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Abstract: Power converters employ high-frequency switching between multiple switch states,
each of which causes the system to exhibit a different dynamic behavior. Averaged models are
a common simplification used for describing the behavior in one or two specific cycles of switch
states, also called operating modes. In this context, we propose extending the method of Sun
et al. (2001), which allows averaging in two operating modes, to a converter model with four
operating modes. We show in simulations that our model results in a reasonable approximation
of the true moving average of the original switching converter model during large transients

that pass through multiple operating modes.
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1. INTRODUCTION

Most switching power converter types contain both con-
trolled switches, such as transistors, and uncontrolled
switches, such as diodes. Under the periodic operation
of the controlled switches using pulse-width modulation
(PWM), the system cycles through a series of switch
states. Different cycles of switch states may occur in the
same converter topology depending on its state and input
and are referred to as operating modes of the converter
(Maksimovi and uk, 1991).

Besides the so-called continuous conduction mode (CCM),
where only controlled switchings occur, there exist also so-
called discontinuous modes, in which a diode causes addi-
tional switchings. In a converter with one transistor and
one diode, discontinuous inductor current mode (DICM),
also called discontinuous conduction mode (DCM), dis-
continuous capacitor voltage mode (DCVM), and discon-
tinuous quasi-resonant mode (DQRM) are possible (Mak-
simovi and uk, 1991). DQRM is also called double dis-
continuous mode (DDM) (Sadarnac et al., 2004) and for
buck converters with LC input filter, DCVM is also called
discontinuous input voltage mode (Lee et al., 1997).

While the modes are commonly called discontinuous
modes, it is important to note that the system states,
which correspond to inductor currents and capacitor volt-
ages, are still continuous functions of time, but clamped
to zero during certain intervals.

Discontinuous modes may occur during transients even
between CCM operating points, as was already discussed
by Erickson et al. (1982). While stationary discontinuous
modes are a result of the finite frequency of the controlled
switching and can be eliminated by reducing the PWM
period, transient DICM and DCVM modes can still occur
when the PWM period tends to zero.
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In this context, the transition between averaged models of
CCM and DICM was considered in Sun (2000). Their work
was also extended to models including parasitic effects by
Davoudi and Jatskevich (2007) and an adjusted discrete-
time mode transition law was suggested by Li et al. (2016).
To the best knowledge of the authors however, no averaged
model that also covers the transitions to DCVM and DDM
exists so far in the literature.

Note, that not all four discrete states occur in all converter
types, and therefore some types of discontinuous modes
will only occur in specific topologies. In the two-state buck
converter, the transistor and diode never conduct current
at the same time. Converters where all four discrete states
can occur include the Cuk converter (4 states) and the
buck converter with LC input filter (4 states), the latter
is the focus of the present paper.

The paper is organized as follows: In Sec. 2, a switching
model for the four discrete states is developed. Section 3
extends the averaging method of Sun et al. (2001) to the
DCVM and DDM, and we show in Sec. 4 the three other
modes can be considered as special cases of the developed
DDM model. The results of two simulations are used to
compare the mode-based averaged model with the non-
averaged switching model in Sec. 5.

2. NON-AVERAGED SWITCHING MODEL
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Fig. 1. Electrical circuit of the Buck converter with LC
input filter
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The mathematical model of the buck converter with LC
input filter is based on the circuit diagram in Fig. 1.
We assume linear time-invariant behavior for the passive
elements and that both switching elements, the transistor
and the diode, act as ideal switches, i.e. have no resistance
when conducting and infinite resistance when blocking.
The transistor’s behavior is controlled via the input w; €
{0,1}, while the switch state ws € {0,1} of the diode
changes autonomously whenever the forward current or
the reverse voltage reach zero.

Dynamic equations which use the currents in inductors
and voltages over capacitors as states can be obtained
using Kirchhoff’s laws. We apply a normalization as de-
scribed by Sira-Ramirez and Silva-Ortigoza (2006) to re-
duce the number of model parameters and work with
dimensionless variables in the control notation. With the
factors

C
S 0= \ Llch (1)

L’
we define the normalized states and time as

K=V

(51 V1 19 Vo t
T1=—, X =, X3I= o, Xyi= o, T =
1 - 2 V. 3 - 4 V. 9
(2)
Moreover, the dot notation & := 92 refers to the state

d
derivative with respect to the normalized time variable.

The normalization enables expressing the dynamics con-
sidering only three dimensionless parameters

Iy _ O 1L 3)

p1 = L27 b2 = 027 p3 = RL 01.
The PWM period Tpwwm is also normalized, resulting in
a fourth parameter T = %. For interpretation of

the results from analysis or simulation, the normalized
system variables can be transformed back into physical
quantitites:

t=90r.

