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Zusammenfassung

Faserverstärkte Kunststoffe sind eine high-performance Materialklasse

mit einem breiten Anwendungsspektrum. Die wichtigsten Eigenschaf-

ten sind hohe Festigkeit und Steifigkeit kombiniert mit geringer Dichte

und kleiner thermischer und elektrischer Leitfähigkeit. Zwei spezi-

elle Klassen von faserverstärkten Kunststoffen sind diskontinuierlich

glasfaser-verstärkte Sheet Molding Compound (SMC) Verbundwerk-

stoffe und kontinuierlich kohlefaser-verstärkte SMC Verbundwerkstof-

fe. Erstere haben die Vorteile eines ökonomischeren Herstellungspro-

zesses und großer Flexibilität in der Formgebung, während letztere

über eine höherer Festigkeit und Steifigkeit verfügen. In dem interna-

tionalen Graduierten Kolleg GRK 2078 wird eine neue Materialklasse

betrachtet, die diese beiden Materialklassen kombiniert um die Vorteile

beider zu vereinen. Die Forschung der vorliegenden Arbeit ist eingebet-

tet in dieses Projekt mit Fokus auf das diskontinuierliche SMC.

Das Ziel dieser Arbeit ist die Modellierung und experimentelle Cha-

rakterisierung des anisotropen temperaturabhängigen thermomecha-

nischen Verhaltens des diskontinuierlich glasfaser-verstärkten SMC

Verbundwerkstoffs auf der Makroskala unter Berücksichtigung der

Mikrostruktur. Dies führt zu drei Hauptthemen, die eng miteinander

verknüpft sind: Materialmodellierung, experimentelle Untersuchungen

und die Kombination von beidem um die Materialparameter zu identi-

fizieren und das Modell zu validieren.

Bei der Modellierung wird zunächst das linear elastische anisotro-

pe Materialverhalten durch ein thermodynamisch konsistentes Ma-

terialmodell beschrieben. Dies beinhaltet die folgenden Material-
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Zusammenfassung

Koeffizienten: Steifigkeit/Nachgiebigkeit, thermischer Ausdehnungs-

/Spannungs-Koeffizient, Wärmekapazität, Wärmeleitfähigkeit. Es wer-

den zwei Varianten des Modells präsentiert, eine mit konstanten

Koeffizienten und eine mit temperaturabhängigen Koeffizienten. Das

Versagens-Verhalten wird mittels eines Tsai-Wu Versagenskriteriums

modelliert, wodurch unter anderem Anisotropie berücksichtigt wird. In

einem nächsten Schritt wird für beide Modelle die Mikrostruktur mit

einbezogen. Die gerichteten thermoelastischen Material-Koeffizienten

und die Versagens-Koeffizienten werden linear in Faserorientierungs-

tensoren ausgedrückt.

Die temperaturabhängigen thermoelastischen Materaleigenschaften

werden mit Hilfe von Experimenten an verschiedenen Prüfständen

bestimmt. Um Anisotropie zu untersuchen werden die Versuche in

unterschiedlichen Richtungen durchgeführt. Schädigung und Versa-

gen werden untersucht, indem Zugversuche an uniaxialen und spe-

ziellen biaxialen Proben durchgeführt werden. Die Verknüpfung zur

Mikrostruktur wird hergestellt, indem Proben mit einer gemittelten

bekannten Faserorientierung betrachtet werden. Diese Mikrostruktur-

Informationen stammen aus Mikro-CT Scans.

Die Parameter der Materialmodelle werden durch Experimente und

CT-Informationen bestimmt. Um den gesamten Prozess zu validieren

werden exemplarische Proben untersucht. Aus den Materialmodellen,

welche die identifizierten Parameter enthalten, und der Mikrostruktur-

information zu diesen exemplarischen Proben werden alle betrachteten

Materialeigenschaften berechnet und anschließend mit experimentel-

len Ergebnissen verglichen. Der ganzheitliche Umgang mit Modellie-

rung und Experimenten stellt einen besonderen Fokus dieser Arbeit

dar.
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Summary

Fiber reinforced plastics are a high-performance class of materials with

a wide range of applications. The most important properties are high

strength and stiffness combined with low density and low thermal

and electrical conductivity. Two special classes of fiber reinforced

plastics are discontinuous glass fiber reinforced sheet molding com-

pound (SMC) composites and continuous carbon fiber reinforced SMC

composites. The former have the advantages of more economical

manufacturing process and greater flexibility in shaping, while the

latter possess higher strength and stiffness. In the international research

training group (IRTG) GRK 2078 a new material class that combines

these two classes of materials to merge the advantages of both. The

research of the present thesis is embedded in this IRTG project focusing

on discontinuous SMC.

The aim of this work is to model and experimentally characterize

the anisotropic temperature-dependent thermomechanical behavior

of SMC composites on the macroscale with consideration of the

microstructure. This leads to three main topics which are closely

connected: material modelling, experimental investigations, and the

combination of both to identify the material parameters and validate

the model.

For the modeling, the linear elastic anisotropic thermomechanical ma-

terial behavior is described first by a thermodynamically consistent

material model. This includes the following material coefficients:

stiffness/compliance, thermal expansion/stress coefficient, heat capac-

ity, thermal conductivity. Two variants of the model are presented, one

iii



Summary

with constant coefficients and one with temperature-dependent coeffi-

cients. The failure behavior is modeled by means of a Tsai-Wu failure

criterion, which also takes anisotropy into account. In a next step,

the microstructure is taken into account. The directional thermoelastic

material coefficients and the failure coefficients are expressed linearly

in terms of fiber orientation tensors.

The temperature-dependent thermoelastic material properties are de-

termined by means of experiments with different testing devices. To

account for anisotropy, the experiments are executed in different ma-

terial directions. Damage and failure are investigated by performing

tensile tests on uniaxial and special biaxial specimens. The connection

to microstructure is accomplished by considering specimens with an

averaged known fiber orientation. This microstructure information is

obtained from micro-CT scans.

The parameters of the material models are determined by experiments

and CT information. In order to validate the whole process, sample

specimens are investigated. From the material models, containing

the identified parameters, and the microstructure information of these

sample specimens, all considered material properties are calculated

and subsequently compared with experimental results. The holistic

approach of modeling and experiments is a special focus of this work.

iv
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Chapter 1

Introduction

1.1 Motivation

Fiber reinforced composite materials are a very versatile high-

performance class of materials with a broad range of applications.

The overall benefits are a high strength and stiffness combined with

low density, making fiber reinforced materials an ideal lightweight

construction material. They consist of fibers, which mainly carry

the load, and a matrix material, which holds the fibers in place and

determines the shape of the component.

Variation possibilities lie in fiber shapes and alignments, in different ma-

terial combinations and different manufacturing processes. There are

discontinuous (short, long) and continuous (endless) fibers which can

be aligned or randomly distributed and oriented. Standard polymers

such as thermosets and thermoplastics are commonly used as matrix

materials, and glass or carbon fibers are most commonly used as fiber

materials. But also recyclable polymers or polymers from renewable

resources as matrix and natural fibers such as bamboo or wood fibers

are gaining importance in connection with an increasing environmental

awareness (Reddy, 2015). In manufacturing, there are various options,

e.g., hot pressing of semi-finished products or injection molding.

One special fiber composite material class, mainly considered in this

thesis, are sheet molding compound (SMC) composites. They belong to

1



1 Introduction

the discontinuous long fiber reinforced plastics (DiCoFRPs) and consist,

as standard, of a thermoset polymer as matrix and, in most cases,

of glass or carbon fibers. The matrix can be mixed with additional

components to change the properties, as for example mechanical prop-

erties or color. In recent developments also bio plastic and natural

fibers are used and investigated (Mehta et al., 2005). In addition to

the general properties of fiber reinforced materials mentioned above,

SMC composites have further particularly pronounced benefits. These

are low and economical manufacturing efforts and costs, the flexibility

in shaping also for filigree parts, the high surface quality, thermal

and electrical properties and resistance against external conditions.

Furthermore, these characteristics can be adapted by different material

combinations and compositions.

This leads to many different application fields, some of which are

mentioned in the following (Murali et al. (2013), Reyers (2018), Mehta

et al. (2005)):

• Electric and electronics: Due to the electrical and thermal isolating

properties (dielectrical strength, low temperature diffusivity) and

high temperature resistance, many parts protecting sensitive elec-

trical output devices are made of SMC. This application field is

becoming increasingly important because of the growing market in

in electric and electronics.

• Renewable energy applications: Typical components in which SMC

can also be used are, for example, solar power tiles. In addition to the

electrical properties, SMC has also a high resistance to enviromental

influences, notably to UV radiation.

• Transportation: Currently, mainly non-structural parts in the auto-

motive and other transportation sectors are made of SMC. Using

SMC as a typical lightweight material to replace metals reduces the

total weight and thus lowers emissions and energy consumption.

2



1.1 Motivation

• Medical applications: SMC delivers many material characteristics

for the application as instrumental components in medical science.

These are the adaptability of the material properties, which often

have to be very specific in medical technology, the flexibility in fili-

gree shaping and the resistance to high temperature and disinfectants

for sterile parts.

• Building: Construction components must be durable for long time

periods and maintain an aestetically pleasant appearance, even when

exposed to enviromental influences as UV, moisture and temperature

changes. Additionally the fire resistance of SMC composites plays an

important role.

• Further: There are also some niche fields in which SMC composites

are used. More common is the use for sports equipment, but there are

also applications in artistic fields, for example for design furniture or

modern musical instruments.

Research possesses permanent relevance according to the constantly

developing compositions and characteristics of SMC composites. Apart

from this, also in the already well known material compositions, there

is still a lack of understanding of the complex material behavior of

SMC composites, concerning the anisotropic behavior induced by the

complex microstructure, damage and failure behavior and temperature-

dependent properties. The complete understanding is very important

to ensure a high reliability, e.g., for the use also as structural parts

in transportation or a wider use in medical science. Furthermore via

good dimensioning a long-term durability and material savings can be

achieved.

A second class of fiber reinforced polymers are continuous fiber re-

inforced polymers (CoFRPs), which consist of a polymer matrix and

aligned fibers whose length corresponds to the component dimensions.

In comparison to DiCoFRP a higher strength and stiffness can be

achieved due to a possible higher fiber volume content and due to the

3



1 Introduction

(a) (b)

Figure 1.1: CoDiCoFRP applications in GRK2078. (a) Detail from reference structure
made of glass DiCoFRP with carbon CoFRP reinforcements (manufactured at Fraun-
hofer Institute of Chemical Technology (ICT) Pfinztal), (b) Biaxial cruciform specimen
made of glass DiCoFRP with carbon CoFRP reinforced arms (detailed exploitation in
Section 4.5.1).

aligned fibers. The known fiber orientation allows for more straight-

forward modeling. Disadvantages are significantly higher production

costs and effort, and a lower flexibility in shaping.

One idea is to combine these two FRP classes, DiCoFRPs and CoFRPs,

in order to fusion the advantages of both. Exactly this combined

material class, CoDiCoFRPs, is considered in the international research

training group (IRTG) GRK2078, in which this thesis is embedded.

The goal of this IRTG is an integrated engineering approach for all

process steps around CoDiCoFRP parts, consisting of a discontinuous

glass fiber reinforced thermoset (SMC composite) with local continuous

carbon fiber reinforcements (Böhlke et al, 2019). Figure 1.1a shows

a sample demonstrator part. The research training group consists

of four different Research Areas: Technology, Design, Simulation,

Characterization. This thesis represents the project S2 and belongs to

the simulation research area, but has also a pronounced experimental

part. It adresses the modeling and characterization on the macroscale

with consideration of microstructure with focus on the DiCoFRP (SMC

4



1.2 Research Objectives and Originality of this Thesis

composite). The continuous reinforcements are used for SMC compos-

ite measurements with special specimens (see Figure 1.1b).

