
Comptes Rendus

Mathématique

Rainer Mandel, Zoïs Moitier and Barbara Verfürth

Nonlinear Helmholtz equations with sign-changing diffusion coefficient

Volume 360 (2022), p. 513-538

<https://doi.org/10.5802/crmath.322>

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

https://doi.org/10.5802/crmath.322
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2022, Vol. 360, p. 513-538
https://doi.org/10.5802/crmath.322

Partial differential equations, Mathematical physics / Équations aux dérivées partielles,
Physique mathématique

Nonlinear Helmholtz equations with

sign-changing diffusion coefficient

Rainer Mandela, Zoïs Moitiera and Barbara Verfürthb

a Karlsruhe Institute of Technology, Institute for Analysis, Englerstraße 2, D-76131
Karlsruhe, Germany.
b Karlsruhe Institute of Technology, Institute for Applied and Numerical Mathematics
Englerstraße 2, D-76131 Karlsruhe, Germany.

E-mails: rainer.mandel@kit.edu, zois.moitier@kit.edu, barbara.verfuerth@kit.edu

Abstract. In this paper, we study nonlinear Helmholtz equations with sign-changing diffusion coefficients
on bounded domains. The existence of an orthonormal basis of eigenfunctions is established making use of
weak T-coercivity theory. All eigenvalues are proved to be bifurcation points and the bifurcating branches
are investigated both theoretically and numerically. In a one-dimensional model example we obtain the
existence of infinitely many bifurcating branches that are mutually disjoint, unbounded, and consist of
solutions with a fixed nodal pattern.
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1. Introduction

In this paper, we are interested in nonlinear Helmholtz equations of the form

−div(σ(x)∇u)−λc(x)u = κ(x)u3 in Ω, u ∈ H1
0(Ω) (1)

where Ω ⊂ RN is a bounded domain and the diffusion coefficient σ is sign-changing. As we will
explain in Section 1.1, such problems occur in the study of time-harmonic wave propagation
through metamaterials with negative permeability and nonlinear Kerr-type permittivity. Up to
now, the linear theory dealing with the well-posedness of such problems for right-hand sides f (x)
instead of κ(x)u3 has been studied to some extent both analytically and numerically [3–6, 8, 9].
Here, the main difficulty is that the differential operator u 7→ −div(σ(x)∇u) is not elliptic on the
whole domain Ω. Accordingly, the standard theory for elliptic boundary value problems based
on the Lax–Milgram Lemma does not apply. In the papers [5, 6] the (weak) T-coercivity approach
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was introduced to develop a solution theory for such linear problems. The guiding idea of this
method is to require that the strongly indefinite bilinear form

H1
0(Ω)×H1

0(Ω) −→R, (u, v) 7−→
∫
Ω
σ(x)∇u ·∇v dx −λ

∫
Ω

c(x)uv dx

satisfies the assumptions of the Lax–Milgram Lemma up to some compact perturbation once
v is replaced by Tv for some isomorphism T : H1

0(Ω) → H1
0(Ω). Our intention is to combine

this approach with methods from nonlinear analysis to study the nonlinear Helmholtz equation
Eq. (1).

Under reasonable assumptions onΩ, σ, and c our main contributions are the following:

(i) There is an orthonormal basis
(
φ j

)
j∈Z of L2(Ω) that consists of eigenfunctions of the

linear differential operator u 7→ −c(x)−1 div(σ(x)∇u). The corresponding eigenvalue se-
quence

(
λ j

)
j∈Z is unbounded from above and from below. Moreover, the eigenfunctions

are dense in H1
0(Ω).

(ii) If κ ∈ L∞(Ω) then each of the eigenvalues λ j is a bifurcation point for Eq. (1) with
respect to the trivial solution family {(0,λ) : λ ∈R}. By definition, this means that for all
j ∈ Z there is a sequence

(
un

j ,λn
j

)
n∈N ⊂ H1

0(Ω) \ {0}×R of nontrivial solutions such that

(un
j ,λn

j ) → (0,λ j ) in H1
0(Ω)×R as n →∞. Our numerical illustrations in Section 3 indicate

that these solutions may be located on a smooth and unbounded curve in H1
0(Ω) ×R

going through the point (0,λ j ). We can also prove this for some one-dimensional model
problem.

(iii) In a one-dimensional case, for any given λ ∈ R there are infinitely many nontrivial
solutions for Eq. (1) provided that κ ∈ L∞(Ω) is uniformly positive or uniformly negative.
This result is obtained using variational methods instead of bifurcation theory.

A few comments regarding Items (i) to (iii) are in order. As to (i), the existence of an orthonor-
mal basis of eigenfunctions in L2(Ω) may be considered as a known fact in view of [8, Section 1].
However, we could not find a reference in the literature that covers our setting, so we briefly re-
view this in Section 4. On the other hand, the Weyl law asymptotics seem to be new. Our proofs
rely on the weak T-coercivity approach developed in [5,6]. Under this assumption, the linear the-
ory turns out to be analogous to the linear (Fredholm) Theory for elliptic boundary value prob-
lems. The construction of isomorphisms T : H1

0(Ω) → H1
0(Ω), however, is a research topic on its

own and depends on the precise setting, notably on the nature of the interface where the sign of
σ jumps, see e.g. [4, 5].

Our main bifurcation theoretical results from (ii) also rely on the functional analytical frame-
work given by the weak T-coercivity approach. The task is to detect nontrivial solutions of Eq. (1)
that bifurcate from the trivial solution family. Being given the linear theory and the Implicit Func-
tion Theorem, one knows that such bifurcations can only occur at λ=λ j for some j ∈Z. To prove
the occurrence of bifurcations we resort to variational bifurcation theory (see below for refer-
ences). Here the main difficulty comes from the fact that the associated energy functional

Ψλ(u) := 1

2

∫
Ω
σ(x) |∇u(x)|2 dx − λ

2

∫
Ω

c(x)u(x)2 dx − 1

4

∫
Ω
κ(x)u(x)4 dx (2)

is strongly indefinite due to the sign change of σ. Strong indefiniteness means that the quadratic
part of Ψλ is positive definite on an infinite-dimensional subspace of H1

0(Ω), and it is negative
definite on another infinite-dimensional subspace. As a consequence, standard results in this
area going back to Böhme [2, Satz II.1], Marino [18], and Rabinowitz [23, Theorem 11.4] do
not apply. Instead, we demonstrate how to apply the more recent variational bifurcation theory
developed by Fitzpatrick, Pejsachowicz, Recht, Waterstraat [14,21]. Better results are obtained for
eigenvalues with odd geometric multiplicity, which is based on Rabinowitz’ Global Bifurcation
Theorem [22]. In our one-dimensional model case we significantly improve and numerically
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illustrate our bifurcation results with the aid of bifurcation diagrams (Section 3). The latter
provide a qualitative picture of the bifurcation scenario given that each point in such a diagram
corresponds to (λ,‖u‖) where (u,λ) solves Eq. (1).

As to (iii), the strong indefiniteness ofΨλ also makes it harder to prove the existence of critical
points. Note that critical points u ∈ H1

0(Ω) satisfy Ψ′
λ

(u) = 0, which is equivalent to Eq. (1). In the
case of positive diffusion coefficients, the Symmetric Mountain Pass Theorem [1, Theorem 10.18]
applies and yields infinitely many nontrivial solutions. In the context of strongly indefinite
functionals, an analogous result was established only recently by Szulkin and Weth [24, Section 5].
We will show how to apply their abstract results under reasonable extra assumptions in order to
obtain infinitely many nontrivial solutions of Eq. (1) for any given λ ∈ R assuming κ ≥ α > 0 or
κ≤−α< 0.

Before commenting on the physical background of Eq. (1) we wish to emphasize that our main
goal is to bring (weak) T-coercivity theory and nonlinear analysis together. Accordingly, we do
not aim for the most general assumptions for our results to hold true. For instance, we avoid
technicalities related to the regularity of the interface where the sign of σ jumps. Similarly, we
content ourselves with the special nonlinearity κ(x)u3. Only little effort is needed to generalize
our bifurcation results as well as our variational existence results to more general nonlinearities
in all space dimensions N ≥ 1.

1.1. Physical motivation

We comment on the physical background of Eq. (1). The propagation of electromagnetic waves
with a fixed temporal frequency parameter ω ∈ R is governed by the time-harmonic Maxwell’s
equations

iωD −curl H = 0 and iωB +curlE = 0. (3)

Here, charges and currents are assumed to be absent. The symbols E ,D : R3 → C3 denote the
electric field and the electric induction and H ,B : R3 → C3 represent the magnetic field and
the magnetic induction, respectively. In nonlinear Kerr media the constitutive relations between
these fields are given by

D = ε(x)E +χ(x) |E |2E and B =µ(x) H (4)

where ε,µ,χ are real-valued, see [7, Chapter 4]. In physics, these quantities are called permittivity,
permeability and third-order susceptibility of the given medium, respectively. Plugging in this
ansatz into Eq. (3) one finds

curl
(
µ(x)−1 curlE

)=ω2ε(x)E +ω2χ(x) |E |2E . (5)

Now we assume that the propagation of electromagnetic waves is considered in a closed waveg-
uide Ω×R having a bounded cross-section Ω ⊂ R2 and all material parameters only depend on
the cross-section variable. With an abuse of notation, this means µ(x) = µ(y), ε(x) = ε(y), and
χ(x) = χ(y) where x = (y, z) ∈ Ω×R. This is a natural assumption for the modelling of layered
cylindrical waveguides. If then the electric field is of the special form E(x) = (0,0,u(y)) with u
real-valued, we infer

−div(µ(y)−1∇u)−ω2ε(y)u =ω2χ(y)u3 in Ω, u ∈ H1
0(Ω),

which corresponds to Eq. (1) in the two-dimensional case. For complex-valued u the nonlinearity
is given by |u|2u. Sign-changing diffusion coefficientsσ(y) :=µ(y)−1 may occur if one of the layers
of the waveguide is filled with a negative-index metamaterial (NIM) where the permeability µ
may be negative, see, e.g., [20]. Note that any such solution u determines E ,D,B , H via Eqs. (4)
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and (5). We mention that one may equally solve for the magnetic field, which leads to Helmholtz-
type problems with nonlinear (i.e. solution-dependent) and possibly sign-changing diffusion
coefficients.

1.2. Notation

In the following, we equip the Hilbert spaces H1
0(Ω) and L2(Ω) with the inner products

〈u, v〉|σ| :=
∫
Ω
|σ(x)| ∇u ·∇v dx, and (u, v)c :=

∫
Ω

c(x)uv dx,

respectively. Our assumptions onΩ, c, and σwill imply that the associated norms ‖·‖|σ| and ‖·‖c

are equivalent to the standard norms on these spaces. Moreover, we introduce the bilinear form

a : H1
0(Ω)×H1

0(Ω) −→R, (u, v) 7−→
∫
Ω
σ(x)∇u ·∇v dx.

