KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid machine learning to localize atrial flutter substrates using the surface 12-lead electrocardiogram

Luongo, Giorgio 1; Vacanti, Gaetano; Nitzke, Vincent 1; Nairn, Deborah ORCID iD icon 1; Nagel, Claudia 1; Kabiri, Diba; Almeida, Tiago P.; Soriano, Diogo C.; Rivolta, Massimo W.; Ng, Ghulam André; Dössel, Olaf 1; Luik, Armin; Sassi, Roberto; Schmitt, Claus; Loewe, Axel ORCID iD icon 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Aims
Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG).

Methods and results
Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients—three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149469
Veröffentlicht am 04.08.2022
Originalveröffentlichung
DOI: 10.1093/europace/euab322
Scopus
Zitationen: 11
Web of Science
Zitationen: 10
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 21.07.2022
Sprache Englisch
Identifikator ISSN: 1099-5129, 1532-2092
KITopen-ID: 1000149469
Erschienen in Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
Verlag Oxford University Press (OUP)
Band 24
Heft 7
Seiten 1186–1194
Vorab online veröffentlicht am 19.01.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page