In this framework, this work provides on the one hand a step towards

a better understanding of the material composition considered in the

IRTG. On the other hand the methodology, i.e. the modeling approach,

the characterization methods and especially the combination of these

two, can also be applied to other materials and serve as a basis for

further research.

1.2 Research Objectives and Originality of

this Thesis

1.2.1 Research Objectives of this Thesis

The overall objective is to model and to characterize the anisotropic

temperature-dependent thermomechanical behavior of SMC compos-

ites on the macroscale, taking into account the microstructure. This

leads to three main subjects: Firstly, the material model development,

secondly a detailed experimental investigation, and thirdly, the combi-

nation of both, to identify the material parameters and to validate the

model. In addition, some sub-topics are covered that are important for

dealing with these main topics; especially in the field of experimental

investigations.

In order to accomplish the objectives an iterative process is carried

out. Starting point are the basic aspects of material modeling, i.e.,

the various phenomena such as elasticity, viscoelasticity, damage, etc.

Considering these basic aspects, preliminary experiments are carried

out to check which are the important components the material model

should represent. Taking into account the preliminary tests and, of

course, the thermomechanical and thermodynamically fundamentals,

the material model is developed. This process leads to the final material
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models and experimental setups, which are described in the present

thesis. In the following, the different main subjects are described in

detail.

Material modeling. In a first step, the linear elastic anisotropic thermo-

mechanical material behavior is described by a thermodynamically con-

sistent material model. This includes the following material constants:

stiffness/compliance, thermal expansion coefficient/thermal stress co-

efficient, heat capacity, thermal conductivity. Two models are presented,

one with constant coefficients and one with temperature-dependent

coefficients. In a second step, the micromechanical structure is taken

into account by microstructure tensors describing the fiber orientation

distribution. The material parameters (stiffness, thermal expansion

coefficient, heat capacity, thermal conductivity) are expressed linearly

in terms of these fiber orientation tensors. Information about the fiber

orientation tensor is taken from micro-CT data. In addition to the linear

elastic material behavior, the failure behavior is considered. The failure

surface is expressed linearly in terms of the fiber orientation tensors,

too. This approach is combined with a Tsai-Wu failure criterion.

Experimental investigations. The temperature-dependent thermome-

chanical material parameters of the linear elastic material model are

determined by experiments with various testing devices for the SMC

composite and the pure resin material. Stiffness is determined via

DMA measurements and via a electromechanical biaxial testing device,

a dilatometer allows the measurement of the coefficient of thermal

expansion and a laser flash apparatus can measure thermal diffusivity

and heat capacity from which thermal conductivity can be determined.

These measurements can be performed always in one direction, but

by performing experiments in different directions, anisotropy can be

addressed.

Damage behavior is investigated with focus on stiffness degradation
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as one main phenomenon of damage. Therefore uniaxial and biaxial

experiments are performed using the biaxial testing device to investi-

gate the influence of initial anisotropy and load case on the anisotropic

stiffness degradation behavior. Failure is also investigated with the

biaxial testing device. Uniaxial, biaxial (and shear) tests are performed

to determine the planar failure surface.

To account for microstructure, the above mentioned experiments are

performed using specimens with a known averaged fiber orientation.

The orientation information is provided by micro-CT scans. This

establishes the connection of the thermomechanical and failure relevant

material parameters with the microstructure.

As a prerequisite for the biaxial experiments, another focus lies on the

development and investigation of a cruciform specimen design suitable

for biaxial testing, especially with regard to the damage and failure

investigations.

Combination of modeling and experiments. Modeling and experi-

ments are combined in a parameter identification and an application.

The parameters of the material model are determined by detailed tests

that are adapted to the material model and a parameter identification

procedure. As a final step, all aspects of the material model with the

identified parameters are applied to reference specimens to validate the

model with the identified parameters.

1.2.2 Originality of this Thesis

Biaxial damage and failure investigation. The anisotropic stiffness

degradation as one main phenomenon of damage is investigated via

biaxial experiments with cruciform specimens for SMC composites.

Furthermore the anisotropic failure behavior is investigated. These

investigations are possible due to a new cruciform specimen design

with reinforced arms, introduced by Schemmann et al. (2018c). This

7
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specimen design is further investigated and validated in this thesis.

Experimental investigation of temperature-dependent thermome-

chanical material coefficients. In this theses, the thermomechanical

parameters stiffness, thermal expansion coefficient, heat capacity, ther-

mal conductivity, are measured in dependence of temperature, for

the pure resin material as well as for the SMC composite material.

The novelty here lies on the one hand in the detailed investigation

of temperature-dependent behavior of thermosets in general and in

particular in the consideration of a new material class considered in

this work, a glass fiber reinforced unsaturated polyester polyurethane

hybrid resin system.

Material model with temperature-dependent thermomechanical ma-

terial coefficients. The linear elastic thermomechanical material model

is derived in a totally thermodynamically consistent way, for the

variant with constant coefficients and especially for the variant with

temperature-dependent coefficients.

Assumption of linearity in fiber orientation tensor. All directional

thermomechanical coefficients as well as the failure surface are ex-

pressed linearly in terms of the fiber orientation tensor via a deviatoric

and harmonic decomposition of the coefficients. This provides a

relatively simple approach that directly accounts for the microstructure.

Modeling and Experiments - holistic approach. A particular focus

of this work is the combination of modeling and experimental in-

vestigations, in such a way that both influence each other. In this

approach, even the thermomechanical phenomena, which are not taken

into account in the model, are considered for attention in experiments

and for a comparison of the magnitudes of the different phenomena.

This approach allows a deeper understanding of the overall material

behavior.
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1.3 State of the Art

1.3 State of the Art

Research on fiber reinforced composites, both on the experimental and

on the material modeling side, has been relevant for many decades.

In the following, an overview of literature on investigations on fiber

reinforced composites, with a focus on SMC composites is given, struc-

tured into modeling of effective thermoelastic properties, modeling

of damage and failure, experimental investigations of thermoelastic

properties, and experimental investigations of damage and failure,

ending here with a special focus on biaxial investigations.

Modeling of effective thermoelastic material behavior. Fundamentals

on thermodynamic consistent material modeling, which represent a

basis for modeling effective thermoelastic material behavior are elabo-

rated, for example, in Bertram (2014) and Haupt (2002). The procedure

for modeling properties of composite materials, in particular also (glass)

fiber reinforced (thermoset) polymers, derived from microstructure is

generally as follows. Microstructural information, especially on fiber

length, geometry, orientation and volume fraction is provided either by

modeling the manufacturing process, such as flow simulations as for

example performed in Hohberg et al. (2017) and Meyer et al. (2020), or

by experimental investigations on the finished part or specimen, mostly

by micro-CT scans as described in Pinter et al. (2018) and Schöttl et al.

(2021). This information can be provided in the form of a spatially

resolved description of the different components, or, for orientation,

in form of fiber orientation distribution functions (FODF) or fiber

orientation tensors (FOT) such as introduced and described in Advani

and Tucker (1987) and Kanatani (1984). Using this microstructure data,

and eventually further information on the properties of the individual

components of the material and interface properties, for instance,

different approaches are applied to model the material behavior of the

composite material. The fundamentals and key assumptions for these
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approaches can be found in Torquato (2002), Mura (1987) or Nemat-

Nasser and Hori (1999).

One field of approaches are full field homogenization schemes. Here,

the individual phases are spatially resolved, a load is applied and

the material behavior is calculated for a small (representative) volume

element. The response of the small representative volume element to

the applied load is used to calculate the material properties, which

can then be applied to the entire component or specimen. Calculation

methods are here FFT, FEM, or phase field methods. Examples where

these methods have been applied for (SMC) composites are provided

by Kehrer et al. (2017) and Kehrer (2019) using FFT on experimen-

tally determined microstructure and Görthofer et al. (2020) using FFT

based methods for rapid computational homogenization on generated

microstructure.

Another area of approaches are mean field homogenization schemes.

The basis of these methods is that the fields on the microscale are vol-

ume averaged, wherein the inhomogeneous material is smeared to an

effective material (Müller, 2015; Hori and Nemat-Nasser, 1999). Mean

field homogenization traces back to Voigt (1889) and Reuss (1929), pro-

viding results for effective material properies representing upper and

lower bounds for a physically meaningfull effective material behavior

(Hill, 1952). Where these methods only account for volume fractions as

micromechanical information, Hashin Shtrikman bounds (Hashin and

Shtrikman, 1962) take also geometry into account. Many approaches

estimating effective material behavior are based on Eshelby’s solution

for ellipsoidal single inclusion problem (Eshelby, 1957). For example,

the simplest one is the dilute distribution method (Torquato, 2002),

where no interactions between several inclusions are assumed. One

frequently applied method is the Mori Tanaka homogenization scheme

(Mori and Tanaka, 1973). The widespread use is due to the relatively

simple derivation and implementation combined with sufficient com-

plexity and accuracy for many applications. Numerous validations can
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be found in literature. Several authors have applied such mean field

methods to fiber composites, and also in particular to SMC composites,

from which a few are mentioned in the following. Müller and Böhlke

(2016) applied self consistent method (Kröner, 1977) and interaction

direct derivative method (Zheng and Du, 2001) to calculate effective

stiffness for short fiber reinforced polymers. One recent application

of the Mori Tanaka homogenization scheme is given by Brylka (2017).

Anagnostou et al. (2018) present a hierachical homogenization scheme

based on Mori Tanaka scheme and composite cylinders method for

stiffness estimation of SMC composites. Kehrer et al. (2020) elaborated a

two step Hashin-Shtrikman method for stiffness and thermal expansion

calculation of SMC composites. Her investigations are combined with

detailed experimental characterization, considering also temperature-

dependent material behavior. In most of the above publications, fiber

orientation is considered via FOTs as mentioned above.

A further approach to model the effective stiffness, also using FOTs,

is given in Schemmann et al. (2018a). Here, linearity of stiffness in

fiber orientation is assumed using the harmonic decomposition of the

stiffness tensor (Böhlke and Brüggemann, 2001). For this approach a

combination with an experimental setup and a parameter identification

is performed.

Damage and failure modeling. Damage and failure are both oc-

currences that mean that a material loses its functionality due to

thermomechanical impact. Failure can be described as breakage of

material. Damage can be considered as the preliminary changes on

the microscale in the material, that exist prior to complete failure.

The final state of damage corresponds to failure. These preliminary

microscopic changes may change the macroscopic properties such

as stiffness. Dependent on the material, these changes of material

properties can vary in magnitude and failure occurs in a more or less

sudden way, accordingly. The microscopic changes of the material
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leading to damage and failure vary dependent on the material class. For

fiber reinforced composites there are mainly three mechanisms: matrix

cracks, fiber breakage and fiber matrix interface debonding (Talreja and

Singh, 2012; Gross et al., 2007). Dependent of the composite material the

different mechanisms are diffently pronounced. For SMC composites a

number of authors has found that for many compositions the dominant

mechanism is fiber matrix debonding (Fitoussi et al., 1998; Jendli et al.,

2004).

The basics of damage modeling go back to Kachanov (1958) who

invented the idea of a one-dimensional surface damage variable. Rabot-

nov (1969) used this idea and introduced the effective stress concept.

The strain equivalence principle was proposed by Lemaitre (1971).

These concepts allow to describe damage as stiffness degradation via

a damage variable based on bearing surface reduction due to micro

defects. For this damage variable an evolution law is required which

can be motivated phenomenological via macroscopic quantities or

micromechanically. An overview of the fundamentals on damage

mechanics is given in a textbook by Lemaitre (1992).

There are various recent publications on damage modeling of fiber

reinforced polymers, most of them considering stiffness degradation as

main phenomenon of damage. Some models are purely phenomenolog-

ical considering only macroscopic processes and quantities. Others are

taking microstructural aspects into account, either in combination with

phenomenological model or combined with homogenization schemes.

