This preprint has not undergone any post-submission improvements
or corrections. The Version of Record of this contribution is published
in Software Architecture, 16th European Conference, ECSA 2022,
Prague, Czech Republic, September 19-23, 2022. Published by
Springer Nature Switzerland AG

Feature-based Investigation of Simulation
Structure and Behaviour*

Sandro Koch, Eric Hamann, Robert Heinrich, and Ralf Reussner

KASTEL — Institute of Information Security and Dependability, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany
{firstname.lastname}@kit.edu

Abstract. Reusing a simulation or parts of a simulation is difficult as
often simulations are tightly coupled to a specific domain or even to
the system analysed by the simulation. In this paper, we introduce a
specification approach that allows simulation developers to model the
structure and behaviour of a simulation with a domain-specific modelling
language. The specification is used to compare a simulation or parts of
a simulation to identify features that can be reused. The results show
that our approach can find similar features based on their architectural
structure and behaviour. Our approach enables developers to identify
and then reuse simulation features.

Keywords: simulation reuse, feature compare, simulation specification,
domain-specific modelling language

1 Introduction

Due to the increasing complexity of system properties, simulations are becoming
more complex. The rise in complexity of a simulation requires that previously
implemented simulation features are reused in subsequent simulation projects to
save time and resources. The specialisation of simulations for a particular domain
or system impedes reusability for other domains or systems. The decomposition
of a simulation into distinct features allows the developer to manage and reuse
features individually. A simulation feature is an abstraction of a property to be
analysed. A simulation component comprises the implementation of a simulation
feature (i.e., packages, classes, and simulation algorithms). To identify simula-
tion features that could be reused, the developer can compare the architectural
structure (i.e., classes, interfaces) of the corresponding simulation component to
an architecture specification (e.g., component diagram) on a syntactic level. An
identical structure, however, is not sufficient to determine a reusable simulation
feature [7]. The developer also has to consider the behaviour of a simulation

* This work was supported by the Federal Ministry of Education and Research (BMBF)
under the funding number 011S18067D, and the KASTEL institutional funding.



2 S. Koch et al.

component; ergo, they must determine whether the discovered simulation com-
ponent is a semantic match (i.e., has the desired behaviour) when compared to
another simulation component. Manually analysing a simulation component is
time-consuming and error-prone.

In this paper, we focus on Discrete-Event Simulation (DES). DES is a type of
discrete simulation where states only change at instantaneous points in time. We
provide an approach to support the decomposition of DES by specifying simulation
components in structure and behaviour. We employ a modelling approach with
metamodels to specify simulation components. To identify pre-existing simulation
components, we compare the specifications of simulation components regarding
the structure and behaviour. The identification of simulation components is
divided into two stages: First, we compare simulation components based on
their structure; we convert the specifications into graph notation and do a
graph-isomorphism analysis to identify similar structures. Second, we compare
simulation components based on their behaviour by converting the specification to
Satisfiability Modulo Theories (SMT) notation and then utilising an SMT-Solver
to identify similar behaviour.

The paper is structured as follows: We introduce the problem statement
in section 2 Our specification language, the structure comparison, and the
behaviour comparison are presented in section (3| In section 4} we evaluate (i)
our specification metamodel by investigating its applicability using a case-study-
driven approach and (ii) the accuracy of our comparison approach by comparing
different specifications of simulation components. The paper concludes with a
discussion of related work in section [f] a summary and a description of future
work in section [6

2 Problem Statement

The specification of a simulation feature can be derived from its requirements. The
implemented simulation component must meet these requirements. Whether a
component can be reused is determined by whether it meets the given specification,
i.e., whether its structure and behaviour fit the desired criteria. We identified
three problems when simulation components need to be compared to find and
reuse already existing components instead of developing these components from
scratch. P1: Depending on the complexity of a simulation component, comparing
its structure at the code-level is time-consuming. Thus, we require a specification-
based approach to describe the structure of a simulation component. Developers
can use the specification approach to identify a similar structure of simulation
components across different simulations. P2: The structure of a simulation enables
that a component can be technically integrated (i.e., matching interfaces); however,
the exact behaviour of the simulation can differ. To gain more insight, information
about the component is required; thus, we require that the specification approach
also supports the specification of a simulation’s behaviour. Comparing simulation
components requires comparing the components at the code-level. Code contains
details that are not relevant to identifying a matching component. P3: Due to the



Feature-based Investigation of Simulation Structure and Behaviour

irrelevant details at the code-level, it is costly to compare and identify simulation
components. This problem results in unused components that developers could
reuse, resulting in redeveloped components. Thus, we require the approach to
identify an identical component specification in a set of component specifications.
Also, we require that the approach can identify a component with an identical
structure and behaviour, although entities, attributes, and events are named
differently.