1.3. Outline

The paper is organized as follows. Section 2 contains a mathematically rigorous statement of our
main results dealing with bifurcations for Eq. (1) from the trivial solution family. These results
are illustrated numerically in Section 3 with the aid of bifurcation diagrams. Those illustrate the
evolution of solutions along the branches as well the global behavior of the latter. In Section 4, we
set up the linear theory that we need to prove our main bifurcation theoretical results in Section 5.
Finally, Section 6 contains further existence results for nontrivial solutions of Eq. (1) obtained by
a variational approach. The proof is based on the Critical Point Theory from [24, Chapter 4].

2. Main results

We now come to the precise formulation of our main results for Eq. (1), i.e.,

−div(σ(x)∇u)−λc(x)u = κ(x)u3 in Ω, u ∈ H1
0(Ω).

Here, Ω and the coefficient functions σ, c, κ will be chosen as follows:

Assumption (A).

(1) Ω ⊂ RN for N ∈ {1,2,3} is a bounded domain and there are nonempty open subsets
Ω+,Ω− ⊂Ω such that Ω+∪Ω− =Ω and Ω+∩Ω− =∅.

(2) σ> 0 on Ω+, σ< 0 on Ω− and |σ|+ |σ|−1 ∈ L∞(Ω).
(3) c ∈ L∞(Ω) with c(x) ≥α> 0 for almost all x ∈Ω.
(4) κ ∈ L∞(Ω).

Assumption (B). There is a bounded linear invertible operator T : H1
0(Ω) → H1

0(Ω) such that the
bilinear form (u, v) 7→ a(u,Tv)+〈Ku, v〉|σ| is continuous and coercive on H1

0(Ω)×H1
0(Ω) for some

compact operator K : H1
0(Ω) → H1

0(Ω).

Later, in Corollary 8, we show that Assumptions (A) and (B) ensure the existence of an
orthonormal basis

(
φ j

)
j∈Z of

(
L2(Ω), ( · , · )c

)
consisting of eigenfunctions associated to the linear

differential operator u 7→ −c(x)−1 div(σ(x)∇u) appearing in Eq. (1). Due to the sign-change of σ
the corresponding sequence of eigenvalues

(
λ j

)
j∈Z can be indexed in such a way that λ j →±∞

holds as j →±∞. In Theorem 1 below we show that nontrivial solutions of Eq. (1) bifurcate from
the trivial branch {(0,λ) : λ ∈R} at any of these eigenvalues. If the eigenvalue comes with an odd-
dimensional eigenspace, we even find that the bifurcating nontrivial solutions lie on connected
sets C j ⊂ H1

0(Ω)×R that are unbounded or return to the trivial solution branch {(0,λ) : λ ∈R} at
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some other bifurcation point. As in [22], for any given j ∈Z, the set C j is defined as the connected
component of (0,λ j ) in S , which in turn is defined as the closure of all nontrivial solutions of
Eq. (1) in the space H1

0(Ω)×R. Our first main result reads as follows:

Theorem 1. Assume (A) and (B). Let
(
λ j

)
j∈Z denote the unbounded sequence of eigenvalues from

Corollary 8. Then each (0,λ j ) is a bifurcation point for Eq. (1). If λ j has odd geometric multiplicity,
then the connected component C j in S containing (0,λ j ) satisfies Rabinowitz’ alternative:

(I) C j is unbounded in H1
0(Ω)×R or

(II) C j contains another trivial solution (0,λk ) with k 6= j .

Remark 2.

(a) In Assumption (A) we may as well assume c(x) ≤ −α < 0; it suffices to replace (c,λ) by
(−c,−λ). On the other hand we cannot assume c to be sign-changing since we will need
that ( · , · )c is an inner product on L2(Ω). In Remark 9 (c), we show that one cannot expect
our results to hold for general sign-changing c ∈ L∞(Ω).

(b) We need not require a priori smoothness properties ofΩ or the interface Γ :=Ω+∩Ω−, but
imposing those is natural when it comes to verify Assumption (B), see the Theorems 2.1,
3.1, 3.3, 3.7, 3.10 from [5]. It is known that Assumption (B) does not always hold, for
example in 2D if σ−/σ+ ∈ [−3,− 1

3

]
and the interface Γ has a right angle corner, see [3, 5].

We strengthen our result in some 1D model example where we can show the following:

• Assumptions (A) and (B) are satisfied.
• The eigenvalues (λ j ) are simple and in particular have odd geometric multiplicity.
• The eigenpairs (φ j ,λ j ) are almost explicitly known.
• The case (II) in Rabinowitz’ Alternative is ruled out, hence all C j are unbounded.

The setting is as follows: Assume that Ω =Ω−∪Ω+ is an interval with precisely two non-void
sub-intervals Ω− = (a−,0) and Ω+ = (0, a+) with a− < 0 < a+. The coefficient functions c and σ

satisfy c(x) = c± resp. σ(x) = σ± on Ω± where c± > 0 and σ+ > 0 > σ− are constants. For such
domains and coefficients we consider the nonlinear problem

− d

dx

(
σ(x)u′)−λc(x)u = κ(x)u3 in Ω, u ∈ H1

0(Ω). (6)

Corollary 3. Assume that Ω, c, σ are as above, and κ ∈ L∞(Ω). Let (λ j ) j∈Z denote the unbounded
sequence of simple eigenvalues from Corollary 8 ordered according to . . . < λ−2 < λ−1 < 0 < λ1 <
λ2 < . . . and λ−1 <λ0 <λ1 with

λ0 < 0 ⇐⇒ σ+a−
a+σ−

< 1, λ0 = 0 ⇐⇒ σ+a−
a+σ−

= 1, λ0 > 0 ⇐⇒ σ+a−
a+σ−

> 1.

Then the connected component C j ⊂ H1
0(Ω)×R in S containing (0,λ j ) is unbounded, and we have

C j ∩Ck =; for j 6= k. All (u,λ) ∈C j with u 6= 0 have the following property:

(i) If j ≤−1 then u has | j | interior zeros in Ω− and satisfies
∣∣u′∣∣> 0 on Ω+.

(ii) If j = 0 then u has no interior zeros in Ω and satisfies
∣∣u′∣∣> 0 on Ω±.

(iii) If j ≥ 1 then u has j interior zeros in Ω+ and satisfies
∣∣u′∣∣> 0 on Ω−.

The seemingly complicated ordering of the eigenvalues is exclusively motivated by the nodal
patterns given by Items (i) to (iii). Here,

∣∣u′∣∣ > 0 on Ω± means that the continuous extension of∣∣u′∣∣ : Ω± → R to Ω± is positive. We stress that nontrivial solutions u are smooth away from the
interface x = 0 and continuous at x = 0, but they are not continuously differentiable at this point.
In fact, σu′ is continuous on Ω so that u′(0) does not exist in the classical sense. In the following
Section 3 our results are illustrated with the aid of bifurcation diagrams.
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3. Visualization of bifurcation results via PDE2path

In this section, we illustrate our theoretical results of Theorem 1 and Corollary 3 with numerical
bifurcation diagrams. These diagrams show the value of λ on the x-axis and the L2-norm of
solutions u for that λ on the y-axis. Thereby, (numerical) bifurcation diagrams allow to get an
overview of the “structure” of solutions and, in particular, to visualize the connected components
C j of Theorem 1. The results were obtained with the package pde2path [10, 25], version 2.9b and
using Matlab 2018b. The code to reproduce the numerical results is available on Zenodo with DOI
10.5281/zenodo.5724477.

3.1. One-dimensional example

We consider Ω = (−5,5) with Ω− = (−5,0), Ω+ = (0,5) and c ≡ 1. The diffusion coefficient σ
is chosen piecewise constant, set σ+ = 1 and compare two different values for σ−, namely
σ− ∈ {−2,−1.005}. We consider Eq. (6) in this special case, i.e.,

− d

dx

(
σ(x)u′)−λu = u3 in Ω, u ∈ H 1

0 (Ω).

We choose a tailored finite element mesh which is refined close to Γ= {0} in the following way. We
start with an equidistant mesh with h = 2−9, i.e., Ω is divided into 5120 equal subintervals. Then,
we refine all intervals which are closer than 0.1 to Γ five times by halving them. This finally means
that intervals close to Γ are only 2−14 long. We point out that this finely resolved mesh is required
to faithfully represent the interface behavior at Γ= {0}, especially for σ− =−1.005. An insufficient
mesh resolution does not only influence the numerical quality of the eigenfunctions or solutions
along the branches, but also the (qualitative picture) of the bifurcation diagram. We validated our
results by assuring that a further refinement of the mesh (halving all intervals) leads to the same
results and conclusions.

3.1.1. Bifurcation diagrams and eigenfunctions for different contrasts

We first investigate whether σ+
σ− ≈−1 influences the bifurcation diagrams. For this, we allow λ

to vary in the interval [−10,15]. The bifurcation diagrams are depicted in Figure 1 forσ− =−2 and
σ− =−1.005.

Qualitatively, they are quite similar with clearly separated, apparently unbounded branches
without secondary bifurcations. Note that the bending direction of the branches to the left is de-
termined by the sign of the nonlinear term and can be predicted by the bifurcation formulae
(I.6.11) in [15]. The first striking phenomenon due to the sign-changing coefficient is the occur-
rence of eigenvalues and, hence, bifurcation points, with negative value. In fact, for sign-changing
σ, there are two families of eigenvalues diverging to ±∞, see Theorem 1. We use the following
labeling of branches (cf. Figure 1): The branch starting closest to zero is labeled as C0 and the
branches for negative and positive bifurcation points are labeled as C−i and Ci with i ∈N, respec-
tively. The absolute value of i increases as |λ| →∞. In our setting this labeling of the branches is
consistent with the notation introduced in Section 4.

Besides the eigenvalues, we also study the eigenfunctions by considering the solutions at the
first point of each branch in Figure 2. We display the branch name according to Figure 1 as well
as the value of λ at the bifurcation point.

As (partly) expected from [8], we make the following observations. Firstly, the solutions are
concentrated (w.r.t. the L2-norm) on the “oscillatory part”, which is Ω− for negative eigenvalues
(left column of Figure 2) and Ω+ for positive eigenvalues (right column of Figure 2). The eigen-
value closest to zero (from which C0 emanates) plays a special role (middle column of Figure 2).
Secondly, with increasing |λ|, the number of maxima and minima increases as one observes also

https://doi.org/10.5281/zenodo.5724477
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Figure 1. Bifurcation diagrams for σ− =−2 (top) and σ− =−1.005 (bottom).

for the eigenfunctions of the Laplacian. Thirdly, the transmission condition at Γ requires the (nor-
mal) derivative of u to change sign, such that the solutions have a “tip” at the interface. Taking
a closer look at the bifurcation values and the corresponding solutions in Figure 2, we note that
C0 starts much closer to zero for σ− = −1.005 than for σ− = −2. This illustrates the theoretical
expectation that due to the symmetry of the domain Ω, we have an eigenvalue approaching zero
for the contrast going to −1. Moreover, we observe a certain shrinking of the negative bifurcation
values towards zero when the contrast approaches −1.