(4)
Due to the two switching elements, four different con-
tinuous dynamics can occur. In hybrid modeling, each
of these dynamics is associated with one discrete state
or location, and we say that the system is in discrete
state j, j = 1,2,3,4 while the jth continuous dynamic
determines the state trajectories (Heemels et al., 2009). In
other applications, these discrete states might be referred
to as operating modes, the power electronics literature
however uses the term mode to refer to the four sequences
of discrete states that can occur within one PWM cycle.

11 = kw1, v1 = Vi, i3 =kKx3, v = Viry,

Figure 2 shows the four discrete states and the state and
input conditions under which the system switches to a
different discrete state, as well as the four cycles which
constitute the operating modes. We use the same indexing
as Sun et al. (2001) for the first three discrete states, as
shown in Tab. 1, and label the state where both transistor
wy and diode wy are conducting with j = 4.

The dynamics in each discrete state take the form of an
affine differential equation

T = Aj.’l? + b, (5)

in which the system matrices take the form

T =Asz+0b T=Asx+D
o =10 r3 =0

Fig. 2. Discrete states, switch conditions and cycles of the
operating modes
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The method in Sun et al. (2001) assumes implicitly that an
all-zero column is placed in the system matrix where the
constant-zero state is located, which is the third column
of Az and the second column of Ay.

3. AVERAGED OPERATION MODE MODELS

Switching introduces high-frequency components, com-
monly referred to as “ripple”, into the states of the model.
To isolate the low-frequency components of interest and
discard the undesirable ripple, a moving average of the
states

1 T+T/2

ma=7g [ alo)do, 7
T T—T/2

also called sliding average in Bacha et al. (2014), can be

used.

The purpose of averaging methods is to provide a dynamic
model for an averaged state T which approximates the
true moving average of the non-averaged switching model.
The input u € [0, 1] of this averaged model approximates
the moving average wy ma of the switch-controlling input.
While the actual moving average can only change in
restriced ways due to the discrete-time nature of PWM,
we assume the new input u to be a continuous variable,
such that the averaged model takes the form of a nonlinear
differential equation

T = f(T,u). (8)

Table 1. Mapping from discrete state index to
switch configuration

discrete state | w1 wo
1 1 0
2 0 1
3 0 0
4 1 1
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A commonly used technique is state space averaging (Mid-
dlebrook and uk, 1977), which uses a weighted average
of the dynamics associated with the discrete states as
dynamics for the averaged states. For a converter with
only controlled switching between two discrete states with
linear dynamics, the state space averaged model reads as

7 = (uAy + (1 —u)Ay) x +b. 9)

The basic state space averaging method makes use of the
small-ripple approximation, which is not valid for discon-
tinuous modes. Sun et al. (2001) introduced a “modifica-
tion matrix” M in state space averaging for DICM based
on the observations about circuit averaging in Sun (2000),
and we extend this method to the cases of DCVM and
DDM: With a modification matrix, the dynamics for the
averaged system become

T = (d1 A1 + doAs + d3Az + dsAg) Mz + b, (10)

where d; is the relative active duration in the averaging
period of the discrete state j. Considering that d; +dy = u
and dy +ds = 1 —u, we can interpret (10) as a model with
an external input u, and two virtual inputs d; and do, i.e.

i: f:(jauﬂdladQ)
= (d1 41 + d2 A2
+ (1 —Uu— dg)Ad + (U — dl)A4)Mf+ b.

Since a current or voltage does not affect the other states in
the time interval during which it is zero, Sun et al. (2001)
proposes considering only the intervals during which the
respective state is nonzero when calculating its influence
on other states. Thus, the matrix M increases the effective
magnitude Tog = MT of the states which have a constant-
zero interval accordingly.

(11)

In this context, Sun (2000) proposed a method to calculate
da(Z,u) in both CCM and DICM as a nonlinear state
feedback. We extend this method to calculate the duty ra-
tios in DCVM based on the duality principle (Cuk, 1979),
and further to DDM by introducing a more general signal
model. The effective duty ratios di(Z,u) and da(ZT, u,d;)
obtained for DDM are shown to be valid for all four
operation modes when considering physical limitations in
Sec. 4.

Note that other averaging methods for converters includ-
ing discontinuous modes exist and may offer better accu-
racy than Sun et al.’s improved averaging method (Mao
et al., 2018). They are, however, not considered in the
present paper, as the extension of the method in Sun et al.
(2001) guarantees a continuous transition between the
assumed signal shapes and therefore a continuous vector
field at the mode boundaries.

