: HGi,t

High school graduates from j af-
fected by enrollments in i:

AHGj,i,t = θNE
(j)
i,t + (1− θ)HGj,t

Notes: ψ stands for the maximum number of years after which a high school graduate enrolled to a German
university. Here, the index τ or rather ψ is set so that it includes all students from earlier cohorts.

25As it can happen that NOj,t > HGj,t−l, l = 0, 1, 2, we ensure that AHG∗
j,i,t is at least NE(j)

i,t .
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Figure 4.6: Illustration of the Composition of the Response Variable
Notes: High school graduates from different cohorts are depicted in the top boxes, new enrollments
in the bottom boxes. The index −i describes all states j = 1, . . . , 16 except the ith state.
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Figure 4.7: Illustration of Mean Values of the Response Variable for a Given Value of θ
Note: The red dotted lines show the lower boundaries θ = 0.9 and θ = 0.98 with their respective
mean response value.
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Existence of Tuition Fees in States

Years
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1) Baden−
Wuerttemberg

2) Bavaria

3) Hamburg

4) Hesse

5) Lower 
Saxony

6) North Rhine−
Westphalia

7) Saarland

Figure 4.8: Overview of the Timing of Tuition Fees in German States (Presence in Gray)
Notes: The winter term (starting October) and summer term (starting April) are indicated with
small ticks. States not listed had no tuition fees at all.
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Figure 4.9: DFFITS and Boxplots of DFBETAS for Pure Double Selection
Notes: On the left we report for θ∗ = 0.9927 with all controls over all stacked observations k
the DFFITSk = (ŷk − ŷ−k)/(skhkk), where ŷ−k is the prediction for point k without k being in
the regression, sk is the standard error of the regression without point k and hkk is the leverage
of point k. The threshold is πDFFITS =

√
p

nT
and influential observations are marked in red. On

the right, the boxplots displays ξj =
∑N

k=1 1{|DFBETASj,k|>πDFBETAS } over all components j

with DFBETASj,k = (bj − bj,−k)/ (V̂ (b)jj

)
, where V̂ (b)jj is the estimated variance of the OLS

estimate bj , and bj,−k is the same estimate without point k, and πDFBETAS = 2√
nT

= ±0.16.
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4.7.2 Algorithm for Threshold Choice

To obtain the thresholds for different θ-values in the full data set, we compute the
thresholds automatically using the following algorithm:

1. For a given θ̃, order the inclusion frequencies Π1
j̃
∈ {Π1

j , j = 1, . . . , p}, j̃ = 1, . . . , p

and obtain Π1
1̃, . . . , Π1

j̃
, . . . , Π1

p̃, i.e. Π1
1̃ ≥ · · · ≥ Π1

j̃
≥ · · · ≥ Π1

p̃.

2. Compute the difference ∆j = Π1
j̃
− Π1

j̃+1 for all A = {j̃ : Π1
j̃+1 > πmin}, i.e. look at

the distance between inclusion frequencies.

3. Choose the cutoff π1,θ̃ to lie at index ĵ = max
{
argmax

j̃∈A
∆j̃

}
, and obtain π1,θ̃ =

Πĵ+1,1.

The algorithm chooses the cutoff at a large difference between ordered inclusion frequencies,
i.e. where noise variables are distinguished by true influencing variables. The minimum
threshold πmin

1,θ is set to ensure that the largest difference between inclusion frequencies
does not occur between two noise variables (i.e. with very low inclusion frequency). We
set this πmin

1,θ , θ ∈ [0.98, 1] in the following way to make sure noise variables are screened
out:

πmin
1,θ =



0.945 All Data set and θ ∈ [0.98, 0.992]

0.975 All Data set and θ ∈ (0.992, 1]

0.98 Fees Data set and θ ∈ [0.98, 1]

0.9 Small Data set and θ ∈ [0.98, 1]

.

For the large data set, the minimum threshold is adapted once as ȳ-values rise strongly
with θ, especially when θ is close to 1. There, all variables have higher inclusion frequencies
which makes it necessary to adapt πmin

1,θ . For π2, we have no variation in θ and compute
the thresholds in the same manner as above manually. We obtain

π2 =


0.9 All Data set

0.9 Fees Data set

0.93 Small Data set

.
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4.7.3 Design-Based Standard Errors

In the following, we describe the detailed step-wise version of obtaining the design-based
standard errors for the model in equation (4.11) as proposed in Abadie et al. (2020). We
calculate such errors SE of the treatment effect β(0) in (4.11) as

SE(β(0)) =
√

(V TV )−1G(V TV )−1 , (4.14)

where V is the scalar residual from regressing D jointly on X and Z, and G is the
sample version of the variance Vϵ of ϵ in (4.11). D, X and Z are the stacked vectors
of d̈i,t, ẍi,t and z̈i,t, i.e. D = (d̈1,1, . . . , d̈i,t, . . . , d̈n,T )T, X = (ẍ1,1, . . . , ẍi,t, . . . , ẍn,T ) and
Z = (z̈1,1, . . . , z̈i,t, . . . , z̈n,T ). More specifically, we calculate them as follows:

1. Let U = (X Z) and calculate V = D−ΛU , where Λ =
(
UTU

)−1
UTD is the least

squares estimator of regressing D on U .

2. Calculate the residuals ˆ̈ϵ(1)
i,t from the least-squares regression in equation 4.11 and

obtain V̂ˆ̈ϵ =
(
V1,1ˆ̈ϵ(1)

1,1, . . . , Vi,tˆ̈ϵ(1)
i,t , . . . , Vn,T ˆ̈ϵ(1)

n,T

)T
.

3. Calculate the least-squares estimator β̂ϵ of a regression of V̂ˆ̈ϵ on U as β̂ϵ =(
UTU

)−1
UTV̂ˆ̈ϵ. The fitted values of this regression serve as an estimate of E[V̂ˆ̈ϵ],

which is needed to calculate V ar[V̂ˆ̈ϵ].

4. Calculate G = V ar[V̂ˆ̈ϵ] =
(
V̂ˆ̈ϵ − Uβ̂ϵ

)T(
V̂ˆ̈ϵ − Uβ̂ϵ

)
5. Calculate SE(β(0)) =

√
(V TV )−1G(V TV )−1.



Appendix 124

4.7.4 Simulation

Using i = 1, . . . , n, t = 1, . . . , T , and g = 1, . . . , p with T = 10, n = 16, N = nT , and
p = 30, we simulate the following model

ỹi,t = η0di,t + η1x̃i,t + αi + σ1(di,t, xi,t)ϵ(1)
i,t ,

di,t = η2x̃i,t + σ2(xi,t)ϵ(2)
i,t ,

with coefficients depending on g: η0 = 0.5, η
(g)
1 = 5

g1{g≤10}, and η
(g)
2 = 5

g−61{7≤g≤10}

for g ̸= 6, zero otherwise. The coefficients of covariates are up to 10 times higher than
the coefficient of the treatment, since such large differences are also likely to arrive in
our empirical application, where the expected treatment effect is relatively small. We
generate the fixed effects26 as αi ∼ N (0,

√
4
T ) and xi,t ∼ N (0, Σ)27, with Σv,w = 0.5|w−v|,

v representing the rows and w the columns of Σ, v ̸= w. For v = w = 1, . . . , 10, Σv,w = 2,
and for v = w = 11, . . . , 30, Σv,w = 6. The errors are independently distributed as
ϵ
(1)
i,t ∼ N (0, 1) and ϵ

(2)
i,t ∼ N (0, 1) with a heteroskedastic structure given by

σ1(di,t, xi,t) =
√

(1 + η0di,t + η1xi,t + αi)2

EN [(1 + η0di,t + η1xi,t + αi)2] , σ2(xi,t) =
√

(1 + η2xi,t)2

EN [(1 + η2xi,t)2] .

For the simulation, we generate each γg ∼ U [2
3 inf , inf ], where inf ∈ {0, 1, 5} and g ∈ D

depending on the scenario. In each scenario (i.e. different inf -values), we distort
covariates either from the active set (D = {j : |η(j)

1 | + |η
(j)
2 | ̸= 0}), the inactive set

(D = {j : |η(j)
1 |+ |η

(j)
2 | = 0}) or the response y. For distortion of covariates, we modify

them to x̃i,t = xi,t + γ, t = 10. This means that γg = 0 for either g > 10 (inactive
set) or g ≤ 10 (active set). When y is distorted, we have ỹi,t = yi,t + ζ, t = 10 and
ζ ∼ U [−inf , inf ].

We report mean values over 1000 replications for the absolute bias of es-
timators η̂0 from η0, the root mean squared error for η0 with RMSEη0 =√

Bias2
η0,η̂0 + Var η̂0 , the number of selected covariates, the true positive rate

26Note that we omit using a fixed effect in the second equation of this data generating process since
using the demeaning framework here, such an effect disappears algebraically.

27xi,t = (x(1)
i,t , . . . , x

(g)
i,t , . . . , x

(p)
i,t )T: for g, k = 1, . . . , p, x

(g)
i,t represents a covariate that is standard normal

with a correlation of ρ = 0.5k to x
(g+k)
i,t and x

(g−k)
i,t , 1 ≤ g − k ≤ g + k ≤ p.
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TPR=
(∑p

g=1 1{η(g)
1 ̸=0}1{η̂(g)

1 ̸=0}

)(∑p
g=1 1{η(g)

1 ̸=0}

)−1
, and the false positive rate

FPR=
(∑p

g=1 1{η(g)
1 =0}1{η̂(g)

1 ̸=0}

)(∑p
g=1 1{η(g)

1 =0}

)−1
.

Additionally to the simulation results in the main paper, the following remarks can be
made. When distorting the inactive set, using a higher minimum threshold reduces the
FPR even more than in other cases, as the noise variables have more influence. When
regarding post-Lasso, however, πmin = 0.5 seems to perform better in general, which
can be explained by the post-Lasso not detecting all relevant covariates in the simulated
data, where a lower threshold leads to the inclusion of more relevant variables compared
to noise variables and improves the method here. For the double selection, only more
noise variables are added since all relevant variables are already (almost) always detected.
When distorting the response, bias and RMSE values go up in general for all procedures,
but their relative performance compared to the oracle does not get worse. Comparing
stability procedures to their non-stable counterparts, we see that the latter include up to
twice as many covariates without much improvement on the TPR, but high increases in
the FPR. This confirms the hypothesis that without stability selection, many irrelevant
covariates are included in the model, which increases the bias and RMSE. The rejection
rate is especially high for all post-Lasso procedures, which is not surprising given their
high bias and relatively low standard errors that are a result of including fewer variables
in the model. Small standard errors also affect the RMSE values, and in scenarios with
high distortions in the response y, the post-Lasso has a similar RMSE compared to its
double selection counterpart (regarding the stability procedures).