Schulenberg et al. (2017) present a phenomenological damage model

for long fiber reinforced thermoplastics using the above mentioned

basic concepts. Here, ansiotropic stiffness degradation is realized

via stiffness degradation matrix including six instead of one damage

parameters. The evolution law for the damage variables is a function

of the maximum macroscopic strain. One advantage is the compu-

tationally efficiency of this damage model. An other example for

an ansisotropic phenomenological damage model applicable to fiber
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reinforced composites is given by Mir et al. (2005). This model is based

on a macroscopic approach using internal variables together with a

thermodynamic potential.

A micromechanical damage model for SMC composites is presented by

Fitoussi et al. (1996a). Here, the focus lies on fiber matrix interface fail-

ure, for which the basis for modeling is given in Fitoussi et al. (1996b).

This work is extended by probabilistic considerations in Fitoussi et al.

(1998). Desrumaux et al. (2000) further developed this modeling

approaches and considered all three typical damage mechanisms: fiber

breakage, matrix cracking, and interface failure. Meraghni and Ben-

zeggagh (1995) focus on the modeling of the effect of matrix degrada-

tion on the overall behavior of randomly oriented discontinuous-fiber

composites. Microcrack density as micromechanical phenonmenon of

damage and its effect on stiffness degradation is considered, embedded

in a Mori Tanaka scheme and Eshelby’s equivalent inclusion method. In

the publication of Meraghni et al. (1996), the focus lies on the modeling

of interfacial debonding on the overall behavior of randomly oriented

discontinuous fibre composites and the effect on stiffness degradation.

The damage model for SMC composites introduced by Schemmann

et al. (2018b) includes isotropic matrix damage and interface debonding

leading to anisotropic damage in the overall behavior. Debonding

is modeled as a reduction of the load-bearing fiber fraction in the

directions subjected to sufficiently large equivalent interface stresses.

The model is embedded in a Mori Tanaka homogenization scheme to

calculate the corresponding macroscopic material behavior.

Failure can be modeled by so called strength hypotheses which consist

of a scalar failure function dependent on the different stress or strain

components. Failure criteria used in literature for fiber reinforced

polymers include the maximum stress failure criterion (Gandhi et al.,

2020) as a simple criterion or Tsai-Wu criterion (Tsai and Wu, 1971),

which captures the anisotropy of the material and the interaction of

different stress components (Daniel, 2007). These failure criteria are
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phenomenological and set of experiments is necessary to identify all

parameters. In many publications dealing with the Tsai-Wu criterion,

additional assumptions are made, such as orthotropic or transverse

isotropic material symmetry. Often the interaction terms are neglected

or assumptions are made about them (Van Paepegem and Degrieck

(2003), Li et al. (2017)). Osswald and Osswald (2018) present a new

strength tensor based failure criterion for composite materials, con-

sidering also stress interaction terms, taking the Goldenblat-Kopnov

criterion (Gol’denblat and Kopnov, 1965) as basis. Colón Quintana

et al. (2021) applied this criterion to SMC composites. In Schwiedrzik

et al. (2013) a mathematical good and clear representation of the Tsai-

Wu and other failure criteria can be found. Catapano et al. (2012)

compared different failure criteria. Daniel (2007) gives an overview

of failure criteria for composite materials. These failure criteria can

also be used to describe failure on the microscale. Fitoussi et al.

(1996b) uses a Coulomb (cf. Gross et al. (2007)) criterion to predict

fiber matrix interface failure and its effect on the macroscopic mate-

rial behavior. Schemmann et al. (2018b) introduce an other failure

criterion to predict interfacial debonding as a basis for their damage

model for SMC composites. Another way to combine microstructural

processes and the phenomenological failure criteria is to establish a

relationship between microstructural information and parameters of

the macroscopic phenomenological failure criteria. There are very few

publications on this. Tang et al. (2020) and Chen et al. (2019) present a

microstructure based Tsai-Wu criterion for SMC composites in which

the parameters of the strength tensors are expressed in dependence

on fiber orientation tensors. Here, only the diagonal components

of second order fiber orientation tensors are considered, and for the

coupling terms an empirical assumption presented by Wu (1972) is

made. A comparison with a micromechanical computational failure

model which is validated by uniaxial tensile experiments is made. Pang

et al. (1992) present a modified Tsai-Wu Ansatz where the parameters
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are calculated via micromechanical assumptions and properties of the

constituents.

Experimental investigation of thermomechanical material properties.

The thermomechanical properties of SMC composites have been exten-

sively investigated by many authors, especially considering stiffness.

However, there are only very few that cover the full range of the

different material coefficients (stiffness, thermal expansion, thermal

conductivity, heat capacity) capturing anisotropy and temperature

dependence. In the following, an overview of publications is given,

each of which deals with partial aspects of the complete temperature-

dependent anisotropic thermomechanical characterization of SMC com-

posites or similar materials. Orgéas and Dumont (2011) give an

overview of thermomechanical properties. This includes average

values for Young’s modulus, thermal expansion coefficient, thermal

conductivity, heat capacity of standard SMC in automotive applications.

The given values are valid for room temperature. Additionally the

dependence of stiffness on fiber volume content is investigated here.

Temperature dependency of heat capacity and thermal conductivity

is considered by Cecen et al. (2009). They investigated fiber polymer

composites with different fiber/matrix combinations by means of heat-

flux differential scanning calorimetry (DSC). Also in the investigations

of Dos Santos et al. (2005) temperature dependency is considered. They

use an other measuring method to determine diffusivity of polymers,

the laser flash technique. In Kia (2008) thermal expansion coefficient

and Young’s modulus of different types of SMC composites were

measured at various temperatures. The work of Trauth (2018) provides

detailed results on experiments on stiffness and Poisson’s ratio of the

glass fiber UPPH resin SMC composite material considered also in

the present work. She addresses the anisotropic material behavior by

performing her measurements in different directions. The influence

of the manufacturing process on the inhomogeneity of a plate is also
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investigated. Specimens are taken from different regions of the man-

ufactured plate and two different flow variations are considered. All

measurements are performed at room temperature. Kehrer (2019) con-

sidered the same SMC composite material in her work. She determined

storage modulus in different directions in dependence on temperature

and frequency via DMA. Thermal expansion is also considered, but

only at a few selected temperatures and with mentioned measuring

uncertainties.

Experimental investigation of damage and failure. Experimental

investigation of damage and failure of fiber composite material includes

the investigation of the micromechanical processes as well as the

changes of the macroscopic material behavior, in particular stiffness

degradation.

Shirinbayan et al. (2017b) investigated the damage behavior of two

SMC composites, one with high and one with randomly oriented fibers,

on the macro and on the microscale. They found as predominant

mechanism fiber matrix debonding. From their experiments they

derived a micro and a macro damage variable. The micro damage

variable is defined by the ratio of detached fibers to all fibers, and the

macro damage variable is defined by the ratio of Young’s modulus of

the damaged material to the initial Young’s modulus. Similar behavior

of both damage variables was found. Fiber matrix debonding as

the main damage mechanism was also found by other authors, for

example by Jendli et al. (2004), and Meraghni and Benzeggagh (1995).

Shirinbayan et al. (2017a) investigated an SMC composite including

additionally to the fibers, spheres for weight reduction. Here, the

predominant mechanism is debonding at these spheres. Remarkable

is the detailed experimental setup to capture damage on the micro- and

macroscale. They apply CT-scan, microscopy, ultrasonic measurement,

high speed and quasi static tensile tests (uniaxial), DIC, and in situ

tensile tests using scanning electronic microscopy. As macroscopic
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damage mechanism stiffness degradation is considered. To consider

anisotropic stiffness degradation of an SMC composite Dano et al.

(2006) conduct an interesting experimental setup. They apply uniaxial

damaging load on an SMC composite plate. From this damaged

plate they cut specimens in different angles to measure the stiffness

degradation in dependence on the direction to the load.

Failure strength is investigated by Orgéas and Dumont (2011) and

Taggart et al. (1979). They considered standard SMC composites

and the influence of fiber content on uniaxial failure strength. In

the above mentioned work of Trauth (2018) also failure of the SMC

composite investigated. Here, too, different directions and different

regions of plates of two flow variants are considered in uniaxial tensile

and compression experiments. Failure strength is put into relation

to the stiffness. A pronounced scattering of failure strength of SMC

composites is pointed out. Urapakam Ramakrishnan and Mallick (2019)

considered the compression tension quadrant in their SMC composite

failure experiments.

In general, there are only barely multiaxial experimental damage and

failure investigations in literature, especially for SMC composites. The

main reason lies in the challenge to find an appropriate cruciform

specimen for biaxial experiments. Often early failure in the arms occurs

before damage can be observed in the interesting center area with

the biaxial stress state. Additional requirements as homogeneity of

strain state, large area of interest (compared to microstructure length

scales) are important (Smits et al., 2006). In Schemmann et al. (2018c)

a good overview of literature on biaxial specimen design is given.

Many attempts have been made to find appropriate specimens, in most

publications there remain still challenges. Some promising results are

provided, most with reinforced arms, by Van Hemelrijck et al. (2007)

or Serna Moreno et al. (2013) for example. Hartmann et al. (2018)

provide critical analysis of different biaxial specimens with regard to

homogeneity of strain/stress state, parameter identifiability, and large
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strains in center area. The recommendation of reinforcements is also

pointed out here.

Schemmann et al. (2018c) present a cruciform specimen for an SMC

composite material (same material as in the present work) with unidi-

rectional carbon fiber reinforced arms. Good results especially in terms

of large strains in the center area and homogeneity of strain state are

achieved. In Lang et al. (2018) and Lang et al. (2019), this specimen

design is further investigated, thereby showing the suitability for

damage investigations in terms of stiffness degradation. This specimen

design is used for the biaxial damage and failure investigations of this

thesis and further investigated in this scope.

1.4 Structure of this Thesis

Chapter 2 provides fundamentals on material and mechanics. It

contains information on the production and typical properties of the

SMC composite as well as the CoDiCoFRP material. The continuum

mechanical and micromechanical fundamentals, which are important

for material modeling, are presented.

Chapter 3 presents the material models. First, the thermomechanical

linear elastic model with constant and with temperature-dependent

coefficients is derived. Second, the micromechanical model with the

approach linear in the fiber orientations is presented. Third, the macro-

scopic failure modeling is explained and fourth the microstructure is

here taken into account, too.

Chapter 4 deals with the experimental investigations. The testing

devices are presented and the experimental procedures are described.

The results of the experimental investigations on thermomechanical,

damage and failure behavior are shown and discussed in detail.

Chapter 5 deals with the combination of experiments and material mod-

els and includes parameter identification and validation of material
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modeling.

Chapter 6 presents an application of all the results. The material

model with the identified parameters is applied to reference specimens

measured with all testing devices. The results of the model and the

experiments are compared.