3.1.2. Patterns of solutions along branches

We now take a closer look at how solutions evolve along branches — depending on whether the
corresponding bifurcation value is negative, close to zero or positive. According to the previous
discussion, we focus on σ− = −1.005 in the following because it shows the phenomena in a
particularly pronounced form and is close to the interesting “critical” contrast of −1. In general,
we observe that a certain limit pattern or profile of the solution evolves on each branch which
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Figure 2. First solution on branches C−2, C0 and C4 (from left to right) for σ− = −2 (top
row) as well as σ− =−1.005 (bottom row).

remains qualitatively stable (values of maxima, minima and plateaus of course change with λ).
As example for a negatively indexed bifurcation branch away from zero, we consider C−2, cf.
Figure 1. The first, 50th, and 100th solution on the branch are depicted in Figure 3. As described
above, the solution concentrates in Ω− where it oscillates, while it decays exponentially in Ω+.
This profile remains stable over the branch, but we note that the maxima and minima become
wider along the branch. This widening of the extrema in Ω− is also noted for the other branches
emanating from a negative bifurcation point. Yet, the more oscillations occur for the branches as
λ→−∞, the less pronounced the effect becomes because we have more extrema over the same
interval. We emphasize that this effect of widening extrema is specific to the sign-changing case
and especially to bifurcations starting at negative λ.
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Figure 3. Solution at first, 50th, 100th point of C−2 for σ− =−1.005.

As an example for a positively indexed bifurcation branch away from zero, we study the branch
C5, cf. Figure 1. As expected, we observe in Figure 4 that the first solution concentrates on Ω+,
where it oscillates as typical for an eigenfunction of the Laplacian, and shows an exponential
decay in Ω−. The oscillatory pattern in Ω+ is preserved along the branch. The behavior in Ω−
changes whenλ gets negative: Instead of an exponential decay to zero, we now see an exponential
decay to (almost) a plateau (with value ±p−λ) and a sharp transition to the zero boundary value.
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Once this pattern is established, it remains stable as well. This appearance of a plateau different
from zero is also a specific phenomenon of the sign-changing case.
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Figure 4. Solution at first, 60th, 70th, 100th point of C5 for σ− =−1.005.

The occurrence of a plateau in Ω− is also observed in Figure 5 for the branch C0 closest to
zero, cf. Figure 1. While the first solution has a similar shape in Ω+ and Ω− with a linear decay
in each subdomain, the ensuing solutions on the branch quickly evolve a plateau in Ω− and
an exponential decay in Ω+. This pattern then remains stable along the branch. All in all, we
observe a certain stability of profiles along branches. The form of the profiles depends on where
the bifurcation starts. Moreover, we always recognize a concentration to the oscillatory part and
further the establishment of plateaus different from zero in Ω−. As already emphasized, both
effects are specific to the sign-changing case. This qualitative description of solutions seems to
transfer to other contrasts, but the bifurcation points closest to zero and the (quantitative) decay
in Ω± significantly depend on the contrast as already discussed above.
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Figure 5. Solution at first, 10th, 100th point of C0 for σ− =−1.005.

3.2. Two-dimensional example

We consider Ω = (−2,2)2 with Ω− = (−2,0)× (−2,2), as well as σ+ = 1 and σ− = −2. The finite
element mesh is tailored similar to the one-dimensional experiment: We start with a symmetric
uniform mesh with h = 2−4 and refine three times all elements in the strip of width 0.1 around
the interface Γ= {0}×(−2,2). Note that our mesh satisfies the symmetry conditions laid out in [4],
which may be challenging in more complicated geometries though.

We focus on the behavior of solutions in this numerical experiment and let λ vary in [−12,15].
There are three different types of eigenfunctions either concentrated on Ω−, on Γ, or on Ω+. In
contrast to the one-dimensional case, there are several different eigenfunctions concentrated on
Γ. As before, the eigenfunctions concentrated on Ω− or Γ are associated with negative values of
λ. In Figures 6 to 8, we show the evolution of solutions along a branch for each of the three types
described above.
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Figure 6. Solution at first, 25th, and 50th point of branch associated with an eigenfunction
concentrated onΩ−.

Figure 7. Solution at first, 25th, and 50th point of branch associated with an eigenfunction
concentrated on Γ.

Similar to the one-dimensional case, we observe a widening of the extrema along the branch
with concentration inΩ− in Figure 6, in particular in the y-direction.

Furthermore, plateaus in Ω− evolve for negative λ in Figures 7 and 8. Due to the second
space dimension in the problem, we can have two (or more) different plateaus evolving in Ω−.
In Figure 7 for a branch with concentration on Γ, we note that the plateaus and the transition
between them seems to slightly change the oscillatory pattern onΓ as well. While the two maxima
have almost the same height for the first and 25th point (Figure 7 left and middle), one maximum
becomes predominant for the 50th point on the branch, see Figure 7 right.

Figure 8. Solution at first, 25th, and 50th point of branch associated with an eigenfunction
concentrated onΩ+.

Finally, for Figure 8 and a branch with concentration on Ω+, we emphasize that the solution
in Ω+ evolves like a solution of the standard Laplacian along a branch. In particular, the extrema
become thinner, i.e., more spatially localized, which should be contrasted with solutions concen-
trated in Ω− in Figure 6.
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4. Linear Theory

In this section we want to describe the linear theory for weakly T-coercive problems. As pointed
out earlier, this theory is essentially well-known [5,6,8]. Since it is short and rather self-contained,
we provide the details here, which will moreover allow us to fix the required notation. Further-
more, we prove some Weyl law asymptotics that have not appeared in the literature yet. We want
to deal with linear problems of the form∫

Ω
σ(x)∇u ·∇v dx −λ

∫
Ω

c(x)u v dx = F (v), ∀ v ∈ H1
0(Ω). (7)

The a priori unknown solution u is to be found in the Sobolev space H1
0(Ω) and the coefficient

functions σ and c are assumed to satisfy the conditions (A) and (B) from Section 1. To develop
a solution theory for the variational problem Eq. (7) both in H1

0(Ω) and L2(Ω) we assume F ∈
H−1(Ω) = H1

0(Ω)′. We may rewrite Eq. (7) as

a(u, v)−λ (u, v)c = F (v) ∀ v ∈ H1
0(Ω).

We introduce the bounded linear operator A : H1
0(Ω) → H1

0(Ω) and the compact linear operator
C : H1

0(Ω) → H1
0(Ω) via the relations

〈Au, v〉|σ| := a(u, v) and 〈Cu, v〉|σ| := (u, v)c for u, v ∈ H1
0(Ω). (8)

This is possible by Riesz’ Representation Theorem and σ,c ∈ L∞(Ω), see Assumption (A). We will
also use that the operator C can be written as C = C̃ ι where C̃ : L2(Ω) → H1

0(Ω) is a bounded
linear operator and ι : H1

0(Ω) → L2(Ω) denotes the embedding operator which is compact by the
Rellich–Kondrachov Theorem.

Proposition 4. Under Assumptions (A) and (B), there exists ` ∈ R such that the bounded linear
operator A` := A+`C : H1

0(Ω) → H1
0(Ω) is self-adjoint and invertible.

Proof. The self-adjointness follows from a(u, v) = a(v,u) and

〈Cu, v〉|σ| = (u, v)c = (v,u)c = 〈C v,u〉|σ| = 〈u,C v〉|σ|
for all u, v ∈ H1

0(Ω). To prove the invertibility of A` define the family of operators z 7→ Az := A+zC
for z ∈ C on the complex Hilbert space H1

0(Ω;C). The bilinear form associated with Az is given
by (u, v) 7→ a(u, v)+ z (u, v)c . From Assumption (B) and the Lax–Milgram Lemma we infer that
T∗A+K is invertible. Moreover, we have the relation

Az =
(
T∗)−1 [

T∗A+K
]− (

T∗)−1 K+ zC .

Here, the first summand is invertible while the other two summands are compact. Therefore,
{Az : z ∈C} is a holomorphic family of zero index Fredholm operators. For z ∈ C \R, the operator
Az is injective. Indeed, if Az u = 0 then

〈
Az u,u

〉
|σ| = 0 and

0 =ℑ
(〈

Az u,u
〉
|σ|

)
=ℑ(

a(u,u)+ z ‖u‖2
c

)=ℑ(z)‖u‖2
c .

So, we have ker(Az ) = {0}, which implies that Az has a bounded inverse as an injective Fredholm
operator. Using the analytic Fredholm theorem on C, see [11, Theorem C.8], the set

{
A−1

z : z ∈C}
is a meromorphic family of operators with poles of finite rank. Therefore, the operator (A+ zC )−1

exists for all z ∈ C \Λ for a discrete set Λ ⊂ R. In particular, there exists ` ∈ R such that A` is an
invertible Fredholm operator. �

Regarding Eq. (7) as an equation in H1
0(Ω), we thus obtain the following:

Proposition 5. Let Assumptions (A) and (B) hold as well as F ∈ H−1(Ω). Then Eq. (7) is equivalent
to

A`u − (λ+`)Cu =F , u ∈ H1
0(Ω) (9)

where F ∈ H1
0(Ω) is uniquely determined via 〈F , v〉|σ| = F (v) for all v ∈ H1

0(Ω).
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To prove the existence of an orthonormal basis of eigenfunctions for Eq. (7) we now turn
towards an alternative formulation in L2(Ω). From Proposition 4 and Proposition 5 we obtain
that Eq. (7) is equivalent to

u − (λ+`)Kc u = K F, u ∈ L2(Ω)

where
Kc := ιA−1

` C̃ and K F := ιA−1
` F . (10)

The compact operator Kc : L2(Ω) → L2(Ω) is self-adjoint with respect to ( · , · )c because of

(Kc u, v)c = 〈Kc u,C v〉|σ| =
〈

A−1
` Cu,C v

〉
|σ| =

〈
Cu, A−1

` C v
〉
|σ| = (u,Kc v)c

for all u, v ∈ L2(Ω). We have thus proved the following.

Proposition 6. Let Assumptions (A) and (B) hold as well as F ∈ H−1(Ω). Then Eq. (7) is equivalent
to

u − (λ+`)Kc u = K F, u ∈ L2(Ω)

where Kc ,K : L2(Ω) → L2(Ω) are the compact operators given by Eq. (10). Moreover, Kc is self-adjoint
with respect to ( · , · )c . In particular, the linear problem Eq. (7) satisfies the Fredholm Alternative in
L2(Ω) in the sense of [12, Appendix D, Theorem 5].