Taking a closer look at the different forms of distortion, we do not observe much change
for high inf -values when we distort variables from the inactive set. As expected, when
influential observations are only present in the noise variables, they do not affect the
selection procedures much. When distorting the active set only, however, procedures with
the post-Lasso select fewer (relevant) variables due to the added noise, which leads to a
higher bias (for the stability cases), and increases RMSE values. The double selection
procedures seem to be very robust against such distortions, with all measures remaining
relatively unchanged. This is not surprising, since the double selection procedure helps
to reduce such a bias by taking the second equation into account. Finally, distorting the
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response is interesting, since both relevant and irrelevant covariates are affected at the
same time. Even with extremely high distortions, the double selection procedures keep a
lower bias compared to the other methods and double selection with stability selection
has very low FPRs, while selecting almost all variables from the active set. All in all,
the simulation shows that only when we use stability selection, we can select the right
variables without including too many noise variables. In our simulated model, where
it is hard to distinguish between covariates and the treatment effect is relatively small
compared to the effects of other covariates, the non-stable methods perform worse over
all distortion scenarios. Results are similar using a lower correlation among covariates.
(Available upon request). Furthermore, we see that when some covariates explain the
treatment well, but only have a moderate effect on the response (which is the case in the
application), double selection outperforms the post-Lasso in terms of bias and rejection
rate.
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4.7.5 Additional Results
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Figure 4.10: Estimates for the Causal Effect β0 in (4.4) Using Design-Based Errors
Notes: Effects are plotted over the grid of admissible θ for stability double selection and using
all controls in a linear fixed effects regression over the grid of admissible θ in AHGj,i,t from
(4.3). We depict 95%, 92.5% and 90% CIs in shaded colors, which are calculated on design-based
standard errors (Abadie et al. (2020)).
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Table 4.9: Estimates of the Causal Effect of Tuition Fees β(0) for θ∗ in Different Time
Frames With Design-Based Standard Errors

Data sets No. of Variables
Tuition Fees All Fees Small All/Fees/Small

min MSD with θ∗: 0 .9927 0 .9924 0 .9934
All Controls −1.267

(0.989)
−1.952
(1.167)

- 19/19/-

Post-Lasso Stability −2.538
(1.303)

−2.599
(1.272)

∗ −6.345
(1.495)

∗∗ 4/4/3

Double Selection Stability −3.996
(1.278)

∗∗ −3.180
(1.299)

∗ −16.468
(2.488)

∗∗∗ 7/6/7

min MAD with θ∗: 0 .9927 0 .9926 0 .9945
All Controls −1.267

(0.989)
−1.941
(1.168)

- 19/19/-

Post-Lasso Stability −2.538
(1.303)

−2.599
(1.277)

∗ −6.126
(1.538)

∗∗ 4/4/3

Double Selection Stability −3.996
(1.278)

∗∗ −3.185
(1.302)

∗ −17.133
(2.549)

∗∗∗ 7/6/7

yextra
i,t with π1/π2: 0 .999/0 .9 0 .9/0 .9 0 .85/0 .91

All Controls −1.722
(0.770)

∗ −2.213
(0.881)

∗ - 19/19/-

Post-Lasso Stability −3.349
(1.311)

∗ −2.234
(0.823)

∗∗ −11.570
(1.317)

∗∗∗ 3/9/2

Double Selection Stability −3.920
(1.087)

∗∗∗ −2.198
(0.877)

∗ −15.021
(3.688)

∗∗ 6/10/6

Notes: Response values are scaled to a percentage level. Standard errors in parentheses are calculated based on
treatment design and finite populations (Abadie et al. (2020)). ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 indicate p-values
from a t-test on significance from zero. θ∗ is chosen according to minimum mean squared deviation (MSD) and
minimum mean absolute deviation (MAD).



5 Predicting Property Prices Using
Augmented Crime Data: Extracting
Information From Satellite Images
with Convolutional Neural Networks

5.1 Introduction

Cities around the world are growing as more people move to economically strong regions
(Buhaug and Urdal, 2013). This trend may be best observed in prices of properties
in big urban centers and it is thus an important task to be able to predict and to
determine where such processes are happening. Given socio-economic evidence that crime
plays a significant role in the determination of property values (Ihlanfeldt and Mayock,
2010; Gibbons, 2004), we use crime statistics combined with additional information
from satellite images to predict house prices more accurately. Instead of taking the
plain number of crimes directly, we construct crime features that contain the additional
information from satellite images and use those (among other influencing factors) to
predict property values in a linear model. With this, we combine economic intuition
about crime with machine learning (ML) methods that are able to extract the additional
information from satellite images. This approach outperforms both purely ML-driven
models as well as purely linear models taking crime directly into account. Since these
features are constructed using convolutional neural networks (CNNs), we quantify which
part of input images contain additional information and what influence these parts
have on the final property price prediction. We further investigate specifically what the

130
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features, which are extracted from the the CNN constructions, represent and how they
contribute to crime.

We show on the example of New York City (NYC) how such a model can be superior
to classic approaches and furthermore generalize this model to Philadelphia. We do not
re-train the CNN-model for this step and thus employ the same features as for NYC.
This retains over 50% of the prediction power compared to NYC, which indicates that
CNN-model acts as more general feature extractor for the task at hand. We choose
NYC since it is unarguably one of the most important economic centers worldwide and
has therefore seen a rise in housing prices over time (Sieg and Yoon, 2020; Haughwout
et al., 2008). It is thus crucial to have measures that predict property prices and thus
property values. ML-methods provide an often superior prediction performance for such
tasks compared to classic linear models, since they can model more complex, non-linear
relationships (see e.g. Mullainathan and Spiess (2017) for recent applications). While
satellite images and crime statistics are readily available, house price data is too scarce
to train a CNN directly, which we show explicitly in the out-of-sample prediction results.
We therefore employ the following hybrid approach.

We combine the crime data with satellite images to extract proxy crime-features from
a trained CNN, which are then used to predict property sales in a linear model. In NYC,
crime statistics, are tracked by the NYC police with their exact GPS-coordinates. We
therefore exploit this situation and map each crime to an image to construct our features.
In this way, we are able connect the information from satellite images to crimes through
an ML-model without losing the interpretability in the final prediction. To highlight how
crimes and property sales are influenced by satellite images, we use the SHAP framework
from Lundberg and Lee (2017), which helps us to efficiently assess changes in the response
when input satellite images are varied both on the crime-level (i.e. on the model trained
to predict crimes in NYC from satellite images) as well as on the property price-level (i.e.
the full model predicting property prices).

With this transfer learning approach that yields the crime features, we built on work
from Jean et al. (2016) that use similar ideas to predict poverty in Africa. In our case,
crime data is available with the exact location, while we only have sufficiently accurate
data on property sales on a zip-code level. Additionally, we also obtain the sales data
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on finer address level and match them to images, leading to qualitatively similar results.
Instead of using the (aggregated) crime numbers directly or taking the predicted value
from the ML-model given the corresponding satellite image, we extract the information
from within the model directly using principal components of neuron outputs of our
trained CNN (similar to Jean et al., 2016). With this approach, we preserve more
information than using the crime numbers directly for forecasting house prices. This
extra information stems from the satellite images and is extracted non-linearly through
the features, which makes the model generalizable and reduces overfitting, thus increasing
predictive power. Our approach depends crucially on the structure of crime. Firstly, we
crime needs to be influenced by the layout and spatial factors in different neighborhoods,
implying predictability of crime by satellite images, which is clearly the case (cp. Najjar
et al., 2017). Secondly, crime needs to be relevant for house prices, which has also been
established in the literature on housing prices that identified crime as one major influence
(Ihlanfeldt and Mayock, 2010; Gibbons, 2004).

To obtain these crime features, we use the VGG-16 architecture (Simonyan and
Zisserman, 2015) pre-trained on ImageNet 1 as a baseline and fine-tune the network with
subsequent pooling and dropout layers to adapt the CNN to satellite images and to find
important latent features. The last fully-connected layer before the crime prediction
consists of 750 neurons, corresponding to 750 raw features. These are reduced to 100
features using principal component analysis (PCA), and finally taken to predict housing
prices in a ridge regression. The classic approach for such a problem would be to employ
hedonic regression models (see e.g. Schwartz et al., 2014; Brunauer et al., 2010), usually
assuming a linear relationship between factors and prices, which we add as a baseline
model in our analysis. Furthermore, we additionally include controlling factors to both
the final linear step in the feature learning model and the baseline model. While the
baseline model is heavily reliant on those additional factors, the additional controlling
factors are less important when the features learned in the ML-model are used. Using
the SHAP framework of Lundberg and Lee (2017), we can explain predictions of the
CNN for both the crime prediction task as well as for the full model predicting house
prices. This approach leverages Shapley values (Shapley, 1953), initially introduced in

1First introduced by Jia Deng et al. (2009), see http://image-net.org/

http://image-net.org/
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game theory, which are adapted to the ML-setting. In this way, we can see the effect of
certain parts of each input image on the output (i.e. crime numbers or house price) and
find for example that the shadow of high-rise and park spaces have a substantial effect
on both crime and prices.

The rest of the paper is structured as follows. In Section 5.2, we present the data used
for the empirical results, while Section 5.3 introduces the methodology. The empirical
results are shown in Section 5.4 before we conclude in Section 5.5.

5.2 Data

We collect the data for our analysis from four main sources. The satellite data was
obtained from the Google Maps Static API 2 by placing a rectangular grid over New
York City. All images are matched with their respective address (and zip-code) from the
center of the image, using the longitude and latitude with the Google Geocode API 3. We
pre-process the images by removing the google watermark, as this logo might influence
the learning of the CNN, by rescaling the image, and by augmenting the image space
adding flipped versions of the image (see Figure 5.1 and Perez and Wang (2017)). The
latter is used to counteract overfitting, since the position of a learned feature in the
image should not matter and we therefore want to avoid a situation where the trained
features are highly dependent on the chosen grid in the image. In total, this grid of
images amounts to 6634 and thus to 26536 augmented images.

The NYPD Complaint Data4 includes all valid felony, misdemeanor, and violation
crimes reported to the New York City Police Department (NYPD), including exact
location (longitude, latitude) and, amongst others, an NYPD three-digit internal classifi-
cation code. We use the same crime classification as Vomfell et al. (2018) only taking
into account crimes that pose serious threats to public safety. These crimes were violent
crimes (murder,non-negligent manslaughter, robbery and aggravated assault) and prop-
erty crimes (burglary, larceny-theft, motor vehicle theft and arson). They are classified in

2https://developers.google.com/maps/documentation/maps-static/intro, scale 1, zoom 17. This
corresponds to a 400x400 pixel image, with size approximately 350x350 meters.

3https://developers.google.com/maps/documentation/geocoding/intro
4https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i

https://developers.google.com/maps/documentation/maps-static/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i
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(a) Original image (b) Vertical Flip (c) Horizontal Flip (d) Flipped twice

Figure 5.1: Example of Image Augmentation for One Image of the Data Set

Table 5.4 in Appendix 5.6.1. We use data from 2008-2017 and aggregate crime numbers
to obtain the outputs for the training of the CNN, which gives us a total of around 5
million crime observations. Figure 5.2 shows that violent crime clusters (left) are most
common in the Bronx, Harlem, the southern part of Manhattan and parts of Queens,
while property crimes (right) are most common in the southern parts of Manhattan.
Overall the distribution of both crime categories is quite similar with significant variation
over all of New York City. Each crime is mapped to its closest images out of all images,
minimizing the euclidean distance between the coordinates of the crime and the center of
the images. This allows precise matching of every crime to each image and to a zip-code.
In the results, we distinguish between two different measures of crime per image/zip-code.
Firstly, we regard the number of crimes in each of the nine categories from Table 5.4
simultaneously (9REG). Secondly, as a baseline, we take the absolute number of crimes
aggregated over all categories (REG) instead.

We obtain data on property prices for the year 2018 using the New York City Sales Data
5, which contains yearly sales data for properties in New York City, including additional
attributes such as square footage and neighborhood. A first visualization of the data can
be seen in Figure 5.3, where large heterogeneities are visualized. We compute the price
per gross square foot pji for each sold property ji in zip-code or image i6 and aggregate

5https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
6We use the median of all prices on image i and the parts of the 8 images directly next to i. For this,

we consider all images that lie within a Manhattan distance (i.e. sum-norm) of 1.5 times the length of
each image.

https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
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(a) Violent Crimes (b) Property Crimes

Figure 5.2: Heatmaps of Violent and Property Crimes of a Subsample of 20,000 Obser-
vations
Note: Darker values of red indicate higher crime rates.

the price information on a zip-code or image level using the median price7 of all sales,
i.e. we obtain price Pi = median{pjz : z = i} and use this price as our outcome variable
Yi. The respective outliers can be seen in Table 5.3 and in the histograms in Figure 5.14
in Appendix 5.6.1. We also include further potentially controlling factors that could
influence house prices and are used in the literature (Mullainathan and Spiess, 2017;
Dubin, 1998; Schwartz et al., 2014; Haughwout et al., 2008; Jim and Chen, 2009). These
are mean values of the age of the property, the distance to the Empire State Building,
the distance to (or number of in case of zip-codes) fire stations and subway stations, and
the distance to John F. Kennedy International Airport and LaGuardia Airport, which is
more commonly used for national flights. All distances are calculated based on data from
NYC Open Data8. Furthermore, we include census data from the American Community

7We also use mean prices with observations larger than three standard deviations away removed from
the sample. Results are similar and available upon request from the authors.

8https://opendata.cityofnewyork.us/

https://opendata.cityofnewyork.us/
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Survey 20159 (5-year estimates) for the zip-code level consisting of median household
income and unemployment rate.