Chapter 7 provides a summary and a conclusion.
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1.5 Acronyms, Symbols, Notation and

Operators

1.5.1 Symbols and Abbreviations

Abbreviations and acronyms

arb. Arbitrary

CR Charge region

CoFRP Continuous fiber reinforced polymer

CoDiCoFRP Continuous-discontinuous fiber reinforced polymer

CT scan Computed tomography scan

CV Coefficient of variation

DIC Digital image correlation

DiCoFRP Discontinuous fiber reinforced polymer

DIL Dilatometer

dir. Direction

DMA Dynamic mechanical analysis

DMTA Dynamic mechanical thermo analysis

exp. Experimental

FODF Fiber orientation distribution function

FR Flow region

FRP Fiber reinforced polymer

ICT Fraunhofer Institute for Chemical Technology

iqr Inter quartile range
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IRTG International research training group

LFA Laser flash analysis

MFD (Mold) flow direction

Midaco Mixed Integer Distributed Ant Colony Optimization

mod. Modeled

no number

NP Number of Parameters

perp. Perpendicular

PR Pure resin

RT Room temperature

SMC Sheet molding compound (composite)

spec. Specimen

std Standard deviation

sym Symmetric

UPPH Unsaturated polyester polyurethane hybrid

var. Variable

1D One dimensional

3D Three dimensional
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Latin letters

a, b, A,B,D, . . . Scalar quantities

a, b, c, . . . Vector quantities

A,B,C, . . . Second-order tensors

A,B,C, . . . Fourth order tensors

A<k> k-th order tensors

a Thermal diffusivity

A Cross sectional area

AI Area of interest (center region of bone and biaxial

specimens)

c Heat capacity

cǫ Heat capacity at constant strain

d Slope of stiffness degradation

E Young’s modulus

E∗ Complex elasticity modulus

E′ Storage modulus

E
′′

Loss modulus

EC Creep modulus

ER Relaxation modulus

f(ε) Biax-Uniax-stress relation factor

f Biax-Uniax-stress relation factor for large stresses

f(n) Fiber orientation distribution function

Fi Force in direction ei

H Heaviside function

Nc Number of independent constants

Np Number of symmetry planes

t Time

V Viscosity modulus

g Temperature gradient
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n Direction vector

q Heat conduction

t Stress vector

u Displacement

x Current position vector

D Fiber orientation tensor of second order

(Kanatani 3rd kind)

F Strength tensor of second order

I Second order identity tensor

G Deformation gradient

H Displacement gradient

N Fiber orientation tensor of second order

(Kanatani 1st kind)

X Initial position vector

C Stiffness tensor

D Fiber orientation tensor of fourth order (Kanatani

3rd kind)

F Strength tensor of fourth order

IS Fourth order identity tensor on symmetric sec-

ond order tensors

N Fiber orientation tensor of fourth order (Kanatani

1st kind)

P1 First isotropic projector (P1 = 1
2 I ⊗ I)

P2 Second isotropic projector (P2 = IS − P1)

S Compliance tensor

V Viscosity tensor
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Greek letters

Γ Ratio

Γ0/90 Anisotropy ratio

tan(δ) Loss modulus

ǫ Error

ǫrel Relative error

η Entropy

θ Temperature

ν Poisson’s ratio

ξ Arbitrary coefficient or parameter or quantity

̺ Mass density

ψ Free energy

α Thermal expansion coefficient (tensor)

β Thermal stress coefficient (tensor)

ε Infinitesimal strain tensor

εI Averaged strain in the area of interest

κ Thermal conductivity coefficient

σ Cauchy stress tensor

σf Failure stress

1.5.2 Notation and Operations

In this work, direct tensor notation is preferred. As listed in Ap-

pendix 1.5.1 scalar quantities are represented in normal thin let-

ters (a,A, ...), vector quantities in lower case bold letters (a, b, ..),

second order tensors in upper case bold letters (A, B, ..), and fourth

order tensors in double-line upper case letters (A, B, ..). Components

of vectors and tensors are expressed by Latin indices, referring to the

orthonormal basis {e1, e2, e3}. Einstein’s summation convention is

applied here. In the following, operations of these quantities are listed.
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Operations

AB Composition of two tensors

A · B Scalar product of two tensors

B[A] Linear mapping of a second order tensor by a

fourth order tensor

A ⊗ B Dyadic product of two tensors

n⊗k Higher order dyadic product: n ⊗ n ⊗ ... ⊗ n (k

times)

(·)
T Transpose of a vector or second order tensor

(·)TM Main transpose of a fourth order tensor

(CTM
ijkl = Cklij )

(·)TL Left minor transpose of a fourth order tensor

(CTM
ijkl = Cklji)

(·)TR Right minor transpose of a fourth order tensor

(CTM
ijkl = Clkij )

sym(·) Symmetric part of a quantity

symF(·) Full symmetrization, i.e. invariance with regard

to all permutations of all indices

(·)◦ Spherical part of a second order tensor

(ε◦ = P1[ε] = 1
3 tr(ε)I)

(·)′ Deviatoric part of a second order tensor

(ε′ = P2[ε] = ε − 1
3 tr(ε)I)

div(·) Divergence of a quantity

grad(·) Gradient of a quantity
˙(·) Material time derivative

∇ Nabla operator

|(·)| Absolute value of a quantity
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Chapter 2

Fundamentals

2.1 Materials

2.1.1 Discontinuous Glass Fiber Reinforced SMC

Composites

Composition and typical properties. As DiCoFRP, Sheet Molding

Compound (SMC) composites are considered here, consisting of a

thermosetting matrix and glass fibers and often additives and fillers.

The properties of SMC composites result from the properties of the

individual constituents and the interface properties. In the following

the basic properties of the main components (thermoesetting polymers

and glass) and the general properties of the composite material are

described.

Thermosetting polymers consist of macromolecules which are highly

crosslinked by chemical primary valency bonds. They are not meltable

after curing. The density of thermosetting polymers ranges from

0.9 g/cm3 up to 1.5 g/cm3. Thermosets show a high chemicals and

corrosion resistance. The temperature resistance can reach values of

up to 300◦C. The strength is around 70 MPa and the Young’s modulus

(storage modulus) around 3000 MPa (Neitzel and Mitschang, 2004).

Typical values for the thermal conductivity are 0.2 W/(mK), for the

thermal expansion coefficient 20 · 10−6 1/K and for the specific heat
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capacity 1.2 J/(gK). These values are taken from Ribeiro et al. (2003),

Shimamura et al. (2020) and own measurements.

Glass fibers show a high strength based on the covalent bond between

oxygen and silicon, which can reach values of up to 4500 MPa. The

Young’s modulus lies at 70000 MPa to 90000 MPa. The density of glass

is around 2.5 g/mm2. SMC composites can contain fillers, as limestone,

for economical reasons and additives, like color pigments, to modify

the mechanical, thermal or optical properties.

The properties of SMC composites depend strongly on the composition

and the manufacturing process. Also the combination of the individual

components play a role, because the interface properties of fiber and

matrix varies. Fiber volume content, which can have values of up to

40 vol%, and fiber shape and length have an influence on the properties.

Typically, the fibers in SMC composites have a length of 10 mm up to

30 mm. Some general property ranges are given in the following. SMC

composites have a strength of 80 MPa up to 250 MPa, a temperature

resistance according to the temperature resistance of the polymer, a

density of about 1.2 g/cm3 to 2.2 g/cm3, a relatively brittle fracture

behavior and a Young’s modulus of 5000 MPa to 15000 MPa. Values

for the thermal conductivity lie around 0.25 W/(mK), for the thermal

expansion coefficient at 15 · 10−6 1/K and for the specific heat capacity

at 1 J/(gK). These values are taken from Lang (2013), Oldenbo et al.

(2003), and Trauth (2018), and from own measurements.

Manufacturing process. The manufacturing of SMC consists of many

different steps, starting with the preparation of the pure materials and

ending with post processing steps. Two sub steps are considered here

in detail, the manufacturing of the semi finished molding compound

and the hotpressing process. These steps influence mainly the thermo-

mechanical properties.

The semi finished, flowable, flat molding compound is produced as

shown in Figure 2.1. The matrix (mixture of resin, curing agent and
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additives) is applied on a carrier film (release film). The chopped

glass fibers (cut from fiber rovings by a cutter) trickle onto the resin

film. The fiber content is controlled by the conveyor speed. Covered

with a second carrier film, fibers and resin are rolled and thus mixed

and compacted by multiple rollers in an impregnation belt. For

thickening the few millimeters thick and up to 1.5 m wide SMC stripes

are rolled up and stored for several days. This whole process induces

a heterogeneous and randomly oriented fiber distribution in the semi

finished product.

Release film

Release film

Doctor box
Chopped fibers

Rovings

Cutter

Matrix

Impregnation belt

SMC

Figure 2.1: Manufacturing of the semi-finished SMC material.

To manufacture the plates or the parts of the finished composite

material, the semi finished product is cut into pieces (see Figure 2.2)

and placed into a heated mold and pressed by steel tools. The thickness
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of the plate or the part can be varied by changing the amount of SMC,

i.e. the number of cut SMC pieces, placed in the mold. Figure 2.3 shows

the hotpressing process schematically.

(a) (b)

Figure 2.2: Semi finished SMC. (a) SMC pieces (250 mm x 300 mm) for placement in mold
for hotpressing, (b) SMC cutting machine at Fraunhofer Institute of Chemical Technology
(ICT) Pfinztal.

Initial charge Part/Plate

Upper mold half

Lower mold half Heating/Cooling

Pressure application

Figure 2.3: Hotpressing of the SMC composite part or plate.
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Due to heat and pressure the material flows and fills the mold and the

polymerisation is initiated and leads to the solidification of the material.

The mold filling process can induce or reinforce the already existing

anisotropies and heterogeneities. By changing the mold coverage and

placement, the anisotropy can be deliberately varied.

2.1.2 Continuous Carbon Fiber Reinforced SMC

Composites

The CoFRPs considered here consist of a thermosetting polymer,

too, as matrix and long (endless) carbon fibers. The properties of

the composite material can reach values of about 120 GPa for the

Young’s modulus and 1700 GPa for the tensile strength in the direction

tangential to the fiber alignment (Trauth, 2018).

The process to manufacture the semi finished CoFRPs material, that can

be used for CoDiCoFRPs, is in principle similar to the one of DiCoFRPs,

but with endless fibers instead of the chopped fibers. Before comolding,

an intermediate step can be performed due to a particular characteristic

of the resin system. The resin system can be cured in two-step process

which provides a chemically stable and highly viscous B-stage ideal

for cutting, preforming and handling of the prepregs prior to the

comolding process (Bücheler, 2017).

2.1.3 Continuous-Discontinuous Fiber Reinforced SMC

Composites

The comolding process leading to the CoDiCoFRP material can be

performed for DiCoFRP parts with local CoFRP reinforcements of

complex shapes and for DiCoFRP plates fully reinforced with CoFRP

layers. In each case, the CoFRP is cut and formed into the final
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geometry using the stable B-stage. Specific layer structures consisting

of more than one layer can be realized by stacking by the cut CoFRPs

accordingly. The CoFRP prepregs are inserted into the mold at the

appropriate location prior to hot pressing. Using mechanisms such as

geometric form closure, the prepreg remains in the appropriate position.

To manufacture a whole reinforced plate (as used in this work), one

layer of the reinforcing CoFRP prepreg is placed filling the whole mold.

On top of this, the SMC (semi-finished DiCoFRP) is placed in the

desired mold coverage. A second layer of CoFRP is applied on top,

which stays in shape due to the stiff prepreg and the supporting effect

of the mold wall. When the press closes, only the SMC flows and the

CoFRP prepregs maintain their shape. Details on the manufacturing

process can be found in Bücheler (2017).

2.1.4 Materials used in this Thesis

The SMC material which is mainly investigated in this work was manu-

factured at Fraunhofer Institute for Chemical Technology (ICT, Pfinztal).

The resin system consists of a unsaturated polyester polyurethane

hybrin resin (UPPH) without any fillers. The composition is listed in

Table 2.1.

Component Trade name Weight fraction

UPPH resin Daron ZW 14142 77 %

Adherent and flow aids BYK 9085 1.5 %

Impregnation aid BYK 9076 2.3 %

Deaeration aid BYK A-530 0.38 %

Inhibitor pBQ 0.0023 %

Peroxide Trigonox 117 0.77 %

Isocyanate Lupranat M20R 18 %

Table 2.1: Composition of the UPPH resin (Hohberg et al., 2017).
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The fibers are made of e-glass and have a length of 25.4 mm. The fiber

volume content is 42 wt% corresponding to 23 vol%.