The Spectral Theorem for compact self-adjoint operators [12, Appendix D, Theorem 7] pro-
vides an orthonormal basis of eigenfunctions as pointed out in [8]. For notational simplicity we
use Z∗ :=Z\ {0} as index set for this basis.

Proposition 7. Let Assumptions (A) and (B) hold. Then there is an (L2(Ω), ( · , · )c )-orthonormal
basis

(
φ j

)
j∈Z∗ of eigenfunctions with associated eigenvalue sequence (µ j ) j∈Z∗ of the operator Kc

such that
µ−1 ≤µ−2 ≤ ·· · ≤µ−n ↗ 0 ↙µn ≤ ·· · ≤µ2 ≤µ1.

In addition, the family
(
φ j

)
j∈Z∗ is dense in H1

0(Ω) and(
φi ,φ j

)
c = δi , j and a(φi ,φ j ) = (

µ−1
i −`)δi , j , for i , j ∈Z∗. (11)

Moreover, there is D > 0 such that∣∣µ j
∣∣≤ D

∣∣ j
∣∣− 2

N , for all j ∈Z∗. (12)

Proof. By Proposition 6 the compact operator Kc is self-adjoint on (L2(Ω), ( · , · )c ). Therefore,
the spectral theorem for self-adjoint compact operators [12, Appendix D, Theorem 7] yields
an orthonormal basis (φ j ) j∈Z∗ of (L2(Ω), ( · , · )c ) consisting of eigenfunctions of Kc where the
corresponding real eigenvalue sequence (µ j ) j∈Z∗ converges to zero. We claim that µ j 6= 0 holds
for all j ∈ Z∗. Indeed, assuming the contrary, we get Kcφ j = 0 and thus Cφ j = 0, which in turn
implies

(
φ j , v

)
c =

〈
Cφ j , v

〉
|σ| = 0 for all v ∈ H1

0(Ω) because of Eq. (8). But this is impossible given
that (φ j ) j∈Z∗ is an orthonormal basis in L2(Ω) with respect to ( · , · )c and H1

0(Ω) is dense in L2(Ω).

We now prove Eq. (11). Since µ j 6= 0, the relation Kcφ j = µ jφ j implies φ j ∈ H1
0(Ω) and

Cφ j =µ j A`φ j . Using Eq. (8) we get for all v ∈ H1
0(Ω)(

φ j , v
)

c =
〈
Cφ j , v

〉
|σ| =µ j

〈
A`φ j , v

〉
|σ| =µ j

(
a(φ j , v)+`(

φ j , v
)

c

)
. (13)

In particular, choosing v =φi in Eq. (13), we obtain a(φ j ,φi ) = (µ−1
j −`)δi , j .

To show that
(
φ j

)
j∈Z∗ is dense in H1

0(Ω), consider any u ∈ H1
0(Ω) such that

〈
u,φ j

〉
|σ| = 0 for all

j ∈Z∗. We want to show u = 0. Using v = A−1
`

u in Eq. (13), we get(
φ j , A−1

` u
)

c =µ j
〈

A`φ j , A−1
` u

〉
|σ| =µ j

〈
φ j ,u

〉
|σ| = 0 for all j ∈Z∗.

However,
(
φ j

)
j∈Z∗ is an orthonormal basis of (L2(Ω), ( · , · )c ), which implies A−1

`
u = 0 and thus

u = 0. Therefore, the family (φ j ) j∈Z∗ is dense in H1
0(Ω).
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We finally prove the Weyl law asymptotics Eq. (12). This is based on the Courant–Fischer min-
max characterization for the eigenvalues µ j in terms of Kc . In fact, the formula(

Kcφ,φ
)

c∥∥φ∥∥2
c

=
∑

j∈Z∗ µ j c2
j∑

j∈Z∗ c2
j

for φ= ∑
j∈Z∗

c jφ j and (c j ) j∈Z∗ ∈ `2(Z∗) (14)

implies for j ∈N

µ j = max
X⊂L2(Ω)

dim(X )= j

min
φ∈X \{0}

(
Kcφ,φ

)
c∥∥φ∥∥2

c

and µ− j = min
X⊂L2(Ω)

dim(X )= j

max
φ∈X \{0}

(
Kcφ,φ

)
c∥∥φ∥∥2

c

. (15)

To prove the upper bound for |µ j |, j ∈Z∗ we use∣∣(Kcφ,φ
)

c

∣∣= ∣∣∣〈A−1
` C̃φ,C̃φ

〉
|σ|

∣∣∣≤ ∣∣∣∣∣∣A−1
`

∣∣∣∣∣∣ ∥∥C̃φ
∥∥2
|σ| =

∣∣∣∣∣∣A−1
`

∣∣∣∣∣∣(ιC̃φ,φ
)

c

for allφ ∈ L2(Ω). Here, the equalities hold due to Eq. (8) and Eq. (10). So the definition of C̃ implies
that |µ j |, |µ− j | is bounded from above by

∣∣∣∣∣∣A−1
`

∣∣∣∣∣∣ζ j (Ω)−1 where ζ j (Ω) is the j -th smallest Dirichlet
eigenvalue of φ 7→ −c−1 div

(|σ|∇φ)
on Ω and j ∈ N. Since c and |σ| are uniformly positive and

bounded, ζ j (Ω) is bounded from below by some j -independent multiple of the | j |-th smallest
eigenvalue of the Dirichlet–Laplacian over Ω. We thus conclude that there is D > 0 such that∣∣µ j

∣∣≤ ∣∣∣∣∣∣A−1
`

∣∣∣∣∣∣ζ j (Ω)−1 ≤ D | j |− 2
N . ( j ∈Z∗)

This finishes the proof of Eq. (12). �

To facilitate the application of this result we add a corollary.

Corollary 8. Let Assumptions (A) and (B) hold. Then, there is a sequence
(
λ j ,φ j

)
j∈Z consisting of

all eigenpairs of the differential operator φ 7→ −c(x)−1 div(σ(x)∇φ) on H1
0(Ω) that satisfies

−∞↙ ··· ≤λ− j ≤ ·· · ≤λ−1 ≤λ0 ≤λ1 ≤ ·· · ≤λ j ≤ ·· ·↗+∞
and

(
φ j

)
j∈Z is an orthonormal basis of (L2(Ω), ( · , · )c ) which is dense in H1

0(Ω). Moreover, there are
constants m, M > 0 such that

1+|λ j | ≥ m(1+| j |) N
2 ( j ∈Z) and Card

{
j ∈Z ∣∣ −Λ≤λ j ≤Λ

}≤ MΛ
N
2 , (Λ≥ 1).

Proof. We choose the eigenpairs
(
λ j ,φ j

)
j∈Z such that{(

λ j ,φ j
)

: j ∈Z}= {(
µ−1

j −`,φ j

)
: j ∈Z∗

}
where the map j 7→ (

λ j ,φ j
)

is injective and j 7→ λ j is nondecreasing. Then, using the estimates

for µ j from Eq. (12), we find 1+ |λ j | ≥ m(1+ | j |) N
2 for some constant m > 0. Moreover, |λ j | ≤ Λ

and Λ≥ 1 implies

Λ≥
∣∣∣µ−1

j −`
∣∣∣≥ ∣∣µ j

∣∣−1 −|`| ≥ D−1 ∣∣ j
∣∣ 2

N −|`| .
Hence,

Card
{

j ∈Z ∣∣ −Λ≤λ j ≤Λ
}≤ Card

{
j ∈Z

∣∣∣ ∣∣ j
∣∣ 2

N ≤ D(Λ+|`|)
}
≤ MΛ

N
2

for some constant M > 0 as claimed. �

Remark 9.

(a) In Corollary 8, the ordering of the eigenvalues
(
λ j

)
j∈Z is fixed up to translations of the

indices and permutations within eigenspaces. The former ambiguity can be removed by
specifyingλ0. A natural way to do this is to require thatλ0 has the smallest absolute value.
As mentioned earlier, we do not choose such an ordering in our 1D model example from
Corollary 3 because it is in general not consistent with the j -dependent nodal patterns.
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(b) A reasonable min-max formula for the eigenvalues
(
λ j

)
j∈Z in terms of the bilinear form a

does not seem to exist despite the simple formula a(φ,φ) =∑
j∈Zλ j c2

j for φ=∑
j∈Z c jφ j .

In fact, the bilinear form (u, v) 7→ a(u, v) has a totally isotropic subspace of infinite
dimension, for example

span
{∣∣λ j

∣∣ 1
2 φ− j +

∣∣λ− j
∣∣ 1

2 φ j : j ∈N0, λ− jλ j ≤ 0
}
⊂ {

u ∈ H1
0(Ω)

∣∣ a(u,u) = 0
}

.

(c) In [8, Section 1], the authors provide some explicit one-dimensional example showing
that all statements in this section may be false when c ∈ L∞(Ω) is sign-changing. In fact,
they showed that for some tailor-made σ as in Assumption (A) and c := σ the operator
u 7→ −c(x)−1 div(σ(x)∇u) may have the whole complex plane as spectrum. In particular,
the spectral theory of (compact) self-adjoint operators does not apply in this context.

(d) We mention some similarities and differences concerning the spectral properties of the
differential operator u 7→ −c(x)−1 div(σ(x)∇u) for

(I) sign-changing σ and c = 1, (II) σ= 1 and sign-changing c.

In the case (I) Proposition 7 and Corollary 8 show that the sequence of eigenvalues
is unbounded from above and from below. This is also true for (II), see the Proposi-
tions 1.10 and 1.11 in [13]. On the other hand, there are subtle differences. As we will see
in Lemma 14, in our one-dimensional model example for case (I) there is precisely one
positive eigenfunctionφ0 with associated eigenvalue λ0, and that one might not have the
smallest absolute value among all eigenvalues. In fact, |λ0| can be much larger than |λ−1|,
see Remark 15. In particular, there is little hope to prove the existence of positive eigen-
values via some straightforward application of the Krein–Rutman theorem. This is differ-
ent for the case (II) where Manes–Micheletti [17] (see also [13, Theorem 1.13]) proved the
existence of one positive and one negative principal eigenvalue, i.e., algebraically simple
eigenvalues of the smallest absolute value among the positive and negative eigenvalues,
respectively, coming with positive eigenfunctions. So here the two models exhibit differ-
ent phenomena.

5. Proof of Theorem 1 and Corollary 3

We now prove the theoretical bifurcation results with the aid of known bifurcation results for
equations of the form F (u,λ) = 0 where F ∈ C 2(H ×R, H) for some Hilbert space H . We will
consider bifurcation from the trivial solution branch, so F is supposed to satisfy F (0,λ) = 0 for
all λ ∈ R. To this end we proceed as follows: First, we present two abstract bifurcation theorems
that allow to detect local respectively global bifurcation from the trivial solution. Next, we show
how to apply these results to prove Theorem 1, which is straightforward. Finally, we sharpen our
results in the one-dimensional case of Eq. (6) by proving Corollary 3.