Figure 5.3: New York City Median Property Sales Prices per Square Foot by Zip-Code
in 2018

5.3 Model and Methodology

5.3.1 Model

In our empirical analysis, we employ three different models and compare their predictive
performance. The first model is the main model of interest, where we obtain non-linear
crime features using satellite images and subsequently use these features in a linear setup.
The second and third serve as benchmark models and either assume a linear relationship
and use crime directly instead of the features, or are purely non-linear, where satellite
images are used directly to predict property prices through a CNN. The main model is

9https://data.census.gov

https://data.census.gov


Model and Methodology 137

given by

Yi = βTXi + ηTF̄FE
i + ϵi (5.1)

with Yi ∈ R as the median house prices in area i, where i is either the ith of the
n = 179 zip-code areas of New York city or one of the RGB-400× 400 satellite images
(n = 19092 = 4× 4773)10. F̄FE

i are the crime features, Xi ∈ Rd represents controlling
factors such as the distance to the empire state building, the building year of the property,
the distance to/number of subway stations or fire stations, the median household income,
and unemployment rate (on zip-code level). β ∈ Rd and η ∈ R100 are coefficients of the
model. We obtain F̄FE

i by first predicting crime rates Ci with satellite images

Ci = gCNN (Sp) + ϵ
(1)
i , (5.2)

where Sp stands for the satellite data 11 Sp ∈ R400×400×3, where in the case of using
prices on an image level, i = p, and the number of crimes Ci ∈ Rc, with c being the
different categories of crimes. gCNN (Sp) represents the predictions of a trained CNN on
image Sp, and when on zip-code level, we map each image to a zip-code. In a second step,
we use the last (fully-connected) layer of the CNN before the crime prediction as features,
for which we reduce the dimension from 750 to 100 using Principal Component Analysis,
obtaining F̄FE

i . In the case where i equals the zip-codes, the raw outputs for each image
are mean-aggregated on a ZIP-code level to obtain F̄FE

i . The PCA step is necessary to
reduce the number of features relative to the number of observations (179 ZIP Codes)
in the final linear model. Additionally, we use ridge regression within the predictive
model for Y and the remaining 100 features to reduce overfitting. We also compare this
approach to standard ordinary least squares (OLS). Alternatively, we evaluate a scenario
where C

(abs)
i ∈ R is the absolute number of crimes in i12. In the two benchmark models,

10The increased sample size is due to image augmentation, which is explained in more detail in Section
5.2. The image size is smaller than for training of the CNN, since there are differences between the
availability of property data and crime data.

11The value of each pixel wjkl can vary between 0 and 255 and is rescaled to 0-1 using min-max scaling, i.e.

w̃
(i)
jkl =

w
(i)
jkl − minj,k=1,...,400 w

(i)
jkl

maxj,k=1,...,400 w
(i)
jkl − minj,k=1,...,400 w

(i)
jkl

to mimic the input data of the pre-trained VGG-16.

12We also analyze another scenario where we replace Ci by two dummies representing high, medium and
low-crime areas (i.e. zip-codes). Since results do not differ from absolute results, we do not present
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we first employ Yi = βTXi + γTCi + ϵ
(2)
i as a linear baseline model, i.e. using crimes and

covariates directly instead of using the features. Secondly, we take Yi = fCNN (Sp) + ϵ
(3)
i

as a purely nonparametric model that uses a CNN directly to predict Y only using the
satellite data Sp.

5.3.2 CNN Architecture and Transfer Learning

In our transfer learning model, we employ a VGG-16 (Simonyan and Zisserman, 2015)
architecture. We choose this CNN over others such as AlexNet (Krizhevsky et al., 2012) or
ResNet (He et al., 2016), since VGG-16 offers a good combination of prediction accuracy
and training time in challenges such as the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). As a comparison, we also employ the faster ResNet-18 in the direct
CNN-model.

We take the 13 pre-trained convolutional layers and five max pooling layers of the
VGG-16 and combine them with two fully-connected layers (each with 750 neurons) and
3 dropout layers for training to counteract overfitting, which is visualized in Figure 5.4.
In the beginning, only the two fully-connected layers are trained, unfreezing the two last
convolutional layers only in a second training step in which the learning rate was reduced
to allow for a finer adaption of the already pre-trained weights of the convolutional
layers. We assess the performance by randomly splitting the sample in training and
validation sets for the CNN, and a test set for the final models using the out-of-sample-R2

(OOS−R2) on the test set. The loss curve for the training and validation data set can be
found in Figure 5.16 in Appendix 5.6.1. For the transfer learning approach, we proceed
as follows:

1. Obtain Ĉi from (5.2) and obtain F̂FE
p as the last layer of the CNN for each satellite

image Sp.

2. Apply PCA on F̂FE
p ∈ R750, which reduces the dimensionality from 750 to 100,

and obtain F̃FE
p ∈ R100.

these results here. Formally, we replace Ci by
(
C

(high)
i , C

(medium)
i

)
∈ {0, 1}2, and low crime areas serve

as the base. We define low, medium, and high-crime areas as absolute crime numbers below their
33%-quantile,between the 33%- and 66%-quantile, and above the 66%-quantile.
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Figure 5.4: Architecture of the Feature Extraction Models

3. For the case of image price data where i = p, set F̄FE
i = F̃FE

p . Else, compute the
mean of the transformed features F̃FE

p for each i (important for the zip-code level,

where n = 179), i.e for Ii = {p : Sp lies in area i}, calculate F̄FE
i = 1

|Ii|
∑
p∈Ii

F̃FE
p .

4. Use this feature representation in a final ridge/OLS regression on the model
Yi = βTXi + ηTF̄FE

i + ϵ
(2)
i . For the ridge regression models, we use 10-fold cross-

validation for hyperparameter tuning.

Furthermore, we split our data on crimes and the satellite images into random subsets.
We first split off 15% of the data for testing the predictive power of our models. The
remaining 85% are used for training of both the CNN and the subsequent ridge regression
models. Due to the high computational requirements of training the CNN, we refrain from
employing a cross-validation scheme here and validate the training taking 15 percentage
points (pp.) from the 85% of the remaining data. In particular, this validation data set
is then used for the evaluation of the loss-functions in the CNN. The rest of the 70% of
the full data is our training data set for the CNN. Since for the ridge regression model,
we employ 10-fold cross-validation, we take both the training and the validation data
for estimating the parameters (i.e. using 85% of the data). Figure 5.5 plots the area of
satellite images remaining in each randomly chosen subset.

To understand how the input images drive both the crime rates and the house prices,
we employ the SHAP framework of Lundberg and Lee (2017). For the crime rate effects,
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(a) Train Data (70%) (b) Validation Data (15%) (c) Test Data (15%)

Figure 5.5: Graphical Representation of the Three Subsets

we use DeepSHAP, which builds on the DeepLift approach of Shrikumar et al. (2017)
and is specifically designed to handle neural networks. To explain effects on house prices
(i.e. the full model), we select the model agnostic version Kernel-SHAP that is based on
linear LIME (Ribeiro et al., 2016).

This model agnostic Kernel-SHAP linearizes the model and takes an approximated
weighted least squares approach to quantify the effect of changes in the outcome compared
to a baseline of images. The Kernel-SHAP procedures therefore chooses weights so that
the measured effects represent Shapley values. Since this is still computationally too
expensive, the contribution of each covariate is simplified by assuming the independence
of other covariates. Intuitively, if there is only a small uncertainty over which change
caused an effect (e.g. a small number of pixels is changed from the baseline image), the
weights are high and vice versa. To reduce complexity of the model (recall that the input
size is 400x400x3), we build clusters using an adapted version of the SLIC algorithm
(Achanta et al., 2012) to identify 30 clusters on each image that can be compared against
a baseline.

To highlight the performance of the CNN, we also compute Shapley values that show
the contribution of images to crime directly. For this approach, we can rely on the
faster, model-specific DeepSHAP, which is based on DeepLift. DeepLift linearizes the
predictions locally around each neuron/layer and then backpropagates these changes
through all layers. DeepSHAP changes DeepLift so that the weights from the linearization
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are obtained in a way that mimics Shapley values. For a detailed overview, we refer to
Lundberg and Lee (2017).

5.4 Empirical Study

Our main analysis in Section 5.4.1 is conducted on New York City. Leveraging satellite
images in our crime feature model, we predict house prices on a zip-code and image level.
In Section 5.4.2, we show that crime can be explained well by the features based on the
CNN in Section 5.3, and visualize which parts of images are important in predicting
crime and prices. Finally, we demonstrate how the trained crime-feature model can be
easily generalized to Philadelphia in Section 5.4.3.

5.4.1 Predictive Model Results for New York City

We show the superiority of our approach from Section 5.3 evaluating the out-of-sample
R2 in a variety of settings. We distinguish between different measures of crime (9REG,
REG), using additional controlling factors Xi, and predicting prices on a zip-code level
or image level. As described above, the baseline model uses linear regression with crime
numbers Ci directly. The results are summarized in Table 5.1.

(a) Hybrid model (9REG): ϵ̂9REG
i

Yi
(b) Baseline model: ϵ̂Base

i

Yi

Figure 5.6: Relative Absolute Error on Zip-Codes in Test Data Set
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Table 5.1: Predictive Power Comparison of Different Models on Zip-Code and Image
Level

With Xi Without Xi

Out-of-Sample-R2 Zip code level Image level Zip code level Image level

CNN (VGG/ResNet) 0.557/0.289 -/0.340 0.557/0.289 -/0.340
9REG:
Hybrid Model 0.765 0.566 0.642 0.365
Baseline 0.716 0.546 0.570 0.336

REG:
Hybrid Model 0.748 0.528 0.765 0.312
Baseline 0.701 0.447 0.179 0.106

Notes: Out-of-sample-R2 for models with and without additional covariates Xi. CNNs are only trained on images.
This table shows results using OLS on image level data and ridge regression for zip-code level data. The best
model in each scenario is marked in bold.

We find that all feature extraction models outperform both the linear models as well as
the CNN directly trained on predicting prices using the out-of-sample R2. Furthermore,
the linear model only performs similarly when paired with additional controlling factors.
Those covariates might be hard to obtain in general and might not be available on the
preferred level. However, the prediction performance employing the extracted features
is less dependent on additional external covariates, which suggests that these features
contain additional information in comparison to crime. Additionally, we obtain a rough
proxy for crime that generalizes well in cities with similar crime structure (see Section
5.4.2).

Figure 5.6 highlights the spatial performance of the different methods. It shows absolute
errors13 ϵ̂base

i of the baseline and ϵ̂9REG
i of the hybrid model relative to the true median

house price Yi colored from white (low) to red (high). As expected, the hybrid model
performs significantly better in most regions. Both models have their largest errors in

13We show results for the zip-code level model for reasons of clarity, without covariates Xi to compare
the features against crime, and using 9REG, where the baseline model does not fully break down to
provide a fair comparison between the two.
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Figure 5.7: Difference Between the Absolute Error of the Baseline Model (ϵ̂base
i ) and the

Hybrid Model (ϵ̂9REG
i ) Relative to the Real Median House Price

Notes: In more detail, the formula is as follows: ϵdiff
i =

ϵ̂base
i − ϵ̂9REG

i

Yi
. Darker colors thus represent

better performance of the hybrid model.

Manhattan, where house prices are generally much higher. Still, the hybrid model is able
to adapt better to this while maintaining a lower general level of error throughout the
other zip-codes.

Figure 5.7 visualizes the relative difference in the absolute error of the baseline and
hybrid model for each zip-code area. Clearly, the hybrid model outperforms thee baseline
for the majority of zip-code. Only for very few areas, the baseline model performs
similarly or relatively better, which is mostly caused by areas that are very hard to
predict. A direct, per borough comparison of absolute zip-code errors can be found in
Figure 5.17 in Appendix 5.6.1. We furthermore run additional out-of-sample methods
such as random forests and boosting procedures that show improvement especially when
paired with additional controlling factors, see Table 5.6 and 5.7 in the appendix for image-
and zip-level, respectively. In the next section, we explore the features and predictability
through images more using the model agnostic and model specific methods from Lundberg
and Lee (2017).
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5.4.2 Explaining Image Features Using SHAP

In this section, we highlight the performance of the hybrid model by shedding light on
the information on house prices as well as of crime activity that is extracted by features.
Using Shapley values, we can visualize the combined effect of changes in image input (to
an average of baseline images) on house prices and crimes.

input image feature map feature map on image

(a) Filter That Detects Water
input image feature map feature map on image

(b) Filter That Detects Buildings

Figure 5.8: Selected Low-Level Filters of the CNN Applied on the Same Image

First, we highlight how the CNN extracts information on a low level. Figure 5.8
visualizes how selected learned filters of the CNN are able to distinguish different
structures such as buildings or water on the same image. This feature of CNNs can be
efficiently achieved by adapting a pre-trained CNN architecture and fine-tuning it on the
problem at hand, i.e. satellite images. Going further, the trained CNN extracts the same
information on completely different images, which is highlighted in Figure 5.9. There, a
specific filter detects large building structures by their shadow, which generalizes well in
different environments. For example, the leftmost image of Figure 5.9 has different light
conditions compared to the other two images, and is also from another borough (The
Bronx vs Manhattan on the other two images).