3 Specification Language and Feature Identification

This section presents our contributions to address the problems in section

3.1 Specification Metamodel

Our contribution to address the specification part of problems P1 and P2 is
the definition of a Domain-Specific Modelling Language (DSML) to describe
the structure and behaviour of a simulation component. To process the models
specified in the DSML, we define a metamodel as underlying abstract syntax
of the language. The generalisation we make is always referring to entities and
attributes on the type-level, i.e., referring to static objects instead of specific
instances. We also exclude the specification of simulation outputs because the
simulation result does not impact simulation behaviour. In the definition of the
metamodel, we separated elements concerned with the structure of a simulation
from those concerned with its behaviour. We define the structure of a simulation
as the set of basic building blocks: events, entities and attributes. While there are
different definitions of the term behaviour, we define the behaviour of a simulation
as the effects of events on the state of the simulation world, i.e., the changes to
attributes triggered through events. A Simulation contains a set of Entities and
Events, and each entity contains a set of typed Attributes. Additionally, we model
a writes relationship between events and attributes to describe which attributes
affect an event (i.e., delay and when it is fired).

Two additional concepts are necessary to specify the behaviour of a simulation.
A simulation changes the simulation world during its runtime. To describe those
changes, the metamodel must allow a specification of changed attributes as part
of the simulator specification. Attribute changes can be linked to events during
which they occur since in DES, such changes can only happen at events. This
is always the case in DES because an event is defined as any point in time
that marks a change in the simulation world. The state of the simulation world
is affected by the order and time that events are scheduled and events may
cause other events to be scheduled with a certain delay. The Schedules and
WritesAttribute classes represent the aforementioned two additional concepts.

3.2 Structure Comparison

To address problems P1 and P3, identifying simulation components based on
their structure, we compare the structure of two components based on their



4 S. Koch et al.

specification. We use a graph-based representation of these specifications with an-
notated nodes and edges. Entities, events and attributes are represented as nodes
while schedules- and writes-relationships as well as parent-child relationships
between entities and attributes are represented as edges. The graph contains the
entire specification of schedules- and writes-relationships. However, the presence
of the behavioural specification does not affect the structural comparison as
the schedules- and writes-relationships are annotated to the edges of the reads
and writes dependencies of the events. We consider two simulation specifications
structurally similar if their graph representations are isomorphic, i.e., if there is
a bijection between the structural elements (i.e., entities, attributes, and events)
of both simulations. Regarding entities and attributes, a graph isomorphism
ensures the simulation worlds of both simulation components can store the same
information.

3.3 Behaviour Comparison with SMT

To address the problems P2 and P3, identifying simulation components based
on their behaviour, we compare their behaviour specification. While a description
of the structure of simulation components with the structural metamodel holds
enough information to employ a graph-based structural comparison, the use
of expressions in the behavioural metamodel makes this approach not viable
for behaviour comparison. The expressions in the specification can be entirely
expressed as first-order logic formulas, and they can be used as part of SMT
instances. We will use representations of those expressions as SMT formulas to
build SMT instances whose satisfiability /validity is coupled to the behavioural
similarity of two events.

Representing behaviour in SMT: To compare schedules- and writes-rela-
tionships to determine the behaviour of a simulation componnent, we need to
capture the effect of these concepts on the simulation world as SMT formulas.
Schedules-relationships indirectly affect attributes in the simulation world by
specifying scheduled events that can affect attributes or schedule other events. We
consider two schedules-relationships to have the same behaviour if they always
schedule the same event with the same delay (cf. listing . All SMT formulas
in SMT-LIB syntax shown here include variable declarations for all attributes
accessed in those formulas. We consider two writes-relationships to have the same
behaviour if they affect the attribute in the same way. For n writes-relationships
from event A to attribute C with condition-expressions C. , and write-functions
Fy_, listing [1.3] shows the combined SMT formula to describe the effect A has
on C.

// condition : // all read—attributes
(declare-fun waitingPassengers () Int) (declare-fun ...)

(assert (> waitingPassengers 0))

// delay:

(declare-fun delay () Double) (assert (not (= Cy Cpg)))
(assert (= delay 15)) (assert (not (= Dy Dp)))

Listing 1.1. Delay specification Listing 1.2. General schedule comparison



Feature-based Investigation of Simulation Structure and Behaviour

Comparing schedules-relationships: Without loss of generality, we assume
that for every pair of events, E; and Es, there is at most one schedules-relationship
from F; to E5. The following concepts can be extended to multiple schedules-
relationships by finding a bijection between the schedules-relationship from F,
to E5 in both simulator specifications. This is possible because the effect of each
schedules-relationship on the simulation world is self-contained and independent
of other schedules-relationships, a property not present with writes-relationships.
With this assumption and a given mapping of events, we can compare the (unique)
schedules-relationship from event A to event E in simulator S; with the schedules-
relationship from event B to event F in simulator S;, where A and B, as well as
E and F, need to be a structural match.