5.1. Known abstract Bifurcation Theorems

5.1.1. Local Variational Bifurcation

We first present a simplified version of [21, Theorem 2.1(i)] (see also [14, Corollary 3]) that
allows to detect local bifurcation for equations of the form ∇Ψλ(u) = 0 for some Ψ ∈ C 2(H ×
R,R) and Ψλ := Ψ( · ,λ). We denote the Fréchet derivative of Ψλ at u by Ψ′

λ
(u) : H → H , φ 7→〈∇Ψλ(u),φ

〉
.

Theorem 10. Suppose H is a separable real Hilbert space andΨ ∈C 2(H ×R,R) satisfies ∇Ψλ(u) =
Lu −λK u −G (u) where
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(i) L : H → H is a linear invertible self-adjoint Fredholm operator,
(ii) K : H → H is a linear compact and positive self-adjoint operator,

(iii) G : H → H satisfies G (0) = 0 and G ′(0) = 0.

Then each λ? ∈R such that ker(Ψ′′
λ?

(0)) 6= {0} is a bifurcation point for ∇Ψλ(u) = 0.

Proof. Our assumptions (i), (ii), (iii) imply that (Ψλ)λ∈R is a continuous family of C 2-functionals
in the sense of [21, p. 537]. If λ? ∈ R is as required, then Theorem 2.1(i) in [21] proves that the
interval [λ? − ε,λ? + ε] contains a bifurcation point provided that the Hessians Ψ′′

λ?±ε(0) are
invertible and the spectral flow of this family over the interval I := [λ? − ε,λ? + ε] is non-zero.
In fact, since L is invertible and K is compact, the linear operatorΨ′′

λ
(0) = L−λK has a nontrivial

kernel only for λ belonging to a discrete subset of R. So we may choose ε > 0 so small that
Ψ′′
λ?+ε(0),Ψ′′

λ?−ε(0) are invertible and λ? is the only candidate for bifurcation in I by the Implicit
Function Theorem. Using then the positivity of K we get from Remark (3) in [21] that the spectral
flow over I is the dimension of ker(Ψ′′

λ?
(0)), which is positive by assumption. Soλ? is a bifurcation

point. �

The more classical variational bifurcation theorems by Marino [18], Böhme [2, Satz II.1] and
Rabinowitz [23, Theorem 11.4] apply if there is µ ∈ R such that the self-adjoint operator L +µK
generates a norm. This assumption holds in the context of nonlinear elliptic boundary value
problems involving divergence-form operators with diffusion coefficients σ having a fixed sign.
In our setting with sign-changing σ, this is not the case.

5.1.2. Global Bifurcation

Rabinowitz’ Global Bifurcation Theorem [22] states that the solutions bifurcating from an
eigenvalue of odd algebraic multiplicity lie on solution continua that are unbounded or return
to the trivial solution branch {(0,λ) : λ ∈R} at some other bifurcation point. Here, a solution con-
tinuum is a closed and connected set consisting of solutions. Given that the proof of this bifur-
cation theorem uses Leray–Schauder degree theory, more restrictive compactness properties are
required to be compared to Theorem 10. On the other hand, no variational structure is assumed.
In order to avoid technicalities, we state a simplified variant of this result from Theorem II.3.3
in [15]. The set S ⊂ H ×R denotes the closure of nontrivial solutions of F (u,λ) = 0 in H ×R. In
particular, the statement (0,λ?) ∈ S is equivalent to saying that (0,λ?) is a bifurcation point for
F (u,λ) = 0, i.e., there are solutions (un ,λn) ∈ H \ {0}×R such that (un ,λn) → (0,λ?) in H ×R as
n →∞.

Theorem 11 (Rabinowitz). Suppose H is a separable real Hilbert space and that F ∈C 1(H ×R, H)
is given by F (u,λ) = Lu −λK u −G (u) where

(i) L : H → H is a linear invertible self-adjoint Fredholm operator,
(ii) K : H → H is a linear compact and positive self-adjoint operator,

(iii) G : H → H is compact with G (0) = 0 and G ′(0) = 0.

Suppose that λ? ∈R is such that the dimension of ker(L−λ?K ) is odd. Then (0,λ?) ∈S . Moreover,
if C denotes the connected component of (0,λ?) in S , then

(I) C is unbounded or
(II) C contains a point (0,λ?) with λ? 6=λ?.

A more general version of this result holds in Banach spaces and does not involve any self-
adjointness assumption. It then claims the above-mentioned properties of C assuming that λ?
is an eigenvalue of odd algebraic multiplicity. Under our more restrictive assumptions including
self-adjointness the algebraic multiplicity of λ? is equal to its geometric multiplicity and hence
to the dimension of the corresponding eigenspace.
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5.2. Proof of Theorem 1

It suffices to show that Eq. (1) fits into the abstract framework required by the above theorems.
As a Hilbert space we choose H := H1

0(Ω) with inner product 〈 · , · 〉|σ|. By Proposition 5 a solution
(u,λ) of Eq. (1) is nothing but a solution of F (u,λ) = 0 where

F (u,λ) := A`u − (λ+`)Cu −G (u). (16)

By Proposition 4, A` : H1
0(Ω) → H1

0(Ω) is a bounded, linear, self-adjoint and invertible operator
and C : H1

0(Ω) → H1
0(Ω) is a linear, compact and self-adjoint operator. Moreover, by Sobolev’s Em-

bedding H1
0(Ω) ,→ L4(Ω) for N ∈ {1,2,3,4}, the mapping G : H1

0(Ω) → H1
0(Ω) given by

〈
G (u),φ

〉
|σ| =∫

Ωκ(x)u3φdx is well-defined and smooth with G (0) = 0 and G ′(0) = 0. The Rellich–Kondrachov
Theorem implies that G is compact due to N ∈ {1,2,3}. Note that for N = 4 the exponent 4 = 2N

N−2
is the Sobolev-critical exponent where compactness fails. We thus conclude that the assumptions
(i), (ii), (iii) of both Theorem 10 and Theorem 11 hold for L := A`, K :=C with bifurcation param-
eter λ̃ :=λ+`.

The energy functional Ψ(·,λ) :=Ψλ : H1
0(Ω) → R required for Theorem 10 is given by Eq. (2).

Then Ψ ∈C 2(H1
0(Ω)×R,R) with

Ψ′
λ(u)[φ] =

∫
Ω
σ(x)∇u ·∇φdx −λ

∫
Ω

c(x)uφdx −
∫
Ω
κ(x)u3φdx

= 〈
Au −λCu −G (u),φ

〉
|σ| ,

(17)

so F (u,λ) =∇Ψλ(u) = Au −λCu −G (u). Moreover,

ker(Ψ′′
λ?

(0)) = ker(A`− (λ?+`)C ) = span
{
φ j : λ j =λ?

}
for λ j as in Corollary 8. So Theorem 10 implies that each λ j is a bifurcation point for Eq. (1).
Finally, Theorem 11 shows that every such eigenvalue with odd-dimensional eigenspace satisfies
Rabinowitz’ Alternative (I) or (II) from above, which finishes the proof of Theorem 1. �

5.3. Proof of Corollary 3

We now sharpen our results from Theorem 1 for the one-dimensional boundary value problem

− d

dx

(
σ(x)u′(x)

)−λc(x)u = κ(x)u3 in Ω, u ∈ H1
0(Ω)

from Eq. (6). The assumptions on σ, c, κ and Ω= (a−, a+) ⊂R were specified in the Introduction.
We want to verify that Assumptions (A) and (B) are satisfied in this context. While Assumption (A)
is trivial, the verification Assumption (B) dealing with the weak T-coercivity of (u, v) 7→ a(u, v) :=∫
Ωσ(x)u′v ′ dx requires some work. The following result seems to be well-known to experts, but a

reference appears to be missing in the literature.

Lemma 12. LetΩ,σ and c be given as in Corollary 3. Then the bilinear form a is weakly T-coercive.
In particular, Assumption (B) holds.

Proof. Let χ ∈C∞
0 (Ω) with χ(x) = 1 for x close to 0. Then define

Tu(x) = u(x) if 0 < x < a+, Tu(x) = 2χ(x)u(−mx)−u(x) if a− < x < 0,

where m ∈ (
0, a+

|a−|
)

will be chosen sufficiently small. Then T is a well-defined bijective operator on
H1

0(Ω) because of T◦T= id.
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Moreover,

a(u,Tu) = ‖u‖2
|σ|+2m

∫ 0

a−
|σ−|χ(x)u′(−mx)u′(x)dx −2

∫ 0

a−
|σ−|χ′(x)u(−mx)u′(x)dx

≥ ‖u‖2
|σ|−2m

∥∥χ∥∥∞ |σ−|
∥∥u′(−m · )∥∥L2([a−,0])

∥∥u′∥∥
L2([a−,0])

−2
∥∥χ′∥∥∞ |σ−|‖u(−m · )‖L2([a−,0])

∥∥u′∥∥
L2([a−,0])

≥ ‖u‖2
|σ|−2

p
m

∥∥χ∥∥∞ |σ−|
∥∥u′∥∥

L2([0,m|a−|])
∥∥u′∥∥

L2([a−,0])

−2m−1/2 ∥∥χ′∥∥∞ |σ−|‖u‖L2([0,m|a−|])
∥∥u′∥∥

L2([a−,0])

≥ ‖u‖2
|σ|−α1

p
m ‖u‖2

|σ|−α2m−1/2 ‖u‖|σ| ‖u‖c

≥ (1−α1
p

m −α2
p

m)‖u‖2
|σ|−α2m−3/2 ‖u‖2

c

for α1,α2 > 0. Choosing m ∈ (
0, a+

|a−|
)

such that (α1 +α2)
p

m ≤ 1
2 we obtain

a(u,Tu)+〈Ku,u〉|σ| ≥
1

2
‖u‖2

|σ|

where K := α2m−3/2C : H1
0(Ω) → H1

0(Ω) is a compact operator, see Eq. (8). Hence, a is weakly T-
coercive. �

Remark 13. In higher-dimensional settings the verification of the weak T-coercivity condition is
much more sensitive with respect to the data. This concerns Ω+,Ω−, the geometric properties
of the interface Γ = Ω+ ∩Ω− and the coefficients σ+,σ−. In particular weak T-coercivity may
break down for critical ranges of the contrast σ+(x)/σ−(x), see for instance Theorem 5.1 and
Theorem 5.4 in [4].

We thus conclude that the assumptions of Theorem 1 are verified and hence the existence of
infinitely many bifurcating branches C j is ensured.

To finish the proof of Corollary 3 it now remains to prove the nodal characterization of all
nontrivial solutions (u,λ) ∈ C j emanating from λ j . Choosing an appropriate numbering of the
eigenvalue sequence (λ j ) we need to prove that nontrivial solutions (u,λ) ∈ C j have the stated
nodal pattern. To prove this we first compute and analyze the eigenpairs of the linear problem.