To quantify the impact of input pixels towards the number of crimes in each of the
9 crime classes specified in Table 5.4, we use DeepSHAP. As an example, Figure 5.10
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Figure 5.9: Results of Filter 1 in Layer 4 (Middle and Bottom) of the Trained CNN
Detecting Shadows of Buildings for Three Different Images (Top)

shows the effect of each pixel on the nine crime classes on an image around Time Square
in Manhattan. A red color indicates that having this pixel in the image increases crime
activity compared to a baseline image composed of 100 randomly selected images. We can
see that the area around Time Square seems to contribute to higher crime in Classes 3
and 4, which represent crimes connected to theft and less strong in Class 6, which involves
offenses against public order. This seems reasonable when looking at Time Square as a
public place attracting many tourists. Another example where both directions and other
crime classes are highlighted can be found in Figure 5.15 in Appendix 5.6.1, which shows
a more residential neighborhood.

In a similar fashion, we also analyze the effect of changes in input images on the house
prices, i.e. including the CNN, the dimensionality reduction using PCA and the final
linear/ridge regression. Since this encompasses more complexity and is computation-
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Figure 5.10: Contribution of Input Pixels To the Number of Crimes in the 9 Output
Crime Classes Using DeepSHAP at Time Square

200 100 0 100 200
SHAP value

Figure 5.11: SHAP Values Highlighting the Contribution of Building Shadow To Price
(Right) at Time Square (Left)
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Figure 5.12: SHAP Values Highlighting the Contribution of Green Areas To Price (Right)
in a Residential Neighborhood (Left)

ally expensive, we compare changes not of pixels but of clusters of similar pixels that
are obtained using SLIC (see Section 5.3 for more information). In Figure 5.11, the
shadow of buildings is perceived as a high indicator of price, again for the Time Square.
Unsurprisingly, this area of Manhattan has mostly positive Shapley values, given that
they reflect the contribution compared to an average image price. Such price differences,
however, are also detected in lower price areas, consequently with smaller Shapely values.
This indicates that the model correctly extracts more information from images, which
can be visualized intuitively with Shapley values. In Figure 5.12, this is highlighted as
the model detects a positive effect of green areas/parks on house prices, especially when
paired with residential areas, while large roads have a strong negative impact on price.

All in all, the features extracted by the hybrid model have an economic interpretation
for house prices, which is reflected in their strong predictive performance on the latter.
In addition to that, the contributions of features for each image can be easily highlighted,
which can be used for understanding the impact of individual images and areas in NYC.
Finally, the predictive performance of the hybrid model beats the benchmark of using
crime directly in the majority of cases, which is why it would be interesting to expand
the model of extracting a proxy for crime to other cities where such a benchmark (i.e.
geo-coded crime numbers or additional covariate information) is not available. The next
section focuses on such a task, namely predicting house prices for Philadelphia.
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5.4.3 Predictive Performance for Philadelphia

In this section, we extend our hybrid model to Philadelphia, which is done using image
data obtained again from the Google Maps Static API for Philadelphia and extracting
the features using this data with the CNN trained on NYC image data and crimes. We
then use price data obtained from Real Estate Transfers 2018-2019 in Philadelphia14,
which, after removing missing values and data errors (e.g. unrealistically low transfers ≤
100 USD), amount to roughly 86,000 transfers coded with exact GPS coordinates. We
use the assessed fair market value as a measure of property price and regress it on the
features, again with prices on each image (and its 8 surrounding images) aggregated via
either median price or mean weighted by inverse euclidean distance to the image center.

Table 5.2: Predictive Power of Trained Hybrid Model on Data from Philadelphia
Out-of-Sample-R2 Ridge OLS
9REG:
Median 0.192 0.183
Weighted Mean 0.231 0.222
REG:
Median 0.001 -0.064
Weighted Mean 0.001 -0.061

Notes: Out-of-sample-R2 for the CNN model trained on NYC crimes (9REG or REG) and images pairs. Final
estimations on Philadelphia price data are done with either ridge regression or OLS on an image level. Aggregation
of prices on an image is done as in the main analysis either using the median or the mean weighted by inverse
euclidean distance to the center of the image.

We find that using only the extracted features, we obtain an out-of sample R2 of
around 0.2 depending on aggregation scheme and using the CNN which was trained on
predicting the nine most common crime categories, which is summarized in Table 5.2.
This is roughly 10pp worse to the results in NYC, which is impressive given that the CNN
was trained only on crimes and images from NYC and not Philadelphia. Interestingly,
using only the absolute number of crimes does not generalize as well, which indicates that

14Available at https://www.opendataphilly.org/dataset/real-estate-transfers

https://www.opendataphilly.org/dataset/real-estate-transfers
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the nine categories are necessary to give the CNN enough flexibility. Importantly, the
crime structure is similar in the two cities, with crime in Philadelphia being significantly
higher on a relative scale, which can be seen in Table 5.5 in Appendix 5.6.115. Crime
rates for the different categories are 36% to 492% higher in Philadelphia compared to
NYC. Comparing city characteristics, Philadelphia shares some similarities with NYC.
Apart from the similar age structure and growth rate16, they also have a similar city
layout, both centers being surrounded by rivers and big water surfaces, and a high-rise
formation in the center, which can be seen in Figure 5.1317.

(a) Center of New York City (b) Center of Philadelphia

Figure 5.13: Satellite Images Of Centers of New York City and Philadelphia From 18km

15See also at https://ucr.fbi.gov/crime-in-the-u.s/2017/crime-in-the-u.s.-2017/tables/

table-8/table-8-state-cuts
16For more information, see the quick facts on the Census Bureau websitehttps://www.census.gov/

quickfacts/fact/table/philadelphiacitypennsylvania,newyorkcitynewyork/HSD410218
17Images from Google Earth (https://earth.google.com/) on 28/10/2020.

https://ucr.fbi.gov/crime-in-the-u.s/2017/crime-in-the-u.s.-2017/tables/table-8/table-8-state-cuts
https://ucr.fbi.gov/crime-in-the-u.s/2017/crime-in-the-u.s.-2017/tables/table-8/table-8-state-cuts
https://www.census.gov/quickfacts/fact/table/philadelphiacitypennsylvania,newyorkcitynewyork/HSD410218
https://www.census.gov/quickfacts/fact/table/philadelphiacitypennsylvania,newyorkcitynewyork/HSD410218
https://earth.google.com/


Conclusion 150

5.5 Conclusion

In this paper, we demonstrate how to leverage neural networks and image data to improve
existing models for predicting property prices. Using state-of-the-art image recognition
techniques, we extract information on crime from satellite images to construct new proxy-
features for crime that predict property prices well. With these features, we capture
more information than with crimes itself while maintaining good interpretability in a
final linear model stage. For the task of predicting house prices, we are able to both
outperform baseline linear methods which take into account crime information directly as
well as the benchmark of employing image information directly within a nonparametric
CNN.

We show that our extracted features have interpretable structures for crime by in-
terpreting the underlying CNN and its predictions. These features are more robust to
changes in including additional covariates, while being easily adaptable to different cities
as well. For the case of Philadelphia, we show the robustness of the feature extraction by
only taking into account new satellite images to generate new features without costly
retraining a CNN. The feature keep good predictive performance in a simple linear model
step. For future research, it would be interesting to extend the model to forecast on
a time series level. Allowing for changing structure, however, would be harder as one
would need more satellite images, especially high resolution images that are time-coded.
These are especially hard to obtain on a consistent scale.
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5.6 Appendix

5.6.1 Tables and Figures

Table 5.3: Descriptive Statistics for the NYC Property Prices

Min 1% Median 99% Max Quantile at 3500 USD
The Bronx 2.56 31.05 248.60 411.11 27050.75 1.00
Brooklyn 2.12 30.14 486.59 1100.89 21600.00 1.00

Manhattan 1.09 68.36 1503.01 2645.96 27608.67 0.96
Queens 3.10 45.29 437.69 768.45 512500.00 1.00

Staten Island 10.55 69.66 338.95 494.73 1875.00 1.00

Notes: Values in column one to five represent property prices per gross square foot at the respective quantile. In
the last column, the respective quantile at price 3500 USD is indicated, which is the cutoff for the histograms in
Figure 5.14. All values are rounded.



Appendix 152

Table 5.4: Overview of the 9 Crime Classes
leading internal
code number

Type of offenses 5 most occurring crimes (no. of occurrences)

1
Offenses involving physical injury,
sexual conduct, restraint, intimidation

Assault 3 & related offenses (521470) / Felony assault (190216) /
Miscellaneous penal law (84016) / Sex crimes (39049) /
Rape (13014)

2
Offenses involving damage to and
intrusion upon property

Criminal mischief & related offenses (493471) / Burglary (171449) /
Criminal trespass (59178) / Arson (12083) /
Miscellaneous penal law (4003)

3 Offenses involving theft
Petit larceny (824298) / Robbery (182646) /
Petit larceny of motor vehicle (696)

4 Offenses involving theft (grand)
Grand larceny (421768) / Grand larceny of motor vehicle (84956) /
Possession of stolen property (26953) / Unauthorized use of a vehicle (14634) /
Other offenses related to theft (11744)

5
Offenses against public health and
morals

Dangerous drugs (316692) / Miscellaneous penal law (5593) /
Gambling (2109) / Sex crimes (1263) /
Prostitution & related offenses (824)

6 Offenses Against Public Order, Public Sensibilities and the Right to Privacy
Harassment 2 (601329) / Offenses against public order sensibility and privacy (259058) /
Sex crimes (14277) / Miscellaneous penal law (5612) /
Offenses related to children (1269)

7

Offenses against public administration and
public safety / provisions relating to firearms,
fireworks, pornography equipment and vehicles
used in the transportation of gambling records

Dangerous weapons (119193) / Offenses against public administration (101718) /
Theft-fraud (49720) / Forgery (47961) / Frauds (32036)

8 Other
Administrative code (10983) / Other state laws (non penal law) (4586) /
Nys laws-unclassified felony (4359) / Alcoholic beverage control law (841) /
Agriculture & markets law-unclassified (346)

9 Vehicle and Traffic Regulations Intoxicated & impaired driving (69048) / Vehicle and traffic laws (60628)

Notes: Code numbers as in the internal classification of the NYPD. Types of offenses are matched to the penal law
extracted from the New York Senate penal laws (https://www.nysenate.gov/legislation/laws/PEN/P3).

Table 5.5: Crime Statistics for Philadelphia and NYC Published by the FBI in 2017
Crime per 100K in 2017 Philadelphia New York

Population 1,575,595 8,616,333

Violent Crime 948 539
Murder and manslaughter 20 3
Rape 75 28
Robbery 382 162
Aggravated assault 470 346
Property crime 3,063 1,449
Burglary 418 129
Larceny-theft 2,297 1,253
Motor vehicle theft 348 67
Arson 26 /

https://www.nysenate.gov/legislation/laws/PEN/P3
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Table 5.6: Additional Predictive Power Results With OOS-R2 on Image Level

With Xi Without Xi

9REG REG 9REG REG
Crimes_lm.OOS-R2 0.546 0.447 0.336 0.106

Crimes_ridge.OOS-R2 0.339 0.173 0.292 /
Crimes_rf_feat.OOS-R2 0.777 0.709 0.443 -0.460

Crimes_boost_feat.OOS-R2 0.770 0.769 0.389 0.102
Features_lm.OOS-R2 0.566 0.528 0.365 0.313

Features_ridge.OOS-R2 0.393 0.328 0.377 0.312
Features_rf_feat.OOS-R2 0.732 0.723 0.344 0.248
Features_rf_raw.OOS-R2 0.553 0.578 0.287 0.226

Features_boost_feat.OOS-R2 0.790 0.786 0.391 0.255
Features_boost_raw.OOS-R2 0.795 0.781 0.352 0.204

Notes: The first part denotes whether original crime features (Crimes_) or extracted features (Features_) were
used. The second part shows the method that was used for prediction, where lm stands for a linear model, ridge
for a ridge regression where tuning parameters are selected using 10-fold cross validation, rf for a random forest
with 500 trees, and boost for XGBoost using decision trees with a learning rate of 0.08, maximum depth between
4-6 for each tree, a minimum required child weight between 100-200 (corresponds to the number of instances in
a node for this task), and 50 weak learners (tuned by CV to prevent overfitting). For some random forest and
XGBoost models, we also use the raw 750 features from the CNN (raw) instead of PCA-extracted 100 features
(feat). The ridge model ran into numerical problems for the case using only one the absolute number of crimes
without covariates.