The manufactured plates have a rectangular shape with a length of

800 mm and a width of 250 mm. The thickness varies around about

2 mm dependent on the plate. Two different mold coverages are

realized and used in this work:

• Mold coverage of 40 % in the middle of the mold, with a long flow

path and induced orientation of the fibers in length direction (in the

following designated as "flow")

• Mold coverage of 100 % with no flow path and almost randomly

orientation of the fibers in the plane (in the following designated as

"full")

Figures 2.4 and 2.5 depict schematically the two variants. As designated

by the arrows, 0◦-direction corresponds always to the longitudinal

direction (flow direction for the flow plates) and 90◦-direction corre-

sponds to the perpendicular direction in the plate plane. The direction

perpendicular to the 0◦-90◦ plate plane ("plate thickness direction") is

designated by the suffix "perp." throughout this thesis.

800 mm

2
5
0

m
m

0◦

90◦

Figure 2.4: Rectangular SMC composite plates ("flow") of this work with mold coverage
of 40 %; grey hatched area corresponds to the charge region (initial mold coverage). Detail
framed in turquoise schematically shows the fiber orientation.
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800 mm

2
5
0

m
m

0◦

90◦

Figure 2.5: Rectangular SMC composite plates ("full") of this work with mold coverage
of 100 %; grey hatched area corresponds to the charge region (initial mold coverage).
Detail framed in turquoise schematically shows the fiber orientation.

Additional to the pure glass SMC composite plates, continuous carbon

fiber reinforced plates with the same geometry are considered. The

reinforcements are on both sides in 0◦-90◦-layers to the length direction

of the plate (see Figure 2.4). Figure 2.6 depicts schematically the layers

in a cross sectional view.

CoFRP 0◦ CoFRP 90◦ DiCo (SMC)

0.5 mm

0.5 mm

0.5 mm

0.5 mm

1.5 mm

Figure 2.6: Schematic cross sectional view (detail) of the continuous fiber reinforced plate
of the CoDiCo plate; the dimensions vary and represent here only an order of magnitude.

The specifications regarding the different mold coverages are the same

as for the pure SMC. This material is not studied itself, but is used as an

auxiliary material in the reinforcement of the special biaxial specimens
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(see Section 4.5.1).

In addition to the reinforced material, also plates made from the

pure resin material are considered. They are produced in a similar

manufacturing process as the reinforced SMC plates. Some adaptions

are necessary due to the differences in the material behavior during the

manufacturing process.

2.2 Continuum Mechanics

2.2.1 Kinematics

The continuum mechanical fundamentals described in the following

sections are treated in detail in textbooks, for example in Haupt (2002),

Bertram (2014), Müller (2011), Truesdell and Toupin (1960). According

to the definition in continuum mechanics, a body consists of a set of

material points. Considering the body as boltzmann-continuum, the

material points have three translational and no rotational degrees of

freedom. The subject of kinematics is the description of the movement

of such a body. During the movement the placement of the body

changes, that means the volume and shape that the material points

adopt change. The placement at the initial time t = t0 is the reference

placement, the placement at the current moment (t > t0) is the current

placement. The position of a material point in the reference placement

of the body is given by the initial position vector X and current

placement of the body is given by its position vector x. The current

position can be described by the function

x = χ(X , t). (2.1)
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The displacement of a material point u(X, t) is the difference between

its initial and its current position

u(X, t) = x − X . (2.2)

Figure 2.7 illustrates the movement of a body and the different vectors

for a selected material point P .

e1

e2

e3

x

X

u

P

P

t = t0

t > t0

Body in reference

placement

Body in current

placement

Figure 2.7: Movement of a body.

The velocity is given by the material time derivative of the current

position

v(X , t) = ẋ =
∂χ(X , t)

∂t
. (2.3)

The deformation gradient G is the partial derivative of χ with respect

to X :

G =
∂χ(X, t)

∂X
. (2.4)

The displacement gradient is defined analogously

H =
∂u(X , t)

∂X
= F − I. (2.5)

36
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In the case of small deformations (‖H‖ ≪ 1) a geometrically linear

theory is valid. In this case the infinitesimal strain tensor describes the

deformation state

ε =
1

2

(
∂u

∂x
+

(
∂u

∂x

)T
)

=



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


ei ⊗ ej . (2.6)

The strain tensor can be decomposed into a spherical ε◦ and a deviatoric

ε′ part

ε = ε◦ + ε′. (2.7)

These parts can be calculated using the two isotropic projectors

ε◦ = P1[ε] =
1

3
tr(ε)I, ε′ = P2[ε] = ε −

1

3
tr(ε)I. (2.8)

The spherical part describes the volume change and the deviatoric part

describes the shape change.

2.2.2 Balance Equations

General formulation. Balance equations represent the change of an

additive quantity in a limited volume in form of an equation. (It is

not required that the quantity is a conserved quantity, balance equation

are kind of an extension to conservation laws.) A field quantity in a

volume V (t) can change by the production pϕ and the supply sϕ in

the volume and by the flux qϕ over the boundary of the volume ∂V (t).

So the general integral formulation of the balance equation for a field

quantity ϕ(x, t) reads

d

dt

∫

V (t)

ϕdV =

∫

V (t)

pϕ + sϕ dV +

∫

∂V (t)

qϕ · dA (2.9)
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with dA = n dA, where dA is the surface element and n is the outer

normal unit vector of the boundary of the volume ∂V (t).

The application of the divergence theorem and the Reynolds transport

theorem leads to the local formulation of the balance equation in regular

points
∂ϕ

∂t
+ div (ϕv) = pϕ + sϕ + div

(
qϕ

)
. (2.10)

These are regular points when the field quantity is continuous and

differentiable there.

For conserved quantities the production is zero. The general form of a

balance equation of tensorial quantities is analogous to the scalar form.

In continuum mechanics there are five important balance equations,

these are the balance of mass, the balance of linear and angular

momentum and the energy and entropy balance. In the following these

balance equations are considered in the local formulation in regular

points.

Balance of mass. Considering the mass density ̺ as field quantity

leads to the balance of mass. As the production (mass is a conserved

quantity), supply, and the flux are zero the local formulation of the mass

balance is

˙̺ + ̺div (v) = 0. (2.11)

With ̺(t) = ̺0(1 − tr(ε(t)) the mass density can be considered as ap-

proximately constant for for small deformations.

Balance of linear and angular momentum. First, the stress tensor

σ is introduced because of its use in balance of linear and angular

momentum. The stress vector t at point P of a cut is defined as

t = lim
∆A→0

∆f

∆A
=

df

dA
, (2.12)

where ∆f is the force acting on the area A.
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t

dA
n

(a)

σ12

σ13

σ11

σ22

σ23

σ21

σ32

σ33

σ31

x1

x2

x3

(b)

Figure 2.8: Stress vector (according to Gross and Seelig (2007)).

The stress vector t depends on the orientation of the cut through P

which is characterized by the normal unit vector n (see Figure 2.8a).

The stress tensor σ is defined by three stress vectors which are perpen-

dicular to each other. If the cutting plane is chosen perpendicular to the

axes of orthonormal coordinate system, the components of the stress

tensor can be represented in the form of the Cauchy stress tensor

σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ei ⊗ ej , (2.13)

where ei and ej with i = 1, 2, 3 are the unit vectors of the orthonor-

mal base. The left index denotes the cutting plane (direction of the

normal) and the right denotes the direction of the stress. The diagonal

components are the normal stress components and the non-diagonal

components are the shear stress components (see Figure 2.8b).

The stress tensor σ can be decomposed in the same way as the strain

tensor ε (see Equation (2.7),Equation (2.8)).

The relation between stress tensor and stress vector is given by the

Cauchy Lemma

t = σn. (2.14)
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In the linear momentum balance, the balanced field quantity is the

momentum density ̺v, a first order tensor. The production is zero, the

supply is ̺b, and the flux is the stress σ. The local formulation of the

balance of linear momentum under consideration of the mass balance

(Equation (2.11)) yields the following

̺v̇ = ̺b + div (σ) . (2.15)

with v̇ being the second local time derivative of x. For the quasi

static case without any volume forces the balance of linear momentum

simplifies to

div (σ) = 0. (2.16)

In a Boltzmann continuum, the balance of angular momentum leads to

σ = σT. (2.17)

Balance of energy and entropy. The balance of mechanical energy

is obtained by multiplying the balance of linear momentum by the

velocity v
1

2
̺(v · v)· = ̺b · v + div

(
σTv

)
− σ · ε̇. (2.18)

The flux is the power of external forces div (σv) = div
(
σTv

)
(see Equa-

tion (2.17)), ̺b · v is the supply of kinetic energy and the production is

the stress power −σ · ε̇.

The total energy is is the sum of the kinetic energy 1
2̺(v · v)· and the

inner energy ̺e

̺ė+
1

2
̺(v · v)· = ̺ω − div (q) + ̺b · v + div (σv) . (2.19)

The vector q is the heat flux vector giving with σv the flux and ω is the

heat supply giving with ̺ω + ̺b · v the supply term. The total energy

is a conserved quantity, the production is zero.
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Subtracting the kinetic energy from the total energy gives the balance

of the internal energy

̺ė = ̺ω − div (q) + σ · ε̇. (2.20)

The internal energy contains only energy parts that are independent of

a observer. It consists of the kinetic energy of the atomic movements,

the potential energy of the intermolecular forces, the binding energy

between molecules and nuclear energy.

For the entropy balance the balanced quantity is the volume specific

entropy ψ = ̺η. The local form of the entropy balance reads

̺η̇ =
1

θ
̺ω − div

(q

θ

)
+ ̺pη. (2.21)

Here, ̺ω/θ is the supply of entropy, q/θ is the flux and pη is the

production of entropy. The entropy is not a conserved quantity, so the

production is in general not zero. The second law of thermodynamics

states that the entropy production is non-negative

η ≥ 0. (2.22)

2.2.3 Material Theory

Material functions. The description of relations of movement, tem-

perature and stress state for a body can be considered as one main

goal of continuum mechanics. For this purpose, the balance equations

serve as a basis, as they have to be valid universally. Assuming the

volume forces b = b0 and the heat source ω = ω0 as constant and given,

the quantities stress σ, internal energy e and heat flux vector q and

entorpy η remain in the balance equations, which have to be set into

relation to the displacement and temperature field. These relations

are the material functions. There are principles and restrictions for
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the formulation of material functions, from which two crucial ones are

shortly presented in the following: the objectivity and shape invariance,

leading to the principle of invarianceunder super imposed ridgid body

motions (PISM); and the second law of thermodynamics.

PISM. The application of the PISM simplifies the material functions to

be determined for thermoelastic solids from

ξ = ξ(∇u,u,∇θ, θ) (2.23)

to

ξ = ξ(ε, θ, g) (2.24)

for a quantity awith the strain ε = ∇Su and the temperature gradient g.

This leads to the the following materials functions that are to be

determined

σ = σ(ε, θ, g),

e = e(ε, θ, g),

q = q(ε, θ, g),

η = η(ε, θ, g).