(declare-fun old () Int) // simulator Si
(declare-fun value () Int) event A {
reads Z.waitingPassengers
// additional inputs writes Z.waitingPassengers = 0
(declare-fun ...) when waitingPassengers != 0
}
(assert (=> (C71) (= value F17))) // simulator So
event B {
(assert (=> (Cp) (= value Fp))) reads Z.waitingPassengers
writes Z.waitingPassengers = 0
(assert (=> (not (or C1 .. Cp))

(= value o01d)))

Listing 1.4. Writes-relationships with

Listing 1.3. General write specification identical behaviour

With the same logic, we can compare the conditions of the schedules-relationships.
Let C'4 and Cp be the condition-expressions of the schedules-relationships from
events A and B, respectively, and D4 and Dpg the delay-expressions. Then the
behaviour of the schedules-relationships is identical if the SMT formula shown in
listing is not satisfiable. If the formula is satisfiable, there is an assignment of
input variables for which the condition- or delay-expressions evaluate to different
values. With the SMT-LIB command (get-model) a solver can output such an
assignment of input variables. This enables our approach to identify whether two
events have the same behaviour and generate an assignment of attribute values
to demonstrate that they do not.

Comparing writes-relationships: For schedules-relationships, we assumed
that there is at most one schedules-relationship between one event and another.
For write-relationships, we cannot make a similar assumption that there is at
most one write-relationship in event A that writes to attribute C' because the
effect of A on C is the result of the combination of all write-relationships from A
to C. Therefore, write-relationships (to a single attribute) cannot be compared
separately. First, we present an example with a single write-relationship to an
attribute and then extend the concept to a general formula. Listing shows
two events writing to a (matched) attribute waitingPassengers. Although the
conditions alone are not equivalent, it shows that the effect on the attribute is
the same for both events.



6 S. Koch et al.

4 Evaluation

In this section, we present the evaluation of our approach to specify and compare
simulation components.

4.1 Evaluation Goals and Design

The evaluation of the specification DSML and comparing approach follows the
Goal Question Metric (GQM) approach [I]. The first goal G1 is to evaluate
whether our DSML for the specification of simulations, which covers structural and
behavioural information, is able to specify components of real-world simulations.
The second goal G2 is to evaluate, whether our approach can identify similar
components based on their structure. Our last goal G3 is to check, whether our
approach can identify similar components based on their behaviour.

The questions to be answered are: Q1 — Can our DSML model the structure
of a real-world simulation? Q2 — Can our DSML model the behaviour of a real-
world simulation? Even if each component could be modelled with our DSML,
it is only a vehicle to enable us to compare the components of the case study.
Therefore, we need to answer the following question: Q3 — Can our approach
identify simulation components when compared to other components identical in
structure and behaviour?

M1 Applicability: To answer the questions Q1 and Q2, we use the following
metric. For the case study, we randomly selected ten simulation features and
we modelled the implementation of the features (i.e., components) using our
metamodel. Then, we identify the number components that could be modelled.
By investigating the number of components that could be modelled, we can infer
the applicability of our DSML to the case study.

M2 Accuracy: To answer question Q3, we use the following metric, and a
scenario-based evaluation. We use the components derived for M1 to find match-
ing components. First, we compare the structure using the graph-isomorphism
approach. Then, if a structural match is identified, we compare the behaviour
using our SMT-based approach. We determine the accuracy by calculating the
metric F; score, which is a harmonic mean of precision and recall. Identifying
tp, tn, and f, are scenario-specific; thus, we explain how we identify them when
we introduce the scenarios. Given the number of true positives, false positives,

. o . .. t
and false negatives, precision and recall are calculated as precision = ; =+ 7 and
p P
t . . -
recall = Py F score is calculated as the harmonic mean of precision and
P n

. _ precision X recall
recall: f1 =2 precision + recall *

Case study: We selected a publicly available case study as we want to model the
specification of the internal structure and the behaviour as precisely as possible.
The simulation framework Camunda is a workflow and simulation engine based
on the Business Process Modelling Notation 2 (BPMN2). Due to the size of the
Camunda BPM Platform (over 500,000 lines of code), we could not model the
simulation as a whole; therefore, we focused on ten features of the simulation.