Table 5.7: Additional Predictive Power Results With OOS-R2 on Zip-Code Level

With Xi Without Xi

9REG REG 9REG REG
pca_ridge_median.OOS-R2 0.765 0.748 0.644 0.765

baseline_ols_median.OOS-R2 0.716 0.701 0.570 0.179
Random_Forest_median.OOS-R2 0.647 0.655 0.497 0.510

XGB_median.OOS-R2 0.792 0.799 0.606 0.684

Notes: All methods are run on median aggregated prices per zip-code (n=152). XGBoost is run with 250 weak
learners, a maximum tree depth of 2, and learning rate of 0.08. Random forests are trained on 500 trees.
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Figure 5.14: Histogram of Property Prices per Gross Square Foot in the Five Boroughs
of New York City
Note: Each histogram is cut off at a price of 3500 USD, which is over the 99% quantile of the
whole price data and over the 96% quantile of each borough’s prices.
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Figure 5.15: Contribution of Input Pixels Towards the 9 Output Crime Classes Using
DeepSHAP in a Residential Neighborhood
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Figure 5.16: Training and Validation Loss for the CNN -Model Directly Trained to Predict
Prices
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Figure 5.17: Comparison of Absolute Error on Test Set
Note: The shaded labels on the x-axis represent a switch of boroughs.



6 Identifying Important Factors of
Property Prices Using Satellite Images
and Crime Data

6.1 Introduction

In the past years, research has produced a vast number of new machine learning methods,
which are often measured on their predictive performance. Particularly, artificial neural
networks have experienced a rise in popularity, especially in image recognition, while now
also being more frequently used across disciplines such as economics and finance (see e.g.
Hájek, 2011; Jean et al., 2016; Hartford et al., 2017; Lee, 2018). They are easily applied
and model non-linear relationships without explicitly having to specify a model. This
has helped them to gain considerable popularity, but has the drawback that it is often
not well understood how (and if all) the input factors actually influence the outcome of
interest. Recent advances to solve these issues are often summarized as interpretable
machine learning, for example using Shapley values (Shapley, 1953) by Lundberg and
Lee (2017) and Aas et al. (2021).

We investigate house prices in New York City (NYC) applying so-called “features” that
are predictive for crime in a generalized additive model (GAM) framework. We assess
the contribution of each of these features clearly and show that they have an economic
interpretation that is not limited to crimes. While crimes itself have been shown to be
endogenous for house prices, we leverage the power of convolutional neural networks
(CNNs) and use information from satellite images to obtain features that serve as a rough
proxy for crime. This approach has first been proposed by Deuschel et al. (2022), whose
model we improve by adding more interpretability while retaining excellent predictive

157
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performance. Intuitively, we use a CNN that is trained to predict crimes from satellite
images, which are both available in large numbers and on a fine scale. House prices,
on the other hand, are not available in sufficient numbers, which makes it infeasible
training a CNN directly to predict them. We then extract features from the above trained
CNN on crimes that are (amongst other covariates) used to explain house prices in a
semiparametric GAM. One the one hand, employing the features mitigates endogeneity
issues that would arise using crime directly. On the other hand, the GAM can handle
non-linear features easily while retaining interpretability through the additive structure
of the model.

In more detail, the features we extract have lower dimension compared to Deuschel et al.
(2022) and thus have a higher information density. This is possible by using a more recent,
state-of-the art Inception-ResNet architecture Szegedy et al. (2017). Since we employ
GAMs in the final model instead of linear or ridge regressions as in Deuschel et al. (2022),
we can use the raw features that model the non-linearity directly and do not need to
rely on principal components analysis, which facilitates interpretation1. We furthermore
show how the features correspond to crime and how they spatially act in comparison to
house prices. Using Shapley values taking into account the dependence structure of the
features, we can quantify the influence of features on house prices graphically as well as
empirically.

Employing machine learning (ML) methods in economics and finance has gained
popularity in the recent years (Mullainathan and Spiess, 2017; Athey and Imbens, 2019;
Gu et al., 2020), while recently, there have also been approaches using ML-methods in
the house pricing context (Yoo et al., 2012; Rischard et al., 2020). More generally, recent
research on house prices includes e.g. Anselin and Lozano-Gracia (2007) and de La Paz
et al. (2022), where crime has been shown to be an important predictor.

The rest of the paper is structured as follows. Section 6.2 introduces the data we use
in our analysis, while Section 6.3 covers the methodology and the model for house prices
and crimes. In Section 6.4, we describe in detail the features and how they are extracted
from the CNN (Section 6.4.1), before presenting the main model results analyzing its

1In the Appendix, we additionally report on effects using principal components in Figures 6.16 and 6.17.
They are, however, mostly linear and information largely lies in the first two principal components.



Data 159

properties in Section 6.4.2 and showing predictive power results in Section 6.4.3. Section
6.5 concludes.

6.2 Data

In our analysis, we obtained data from four main sources (using the same data set as
Deuschel et al. (2022)). The satellite data was taken from Google using the Maps Static
API2, while we removed the google watermark and rescaled the image. The data we use
corresponds to all areas that lie in the zip-code range of NYC, which means that we
remove images that only contain water and images from other nearby urban areas (e.g.
New Jersey). As in Deuschel et al. (2022), we also use flipped and rotated versions of
each image for training of the neural network, which is useful since it counters overfitting
Perez and Wang (2017). In total, we have n = 6634 observations for the final models
and naug = 26536 augmented images for training of the CNNs.

For our dependent variable of property sales in NYC, we work with official data
from 2018 published by the NYC Department of Finance 3. It contains all tax-relevant
properties sales in NYC including square footage, address, and other relevant factors such
as building year of the property. For our analysis, we divide the raw price by the square
footage of the property to obtain comparable results for properties of differing size. Here,
we discard prices with either zero gross-square-footage or missing information in other
variables, such as the age of the property, as well as observations with an unrealistically
low price per square foot of less than 10 USD/sqf. This is in line with Rischard et al.
(2020), who use similar data and deselect all prices lower than approx. 20 USD/sqf.
Furthermore, we map the prices to each image by taking the median over all prices in
a certain range of the center of each image in the following way. For image i, we use
the number of prices that lie in a Manhattan distance of 1.5 times the length of an
image. More formally, let diski = |latrawk − latcenti |+ |lonrawk − loncenti | be the distance
of raw price prrawk to image center centi with corresponding lat-lon coordinates. We
then use the median of set Di = {prrawk : diski < 1.5lenimage}, where lenimage is the

2https://developers.google.com/maps/documentation/maps-static/intro, scale 1, zoom 17. This
returns an RGB-image with 3x400x400 pixels, with rounded size of 350x350 meters.

3https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page

https://developers.google.com/maps/documentation/maps-static/intro
https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page


Data 160

length of one image in lat-lon format (which corresponds to roughly 350 meters), as
the price pri = median(Di) of image i. Since prices have a highly skewed distribution
with large outliers, we decide to use the log-price per square foot as our dependent
variable, i.e. we use prlogi = log(pri). Panel (b) of Figure 6.1 shows the cleaned prices
before log-transformation4, where we see quite heavy right tails, which largely results
from higher prices in Manhattan. We furthermore investigate the number of prices per
image, which can vary considerably depending on different areas indicating that some
observations could have a higher amount of information for our analysis. Panel (a)
of Figure 6.1 visualizes this property, where for some observations (i.e. images), our
dependent variable is composed of only very few price observations (up to only one price),
while for a few large outliers, we observe a large number of more than 750 prices per
image, with a median of 66 prices per image.

The crime data include all crimes recorded by the NYC Police Department from 2008-
2017 and can be found in more detail in Table 6.3. We analyze nine crime classes that
include very different types of crimes, from traffic violations and theft to armed robberies,
assault, and murder. This amounts to around 5 million observations (k = 1, . . . , K)
of crimes over the full, pooled, time period. The crimes have a time-stamp and exact
geo-location, making it easy to link crimes to an image which we obtain by assigning
crime k to its closest image i by taking the Euclidean distance. We then count the
number of crimes in each picture for each category for our crime measures cr1, . . . , cr9.

Additionally, we employ the same covariates as in Deuschel et al. (2022) for an image
level, which includes the distance of each image center5 to the next subway station, to
the Empire State Building, to the next fire station, to LaGuardia Airport, and John F.
Kennedy International Airport (JFK)6, and the mean of the age of the properties on
each image (in years).

4We leave out the 79 highest prices that would distort the plot, which go up to over 27 USD/sqf).
5Here, the distance is defined as the Euclidean distance on the level of lat-lon coordinates. 0.01 in this

unit corresponds to roughly 1km in NYC.
6We use data on the distance based on NYC Open Data (https://opendata.cityofnewyork.us/).

https://opendata.cityofnewyork.us/
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Figure 6.1: Descriptive Statistics for House Prices

6.3 Methodology

To estimate the effect of crime and different covariates on house prices, we use generalized
additive models (GAM), with which we can model the expected non-linear effects of
crime. It is not feasible, however, to use crime numbers directly, since they have been
repeatedly shown to be endogenous for prices (see e.g. Ihlanfeldt and Mayock (2010) for
an overview). Instead, we extract features xj that are predictive for crime from image
data using convolutional neural networks (CNNs). We model the log price per square
foot yi in the following model:

yi = a +
J∑
j=1

s
(x)
j (xji) +

H∑
h=1

s
(z)
h (zhi) + ϵi , i = 1, . . . , n (6.1)

xj = (xj1, . . . , xjn) = Gj(CNNv, img1, . . . , imgn) , (6.2)

where xj , j = 1, . . . , J are extracted features that are predictive for crime, zh, h =
1, . . . , H are covariates that are predictive for house prices, a is an intercept, and ϵi is a
mean-zero error term. s

(x)
j and s

(z)
h are non-linear functions that we estimate in Section

6.4 using penalized cubic splines as basis functions, with maximum degree of freedom
df = 10. Computationally, we use penalized iterative reweighted least squares (PIRLS)
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for estimation of the spline coefficients, while the optimal penalty parameters for the
shrinking of the complexity of the splines (i.e. degrees of freedom) are computed using
the fast restricted maximum likelihood (fREML) algorithm (see Wood et al. (2015, 2017);
Li and Wood (2020) for details) implemented in the R-package mgcv (Wood et al., 2017).

The function Gj is a function that returns the jth n-dimensional feature vector from
the last fully-connected layer before the output of CNNv. This vector consists of the
value of the jth feature for each of the i = 1, . . . , n images. The crucial part of this feature-
extracting function is obviously the neural network CNNv. This idea was originally
developed in Deuschel et al. (2022), who, however, focus more on the predictive ability
of the model. We employ different architectures which always consist of the Inception-
ResNet Szegedy et al. (2017) with two additional fully connected layers. As input, we use
RGB-satellite images with dimension 400x400x3, and train the network to simultaneously
predict the number of crimes cr1, . . . , cr9 (see Table 6.3 for details) on an image. We
alter the number of neurons in the last fully connected layer which corresponds to the
feature. For our main analysis, we will use v = 20 neurons in the last layer, and 750
neurons in the second last layer. We expect this to be large enough to capture important
drivers of the 9 crime classes after being trained. Figure 6.2 visualizes our employed
architecture, which is similar to Deuschel et al. (2022). Note that during the training, we
use dropout layers after the pre-trained network and after the two fully connected layers
to counteract overfitting. We furthermore train the top-most layers of the pre-trained
network in a final step.

Having extracted the features, the final GAM estimating the intercept a and the
functions s

(x)
j and s

(z)
h using the The PIRLS fitting procedure can be described as follows.