In both DCVM and DDM, the same piecewise linear shape
for x5 is assumed, as shown in Fig. 3. For averaging
purposes, we assume that the states x; and x4 can be
approximated by their respective moving averages T; and
T4. In DCVM, this assumption will also hold for x3 ~ T3.
In DDM, we assume a piecewise linear signal shape for
both x5 and x3.

Note that the assumption of piecewise linear signal shapes
can be accurate for DICM and DCVM modes when only
one state variable has large ripple. When ripple is large
in both x5 and x3, such as in the DDM, the actual signal
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Fig. 3. Assumed signal shapes in DCVM and DDM

shapes of during the first interval diT" are sinusoidal arcs
(Maksimovi and uk, 1991). While assuming only piecewise
linear signal shapes in all modes introduces an inaccuracy
into the calculation of the effective duty ratios, it allows
the mode-specific models to coincide in the boundary cases
when dy =uords =1—u.

As the proportion of time during which the respective state
is nonzero is 1 — u + dy for x9 and uw + dy for x3, the
modification matrix for our system is

1 1 1
’1—u+d17u—|—d2’ ’

In both DCVM and DDM, we calculate the peak value
(13)
achieved in one switching cycle based on the slope and

duration of the rising segment in discrete states 2 and 3.
Using the signal shape assumption, the average is

d 1—
Ty = ( 1+ ( 5 “))xlpk’ (14)
which can be used to obtain the effective duty ratio of

discrete state 1

M = diag (1 (12)

T2 pk = fl(l — ’LL)T,

T ———)

As the duty ratio of the first switch state is restricted to
the interval [0, u], we apply a saturation function

(15)

b, b<z
satb () =<2, a<ax<b. (16)
a, r<a

In DCVM, dy = 1 — u, and for DDM we calculate dy from
the signal shape given in Fig. 3. For the peak value

2 > AT,

_— 1
1—u+d; (a7

T3 pk = P1 <SC4 -
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we consider the rising slope in discrete state 1, but we use

the adjusted average o cr = 175?%1. From the relation

between average and peak values
('LL + dg)(Eg,pk

T3 = 9 s

the effective duty ratio of discrete state 2

(18)

_ 273
dy = sat}i ™ ( — u) 19
2 0 pl(f4ffg/(1 7U+d1))d1T ( )
is calculated.

The calculated effective duty ratios form a state feedback
for the system (11) with three inputs u, d; and dg. This
leads to an averaged model in the desired form of T =

f(@,u).
4. MODE-BASED AVERAGED MODEL

The averaged models for all other operating modes can
be interpreted as special cases of the DDM model. If the
argument to the saturation function in (19) is dy > 1 — u,
we have do = 1 — « and obtain the DCVM model. In the
case where dy > u before saturation, we obtain dy = v and

21’3
d - Satl_u <>
? 0 p1(Ty — T2)di T
because T2 . = T2, which is identical to the model for
DICM in Sun et al. (2001).

When both d; > u and dy > 1 — w, (11) simplifies to the
CCM state-space averaged model (9). A similar relation
was already shown in Sun (2000) between the DICM and
CCM models. This allows for using the DDM model with
duty ratio saturations as a merged averaged model for all
modes.

The merged averaged model represents four nonlinear
models for the four operating modes with discrete switch-
ing between them. This is illustrated in Fig. 4, where d;

and dj refer to the values calculated in (15) and (19) before
applying the saturation function (16).

T CCM d<(1-u) [ DICM

T = f1(Z,u) dy > (1 — ) T = f2(T,u)
czl<ul TCZ1>U cf1<ul T(i1>u

DCVM d<(1-u) [ DDM

T = fg(f, U) JQ > (1 711,) T = f4(f,u)

Fig. 4. Operating modes and transitions in the mode-based
averaged model

The four vector fields

f1(@,u) = f(T,u,u, 1 —u) (20a)
fo(Z,u) = f(T,u,u, dy) (20Db)
f3(T,u) = f(f, U, Jl, 1—u) (20c)
fa(@,u) = f(T,u,dy,dy) (20d)

are obtained by inserting the appropriate values for d; and
dy for the virtual inputs of (11) depending on whether they
are saturated or not. For the sake of readability, we have

4L non-averaged switching model
— — —moving average of switching model
mode-based averaged model

x
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Fig. 5. Simulated state trajectories for parameters (21),
with time intervals colored according to operating
mode: CCM in blue, DCVM in green, DICM in red

not included the lower saturation of zero in (20), although
it should likewise be included in f5, f3 and fj.

