KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Zero-Shot Text Classification with Graph-based Knowledge Representations

Hoppe, Fabian ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Insufficient training data is a key challenge for text classification. In particular, long-tail class distributions and emerging, new classes do not provide any training data for specific classes. Therefore, such a zeroshot setting must incorporate additional, external knowledge to enable transfer learning by connecting the external knowledge of previously unseen classes to texts. Recent zero-shot text classifier utilize only distributional semantics defined by large language models and based on class names or natural language descriptions. This implicit knowledge contains ambiguities, is not able to capture logical relations nor is it an efficient representation of factual knowledge. These drawbacks can be avoided by introducing explicit, external knowledge. Especially, knowledge graphs provide such explicit, unambiguous, and complementary, domain specific knowledge. Hence, this thesis explores graph-based knowledge as additional modality for zero-shot text classification. Besides a general investigation of this modality, the influence on the capabilities of dealing with domain shifts by including domain-specific knowledge is explored.


Verlagsausgabe §
DOI: 10.5445/IR/1000149454
Veröffentlicht am 04.08.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000149454
Erschienen in ISWC-DC 2022: Proceedings of the Doctoral Consortium at ISWC 2022 ; Proceedings of the Doctoral Consortium at ISWC 2022 ; co-located with 21st International Semantic Web Conference (ISWC 2022) ; Hangzhou, China, October 24, 2022. Ed.: O. Hartig
Veranstaltung Doctoral Consortium at ISWC (ISWC-DC 2022), Hangzhou, China, 24.10.2022
Verlag CEUR-WS.org
Serie CEUR Workshop Proceedings ; 3165
Externe Relationen Abstract/Volltext
Schlagwörter Zero-Shot Learning, Text Classification, Knowledge Graph
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page