For ease of notation, stack both xj and zh together to Q = (x1, . . . , xJ , z1, . . . , zH) :=
(q1, . . . , qV ) ∈ Rn×V and do so similarly for s

(x)
j (xj) and s

(x)
j (zh) and obtain sQ =

(s(x)
1 (x1), . . . , s

(x)
J (xJ), s

(z)
1 (z1), . . . , s

(z)
H (zH) := (s1, . . . , sV ). sv can now be expressed as

the sum of basis functions bcv with coefficients βcv, where for qv = (qv1, . . . , qvn)T ∈ Rn,
bcv returns bcv(qv) = (bcv(qv1), . . . , bcv(qvn))T ∈ Rn. Then, we obtain for sq(qv):

sq(qv) =
Cv∑
c=1

bcv(qv)βcv := Qvβv , (6.3)
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Pre-Trained Inception-ResNet

400x400x3 
Images

750 Neurons FC 20  Neurons FC
9 Crime 
Categories

Figure 6.2: Structure of the Employed Neural Network Architecture
Note: Starting with an Inception-ResNet pre-trained on the ImageNet data, we train two fully
connected (FC) layers, one with 750 neurons and a second one, our feature layer, consisting of 20
neurons.

where Qv ∈ Rn×Cv contains the values of qv evaluated at the basis functions and
βv = (βc1, . . . , βcV )T. For Q̃ = (a, Q1, . . . , QV ) ∈ Rn×P , P = 1 +

∑V
v=1 Cv, β as the

stacked vector of 1 (for the intercept) and all βv, and y = (y1, . . . , yn)T, the algorithm
minimizes:

min
β
∥y − Q̃β∥2 +

V∑
v=1

λvβvSvβv , (6.4)

with Sv as the identity matrix of dimension Cv. To compute the penalty parameters
λv, we use performance iteration in combination with fREML, which is much faster for
large data sets (see e.g. Wood et al. (2015) and Wood et al. (2017)) selecting λv in each
iteration of the algorithm.

To analyze the stability of the GAM estimation in Section 6.4, we will refit the final
model B times using subsampled observations. The main comparison for this will be the
estimated effective degrees of freedom (EDF) of our estimated model, which will be a
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result of the maximum dimension for each spline and the optimal shrinkage parameter
λij for basis function i in covariate j. More specifically, the EDF can be calculated as
the trace tr(F ) of a matrix F , where F is the hat-matrix of the for the model:

F = (Q̃TQ̃ + Sopt)−1Q̃TQ̃ , (6.5)

where S−1
opt =

∑V
v=1 λ∗

vSv0 at the estimated λ∗
v, where Sv0 is a zero padded version of Sv

with dimension P × P . To obtain the EDF for the final variables qv, we simply have to
sum the diagonal elements at the respective positions, i.e. for the first variable x1, we
sum from p = 2 to C1. Tests for the significance of EDF from zero are likelihood ratio
tests testing E[β̂k] = 0 based on a Bayesian Random Effects model, and use tr(2F −FF )
instead. For details, see Wood (2013).

Finally, we also employ the Kernel-SHAP from Lundberg and Lee (2017) to explain
contributions of the features and covariates on single observations and predictions, but
use the extension from Aas et al. (2021) accounting for the dependence structure of
variables. This Kernel-SHAP is model-agnostic as it linearizes the model for Shapely-
Value computation. In our prediction setup, each Shapley value ϕv contributes linearly
to the final prediction. Following Aas et al. (2021), write E[y] = f(Q) for the estimated
GAM, and define for a new value Q∗:

f(Q∗) = ϕ∗
0 +

V∑
v=1

ϕ∗
v , (6.6)

where ϕ∗
0 = E[f(Q)] and ϕ∗

v is the Shapley value, which intuitively can be described as
the weighted contribution that a variable v adds to the model output f(Q∗), given all
possible subsets of variable combinations. For more details on the implementation, see
especially Aas et al. (2021), Lundberg and Lee (2017), Shapley (1953), or Deuschel et al.
(2022).

6.4 Results

In this section, we present our approach of extracting features via CNNs that are predictive
for crimes, but in comparison to the latter, are not endogenous for house prices. We
use generalized additive models to show the impact of the features on house prices and
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further investigate spatial heterogeneities in the influence of variables on prices using
Shapley values. Finally, we show that this methodology retains excellent forecasting
performance in various setups.

6.4.1 Crime Endogeneity and Feature Extraction

In the literature on house prices, crime has repeatedly come up as an important influencing
factor. Intuitively, people would value property in a relatively safe area higher, thus
indicating that crime should be included in house-pricing model. However, there have
been various studies showing that crime can be endogenous through various channels
(Anselin and Lozano-Gracia, 2007; Ihlanfeldt and Mayock, 2010; de La Paz et al., 2022).
Specifically, Ihlanfeldt and Mayock (2010) characterize the endogeneity through several
channels, which act in both positive and negative ways: Crime could be positively
correlated with price, if, for example, higher valued neighborhoods attract more crime
(higher payoff), have higher reporting rates, or are less crowed possessing features that
make crime easier (large windows, secluded property). On the other hand, wealthier
neighborhoods can afford more security measures, or lower priced neighborhoods could
attract more crime in general, which again correlates crime negatively with price.

We train a CNN to predict crime from satellite images and extract features which
describe the general nine categories of crime classified by the New York City Police
Department. With this, we think that we are less affected by the endogeneity issue of
crime. The satellite images are static and crime information is only used up to one year
before our price data starts. This gives way to the argument that crime changes more
dynamically than the surrounding shape of the city and thus, this time delay secures
exogeneity. Specifically, we only use the satellite image of a certain area to extract the
features, which can be assumed as static and inelastic in comparison to crime in our short
time horizon, while the latter can change more rapidly. The properties of an image (e.g.
whether we have high rise, parks, commercial property) are mapped in a nonparametric
way by the CNN to the features we extract, which makes them act as a sort of instrument,
although not in the classic way.

More specifically, we construct the features as the output of the last fully connected
layer of our CNN with 20 neurons in the last layer. For each input image, we therefore
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obtain 20 feature values that are strictly positive (or zero), which is due to the ReLU-
activation7 function, which maps all negative values to zero. The features thus contain
information about certain image properties that are predictive for crime. Intuitively, these
properties also have an impact on house prices but do not suffer from the endogeneity
problems stated above. Interestingly, more than half of the features are zero, indicating
that the nine crime categories can be represented by only a few characteristics of the
images. There are some images with particularly high feature values. We select 19 of
these images, mostly from Manhattan and the Bronx, and explain their influence more
in detail in Section 6.4.2. See also Figure 6.8 in the Appendix for a detailed location
of these on a map of NYC. Figure 6.3 depicts Shapley values using the Kernel-SHAP
from Lundberg and Lee (2017) for the feature values given the image input for three of
the selected images. This is done by separating each image into clusters of size 40 using
an adapted version of the SLIC algorithm (Achanta et al., 2012), and then using each
cluster as a covariate for which the contribution to the feature values can be depicted.
This means that we can identify regions on an image that contribute a lot to the values
of the features. We can see that the contributions of pixel-clusters vary depending on
the feature that is used, which indicates that our feature selection works as intended,
i.e. identifying different classes of crimes by using the properties of the image. We can
see, for example, that roads, the shadows of buildings, rooftops, parks, and trees are
important factors in the composition of the features.

To see how this translates into the nine crime categories, we look at the final predictions
of the CNN-model. Figure 6.4 shows the mean prediction of each (non-zero) feature for
each crime category, i.e. the mean contribution of a feature to a certain crime category 8.
We can see that there is considerable heterogeneity in the mean prediction, both across
categories (as expected since crime counts differ per category) and features, which shows
that the features are working as intended, i.e. having distinct influences over different
crime categories. For violent crimes, which can be roughly summarized by category
1,4, and 5 (see also Table 6.3 for details), we see the strongest influences in Features
10,17, and 18, while for property damages (category 2), Features 1,13, and 18 are most

7The rectified linear unit function is given as frelu(x) = max(0, x).
8see Figure 6.14 in the Appendix for more details on the distribution of features and 6.15 for the pure

weights.
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Feature1 Feature2 Feature10 Feature13 Feature15 Feature17 Feature18 Image: 4239
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Figure 6.3: Illustration of Feature Shapley Values for Selected Images
Note: The top image is located at the southern west corner of Central Park, the middle image is
located at the Upper East Side, and the bottom image is located at Times Square in Midtown
Manhattan.

important. For little theft and safety (categories 3 and 7), again Features 1,13, and 18
have high predictions, although to a lesser extent as Feature 17, which is highest here.
For traffic related crimes (category 9), the group of Features 1,13, and 18 has a negative
impact, while Feature 17 again has a positive effect.

Looking more feature specific effects, Features 1,13, and 18 often act together, and are
positive for theft, public safety, and property damages, while having negative influence
on traffic related crimes. This could be evidence that these features are detecting image
structures that are simultaneously predictive for the above categories, indicating that
they do not appear in the same images as most traffic related crimes. This points to
the conclusion that crimes related to public safety, theft, and property damages appear
together and spatially distant to traffic crimes. One explanation for this would be that
traffic related offenses occur in areas with high traffic, while property crime or offenses
against public safety occur rather in more remote, residential areas with less traffic. For
violent crimes, on the other hand, Features 10 and 17 often predict high positive values
for violent crime and simultaneously negative values for public order. Again, this points
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towards the conclusion that crimes related to public order, which includes harassment,
intrusion of privacy, or offenses related to children, occur in different areas than violent
crimes such as assault, grand theft, burglaries, arson, and felony assaults. To further
investigate the location of crime, we inspect the predictions of each feature on a spatial
grid of the city and highlight where different categories of crime are most prevalent. We
find that features indeed predict different crime hotspots as expected and the CNN-model
using only satellite image can thus approximate crime quite well.

To visualize this, we plot heatmaps of the 1000 highest feature predictions, i.e. the
feature values multiplied by their weights for each crime category in Figures 6.5 and 6.6.
We can see that apart from the absolute predicted numbers that vary over each category
as with the underlying crime data, the hotspots of crime vary quite substantially per
category. Although they are mostly being focused around Manhattan (especially Midtown
Manhattan and Uptown Manhattan north of Central Park) and the Bronx, where the
most crimes were reported in general, we see some patterns over the different categories.
While violent crime in general seems to be most heavily prevalent in the Harlem area and
in certain areas in Midtown Manhattan, Grand Theft and crime against Public Health
and Morals are more concentrated only in Harlem. This seems reasonable, as very busy
areas as Midtown Manhattan with large businesses are likely more controlled by police
forces, making them less prone for offense such as Grand Larceny in comparison to more
remote areas in Harlem or the Bronx. The latter two also have the highest concentration
of General Theft and offenses regarding Vehicle and Traffic. Property crime and offenses
regarding Public Order and Privacy, on the other hand, are predicted to be highest in the
Bronx, which is in line with our interpretation that violent crime and property crime are
occurring mostly in different, detached areas. We cannot fully verify that traffic offenses
are spatially detached from property, theft, and public safety crimes as indicated above.
This might especially be caused by traffic offenses such as intoxicated and impaired driving
or other violations against traffic laws, which are obviously correlated to the amount
of traffic and therefore also occur in more busy business-heavy areas (e.g. Midtown
Manhattan). This all highlights the high crime density in the Bronx and Harlem and
also explains why the features itself suffer to some degree from collinearity, which we
investigate more in detail in Section 6.4.2.
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Figure 6.4: Mean Prediction of All Non-zero Features From InceptionResnetV2-20 CNN
for Each of the Nine Final Crime Categories
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Figure 6.5: Heatmap of Highest Predictions per Feature for Crime Categories Concerning
Violent Crimes, Theft, and Safety
Note: The scaling is different on each subfigure since the number of crimes varies strongly in each
category.
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Figure 6.6: Heatmap of Highest Predictions per Feature for Crime Categories Concerning
Property, Public Order, Traffic, and Other Crimes
Note: The scaling is different on each subfigure since the number of crimes varies strongly in each
category.

6.4.2 Model Estimation and Interpretation

We now present the results of our main model for interpreting the features. We employ a
GAM regressing the log house price per square foot on the features from our architecture
with 20 features and the covariates from Section 6.2. The main estimates for the functions
of the GAM can be found in Table 6.1, where the estimated degrees of freedom are
depicted. While the covariates are all highly non-linear, mainly Features 13,15,17, and 18
have non-linear effects based on Table 6.1. Feature 1, 2, and 10 seem to have mainly linear
effects. Although the effect for Feature 10 in Figure 6.8 has some non-linear shape, the
confidence bands are quite wide. In Table 6.1, we additionally test for the non-linearity
of the effects by first estimating a linear model on the full data, and subsequently using
the residuals (which contain all information not yet explained by a linear function) as
an outcome in a GAM and employ the same tests as in the full model. These tests are
likelihood ratio tests as in Wood (2013) and are all highly significant for the full model
apart from Feature 2, suggesting there is no significant effect. Figure 6.7 suggests that
this again caused by an extremely high variance in the estimates. On the other side, our
the p-values of the tests from the residualized model suggest that the effect of Feature1
and 10 are linear. All in all, the results from Table 6.1 indicate that using a GAM instead
of a linear model is highly appropriate in our application.