Step 1: Nodal characterization of the eigenfunctions.

Lemma 14. Let Ω, σ and c be given as in Corollary 3 and let
(
φ j ,λ j

)
j∈Z denote the sequence

of eigenpairs for the one-dimensional boundary value problem Eq. (6) as in Corollary 8, set
k− :=p

c−/|σ−|, k+ :=p
c+/σ+. Then each eigenvalue λ j is simple and in particular

−∞↙ ··· <λ−2 <λ−1 <λ0 <λ1 <λ2 < ·· ·↗+∞.

This sequence can be ordered in the following way:

(i) For j ≥ 1,λ j > 0 is the only eigenvalue in the interval
(

j 2π2

k2+a2+
, (2 j+1)2π2

4k2+a2+

)
andφ j has j interior

zeros in Ω+ with
∣∣∣φ′

j

∣∣∣> 0 on Ω−.

(ii) For j ≤−1, λ j < 0 is the only eigenvalue in the interval
(
− (2 j−1)2π2

4k2−a2−
,− j 2π2

k2−a2−

)
and φ j has

∣∣ j
∣∣

interior zeros in Ω− with
∣∣∣φ′

j

∣∣∣> 0 on Ω+.

(iii) λ0 is the only eigenvalue in the interval
(
− π2

4k2−a2−
, π2

4k2+a2+

)
and φ0 has no interior zeros in Ω

with
∣∣φ′

0

∣∣> 0 on Ω±. Moreover,

λ0 > 0 ⇐⇒ σ+a−
a+σ−

> 1, λ0 < 0 ⇐⇒ σ+a−
a+σ−

< 1, λ0 = 0 ⇐⇒ σ+a−
a+σ−

= 1.
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Proof. Any eigenpair (φ,λ) ∈ H1
0(Ω)×R satisfies

−φ′′(x) =−λk2
−φ(x) on (a−,0),

−φ′′(x) =+λk2
+φ(x) on (0, a+),

φ,σφ′ ∈C ([a−, a+]), φ(a−) =φ(a+) = 0.

In the following, τ j :=
√
|λ j |.

(i) Positive eigenvalues. Solving the ODE and exploiting the continuity of eigenfunctions as
well as the homogeneous Dirichlet boundary conditions, we find the following formula for
eigenfunctions φ j associated with positive eigenvalues (λ j > 0)

φ j (x) =α j


sinh(τ j k−(a−−x))

sinh(τ j k−a−)
if x ∈ (a−,0)

sin(τ j k+(a+−x))

sin(τ j k+a+)
if x ∈ (0, a+)

(18)

The parameter α j ∈ R \ {0} is chosen such that
∥∥φ j

∥∥
c = 1. The equation for λ j now results from

the condition that σφ′
j has to be continuous. This means

tan
(
τ j k+a+

)
tanh

(
τ j k−a−

) · σ−k−
σ+k+

= 1, (λ j > 0). (19)

By elementary monotonicity considerations one finds that this equation has a unique solution
such that τ j k+a+ ∈ (

jπ, ( j + 1
2 )π

)
for j ≥ 1. Moreover, it has a unique solution such that τ0k+a+ ∈(

0, 1
2π

)
if and only if σ+a−

σ−a+ > 1. No further solutions exist. We thus obtain:

• For j ≥ 1, there is a unique solution λ j in the interval
(

j 2π2

k2+a2+
, (2 j+1)2π2

4k2+a2+

)
and φ j has j

interior zeros inΩ+ with
∣∣∣φ′

j

∣∣∣> 0 onΩ−.

• If σ+a−
σ−a+ > 1, then there is a unique solution λ0 in the interval

(
0, π2

4k2+a2+

)
and φ0 has no

interior zeros inΩ with
∣∣φ′

0

∣∣> 0 onΩ±.

(ii) Negative eigenvalues. Similarly, we obtain for the negative eigenvalues (λ j < 0)

φ j (x) =α j


sin(τ j k−(a−−x))

sin(τ j k−a−)
if x ∈ (a−,0)

sinh(τ j k+(a+−x))

sinh(τ j k+a+)
if x ∈ (0, a+)

(20)

and
tan

(
τ j k−a−

)
tanh

(
τ j k+a+

) · σ+k+
σ−k−

= 1, (λ j < 0). (21)

As for the positive eigenvalues one finds:

• For j ≥ 1, there is a unique solution λ− j in the interval
(
− (2 j+1)2π2

4k2−a2−
,− j 2π2

k2−a2−

)
and φ j has

∣∣ j
∣∣

interior zeros inΩ− with
∣∣∣φ′

j

∣∣∣> 0 onΩ+.

• If σ+a−
σ−a+ < 1, then there is a unique solution λ0 in the interval

(
− π2

4k2−a2−
,0

)
and φ0 has no

interior zeros inΩ with
∣∣φ′

0

∣∣> 0 onΩ±.
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(iii) Zero eigenvalue. The eigenvalue zero only occurs if σ−
σ+ = a−

a+ . Here the associated eigenfunc-
tion is given by (λ0 = 0)

φ0(x) =α0


1− x

a−
if x ∈ (a−,0)

1− x

a+
if x ∈ (0, a+)

(λ0 = 0). (22)

• If σ+a−
σ−a+ = 1, then λ0 = 0 and φ0 has no interior zeros inΩ with

∣∣φ′
0

∣∣> 0 onΩ±. �

Remark 15. This ordering allows for configurations where λ0 is not of the least absolute value,
say . . . < λ−M < ·· · < λ−1 < 0 < λ0 < λ1 < . . . with λ0 > |λ−M | > · · · > |λ−1| for any given M ∈ N. In
fact, choose a− =−1, a+ = 1, c+ = c− = 1, σ− =−m−1 and define σ+ via Eq. (19). This means that
we choose σ+ =σ+(m) ∈ ( 4λ0

π2 ,∞) as the largest positive solution of

tan(
√
λ0/σ+)p
σ+

= tanh(
√
λ0/|σ−|)p|σ−|

=p
m tanh(

√
λ0m).

Then Lemma 14(iii) and |k−a−| = m1/2 imply that all negative eigenvalues converge to 0 and
σ+(m) → 4λ0

π2 as m →∞ whereas λ0 > 0 is invariant with respect to m by choice ofσ+. In this case
clustering of eigenvalues at 0 occurs.

Step 2: Nodal characterization close to the bifurcation points. Next we deduce that the non-
trivial solutions (u,λ) ∈ C j sufficiently close to (0,λ j ) have the same nodal pattern as φ j . To see
this, we first prove that if (un ,λn) ∈C j converges to (0,λ j ) in H1

0(Ω), then ũn converges uniformly
on Ω to φ j /

∥∥φ j
∥∥|σ| where

ũn := γnun/
∥∥un∥∥|σ| where γn := sign

(〈
un ,φ j

〉
|σ|

)
.

By the subsequence-of-subsequence argument, it suffices to prove that a subsequence of (ũn)
has this property. Since (ũn) is bounded, there is a weakly convergent subsequence with limit
φ ∈ H1

0(Ω). Since un solves Eq. (6) we have by Proposition 5

ũn = A−1
` (λn +`)C ũn +∥∥un∥∥2

|σ| A−1
` G (ũn)

where A−1
`

is bounded and C ,G are compact, see the proof of Theorem 1. So ũn * φ and
‖un‖2

|σ| → 0 implies ũn → φ in H1
0(Ω) where φ = A−1

`
(λ j +`)Cφ. In other words, φ is an eigen-

function of φ 7→ −c(x)−1 div(σ(x)∇φ) associated with the eigenvalue λ j . Since the eigenspaces
are one-dimensional, φ is a multiple of φ j . Moreover, from ‖ũn‖|σ| = 1 we infer

∥∥φ∥∥|σ| = 1, so〈
ũn ,φ j

〉
|σ| ≥ 0 (by choice of γn) impliesφ=+φ j /

∥∥φ j
∥∥|σ|. We thus conclude that ũn →φ j /

∥∥φ j
∥∥|σ|

in H1
0(Ω) and hence uniformly onΩ as n →∞. Integrating Eq. (6) once, one finds that the conver-

gence even holds in C 1(Ω+) and C 1(Ω−). So if infinitely many un had more than j interior zeros
in Ω±, then the collapse of zeros would cause at least one double zero of φ j , but this is false in
view of our formulas for these eigenfunctions from above. So almost all un have at most j interior
zeros in Ω±. Similarly, almost all un have at least j zeros. So we conclude that the solutions close
to the bifurcation point have exactly j interior zeros inΩ± and are strictly monotone in Ω∓.

Step 3: Nodal characterization along the whole branch. We finally claim that this nodal prop-
erty is preserved on connected subsets of S that do not contain the trivial solution. Indeed,
the set of solutions on C j \ {(0,λ j )} with this property is open in S with respect to the topol-
ogy of H1

0(Ω)×R. It is also closed in S since double zeros cannot occur (by the same arguments
as above) and zeros cannot converge to the interface at x = 0 as the solutions evolve along the
branch. Indeed, in the latter case the equation on the monotone part would imply that the solu-
tion has to vanish identically there, whence u ≡ 0 onΩ, which is impossible. So we conclude that
all elements on C j \ {(0,λ j )} have the claimed property and the proof is finished. �
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6. Variational methods

We want to show that variational methods can be used to prove further existence and multiplicity
results for Eq. (1) under stronger assumptions than before. Our aim is to prove the existence of
infinitely many nontrivial solutions of

−div(σ(x)∇u)−λc(x)u = κ(x)u3, u ∈ H1
0(Ω) (23)

for any given λ ∈ R. This means that any vertical line in a bifurcation diagram for Eq. (1),
say Figure 1, hits infinitely many nontrivial solutions of Eq. (23). To show this we apply the
generalized Nehari manifold approach from [24, Chapter 4]. We start by considering the general
case whereΩ⊂RN is an arbitrary bound domain and N ∈ {1,2,3}. In this setting we will need more
information about the orthonormal basis of eigenfunctions from Corollary 8, see Assumption (C)
below. Since the latter can be checked in our one-dimensional model example, the general result
applies and leads to infinitely many solutions for any given λ ∈R for Eq. (6), see Corollary 20.