(2.25)

The stress σ can be decomposed additively in a equilibrium part σeq

and a non-equilibrium part σneq. The equilibrium part is the energetic

part that is zero when strain rate and temperature gradient are zero

and the non-equilibrium part is the dissipative part. Considering

thermoelastic solids, the non-equilibrium stress is zero. Thus, there are

only equilibrium stresses:

σneq = 0, σ = σeq. (2.26)

Dissipation inequality (Clausius-Duhem inequality). The second law

of thermodynamics is considered in form of the Dissipation Inequality

42



2.2 Continuum Mechanics

(Clausius-Duhem inequality)

1

̺
σ · ε̇ − ψ̇ − ηθ̇ −

1

̺θ
q · g ≥ 0. (2.27)

This equation is obtained by replacing the the heat supply ω using the

balance of internal energy (see Equation (2.20)) and by using the free

Helmholtz energy

ψ = e− ηθ. (2.28)

Inserting the material time derivative of the free Helmholtz energy

ψ̇(ε, θ, g) =
∂ψ

∂ε
· ε̇ +

∂ψ

∂θ
θ̇ +

∂ψ

∂g
· ġ. (2.29)

into Equation (2.27) leads to the following form of the dissipation

inequality

(
σ

̺
−
∂ψ

∂ε

)
· ε̇ −

(
η +

∂ψ

∂θ

)
θ̇ −

∂ψ

∂g
· ġ −

1

̺θ
q · g ≥ 0. (2.30)

Due to linearity of this inequality in ε̇, θ̇, ġ and to arbitrariness of these,

the following potential relations can be derived

σ

̺
=
∂ψ

∂ε
, (2.31)

η = −
∂ψ

∂θ
, (2.32)

∂ψ

∂g
= 0. (2.33)

It remains the reduced dissipation inequality

− q · g ≥ 0. (2.34)
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The free energy can not depend on the temperature gradient. This

procedure to find these potential relations is called Coleman Noll

procedure and can be found in Coleman and Noll (1963).

Heat equation. Further thermodynamical considerations, calculations

and transformations are helpful for useful equations containing the

quantities for which relations are sought. For example the heat equation

is obtained by combining the balance of the internal energy (Equa-

tion (2.20)) with the free Helmholtz energy (Equation (2.28)) and the

potential relations (Equations (2.31) and (2.32)). The entropy rate is

obtained by inserting the potential relations in the free energy rate

η̇ = −
∂2ψ

∂ε∂θ
· ε̇ −

∂2ψ

∂θ2
θ̇. (2.35)

Inserting the potential relations(Equations (2.31) and (2.32)) and the

free energy (Equation (2.28))into the balance of internal energy (Equa-

tion (2.20) gives

̺θη̇ = ̺ω − div (q) . (2.36)

Equation (2.35) and Equation (2.36) lead to the heat equation

̺θ̇
∂2ψ

∂θ2
· θ = ̺ω − div (q) + ̺θ

∂2ψ

∂ε∂θ
· ε̇. (2.37)

Definition/Representations of material coefficients. It is useful to

define and consider material coefficients in order to express relations

between the quantities (temperature, stress, strain, for instance). For

these coefficients, assumptions (as constant, or linear in temperature,

for instance) can be made to define a material model. Considering for

example the heat equation (Equation (2.37)) the definition of the specific

heat capacity at constant strains

cε = −θ
∂ψ(ε, θ)

∂θ2
(2.38)
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and the definition of the thermal stress coefficient

β = −̺
∂ψ(ε, θ)

∂ε∂θ
=
∂σ

∂θ

∣∣∣∣
ε

(2.39)

is useful. Using these definitions the heat equation reads

̺θ̇cε = ̺ω − div (q) − θβ · ε̇. (2.40)

Analogously to the thermal stress coefficient, describing the change of

the stress due to a temperature change at constant strains, the thermal

expansion coefficient can be defined as

α =
∂ε

∂θ

∣∣∣∣
σ

(2.41)

describing the change of the strain due to a temperature change at

constant stress.

A further important coefficient is the stiffness tensor as in the sense of

the classical Hooke’s law

C =
∂σ

∂ε
= ̺

∂2ψ

∂ε2
. (2.42)

The compliance tensor is defined as

S = C
−1 =

∂ε

∂σ
. (2.43)

The stiffness and the thermal stress coefficients can be used to describe

material models in stress explicit form and the compliance and the

thermal expansion coefficients to describe material models in strain

explicit form.

Material symmetries. The stiffness tensor C in the sense of classical

Hooke’s law, σ = C[ε], has the major symmetry (Cijkl = Cklij ) and the
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two minor symmetries (Cijkl = Cjikl = Cijlk):

C = C
TH = C

TL = C
TR. (2.44)

To represent anisotropic symmetry classes, the normalized Voigt nota-

tion is first introduced. Here, the stress and strain tensors are taken

as first order tensors and the stiffness and compliance tensors as second

order tensors in a six-dimensional space. Therefore, a orthonormal base

B(α, β = 1..6) is introduecd. It applies then

Bα · Bβ = δαβ . (2.45)

With respect to any orthonormal basis system in R3, the basis tensors

can be represented as follows

B1 = e1 ⊗ e1 B4 =
√

2
2 (e2 ⊗ e3 + e3 ⊗ e2) (2.46)

B2 = e2 ⊗ e2 B5 =
√

2
2 (e1 ⊗ e3 + e3 ⊗ e1) (2.47)

B3 = e3 ⊗ e3 B6 =
√

2
2 (e1 ⊗ e2 + e2 ⊗ e1). (2.48)

The components of the stress, strain, and stiffness tensor are determined

by projection onto the basis vectors

σα = σ · Bα εα = ε · Bα Cαβ = Bα · C[Bβ ]. (2.49)

Hooke’s law can then be represented by

σ =

6∑

α=1

σαBα =

6∑

α,β=1

CαβεβBα. (2.50)
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Written out, Hooke’s law then reads




σ11

σ22

σ33

σ23

σ13

σ12




=




C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3333

√
2C3323

√
2C3313

√
2C3312

2C2323 2C2313 2C2312

sym. 2C1313 2C1312

2C1212







ε11

ε22

ε33

ε23

ε13

ε12




.

In the three-dimensional linear elastic case, eight symmetry classes can

be distinguished. There can be at most 21, in the fully anisotropic

(triclinic) case, and at least two, in the isotropic case, independent

parameters. In the following, some examples are presented, that play a

pronounced role in fiber reinforced composites, each with the number

of independent constants Nc and the number of symmetry planes Np.

Triklinic symmetry (Nc = 21, Np = 0)

C =




C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3333

√
2C3323

√
2C3313

√
2C3312

2C2323 2C2313 2C2312

sym. 2C1313 2C1312

2C1212




Bα ⊗ Bβ

(2.51)

Orthotropic symmetry (Nc = 9, Np = 3)

C =




C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

2C2323 0 0

sym. 2C1313 0

2C1212




Bα ⊗ Bβ (2.52)
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Transverse istotropic symmetry (Nc = 5, Np = 1 + ∞)

C =




C1111 C1122 C1133 0 0 0

C1111 C1133 0 0 0

C3333 0 0 0

2C2323 0 0

sym. 2C2323 0

C1111 − C2222




Bα ⊗ Bβ

(2.53)

Isotropy (Nc = 2, Np = ∞)

C =




C1111 C1122 C1122 0 0 0

C1111 C1122 0 0 0

C1111 0 0 0

C1111−C1122 0 0

sym. C1111−C1122 0

C1111−C1122




Bα⊗Bβ

(2.54)

2.3 Damage and Failure

2.3.1 Damage

The damage of materials is the process of structure change caused

by external impacts as mechanical load, for example, leading to the

development and the increase of micro defects. These micro defects

change the macroscopic properties. At the final state damage leads

to failure. Any kind of debonding is the initiation of damage. For

different materials there are different mechanisms. For polymers,

damage occurs by the breakage of bonds that exist between the long

chains of molecules (Lemaitre, 1992). Damage of composite materials is

governed by damage of the individual constituents and debonding be-
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tween the constituents. Debonding between the fibers and the polymer

matrix as dominating mechanism for SMC composites is investigated

by Anagnostou et al. (2018).

Mechanical representation of damage. A simple approach to describe

damage is using a one-dimensional surface damage variable. This idea

is based on Kachanov (1958).

Figure 2.9a shows a cut through a damaged body and a plane dA

defined by its normal n. Here, dAD is the damaged area, hence the

area of the intersections of all microcracks or microcavities. The value

df

dA
dA

dAD dAD

n
n

(a)

A

AD

f

f

(b)

Figure 2.9: Definition of damage (according to Gross and Seelig (2007)).

of damage attached to this area dA is

D(n) =
dAD

dA
. (2.55)

It follows from this definition that the value of D is bounded by 0 and

1, where D = 0 corresponds to the undamaged material and D = 1

corresponds to the completely damaged material. In real load case,

failure, corresponding to complete damage, occurs at an earlier state

than D = 1. If D is independent of n the damage state is isotropic.

To describe the influence of damage on the load, Rabotnov (1969)

introduced the effective stress concept. If the area dA is loaded by a
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force df as shown in Figure 2.9a, the usual stress vector t is

t =
df

dA
. (2.56)

The effective stress vector t̃ is the force related to the surface that

effectively resists the load

t̃ =
df

(dA− dAD)
=

df

dA(1 − dAD

dA )
=

df

dA(1 −D)
=

t

1 −D
. (2.57)

For isotropic damage the effective stress tensor is

σ̃ =
σ

1 −D
. (2.58)

A way to to describe the stress-strain behavior is the strain equivalence

principle proposed by Lemaitre (1971). It means that the constitutive

equations for the strain are not modified by the damage or that the true

stress that is loading on the material is the effective stress σ̃ and no

longer σ (Lemaitre, 1992).

For the example of uniaxial strain (see Figure 2.9b) the linear elastic law

is

ε =
σ̃

E
=

σ

E(1 −D)
. (2.59)

The elastic modulus for the damaged material is

ED = E(1 −D). (2.60)

For the three dimensional case the isotropically damaged elasticity

tensor is

CD = C(1 −D) , D ∈ [0, 1). (2.61)

For anisotropic damage instead of the scalar damage variable some

kind of damage tensor can be used.
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2.3 Damage and Failure

Damage evolution law. For the damage parameter an evolution law

is required. The parameter can depend on strain, energy, stress as

well as on the initial anisotropy for example. It is possible to define

the evolution law via phenomenological aspects as the observation

of macroscopic stiffness degradation or motivated by microstructural

aspects or by combination of these as for example performed in Anag-

nostou (2018).

2.3.2 Failure

Failure of materials describes critical states of materials such that they

are loosing their functionality in any way. This can be via brittle, sud-

den fracture, ductile fracture or onset of plastic yielding or remaining

deformation. Failure can also be considered as the final state of damage.

The way of failure depends on the material and also on the load case,

i.e. the stress state. It is possible to predict failure by the break of the

atomic or molecular bonds, but these stresses are many times greater

than the macroscopic failure stresses. In fact, failure on the macroscale

is determined by microscopic imperfections as wholes or microcracks,

that are existing normally in materials (Lubliner and Papadopoulos,

2014). There are different approaches to describe failure. One way is

to derive them via the microstructure and consider the genesis or the

propagation of microcracks. This approach is covered by the typical

field of fracture mechanics (Rosendahl, 2020). Another way is to simply

use mathematical expressions combined with experimental data. These

mathematical expressions, the so-called strength hypotheses can be

expressed in form of a scalar failure function or criterion. This criterion

is often referred to as failure surface, due to the interpretation as a

surfcace in the three-dimensional principal stress space. The basic form

of such a failure criterion can be written as follows

f(σ) = 0, (2.62)
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with the failure function f(σ) dependent on the different stress compo-

nents. Typical approaches are often of very simple nature. Examples

are the principal stress hypothesis or the strain energy hypothesis

(see for example Gross et al. (2007)). A more sophisticated approach

is presented in Tsai and Wu (1971). This failure criterion is a suit-

able approach for fiber reinforced composite materials, taking the

anisotropic failure behavior into account. For this reason, this criterion

is considered in this thesis and presented in more detail in Section 3.3

of the material modeling chapter.

2.4 Note on Viscoelasticity

Viscoelasticity is not considered in the material models in this work,

but basically considered for the conduction of the experiments. Thus,

here are only a few basic remarks, that are relevant to understand the

experimental procedure.

Viscoelastic materials combine elastic and viscous properties. Their

behavior is time dependent. Viscoelastic materials can be characterized

via creep and relaxation behavior in the time area or via the damping

behavior in the frequency area.