This becomes even clearer when looking at Figures 6.7 and 6.8, which depict the effects
of each variable on our price variable over the full range of possible values. There, we can
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Table 6.1: Estimated Degrees of Freedom and P-values for the 20-Feature GAM

Full Model Residualized Model
EDF Ref.df F-Stat p-value F-Stat p-value

year_built 7.90 8.68 24.95 0.000 32.95 0.000
dist_jfk 8.79 8.95 120.59 0.000 122.93 0.000
dist_esb 8.36 8.60 495.64 0.000 172.93 0.000
dist_lag 8.45 8.61 116.50 0.000 79.95 0.000
dist_fdp 4.08 5.07 6.19 0.000 6.42 0.000
dist_sub 7.74 8.56 43.05 0.000 29.92 0.000

feat_1 1.04 1.07 6.35 0.013 0.14 0.750
feat_2 1.44 1.75 0.16 0.778 3.16 0.082

feat_10 2.61 3.39 2.73 0.036 0.81 0.502
feat_13 2.76 3.54 7.78 0.000 2.92 0.023
feat_15 3.35 4.27 16.58 0.000 10.78 0.000
feat_17 4.90 5.96 6.29 0.000 6.35 0.000
feat_18 2.20 2.86 4.88 0.002 5.38 0.001

Notes: Estimated effective degrees of freedom (EDF) are calculated according to Section 6.3 and based on the fit
of the PIRLS estimator. P-values and test statistics (F-Stat) are for likelihood ratio tests as in Wood (2013) with
the null hypothesis that the expectation of functional coefficients are zero and are calculated against Ref.df. The
latter are computed as tr(2A−AA), see Section 6.3 for details. The residualized model represents a GAM fit on
the residuals of a linear model and therefore tests for the non-linear component of the covariates.

see the non-linearities in the variables very clearly. First of all, note that to be able to
identify the functional for each variable, we impose that

∑n
i=1 s

(x)
j = 0 for all j = 1 . . . , J ,

and
∑n
i=1 s

(z)
h = 0 for all h = 1 . . . , H. This can be seen at the plots that are always

centered around zero. The effects are plotted given that all other terms are set to zero,
with shaded areas depicting two standard errors above and below the estimate taken
from the Bayesian posterior distribution of the coefficients (see Marra and Wood (2012)
for details on the Bayesian Estimation).

The covariates have mostly non-linear effects that seem in line with economic intuition.
Properties more recently build have a positive impact on price, with a dip around the
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Figure 6.7: Marginal Effects for the GAM Within the 20-Feature InceptionResNetV2
CNN
Notes: GAM with cubic splines trained on covariates and all non-zero features. Black lines show
GAM-estimates and shaded areas depict two standard errors above and below using Bayesian
variance estimates. Black lines at x-axis are rug plots showing the distribution of data points.
Note that the axes are scaled differently to visualize the non-linearities.

1960s, which might be attributed to the type of buildings that were constructed in the
post-war period after the second world war. Similar, the closer properties are to the
Empire State Building (ESB), the more valuable they are, with a plateau between 0.1
and 0.2 (corresponding roughly to 10-20km airline distance), and then subsequently
decreasing. This seems appropriate judging that areas that the furthest away are mostly
in Staten Island, while areas in 10-20km of the ESB cover most inner parts of Brooklyn,
Queens, and The Bronx. Distance to the JFK, on the other hand, is mostly positive,
and dominated by properties on the very outside of NYC in Staten Island or The Bronx
(which is far away from JFK) that are lower priced. We see, however, that the effect is
increasing for properties up to 10km away from the airport, which is sensible as properties
too close to an airport might be unattractive due to noise or infrastructure such as large
highways. The distance to fire departments and subway stations have much lower effects
in general, while again, being too close to a fire department is less positive, as possible
noise complaints play a role. The largest effect is seen in in the middle of the distribution,
and goes down when the distance becomes too large, indicating a possibly higher risk of
fire damage of a delayed arrival of the fire rescue service. The effects of Features 1,13, and
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Figure 6.8: Marginal Effects for the GAM Within the 20-Feature InceptionResnetV2
CNN and Map of Largest Features
Notes: Left: Marginal effects for log-price of poisson-loss InceptionResnetV2 20-feature GAM with
cubic splines trained on covariates and all non-zero features.Note that the axes are scaled differently
to visualize the non-linearities. The rest of the details follow Figure 6.7. Right: Locations of
selected images (with slight noise to visualize the different feature positions on the same image)
with the largest feature-values from InceptionResnetV2-20 CNN.

18 are all positive, indicating that with increasing feature value, the price will increase.
As the features are high in areas where offense such as theft and property damages are
higher, while less traffic related offenses are recorded, this could indicate that such areas
contain more residential, higher priced property.

Features 10 and 17 both have a similar trend from Figure 6.8, with a negative slope
for small feature values and increasingly less negative slope with larger values. These
features are mostly high for violent crimes, while being low for offense related to public
order (e.g. intrusion of privacy, harassment). We see a sharp decline from zero to up to
100 for both features, which could be explained by even low amounts of violent crime
having a large negative impact on price that is stronger than when we move from larger
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Figure 6.9: Boxplots of Estimated Effective Degrees of Freedom (EDF) for the GAM for
Log-Price and Features From the 20-Feature InceptionResNetV2 CNN
Note: The red dots resemble the EDF of the full model, while the boxplots show EDFs over
repeated estimations (B = 1000) with subsample rate of 0.9.

quantities to even higher numbers. Feature 17, however, rises again at around 250, which
can be attributed to influence that Feature 17 also has on category 3 and 7 (little theft
and safety), that might have a larger effect here, given the assumption that the effect
of violent crime is smaller compared to the effect of offenses related to safety at a high
level. Although Wood (2008) state that with the PIRLS algorithm, concurvity does
not affect the optimization procedure strongly, we conduct further analysis to check the
stability of the EDFs, especially for the features. Figure 6.9 shows boxplots of all EDF
that are re-estimated B = 1000 times using a subsample of size Nsub = ⌈0.9n⌉. The
results indicate that our models are rather stable, with modest larger uncertainty only
for Feature 18.

To obtain some intuition of the mean effects for single images, we compute Shapley
values that account for the dependence structure of the features (see Aas et al., 2021).
To model the dependence structure, we either estimate a simple Gaussian structure
which assumes that the covariates are multivariate normally distributed, or use a Copula
approach where we assume that the dependence structure can be modeled by a Gaussian
Copula.



Results 175

Covariates Features

ye
ar

_b
uil

t

dis
t_

jfk

dis
t_

es
b

dis
t_

lag

dis
t_

fd
p

dis
t_

su
b

fea
t_

1

fea
t_

2

fea
t_

10

fea
t_

13

fea
t_

15

fea
t_

17

fea
t_

18

−0.1

0.0

0.1

0.2

−0.5

0.0

0.5

1.0

Variable

S
ha

pl
ey

−
V

al
ue

s Cluster

1
2
3
4
5

40.700

40.725

40.750

40.775

40.800

40.825

−74.000 −73.975 −73.950 −73.925
lon

la
t

Cluster 1 2 3 4 5

Copula 5 Cluster

Figure 6.10: Boxplots of Shapley Values for Both the Covariates and Features Depending
on the 5 Clusters and Location of Clusters on the NYC Map
Notes: Left: Boxplots of Shapley values for both the covariates and features depending on the
5 clusters. Note the different scaling of the y-axis for covariates and features, which facilitates
interpretation. Right: Location of clusters on the NYC map.

We apply this methodology on the 19 selected images from Section 6.4.1, which are
visualized on the right side of Figure 6.8, and obtain Shapley values for each of the
covariates and features on each image. To visualize the different, non-linear influence
of each variable on price, we cluster the 19 images in different groups using k-means
clustering with 3 and 5 clusters9 on all Shapley values, which is depicted in Figure 6.1010.

To summarize the results, we can see that there is clear heterogeneity between the
influence of variables on different images, driven by the location which can be roughly
identified by the Shapely values and the resulting clusters. Interestingly, it indicates that
the features and covariates indeed identify areas that are similar to each other. Although
it is not possible to derive clear directions of all effects in the regions due to the small
sample size here, we can identify some trends and plausible clusters. On the right side

9The optimal number of clusters is determined for both the Gaussian and Copula approach using the
gap-statistic suggested by Tibshirani et al. (2001) and the final clusters are determined using 50
restarts each. We obtain both 3 and 5 Clusters for both the methods respectively, and use both for
both methods, which can be seen in Figure 6.11 and 6.13 in the Appendix.

10See Figure 6.12 for the same figure with three clusters in the Appendix.
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of Figure 6.10, we can see the five clusters on a map of NYC. We identify two main
clusters, one in Midtown Manhattan near Times Square (Cluster 5) and the second one
at Central Park and Upper East Side (Cluster 3). Furthermore, two smaller clusters more
on the outside of Manhattan are identified: Cluster 4 in the Bronx and in Downtown
Manhattan, and Cluster 2 in Brooklyn, the Bronx, and Harlem. Finally, Cluster 1 only
consists of two points and is quite close to cluster three in Figure 6.13 (bottom-left in the
Appendix), where we again plot the clusters, but not a grid of NYC but based on the
two largest principal components of all covariates. This shows that even though Cluster
1 is estimated separately, it is quite closely related to Cluster 3.

The left part of Figure 6.10 now shows how Shapley values vary in the different clusters
over both covariates and features. First of all, we can see that the distance to the Empire
State Building, JFK, and LaGuardia Airport have the biggest average influence, while the
other covariates have rather low influence on these selected images. For better visibility,
we visualize the features on the right boxplot on a different scale. Feature 10 has the
largest positive influence overall, while Feature 15 is the only feature with mostly negative
influence. It has to be noted, however, that the boxplots are relatively wide, which
is likely due to the small sample size of selected images. Interestingly, Cluster 4 has
relatively large positive values for both Features 10 and 17, which were linked to violent
crime in Section 6.4.1. Another notable detail is the difference between Clusters 3 and 5
on Feature 15. For the more residential, high priced properties on Central Park and the
Upper East Side, this feature has more of a positive mean influence, while for the more
business-heavy area in Midtown Manhattan, the influence is rather negative. On the side
of covariates that describe the distance from both the airports and the Empire State
Building, the effects are plausible as the biggest distinctions are between clusters that
are spatially further apart. For example, clusters close to the Empire State Building have
the highest positive values on that covariate, while Cluster 2, which is mostly located
in the Bronx and Harlem has large negative values. The same distinction can be found
for the distance to LaGuardia Airport, although in the opposite direction (i.e. positive
values for Cluster 2).
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Table 6.2: Predictive Power Results With OOS-R2 on Image Level Depending on CNN
CNN optimized on: MSE-loss Poisson-loss

With Zi Without Zi With Zi Without Zi

Log Price
100_layers_Features_GAM_10PC 0.582 0.297 0.566 0.218

100_layers_Features_GAM_raw 0.589 0.306 0.563 0.297
100_layers_Features_lm_10PC 0.467 0.284 0.423 0.204

100_layers_Features_lm_raw 0.471 0.294 0.452 0.297
20_layers_Features_GAM_10PC 0.576 0.262 0.572 0.133

20_layers_Features_GAM_raw 0.577 0.266 0.570 0.143
20_layers_Features_lm_10PC 0.441 0.197 0.414 0.104

20_layers_Features_lm_raw 0.445 0.197 0.414 0.104
750_layers_Features_GAM_10PC 0.575 0.241 0.584 0.343

750_layers_Features_GAM_raw - - - -
750_layers_Features_lm_10PC 0.468 0.249 0.460 0.301

750_layers_Features_lm_raw 0.337 0.125 0.401 0.270
Crimes_GAM 0.588 0.278 0.588 0.278

Crimes_lm 0.418 0.148 0.418 0.148

Raw Price
100_layers_Features_GAM_10PC 0.768 0.402 0.748 0.301

100_layers_Features_GAM_raw 0.746 0.369 0.669 0.289
100_layers_Features_lm_10PC 0.535 0.354 0.487 0.258

100_layers_Features_lm_raw 0.528 0.353 0.507 0.351
20_layers_Features_GAM_10PC 0.755 0.368 0.743 0.111

20_layers_Features_GAM_raw 0.757 0.376 0.752 0.148
20_layers_Features_lm_10PC 0.513 0.275 0.457 0.096

20_layers_Features_lm_raw 0.513 0.275 0.457 0.096
750_layers_Features_GAM_10PC 0.759 0.381 0.766 0.455

750_layers_Features_GAM_raw - - - -
750_layers_Features_lm_10PC 0.540 0.328 0.540 0.400

750_layers_Features_lm_raw 0.333 0.184 0.310 0.197
Crimes_GAM 0.746 0.477 0.746 0.477

Crimes_lm 0.545 0.339 0.545 0.339

Notes: Out-of-sample-R2 rounded to three digits. The dependent variable is the log-price (Top) or raw price
(bottom), both per square foot. Measures are giving features of the last fully-connected layer before the output of a
CNN consisting of 100, 20, or 750 neurons. For each scenario, we compute generalized additive models (GAM) and
linear models (lm), each taking either the raw features or the 10 first principal components. Additional features
Zi are used for model fitting certain scenarios. Crimes_GAM and Crimes_lm use the true crimes instead of
features/principal components. It was not computationally feasible to compute a GAM consisting of 750 features.
The best two models in each scenario are marked in bold.
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6.4.3 Predictive Power of Models

We conduct various out-of-sample prediction tasks to highlight the power of our feature-
extracting approach in combination with the highly-flexible GAM. All in all, we find that
our employed model has excellent forecast performance, and is always at least as good as
a model using the endogenous crime variables directly for prediction. The main results
are summarized in the top part of Table 6.2, while additional results for a model using
raw prices per square foot, i.e. without using the logarithm, are found in the bottom
part of Table 6.2 .