6.1. The general case

The variational approach aims at proving the existence of critical points of energy functionals. In
our case such a functional is given by Ψλ : H →Rwhere

Ψλ(u) := 1

2

∫
Ω
σ(x) |∇u(x)|2 dx − λ

2

∫
Ω

c(x)u(x)2 dx − 1

4

∫
Ω
κ(x)u(x)4 dx

and λ ∈R is fixed, see Eq. (2). Of course,Ψλ is a well-defined smooth functional on H1
0(Ω), but the

more natural setting for our analysis involves another Hilbert space H that will be smaller or equal
to H1

0(Ω) under our assumptions. To define it, denote by M the subspace of H1
0(Ω) consisting

of all finite linear combinations of the eigenfunctions
(
φ j

)
j∈Z from Corollary 8. Those exist by

Assumptions (A) and (B). We recall(
φi ,φ j

)
c = δi , j , a(φi ,φ j ) =λ jδi , j , ±λ j ↗+∞ as j −→±∞. (24)

Then we define H to be the completion of M with respect to the norm ‖·‖ := 〈· , · 〉1/2 generated
by the positive definite bilinear form〈∑

i∈Z
ciφi ,

∑
j∈Z

c̃ jφ j

〉
:= ∑

λi−λ6=0
ci c̃ i |λi −λ|+

∑
λi−λ=0

ci c̃ i . (25)

We will need H ⊂ H1
0(Ω) in order to benefit both from Sobolev’s Embedding Theorem and the

Rellich–Kondrachov Theorem in our analysis. So we have to ensure that the norm ‖·‖ dominates
the norm on H1

0(Ω). For this reason we add the following hypothesis.

Assumption (C). There is a D > 0 such that for all sequences (c j ) j∈Z with only finitely many non-
zero entries we have ∑

i , j∈Z
ci c j

〈
φi ,φ j

〉
|σ| ≤ D

∑
i∈Z

|ci |2 (1+ ∣∣λ j
∣∣)

where (φ j ) j∈Z denotes the orthonormal basis from Corollary 8.

Proposition 16. Let Ω ⊂ RN be a bounded domain, λ ∈ R, let Assumptions (A) to (C) hold. Then
(H ,〈 · , · 〉) is a Hilbert space such that H ⊂ H1

0(Ω) is dense and ‖·‖|σ|. ‖·‖.

We emphasize that we do not require the opposite bound ‖·‖ . ‖·‖|σ|, which appears to be
much harder to verify. Note that this would imply the opposite inclusion H ⊃ H1

0(Ω). We now
implement the variational approach in the Hilbert space (H ,〈 · , · 〉) and prove the existence of
critical points of Ψλ in this space. Given that H is dense in H1

0(Ω), Ψ′
λ

(u) = 0 and u ∈ H in fact
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implies that u ∈ H1
0(Ω) is a weak solution in the H1

0(Ω)-sense. In other words, critical points of
Ψλ : H →R provide solutions of Eq. (23).

We first provide the functional analytical framework required by the Critical Point Theory
from [24]. Being given the inner product from Eq. (25), we have an orthogonal decomposition
H = E+⊕⊥ E 0 ⊕⊥ E− where

E+ := span
{
φ j : λ j −λ> 0

}‖·‖
,

E 0 := span
{
φ j : λ j −λ= 0

}
,

E− := span
{
φ j : λ j −λ< 0

}‖·‖
.

The subspaces E+,E− are infinite-dimensional whereas E 0 is finite-dimensional, which is a
consequence of |λ j | →∞ as | j | →∞, see Eq. (24). Here, E 0 = {0} is admissible. Let Π± : H → E±

denote the corresponding orthogonal projectors, and we will write u± := Π±u in the following.
The whole point about the inner product Eq. (25) is that a(u,u) = ‖u+‖2 − ‖u−‖2, so we may
rewrite the functional Ψλ from (2) as

Ψλ(u) = 1

2

∥∥u+∥∥2 − 1

2
‖u−‖2 − I (u) where I (u) := 1

4

∫
Ω
κ(x)u(x)4 dx. (26)

Now, Ψλ has the right form to apply the critical point theorem from [24, Theorem 35].

Theorem 17 (Szulkin, Weth). Let (H ,〈 · , · 〉) be a Hilbert space and suppose that the functional
Ψλ : H →R satisfies

(i) Ψλ(u) = 1
2

∥∥u+∥∥2 − 1
2 ‖u−‖2 − I (u) where I (0) = 0, 1

2 I ′(u)[u] > I (u) > 0 for all u 6= 0 and I is
weakly lower semicontinuous.

(ii) For each w ∈ E \ (E 0 ⊕E−) there exists a unique nontrivial critical point of Ψλ restricted to
R+w ⊕E 0 ⊕E−, which is the unique global maximizer.

(iii) I ′(u) = O(‖u‖) as u → 0.
(iv) I (su)/s2 →∞ uniformly for u on weakly compact subsets of H \ {0} as s →∞.
(v) I ′ is completely continuous.

Then Ψ′
λ

(u) = 0 has a least energy solution. Moreover, if I is even, then this equation has infinitely
many pairs of solutions.

Applying this result in our setting, we get the following.

Theorem 18. Let Ω ⊂ RN be a bounded domain for N ∈ {1,2,3} and let Assumptions (A) to (C)
hold with κ(x) ≥ α > 0 for almost all x ∈ Ω. Then Eq. (23) has infinitely many solutions in H,
among which a least energy solution u∗ ∈ H \ {0} characterized by

Ψλ(u∗) = min{Ψλ(u) : u ∈ H \ {0} solves (23)} .

Note that we can also treat κ(x) ≤ −α < 0 by considering (−σ,−λ). In that case, Eq. (23) has
infinitely many solutions in H among which a maximal energy solution u∗ characterized by
Ψλ(u∗) = max{Ψλ(u) : u ∈ H \ {0} solves (23)}.

Proof. We check the assumptions (i)–(v) from Theorem 17. First note that the functional I is con-
tinuously differentiable with Fréchet derivative at u ∈ H given by I ′(u)[v] = ∫

Ωκ(x)u(x)3v(x)dx
for v ∈ H . This is a consequence of H ⊂ H1

0(Ω) ⊂ L4(Ω) with continuous injections by Proposi-
tion 16 and Sobolev’s Embedding Theorem for N ∈ {1,2,3}. From Eq. (26) and I ′(u)[u] = 4I (u) > 0
for u 6= 0 we infer the first part of (i). The weak lower semicontinuity of I follows from Fatou’s
Lemma given that uk * u in H implies uk * u in H1

0(Ω) and thus uk → u pointwise almost ev-
erywhere. Hypothesis (iii) is immediate and (iv) holds because I (su)/s2 = s2I (u) where infB I > 0
for any weakly compact subset B ⊂ H \ {0}. Assumption (v) follows from the above formula for I ′

and the compactness of the embedding H ,→ H1
0(Ω) ,→ L4(Ω) due to N ∈ {1,2,3}. The property (ii)
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is more difficult to prove. We refer to [24, pp. 31–32] where this has been carried out even in the
case of more general nonlinearities. �

6.2. An example in 1D

We now show that the general result from above applies in the one-dimensional setting that we
already discussed in our bifurcation analysis from Corollary 3. So we consider the problem Eq. (6),
namely

− d

dx

(
σ(x)u′(x)

)−λc(x)u = κ(x)u3 in Ω, u ∈ H1
0(Ω).

Lemma 19. Let Ω,σ,c,κ be given as in Corollary 3 with κ(x) ≥ α > 0 for almost all x ∈ Ω. Then
Assumptions (A) to (C) hold.

Proof. The assumptions of Corollary 3 imply Assumption (A) and Lemma 12 yields Assump-
tion (B). So it remains to verify Assumption (C), which is based on the explicit formulas for the

eigenpairs from the proof of Lemma 14. Moreover, we use Eq. (19), Eq. (21) for τ j :=
√

|λ j |, i.e.,

tan
(
τ j k+a+

)
tanh

(
τ j k−a−

) · σ−k−
σ+k+

= 1 (λ j > 0),
tan

(
τ j k−a−

)
tanh

(
τ j k+a+

) · σ+k+
σ−k−

= 1, (λ j < 0). (27)

Recall k± = √
c±/|σ±| and that a−,σ− are negative whereas a+,σ+,c+,c− are positive. All the

following computations of integrals can be checked using the Python library Sympy [19] and can
be found in the Jupyter notebook symbolic_1d (with format IPYNB, HTML, and PDF) supply in the
zenodo archive 10.5281/zenodo.5724477.

1st step: Asymptotics for τ j . In view of Eq. (27) we have

τ j = jπ

k+a+
+ 1

k+a+
arctan

(
σ+k+
|σ−|k−

)
+O(1) ( j −→∞),

τ j = | j |π
k−|a−|

+ 1

k−|a−|
arctan

( |σ−|k−
σ+k+

)
+O(1) ( j −→−∞).

(28)

In particular, plugging in the definition of k+,k− and using sin(arctan(z)) = z/
p

1+ z2 we find

sin2(τ j k+a+) = σ+c+
σ+c++|σ−|c−

+O(1) ( j −→∞),

sin2(τ j k−|a−|) = |σ−|c−
σ+c++|σ−|c−

+O(1) ( j −→−∞).
(29)

2nd step: Formulas and asymptotics for α j . We have for λ j > 0

α−2
j =

[
a+c+

2sin2(τ j k+a+)
− c+

2k+τ j tan(τ j k+a+)

]
+

[
a−c−

2sinh2(τ j k−a−)
− c−

2k−τ j tan(τ j k−a−)

]
(27)= a+c+

2sin2(τ j k+a+)
+ a−c−

2sinh2(τ j k−a−)

(29)= a+(σ+c++|σ−|c−)

2σ+
+O(1) ( j −→∞).

Similarly, for λ j < 0,

α−2
j = |a−|c−

2sin2(τ j k−|a−|)
− a+c+

2sinh2(τ j k+a+)

(29)= |a−|(σ+c++|σ−|c−)

2|σ−|
+O(1) ( j −→−∞).

https://doi.org/10.5281/zenodo.5724477
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3rd step: Formulas and asymptotics for
∥∥φ j

∥∥|σ|. For λ j > 0 we compute∥∥φ j
∥∥2
|σ|

α2
j

= τ2
j

[
a+k2+σ+

2sin2(τ j k+a+)
+ k+σ+

2τ j tan(τ j k+a+)

]
+τ2

j

[
a−k2−σ−

2sinh2(τ j k−a−)
+ k−σ−

2τ j tanh(τ j k−a−)

]
(27)= τ2

j

[
a+c+

2sin2(τ j k+a+)
+ |a−|c−

2sinh2(τ j k−|a−|)
+ c−

k−τ j tanh(τ j k−|a−|)

]
.

Similarly, for λ j < 0,∥∥φ j
∥∥2
|σ|

α2
j

= τ2
j

[
|a−|c−

2sin2(τ j k−|a−|)
+ a+c+

2sinh2(τ j k+a+)
+ c+

k+τ j tanh(τ j k+a+)

]
.

Using the precise expressions for α−2
j from the second step and Eq. (28) we get∥∥φ j

∥∥2
|σ| = τ2

j +O (τ j ) = π2

k2+a2+
j 2 +O ( j ) ( j −→∞),

∥∥φ j
∥∥2
|σ| = τ2

j +O (τ j ) = π2

k2−|a−|2
j 2 +O (| j |) ( j −→−∞).

By the first step, there is F > 0 such that
∥∥φ j

∥∥2
|σ| ≤ F (1+|λ j |) for all j ∈Z.