To describe the creep and relaxation behavior, linear viscoelasticity by

the example of uniaxial load is considered. The creep and relaxation

function describe the material behavior for special experiments, the

creep test and the relaxation test (Gross et al., 2007).

The loading for the creep test can be described by the Heaviside

function

σ(t) = σ0H(t). (2.63)
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H is the Heaviside function with

H =





0 if t < 0

1 if t ≥ 0.
(2.64)

The response in term of strain is

ε(t) = J(t)σ0, (2.65)

where J(t) is the creep function. Creep loading and a typical course of

the creep curve are shown in Figure 2.10.

σ0

t

J(0)

J(∞)

t

Figure 2.10: Stress jump and typical associated course of the creep function.

The loading for the relaxation test is

ε(t) = ε0H(t). (2.66)

The response in term of stress is

σ(t) = G(t)ε0 (2.67)

with the relaxation function G(t). Figure 2.11 shows the corresponding

graphs.
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ε0

t

G(∞)

G(0)

t

Figure 2.11: Strain jump and typical associated course of the relaxation function.

Based on these creep and relaxation functions the creep modulus EC

and the relaxation modulus ER are defined as follows

EC(t) =
1

J(t)
=

σ0

ε(t)
, (2.68)

ER(t) = G(t) =
σ(t)

ε0
. (2.69)

The value of the relaxation function at t = 0 is the instantaneous elas-

ticity modulus which is valid for quasi instantaneous loads. The value

of the relaxation function for t → ∞ is the equilibrium modulus, which

is valid for quasi infinitely slow loads. In literature the instantaneous

modulus is often designated as E0 and the equilibrium modulus as E∞.

(Lemaitre and Chaboche, 1990; Gross et al., 2007)

For description in frequency, a sinusoidal load case is considered

σ(t) = σ̄0 + σ̃0 sin(ωt+ δ) (2.70)

ε(t) = ε̄0 + ε̃0 sin(ωt), (2.71)

with the static stress σ̄0, the amplitude of the dynamic stress σ̃0, the

static strain ε̄0, the amplitude of the dynamic strain ε̃0, the phase shift δ

and the angular frequency ω.

Due to the phase shift δ = ωt between stress and strain, the complex
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elasticity modulus E∗ is useful to describe the stress-strain relation

E∗ = E′ + iE′′. (2.72)

Here, E′ is the real part and E′′ the imaginary part with

E′ = E∗ cos(δ) =
σ̃0

ε̃0
cos(δ) (2.73)

and

E′ = E∗ sin(δ) =
σ̃0

ε̃0
sin(δ). (2.74)

The real part E′ is referred to as the storage modulus. It is a measure

of the energy that can be stored during the period of oscillation. In

contrast, the imaginary part E′′ is related to the energy dissipated

during the oscillation period. It is referred to as the loss modulus. The

loss factor tan(δ) is calculated from the ratio of the loss modulus and

the storage modulus

tan(δ) =
E′′

E′ . (2.75)

The loss factor is an important characteristic value of the viscoelastic

material behavior. If the tan(δ) is very large, the material behavior is

rather viscous; if it is rather small, the material behavior is predomi-

nantly elastic (Grellmann and Seidler, 2011).

Model rheology. A suitable method to describe the deformation

behavior of viscoelastic materials, is the model rheology. It uses the

following basic models: spring for elasticity and damper element for

viscosity. Assuming linear viscoelasticity for the elastic and viscous

elements there are the basic equations for the stress strain relation

σ = C[ε] (2.76)
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and

σ = V[ε̇], (2.77)

with the stiffness tensor C and the viscosity tensor V, or for the uniaxial

case

σ = Eε (2.78)

and

σ = V ε̇ (2.79)

with the Young’s modulus E and the viscosity modulus V . A general

model is the Generalized Maxwell Model with one spring parallel to

n Maxwell elements, each consisting of one spring and one damper

element (see Figure 2.12).

σ σ

E∞

EN

E1

VN

V1

Figure 2.12: Generalized Maxwell model.

The parallel connection leads to

σ =
N∑

i=1

σi. (2.80)
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The connection in series in each Maxwell element leads to

ε = εe,i + εv,i (2.81)

and

σi = σv,i = σe,i. (2.82)

ε and σ are the total strain and stress. σi is the stress in the ith Maxwell

element, σv,i and σe,i in the ith viscous and elastic element. εe,i and εv,i

are the strains of the ith elastic and the ith viscous element.

Equations (2.78) to (2.82) lead to the following two relations that

describe the material behavior

σ =

N∑

i=1

Ei(ε− εv,i) (2.83)

Viε̇v,i = Ei(ε− εv,i). (2.84)

These relations can be used to describe the viscoelastic material behav-

ior in terms of time and in terms of frequency.

The relaxation modulus reads then

ER(t) = E∞ +

N∑

i=1

Eie
−t/τi , (2.85)

with the relaxation time constant τ = vi/Ei. Storage and loss modulus

reads as follows

E′(ω) = E∞ +

N∑

i=1

Ei
(ωτi)

2

(1 + ωτi)2
, (2.86)

E
′′

(ω) =

N∑

i=1

Ei
ωτi

(1 + ωτi)2
. (2.87)
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2.5 Micromechanics

2.5.1 Microstructure of Fiber Reinforced Composites

Fiber reinforced composites, especially as the discontinuous fiber rein-

forced glass SMC of this work, exhibit a particular micro structure. Fig-

ure 2.13a depicts a picture of a SMC specimen, photographed against

the light so that the light shines through, and thus the microstructure

can be seen well even with the naked eye (black markers and solid lines

due to experiment). The darker regions and lines correspond to the

fibers. It can be seen that the fiber concentration or volume content

as well as the orientation of the fibers varies within this specimen.

Figure 2.13b depicts a micro computer tomography scan of a specimen

detail where the white lines and bars are the fibers. This illustrates the

different fiber orientations in more detail.

60 mm

(a)

15 mm

(b)

Figure 2.13: Microstructure of SMC. (a) Photograph (transillumination image) of SMC
specimen (black marker due to experiment) thickness ca 1.5 mm, (b) Computer tomo-
graph observation of SMC specimen, at one plane (taken from Böhlke et al. (2019)).
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e1

e2

e3

Fiber

n

Figure 2.14: Fiber with orientation n.

To describe the microstructure, information about fiber volume content,

fiber orientation, and the distribution of these as well as the fiber shape,

for instance, must be considered. There are different ways to describe

these microstructural properties.

2.5.2 Fiber Orientation Distribution

In the following the fibers are assumed to be straight and the normal-

ized vector n denotes the orientation of a fiber (see Figure 2.14). The

fiber orientation can be described by a fiber orientation distribution

function (FODF). The FODF represents the probability to find a fiber

aligned in direction n. An alternative way to interprete or describe

the FODF is that it specifies the volume fraction of fibers oriented in

direction n in relation to the volume of all fibers. The FODF is defined

by

f : S → R, S := {n ∈ R
3 | ‖n‖ = 1}. (2.88)

and has the following properties:

• f(n) is non-negative: f(n) ≥ 0, ∀n ∈ S

• f(n) is symmetric: f(n) = f(−n), ∀n ∈ S,

• f(n) is normalized (as beeing a probability function):
∫

S f(n) dS = 1.
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Here, S := {n ∈ R3 | ‖n‖ = 1} can be interpreted as the unit sphere

with the the surface element dS = sin(ϑ) dϑ dφ/(4π).

For empirical fiber orientations, i.e. for a set of m discrete fibers, that

are equally weighted, the FODF is defined by

f(n) =
1

m

m∑

i=1

δni
, (2.89)

with the Dirac delta function δni
= δ(n − ni) (Müller and Böhlke

(2016), Böhlke et al. (2010), Advani and Tucker (1987)).

2.5.3 Fiber Orientation Tensors

A way to describe the fiber orientation distribution in a compacter and

often better applicable way, is to use fiber orientation tensors. The fiber

orientation tensor N〈k〉 of kth order can be derived by the FODF by the

following equation

N
〈k〉 =

∫

S

f(n)n⊗k dS, (2.90)

with

n⊗k = n ⊗ n ⊗ ...⊗ n︸ ︷︷ ︸
k times

. (2.91)

This delivers for the second and fourth order fiber orientation tensors

the following expressions

N =

∫

S

f(n)n ⊗ n dS, (2.92)

N =

∫

S

f(n)n ⊗ n ⊗ n ⊗ n dS. (2.93)
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For empirical fiber orientations, i.e. for a set of m discrete fibers, the

fiber orientation tensors can be written the following

N
〈k〉 =

1

m

m∑

i=1

n⊗k
i . (2.94)

This leads to

N =
1

m

m∑

i=1

ni ⊗ ni (2.95)

and

N =
1

m

m∑

i=1

ni ⊗ ni ⊗ ni ⊗ ni (2.96)

for the empirical second and fourth order fiber orientation tensor. The

fiber orientation tensors are fully symmetric

N = NT, N = symF(N). (2.97)

Here, symF(·) is the fully symmetrization , that means

N = N
TM = N

TL = N
TR = N

TM, (2.98)

or in index notation

Nijkl = Nklij = Njikl = Nijlk = Nkjil. (2.99)

They exhibit the following trace conditions

tr(N ) = 1, N · (I ⊗ I) = 1. (2.100)

This means that the fiber orientation tensor of second order can be

calculated via the fiber orientation tensor of fourth order by

N = N[I]. (2.101)
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The above mentioned formulation for fiber orientation tensors is the

generally used formulation introduced for example in Advani and

Tucker (1987). Kanatani (1984) designates these tensors as orientation

tensors of the first kind. He defines also orientation tensors of the

second and third kind, which can be derived from the orientation

tensors of the first kind. As the orientation tensors of the second kind

don’t play a role in this theses, only the orientation tensors of the third

kind are presented in addition to the orientation tensors of the first kind.

Orientation tensors of the third kind are fully symmetric and traceless

and can be calculated from the orientation tensors of the first kind by

D
〈k〉 =

2k + 1

2k

(
2k

k

)
N

〈k〉. (2.102)

This leads for the second order to

D =
15

2
(N −

1

3
I), (2.103)

and for the fourth order orientation tensor to

D =
315

8
(N −

6

7
symF(I ⊗ N ) +

3

35
symF(I ⊗ I). (2.104)

For the second and fourth order orientation tensor of the third kind, the

symmetry and trace conditions read

D = DT, D = symF(D), (2.105)

tr(D) = 0, D · (I ⊗ I) = 0. (2.106)

The second order orientation tensor of the third kind can not be

calculated from the fourth order orientation tensor of the third kind,

thus they are independent from each other.
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Chapter 3

Material Model

3.1 Thermoelastic Modeling

3.1.1 Thermoelasticity with Constant Coefficients

For the first material model considered in this thesis, it is assumed that

all material coefficients are constants. This means in particular that they

are independent of temperature. Starting with the assumption that the

heat capacity at constant strains is constant

cε(ε, θ)
!
= c0. (3.1)

leads with Equation (2.38)

cε = −θ
∂2ψ(ε, θ)

∂θ2
(3.2)

by twofold integration to the following form of the free energy

ψ(ε, θ) = ψθ(θ) + △θk1(ε) + k2(ε) + k0. (3.3)

Here,

△θ = θ − θ0 (3.4)
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is a temperature difference referred to a reference temperature θ0 and

k1(ε) and k2(ε) are unknown functions. ψθ(θ) is the purely temperature-

dependent part of the free energy

ψθ(θ) = c0

(
△θ − θ ln

( θ
θ0

))
. (3.5)

The assumption of constant temperature stress coefficients

β
!
= β0 (3.6)

leads with Equation (2.39)

β = −̺0
∂2ψ(ε, θ)

∂ε∂θ
, (3.7)

where ̺0 is the constant mass density, to

− ̺0
∂k1(ε)

∂ε
= β0. (3.8)

This defines the unknown function k1(ε)

k1(ε) = −
1

̺0
β0 · ε. (3.9)

The next assumption is that the stress has the form of the classical linear

thermoelastic Hooke’s law

σ
!
= C0[ε] − β0△θ (3.10)

with the constant stiffness tensor C0 (note: σ = σeq , see Equation (2.26)).