In both the log-price and raw-price scenario, we employ different architectures varying
the number of features (20, 100, 750) and either take the raw features directly or apply
principal components analysis on the extracted features before the final model estimation
step. There, we compare a GAM as described in Section 6.3 with a simple linear model.
Furthermore, we use different loss functions for training the CNN. We either use a
poisson-loss as in the main analysis, which accounts for the fact that the number of
crimes is always positive, or a classic least squares loss (MSE). Results are also reported
using either only the features/principal components or including additional covariates as
stated in Section 6.2.

First of all, the model we estimate in Section 6.4.2 (“20_layers_Features_GAM_raw”
with Poisson-loss and Zi) performs quite well and similarly to the other models using
GAM, which can be seen in Table 6.2. In general, using the log-price reduces the predictive
performance by about 0.1−0.2 in out-of-sample-R2, depending on the method. This could
be caused by numerical issues in forecasting, which are a result of the log-scaling during
estimation, which, however, facilitates interpretation and handling of large outliers.

Secondly, using Poisson-loss vs. MSE-loss for training the CNN only meaningfully
changes the prediction power for smaller models, meaning that when we only have 20
features, using the Poisson-loss instead of the MSE-loss reduces the oos-R2. This is
especially strong in one scenario when not using additional covariates, where the oos-R2

is reduced by around 50%. This could be explained by the training process of the neural
network, where there are some optimization problems for using small feature layers.

Furthermore, the number of layers does not seem to play a major role for performance
for the GAM or when using PCA, while linear models seem to struggle a lot when using
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too many raw features, which can be explained by the imposed linear model structure. For
the GAMs, there is not much difference, while using PCA components without additional
covariates seems to be slightly worse. Again, this could be attributed to information
loss, while when using additional information from external covariates, this does not
matter much. As expected, GAMs perform much better out-of-sample, and even in the
simplest scenario, with no additional covariates and 20 features (or even when using the
endogenous crime variable directly), linear models are clearly outperformed. This further
encourages the usage of non-linear methods to model this relationship, even when already
using non-linear techniques for creating the features and dimensionality-reduction with
PCA.

As a robustness check, we repeat the forecasting with standardized covariates. The
benefit of standardization here is rather limited. One the one hand, it facilitates the
comparability between covariates, which would be helpful especially in Figures 6.7 and 6.8.
On the other hand, the features all come out from the same model, where standardization
would lead to a great loss of information and distort importance between features. In
practice, standardization greatly reduces forecasting performance (see Table 6.4 in the
Appendix), which is why we do not discuss it further, as the issues discussed above seem
to affect the prediction performance greatly.

6.5 Conclusion

In this paper, we develop a model for house prices in NYC by incorporating information
from satellite images and crime information, since employing crime directly within an
interpretable model framework is infeasible due to of endogeneity concerns. We extend
the framework of Deuschel et al. (2022) using neural networks to extract information
from crimes. The extracted features are predictive for house prices and employing the
semiparametric GAM-framework makes interpretation of the features possible outside
of a simple linear model. The features are therefore different to those of Deuschel et al.
(2022) and have a clear relationship with house prices, which we show to be indeed
non-linear.
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In more detail, using the GAM simplifies the base-framework as we do not need
PCA-transformations to maintain high prediction performance, which was a crucial part
in the model of Deuschel et al. (2022). We investigate the features in detail and show
how they correspond to crime. We also consider the spatial structure of features in NYC
and demonstrate its relation to prices, which again advocates employing the features
in the house price model. We furthermore visualize the effect of the extracted features
on crime and use Shapley Values in the final model. With that, we can visualize the
final-model effects applying the new adapted version of Kernel-SHAP of Aas et al. (2021),
crucially taking into account the dependence structure between covariates.

We also extend the framework of Deuschel et al. (2022) by employing a new architecture
with a different CNN as a basis and using a more suitable loss function for interpretation.
Furthermore, we find that the GAM serves a suitable alternative to machine-learning
procedures such as boosting or random forests, while keeping an interpretable structure.
For future research, it would be interesting to apply our methodology with GAMs in
different related issues where there is either missing, insufficient data, or endogeneity.
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6.6 Appendix

Table 6.3: Overview of the 9 Crime Classes
leading internal
code number

Type of offenses 5 most occuring crimes (no. of occurences)

1
Offenses involving physical injury,
sexual conduct, restraint, intimidation

Assault 3 & related offenses (521470) / Felony assault (190216) /
Miscellaneous penal law (84016) / Sex crimes (39049) /
Rape (13014)

2
Offenses involving damage to and
intrusion upon property

Criminal mischief & related offenses (493471) / Burglary (171449) /
Criminal trespass (59178) / Arson (12083) /
Miscellaneous penal law (4003)

3 Offenses involving theft
Petit larceny (824298) / Robbery (182646) /
Petit larceny of motor vehicle (696)

4 Offenses involving theft (grand)
Grand larceny (421768) / Grand larceny of motor vehicle (84956) /
Possession of stolen property (26953) / Unauthorized use of a vehicle (14634) /
Other offenses related to theft (11744)

5
Offenses against public health and
morals

Dangerous drugs (316692) / Miscellaneous penal law (5593) /
Gambling (2109) / Sex crimes (1263) /
Prostitution & related offenses (824)

6 Offenses Against Public Order, Public Sensibilities and the Right to Privacy
Harassment 2 (601329) / Offenses against public order sensibility and privacy (259058) /
Sex crimes (14277) / Miscellaneous penal law (5612) /
Offenses related to children (1269)

7

Offenses against public administration and
public safety / provisions relating to firearms,
fireworks, pornography equipment and vehicles
used in the transportation of gambling records

Dangerous weapons (119193) / Offenses against public administration (101718) /
Theft-fraud (49720) / Forgery (47961) / Frauds (32036)

8 Other
Administrative code (10983) / Other state laws (non penal law) (4586) /
Nys laws-unclassified felony (4359) / Alcoholic beverage control law (841) /
Agriculture & markets law-unclassified (346)

9 Vehicle and Traffic Regulations Intoxicated & impaired driving (69048) / Vehicle and traffic laws (60628)

Note: Code numbers as in the internal classification of the NYPD. Types of offenses are matched to the penal law
extracted from the New York Senate penal laws (https://www.nysenate.gov/legislation/laws/PEN/P3).

https://www.nysenate.gov/legislation/laws/PEN/P3


Appendix 182

40.700

40.725

40.750

40.775

40.800

40.825

−74.000 −73.975 −73.950 −73.925
lon

la
t

Cluster 1 2 3

Copula 3 Cluster

40.700

40.725

40.750

40.775

40.800

40.825

−74.000 −73.975 −73.950 −73.925
lon

la
t

Cluster 1 2 3

Gaussian 3 Cluster

40.700

40.725

40.750

40.775

40.800

40.825

−74.000 −73.975 −73.950 −73.925
lon

la
t

Cluster 1 2 3 4 5

Copula 5 Cluster

40.700

40.725

40.750

40.775

40.800

40.825

−74.000 −73.975 −73.950 −73.925
lon

la
t

Cluster 1 2 3 4 5

Gaussian 5 Cluster

Figure 6.11: Maps of the 19 Selected Images Grouped by Shapley Value Similarty
Notes: Clusters are obtained using the similarity of the Shapley values for all covariates.
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Figure 6.12: Boxplots of Shapley Values for Both the Covariates and Features Depending
on the 3 Clusters and Location of Clusters on the NYC Map
Notes: Left: Boxplots of Shapley values for both the covariates and features depending on the
3 clusters. Note the different scaling of the y-axis for covariates and features, which facilitates
interpretation. Right: Location of clusters on the NYC map.
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Notes: Similarity is determined by Shapley value for all covariates.
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Figure 6.14: Boxplots of Features Time Weights for the InceptionResnetV2 With 20
Features (Only Non-zero)
Note: Each boxplot represents the weighted predictions of each feature for each crime category.

Figure 6.15: Weights of All Non-zero Features From the InceptionResnetV2-20 CNN for
the Final Nine Crime Categories
Note: The columns include the 50% and 95% quantiles of feature values in parentheses.
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Figure 6.16: Marginal Effects for the GAM Within the 20-Feature InceptionResNetV2
and PCs
Notes: GAM is using cubic splines trained on covariates and first principal components (only
signficant PCs are plotted). Black lines show GAM-estimates and shaded areas depict two
standard errors above and below using Bayesian variance estimates. Black lines at x-axis are
rug plots showing the distribution of data points. Note that the axes are scaled differently to
visualize the non-linearities.
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Table 6.4: Predictive Power Results With OOS-R2 and Standardized Covariates
MSE-loss Poisson-loss

With Zi Without Zi With Zi Without Zi

Log Price
100_layers_Features_GAM_10PC 0.291 0.276 0.303 0.216

100_layers_Features_GAM_raw 0.315 0.305 0.255 0.292
100_layers_Features_lm_10PC 0.461 0.288 0.433 0.205

100_layers_Features_lm_raw 0.462 0.259 0.457 0.290
20_layers_Features_GAM_10PC 0.297 0.246 0.216 0.065

20_layers_Features_GAM_raw 0.282 0.269 0.263 0.141
20_layers_Features_lm_10PC 0.441 0.199 0.420 0.106

20_layers_Features_lm_raw 0.449 0.202 0.420 0.105
750_layers_Features_GAM_10PC 0.263 0.155 0.315 0.342

750_layers_Features_GAM_raw - - - -
750_layers_Features_lm_10PC 0.468 0.256 0.468 0.304

750_layers_Features_lm_raw 0.047 -0.347 0.362 0.209
Crimes_GAM 0.341 0.084 0.341 0.084

Crimes_lm 0.411 0.107 0.411 0.107

Raw Price
100_layers_Features_GAM_10PC 0.707 0.397 0.700 0.298

100_layers_Features_GAM_raw 0.684 0.358 0.567 0.266
100_layers_Features_lm_10PC 0.540 0.375 0.497 0.260

100_layers_Features_lm_raw 0.517 0.315 0.506 0.333
20_layers_Features_GAM_10PC 0.695 0.363 -0.448 -1.054

20_layers_Features_GAM_raw 0.701 0.377 0.695 0.145
20_layers_Features_lm_10PC 0.520 0.289 0.465 0.099

20_layers_Features_lm_raw 0.523 0.291 0.466 0.100
750_layers_Features_GAM_10PC 0.688 0.339 0.711 0.456

750_layers_Features_GAM_raw - - - -
750_layers_Features_lm_10PC 0.556 0.358 0.550 0.409

750_layers_Features_lm_raw -0.452 -0.773 0.174 0.038
Crimes_GAM 0.728 0.375 0.728 0.375

Crimes_lm 0.522 0.267 0.522 0.267

Notes: Out-of-sample-R2 rounded to three digits. The dependent variable is the price per square foot with (top)
and without (bottom) logarithm. Features and additional covariates are standardized. Measures are giving features
of the last fully-connected layer before the output of a CNN consisting of 100, 20, or 750 neurons. For each scenario,
we compute generalized additive models (GAM) and linear models (lm), each taking either the raw features or the
10 first principal components. Additional features Zi are used for model fitting certain scenarios. Crimes_GAM
and Crimes_lm use the true crimes instead of features/principal components. It was not computationally feasible
to compute a GAM consisting of 750 features. The best two models in each scenario are marked in bold.
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