An important feature of our model is the continuity of the
vector field at the mode boundaries, e.g.

fl (E’ u) |d~1:u = fs(j’ ’LL) |z§1:u’
which is guaranteed due to the continuity of the saturation

function (16). This ensures that no sliding modes can occur
in the mode-based averaged model.

5. SIMULATION RESULTS

The models presented in Sec. 2 and Sec. 4 are imple-
mented using the software package MATLAB/Simulink.
The non-averaged switching model uses a Stateflow chart
with continuous-time embedded dynamics and the merged
averaged model is implemented using a MATLAB function
implementing (15), (19), and (11).

5.1 State trajectory approximation during large transients

To simulate multiple mode transitions during a transient,
the parameters

p1 =8, p>=0.005 p3=4, T=1 (21)
are used. For an input step from 0 to 0.5 at normalized
time 7 = 0 with initial states 2(0) = Z(0) = 0, the state
trajectories of the switching model, its moving average,
and of the merged averaged model are shown in Fig. 5.
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Starting from a zero initial state, the system enters the
DCVM after a very short time in CCM. At approximately
7 = 18, the system returns to CCM operation only to
enter into DICM between approximately 7 = 30 and
7 = 60, before finally returning to CCM. The new
merged averaged model follows the moving average of the
switching model closely. The offset between averaged and
switching model observed in the first and fourth state
variable is a consequence of the approximations made in
the averaging process.

State trajectories of a simulation with parameters
p1 =80, py=0.005, T=1 (22)

for an input step from 0 to 0.5 at 7 = 0 are shown in
Fig. 6, demonstrating the transition to DDM. The system

p3 = 2()’

5k
— non-averaged switching model
— — —moving average of switching model
mode-based averaged model
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g
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Fig. 6. Simulated state trajectories for parameters (22),
with time intervals colored according to operating
mode: DCVM in green, DDM in yellow

first enters the DCVM and then operates in the DDM from
7 = 11 onwards. In this case, the state trajectories of the
developed mode-based averaged model also stay close to
the moving average of the states of the switched model.

5.2 Quality of the the effective duty ratio’s approximation

The averaged models introduced in Sec. 3 calculate effec-
tive duty ratios d; and dy based on a piecewise linear signal
model. Originally, it was proposed in Sun et al. (2001) for
DICM based on the assumption that only the inductor
current shows large ripple.

When a system has large ripple in both voltage and
current, which can occur in all operating modes and is
always the case in DDM, this introduces errors in the
calculation of the effective duty ratios.

Figure 7 compares the effective duty ratios calculated
in the averaged model with those resulting from the
transitions of the switching model for the simulation with
parameters (21). While the averaged model shows the
same quality of change in the duty ratios at approximately
the same time, a slight difference in magnitudes can
be observed during the intervals of DCVM and DICM
operation.

x  non-averaged switching model
mode-based averaged model

30 40 50 60 70

0.4

ds

0.2

Fig. 7. Simulated duty ratios with parameters (21)

While the states of the averaged model are still close
to the moving averages of the switching model with the
parameters of (22), the quantitative difference in the
effective duty ratios becomes more obvious in Fig. 8, as not
only the magnitude of the effective duty ratio is different,
but also the time at which dy decreases below 0.5 and the
system enters into DDM.

As many power converters are designed to operate mainly
in CCM and DCM, the large deviations for DDM visible in
the second simulation would not be a major concern when
the system only enters this mode for short periods during
transients. Our simulation shows a close approximation of
the signals under the occurence of both DCVM and DICM
when entering a CCM operating point. The steady-state
difference introduced by inaccuracies in averaging would
be compensated in a closed-loop system by a controller
incorporating integral action.

6. CONCLUSION AND OUTLOOK

The present paper shows the applicability of designing an
averaged model for large transients of power converters
which include multiple operating modes. The developed
model matches closely the moving average of the states of
the switching model and the reduced effective duty ratios
in areas where the modeling assumptions are accurate.
Such a mode-based averaged model is well-suited for
simulation in cases where large transients have to be
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Fig. 8. Simulated duty ratios with parameters (22)

considered but the non-averaged switching model is too
computationally expensive.

As discussed and shown, the averaging method used in
the present paper is not very accurate in the double dis-
continuous mode due to the inaccurate assumption of a
piecewise linear signal shape. While our focus was extend-
ing the use of existing averaged models in transients that
cross mode boundaries and not the development of a new
averaging technique, these results suggest potential for
improvement using more sophisticated averaging methods.
Hence, in future work we plan to examine whether the
Krylov-Bogoliubov-Mitropolski method already employed
for CCM in Krein et al. (1990) results in more accurate
mode-based averaged models.
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