4th step: Formulas and bounds for
〈
φi ,φ j

〉
|σ|. For i 6=j explicit computations exploiting Eq. (27)

reveal 〈
φi ,φ j

〉
|σ|

αiα j
= 2τiτ j

τ2
i −τ2

j

[
k−σ−τi

tanh
(
a−k−τ j

) − k−σ−τ j

tanh(a−k−τi )

]
, for λi > 0,λ j > 0,〈

φi ,φ j
〉
|σ|

αiα j
= 2τiτ j

τ2
i −τ2

j

[
k+σ+τi

tanh
(
a+k+τ j

) − k+σ+τ j

tanh(a+k+τi )

]
, for λi < 0,λ j < 0,〈

φi ,φ j
〉
|σ|

αiα j
= 2τiτ j

τ2
i +τ2

j

[
k+σ+τ j

tanh(a+k+τi )
+ k−σ−τi

tanh
(
a−k−τ j

)]
, for λi < 0,λ j > 0,〈

φ0,φ j
〉
|σ|

α0α j
= σ−

a−
+ σ+

a+
, for λ0 = 0,λ j 6= 0.

To estimate the first of these terms set A(z) := z tanh(z). Using the Lipschitz continuity of A, the
estimate τi ≤

√
1+λi and (28) we get for λi ,λ j > 0∣∣∣∣∣

〈
φi ,φ j

〉
|σ|

αiα j

∣∣∣∣∣= τiτ j

τi +τ j

∣∣∣∣∣ 2σ−
a− tanh

(
a−k−τ j

)
tanh(a−k−τi )

∣∣∣∣∣
∣∣∣∣ A(k−σ−τi )− A(k−σ−τ j )

τi −τ j

∣∣∣∣
≤C

√
1+λi

√
1+λ j

1+ i + j

for some C > 0. Using the asymptotics for (αi ) from the second step and performing analogous
estimates in the other cases we find that there is G > 0 independent of i , j such that

|〈φi ,φ j
〉
|σ| | ≤G

√
1+|λi |

√
1+ ∣∣λ j

∣∣
1+|i |+ | j | whenever i 6= j .

5th step: Conclusion. For
(
c j

) ∈ `∞(Z) with a finite number of non-zero entries, we define

d j :=
√

1+ ∣∣λ j
∣∣ ∣∣c j

∣∣. The third and fourth step yield∑
i , j∈Z

ci c j
〈
φi ,φ j

〉
|σ| ≤ F

∑
j∈Z

d 2
j +G

∑
i 6= j∈Z

di d j

1+|i |+ | j | .



536 R. Mandel, Z. Moitier and B. Verfürth

Applying Hilbert’s inequality, see for instance Eq. (2) in [16], gives∑
i , j∈Z

ci c j
〈
φi ,φ j

〉
|σ| ≤ F

∑
j∈Z

d 2
j +G̃

∑
j∈Z

d 2
j = (F +G̃)

∑
j∈Z

(1+|λ j |)|c j |2

for some G̃ > 0, which is all we had to show. So Assumption (C) holds. �

Combining Lemma 19 and Theorem 18 we thus obtain:

Corollary 20. LetΩ,σ,c,κ be given as in Corollary 3 andλ ∈R. Then equation Eq. (6) has infinitely
many nontrivial solutions in H, among which a least energy solution.

Remark 21. In the one-dimensional case of Eq. (6) numerical investigations (cf. Appendix A)
indicate that not only ‖·‖|σ| . ‖·‖ but also ‖·‖. ‖·‖|σ| holds. As a consequence, ‖·‖ and ‖·‖|σ|
are equivalent norms, so H = H1

0(Ω) and the family
(
φ j

/√
1+ ∣∣λ j

∣∣)
j∈Z is a so-called Riesz basis of

H1
0(Ω).

7. Open problems

We finally address some open problems that we believe to be interesting to study:

(1) In Corollary 8 we showed that the eigenvalues satisfy the bounds 1+|λ j | ≥ c
(
1+| j |)2/N for

all j ∈N. An upper bound for the eigenvalues is unfortunately missing, let alone precise
Weyl law asymptotics for the counting function Λ 7→ Card

{
λ j

∣∣ ∣∣λ j
∣∣≤Λ}

that one might
compare to well-known ones for the Laplacian. In the 1D case this may be based on
Eq. (28). In the higher-dimensional case we expect new difficulties due to “plasmonic”
eigenvalues coming from a concentration near the interface.

(2) In view of the physical context described in Section 1.1, the case of sign-changing σ and
c and even κ is relevant. As explained in Remark 9, there is no hope to get an analogous
spectral theory for all c ∈ L∞(Ω), but it would be interesting to identify those functions
that admit such a one.

(3) Corollary 3 relies on the precise knowledge of eigenfunctions in the 1D case, especially
regarding their nodal structure. Is there a way to find similar properties in more general
one-dimensional problems or even in higher-dimensional settings?

(4) In Remark 21 we commented on the numerical evidence that
(
φ j

/√
1+ ∣∣λ j

∣∣)
j∈Z is a

Riesz basis of H1
0(Ω). In our one-dimensional case, a theoretical verification seems doable

by extensive analysis of explicit formulas as in Lemma 19, but we have not found a
reasonably short and elegant proof. We believe that such a one could be of interest.

Appendix A. Riesz basis property for the 1d example

We numerically illustrate that
(
φ j

/√
1+ ∣∣λ j

∣∣)
j∈Z indeed satisfies the Riesz’ basis property in

the one-dimensional setting studied earlier. In other words, we numerically show that both
inequalities ‖·‖|σ| . ‖·‖ and ‖·‖. ‖·‖|σ| may be expected to hold. Note that the first inequality
was rigorously proven in Proposition 16. In the following, we use the same notation as in
Section 6.

For the numerical investigation, we choose the one-dimensional setting as in Section 3: We
consider the linear operator φ 7→ − d

dx

(
σ(x)φ′) on Ω = (−5,5) with σ(x) = σ+ = 1 on Ω+ = (0,5)

and various choices for σ(x) = σ− < 0 on Ω− = (−5,0). We numerically compute the eigenvalues
of the matrix

MΛ =

 〈
φi ,φ j

〉
|σ|√

1+|λi |
√

1+ ∣∣λ j
∣∣

|λi |,

∣∣λ j
∣∣≤Λ
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Figure 9. Maximal (left) and minimal (right) numerical eigenvalues of MΛ in dependence
on Λ in the one-dimensional setting.

where the (λ j ,φ j ) denote the eigenpairs from Corollary 8. The code is available on Zenodo
with DOI 10.5281/zenodo.5724477. Figure 9 shows the maximal and minimal eigenvalues in
dependence onΛ for different choices of σ− on the left and right, respectively. For all considered
choices of σ−, we clearly observe that the maximal and minimal eigenvalues asymptotically
tend to a finite, non-zero value. As discussed above, this behavior was rigorously proved for
the maximal eigenvalue in Proposition 16 so that we focus on the minimal eigenvalue. The
asymptotic value is reached quickly. Note that for |σ−| → 0 the minimal eigenvalue is expected
to degenerate to zero, which explains the dependence on σ− observable in Figure 9 (right). This
is in line with Remark 15.

Acknowledgments

The authors wish to thank the reviewers for very careful proofreading and several suggestions
that helped to improve the paper. They are also indepted to Monique Dauge (Univ. Rennes) for
pointing out an error in a previous version of this manuscript.

References

[1] A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced
Mathematics, vol. 104, Cambridge University Press, 2007, xii+316 pages.

[2] R. Böhme, “Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme”, Math. Z. 127 (1972),
p. 105-126.

[3] A.-S. Bonnet-Ben Dhia, C. Carvalho, L. Chesnel, P. Ciarlet, Jr., “On the use of Perfectly Matched Layers at corners for
scattering problems with sign-changing coefficients”, J. Comput. Phys. 322 (2016), p. 224-247.

[4] A.-S. Bonnet-Ben Dhia, C. Carvalho, P. Ciarlet, Jr., “Mesh requirements for the finite element approximation of
problems with sign-changing coefficients”, Numer. Math. 138 (2018), no. 4, p. 801-838.

[5] A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet, Jr., “T -coercivity for scalar interface problems between dielectrics and
metamaterials”, ESAIM, Math. Model. Numer. Anal. 46 (2012), no. 6, p. 1363-1387.

[6] A.-S. Bonnet-Ben Dhia, P. Ciarlet, Jr., C. M. Zwölf, “Time harmonic wave diffraction problems in materials with sign-
shifting coefficients”, J. Comput. Appl. Math. 234 (2010), no. 6, p. 1912-1919.

[7] R. W. Boyd, Nonlinear optics, third ed., Elsevier; Academic Press Inc., 2008, xx+613 pages.
[8] C. Carvalho, L. Chesnel, P. Ciarlet, Jr., “Eigenvalue problems with sign-changing coefficients”, C. R. Math. Acad. Sci.

Paris 355 (2017), no. 6, p. 671-675.
[9] L. Chesnel, P. Ciarlet, Jr., “T-coercivity and continuous Galerkin methods: application to transmission problems with

sign changing coefficients”, Numer. Math. 124 (2013), no. 1, p. 1-29.
[10] T. Dohnal, J. D. M. Rademacher, H. Uecker, D. Wetzel, “pde2path 2.0: multi-parameter continuation and periodic

domains”, in ENOC 2014 – Proceedings of 8th European Nonlinear Dynamics Conference, 2014.
[11] S. Dyatlov, M. Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics, vol. 200,

American Mathematical Society, 2019, xi+634 pages.

https://doi.org/10.5281/zenodo.5724477


538 R. Mandel, Z. Moitier and B. Verfürth

[12] L. C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics, vol. 19, American Mathe-
matical Society, 2010, xxii+749 pages.

[13] D. G. de Figueiredo, “Positive solutions of semilinear elliptic problems”, in Differential equations (Sao Paulo, 1981),
Lecture Notes in Mathematics, vol. 957, Springer, 1982, p. 34-87.

[14] P. M. Fitzpatrick, J. Pejsachowicz, L. Recht, “Spectral flow and bifurcation of critical points of strongly-indefinite
functionals. I. General theory”, J. Funct. Anal. 162 (1999), no. 1, p. 52-95.

[15] H. Kielhöfer, Bifurcation theory, second ed., Applied Mathematical Sciences, vol. 156, Springer, 2012, An introduction
with applications to partial differential equations, viii+398 pages.

[16] A. Kufner, L. Maligranda, L.-E. Persson, “The prehistory of the Hardy inequality”, Am. Math. Mon. 113 (2006), no. 8,
p. 715-732.

[17] A. Manes, A. M. Micheletti, “Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del
secondo ordine”, Boll. Unione Mat. Ital., IV. Ser. 7 (1973), p. 285-301.

[18] A. Marino, “La biforcazione nel caso variazionale”, Conf. Semin. Mat. Univ. Bari 132 (1973), p. 14.
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