Feature-based Investigation of Simulation Structure and Behaviour

Scenarios: We developed two scenarios where we test whether our approach can
find a simulation component when compared to other components. In addition
to the specification of the ten simulation components (F't; to Ftig). To verify
that our structure comparison does not take the names of the entities, attributes,
and events into account, we obfuscated them (O7 to O1g). The first scenario, Sy
compares the components F't; to F't;g with each other to find the correct match.
If the correct component is identified, we count it as t,, if a wrong component is
identified, we count it as f,, and if the component cannot be identified, we count
it as fn. The second scenario So compares each component F't; to F'tyy with
each obfuscated component O; to O1¢ to find the correct match. If the correct
component is identified, we count it as t¢,, if a wrong component is identified, we
count it as fy,, and if the component cannot be identified, we count it as f;,.

4.2 Evaluation Results and Discussion

Applicability The ten components (Ft; to Ft1p) contain a total amount of
19 entities. We were able to model all 19 entities with our DSML. Besides the
entities, the components also contain 26 events in total. Almost every component
contains an event called ezecute as an initial event. The behaviour of this event is
different for each component; thus, we had to model each individually. We were
able to model each of the 26 events. We designed the DSML to model simulations
regarding their structure and behaviour. The results show that we can at least
model the selected components of the case study.

Accuracy Regardless of identical components (S7) or obfuscated components
(S2), the results for scenarios S7 and S show, that all 20 components could be
found. No component was missing or misinterpreted. These results lead to a
score of precision, recall, and F} of 1.0. In total, 20 components were identified
by our approach. The overall results for our evaluation are 1.00 for precision,
1.00 for recall and 1.00 for Fj. The results for comparing simulation components
are promising. In a set of individual components, we can identify components
that match regarding structure and behaviour. These preliminary results are
encouraging, but we have to model more case studies before we can determine
whether our approach can be applied to different types of DES.

5 Related Work

In this section, we list related approaches and research concerned with decom-
posing simulations, reuse in simulation, and the description and comparison
of discrete event simulations. In software engineering, the decomposition and
composition of software is a well-researched field, but none of these approaches
considers the semantics of analyses or simulations. In contrast to our work, the
extracted modules do not necessarily represent a semantically cohesive module
(i.e., feature). The FOCUS approach gives mathematical semantics for structure
and behaviour of software systems [0], it also supports the representation of



8 S. Koch et al.

quality properties and domain-specific properties [4]. However, these approaches
are too broad and too ambiguous for non-domain experts to model DES. Heinrich
et al. [3] propose a reference architecture for DSMLs used for quality analysis.
However, their architecture focuses only on the input models of the quality anal-
ysis. Approaches like first order predicate logic []] investigate logical implications
for various forms of logic. Clarke et al. [2] investigate the satisfaction of temporal
logic formulas by automata, and Richters et al. [5] check the consistency of
object structures regarding data structures (e.g., class structure). In contrast, our
approach allows the straightforward transformation of declarative expressions
into SMT-instances and their comparison with an SMT-solver.

6 Conclusion

In this paper, we present a domain-specific modelling language for decomposing
discrete event simulations by specifying the architectural structure and the
behaviour of simulation features. We evaluated our approach by specifying
simulation features of an open-source simulation. The findings show that our
approach can identify similar structure and behaviour in simulation components.
In this work, however, we have only tested the applicability of our approach to
one case study. We plan to model more simulations to investigate our approach’s
applicability further.

References

1. Basili, V., Caldiera, G., Rombach, D.: The goal question metric approach. Encyclo-
pedia of software engineering pp. 528-532 (1994)

2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems p. 244-263 (1983)

3. Heinrich, R., Strittmatter, M., Reussner, R.: A Layered Reference Architecture
for Metamodels to Tailor Quality Modeling and Analysis. IEEE Transactions on
Software Engineering p. 26 (2019)

4. Maoz, S., et al.: OCL Framework to Verify Extra-Functional Properties in Component
and Connector Models. In: 3rd International Workshop on Executable Modeling,
Austin. p. 7. CEUR, RWTH Aachen (2017)

5. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: UML
2000 - The Unified Modeling Language, Advancing the Standard, Third International
Conference. pp. 265-277. Lecture Notes in Computer Science, Springer (2000)

6. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-
tions, and State-Based Stream Processing. International Journal of Software and
Informatics pp. 29-53 (2011)

7. Talcott, C., et al.: Composition of Languages, Models and Analyses, chap. 4, pp.
41-60. Springer (2021)

8. Tomassi, P.: An introduction to first order predicate logic. In: Logic, pp. 189-264.
Routledge (1999)



	Feature-based Investigation of Simulation Structure and Behaviour