Equation (2.31)

σ = ̺0
∂ψ(ε, θ)

∂ε
(3.11)
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leads by differentiating the free energy to

σ = −β0△θ + ̺0
∂k2(ε)

∂ε
. (3.12)

This defines with Equation (3.10) the unknown function k2(ε)

k2(ε) =
1

2̺0
ε · C0[ε]. (3.13)

For the stiffness tensor yields according to Equation (2.42)

C0 =
∂σ

∂ε
= ̺0

∂2ψ(ε, θ)

∂ε2
. (3.14)

Thus, the stiffness tensor C0 has the major symmetry (Cijkl = Cklij ) and

the two minor symmetries (Cijkl = Cjikl = Cijlk).

The three assumptions for the heat capacity (Equation (3.1)), for the

thermal stress coefficients (Equation (3.6)) and the stress strain relation

(Equation (3.10)) define the free energy totally. It holds

ψ(ε, θ) = ψθ(θ) −
1

̺0
△θβ0 · ε +

1

2̺0
ε · C0[ε] + k0. (3.15)

The constant k0 has no relevance for the thermoelastic properties

because only the derivatives are in the balance equations. For the

entropy, Equation (2.32)

η = −
∂ψ(ε, θ)

∂θ
(3.16)

and the form of the free energy in Equation (3.15) lead to the following

form

η(ε, θ) = c0 ln(
θ

θ0
) +

1

̺0
β · ε. (3.17)

Alternatively, the material function of Equation (3.10) (Hooke’s law)

can also be expressed as a function of compliance and coefficient of
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thermal expansion by transforming Hooke’s law into strain-explicit

form. Rearranging Equation (3.10) leads to

ε = C
−1
0 [σ] + C

−1
0 [β0△θ]. (3.18)

Plugging Equation (3.18) into Equation (2.41) results in

α =
∂ε

∂θ

∣∣∣∣
σ

= C
−1
0 [β0] = α0 (3.19)

for the thermal expansion coefficient. The compliance which is defined

as in Equation (2.43) results in

S =
∂ε

∂σ
= C

−1
0 = S0. (3.20)

Hooke’s law in strain-explicit form can thus be written as

ε = S0[σ] + α0△θ. (3.21)

For the heat conduction two assumptions are made. The first one is

that the heat conduction tensor is linear in temperature gradient and

the second one is that the thermal conductivity coefficient κ0 is constant.

This gives the following equation

q = −κ0g. (3.22)

This is known as the classical Fourier’s law of heat conduction. With

this Ansatz, the reduced dissipation inequality (see Equation (2.34)) has

the following form

g · κ0g ≥ 0. (3.23)

In summary, for the material model with constant coefficients, there are

the following coefficients with the corresponding material parameters

for the fully anisotropic case:
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• Mass density ̺0 (unit: kg/m3): scalar, 1 parameter

• Reference temperature θ0 (unit: K): scalar, 1 parameter

• Heat capacity c0 (unit: J/(kgK)): scalar, 1 parameter

• Stiffness tensor C0 (unit: Pa) or compliance tensor S0 (1/Pa): sym-

metric (major and minor) fourth order tensor, 21 parameters

• Thermal stress coefficient β0 (unit: Pa/K) or thermal expansion coef-

ficient α0 (unit: 1/K): symmetric second order tensor, 6 parameters

• Thermal conductivity coefficient κ0 (unit: W/(mK)): symmetric

second order tensor, 6 parameters

In total there are 36 material parameters, which are summarized in

Table 3.1.

Coefficient Var. Type NP Unit

Mass density ̺0 ̺0 scalar 1 kg/m3

Reference temp. θ0 θ0 scalar 1 K

Heat capacity c c0 scalar 1 J/(kgK)

Stiffness tensor C sym. Pa

or C0 4th order 21

Compl. tensor S tensor 1/Pa

Th. stress coeff. β sym. Pa/K

or β0 2nd order 6

Th. exp. coeff. α tensor 1/K

Th. Cond. Coeff. κ κ0 sym. 2nd

o. ten.

6 W/(mK)

Table 3.1: Coefficients for the material model with constant coefficients with correspond-
ing variables (var.), type, number of parameters (NP) and unit.

Considering special symmetry cases the number of parameters reduces.

For the isotropic case the number of parameters reduces to 7 in total.
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The stiffness tensor has 2 parameters as written in Equation (2.54). For

the thermal stress coefficient or the thermal expansion coefficient yields

then

β0 = β0I, α0 = α0I. (3.24)

For the orthotropic case the number of parameters reduces to 18 in total.

The stiffness tensor has 9 parameters as written in Equation (2.52). For

the thermal stress coefficient or the thermal expansion coefficient yields

then

β0 =



β11 0 0

0 β22 0

0 0 β33


 , α0 =



α11 0 0

0 α22 0

0 0 α33


 . (3.25)

For the transverse isotropic case the number of parameters reduces

to 12 in total. The stiffness tensor has 5 parameters as written in

Equation (2.53). For the thermal stress coefficient or the thermal

expansion coefficient yields then for the symmetric plane in e1- e2

direction.

β0 =



β11 0 0

0 β11 0

0 0 β33


 , α0 =



α11 0 0

0 α11 0

0 0 α33


 . (3.26)

In this thesis the fully anisotropic case is considered.

3.1.2 Thermoelasticity with Temperature-Dependent

Coefficients

The mass density is still assumed to be constant ̺ ≈ ̺0. For the material

model with temperature-dependent coefficients, starting point is the

assumption that the heat capacity is linear in temperature

cε
!
= c0 + c′

0△θ, (3.27)
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3.1 Thermoelastic Modeling

where △θ is a temperature difference defined as in Equation (3.4), and

c0 and c′
0 are constants. This leads with Equation (2.38) to the following

form of the free energy

ψ(ε, θ) = ψθ(θ) + △θk1(ε) + k2(ε) + k0, (3.28)

where k1(ε) and k2(ε) are unknown functions. ψθ(θ) is the purely

temperature-dependent part of the free energy

ψθ(θ) = (c0 − c′
0θ0)

(
△θ − θ ln

( θ
θ0

))
−

1

2
c′

0△θ2. (3.29)

The temperature stress coefficients have with Equation (2.39) and

Equation (3.28) the following form

β = −̺0
∂2ψ(ε, θ)

∂ε∂θ
= −̺0

∂k1(ε)

∂ε
. (3.30)

Thus, they can only depend on strain and not on temperature. The

assumption for the temperature stress coefficients is that they depend

linearly on strain

β(ε)
!
= β0 − C

′
0[ε]. (3.31)

(The symbol C′
0 is chosen due to later appearance in the stiffness tensor.)

With this Ansatz and Equation (3.30) follows for the function k1(ε)

k1(ε) =
1

2̺0
ε · C′

0[ε] −
1

̺0
β0 · ε. (3.32)

For the stress the following assumption is made

σ(ε, θ)
!
= (C0 + C

′
0△θ)[ε] − β0△θ. (3.33)
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For the stress yields with Equations (2.31), (3.28) and the known

function k1(ε) (see Equation (3.32))

σ(ε, θ) = ̺0
∂ψ(ε, θ)

∂ε

= ̺0(△θ
∂k1(ε)

∂ε
+
∂k2(ε)

∂ε
)

= C
′
0[ε]△θ −

1

̺0
β0△θ + ̺0

∂k2(ε)

∂ε
.

(3.34)

Herewith and with the assumption for the stress (Equation (3.33)) the

function k2(ε) is defined

k2(ε) =
1

2̺0
ε · C0[ε]. (3.35)

With Equations (2.42) and (3.33) the stiffness tensor is given by

C =
∂σ

∂ε
= C0 + C

′
0△θ. (3.36)

For the free energy this finally results in

ψ(ε, θ) = ψθ(θ) + k0

−
1

̺0
β0△θ · ε

+
1

2̺0
ε · (C0 + C

′
0△θ)[ε].

(3.37)

For the entropy follows

η(ε, θ) = −
∂ψ(ε, θ)

∂θ

= ηθ(θ) − k1(ε)

(3.38)
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with k1(ε) as in Equation (3.32) and the purely temperature-dependent

part of the entropy ηθ(θ)

ηθ(θ) = (c0 − c′
0θ0) ln

( θ
θ0

)
+ c′

0△θ. (3.39)

Alternatively, as for the material model with constant coefficients,

the material function of Equation (3.33) can also be expressed as a

function of compliance and thermal expansion coefficient by transform-

ing the stress strain relation into strain-explicit form. Rearranging

Equation (3.33) leads to

ε = (C0 + C
′
0△θ)−1[(σ + β0△θ)]. (3.40)

Using Equation (2.41) the thermal expansion coefficient is obtained by

differentiating Equation (3.40) with respect to the temperature. This

leads to the following expression

α =
∂ε

∂θ

∣∣∣∣
σ

= −(C0 + C
′
0△θ)−1

C
′
0 (C0 + C

′
0△θ)−1 [σ + β0△θ]

+ (C0 + C
′
0△θ)−1[β0].

(3.41)

The compliance is obtained by differentiating Equation (3.40) with

respect to the stress

S =
∂ε

∂σ
= (C0 + C

′
0△θ)−1. (3.42)

For the heat conduction the same assumptions as for the material model

with constant coefficients are made. So, here also applies the Fourier’s

law of heat conduction (see also Equation (3.22))

q = −κ0g (3.43)
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with the constant thermal conductivity coefficient κ0. In summary, for

the material model with temperature-dependent coefficients, there are

the following coefficients with the corresponding material parameters

for the fully anisotropic case:

• Mass density ̺0 (unit: kg/m3): scalar, 1 parameter

• Reference temperature θ0 (unit: K): scalar, 1 parameter

• Heat capacity c (unit: J/(kgK))

– c0 (unit: J/(kgK)): scalar, 1 parameter

– c′
0 (unit: J/(kgK2)): scalar, 1 parameter

• Stiffness tensor C (unit: Pa) or compliance tensor S (1/(Pa))

– C0 (unit: Pa): symmetric (major and minor) fourth order tensor,

21 parameters

– C′
0 (unit: Pa/K): symmetric (major and minor) fourth order tensor,

21 parameters

• Thermal stress coefficient β (unit: Pa/K) or thermal expansion

coefficient α (unit: 1/K)

– β0 (unit: Pa/K) : symmetric second order tensor, 6 parameters

• Thermal conductivity coefficient κ0 (unit: W/(mK)): symmetric

second order tensor, 6 parameters

In total there are 58 material parameters, which are summarized in

Table 3.2.
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3.1 Thermoelastic Modeling

Coefficient var. type NP unit

Mass density ̺0 ̺0 scalar 1 kg/m3

Reference temp. θ0 θ0 scalar 1 K

Heat capacity c c0, c
′
0 scalar 1 + 1 J/(kgK)

Stiffness tensor C sym. Pa

or C0, C
′
0 4th order 21 + 21

Compl. tensor S tensor 1/Pa

Th. stress coeff. β sym. Pa/K

or β0 2nd order 6

Th. exp. coeff. α tensor 1/K

Th. cond. coeff. κ κ0 sym. 2nd

o. ten.

6 W/(mK)

Table 3.2: Coefficients for the material model with temperature-dependent coefficients
with corresponding variables (var.), type, number of parameters (NP) and unit.

To reduce the number of parameters an additional assumtion for the

temperature-dependent stiffness can be made. For C′
0 the following

Ansatz is chosen

C
′
0 = C0C

′
0 (3.44)

with C′
0 being a constant scalar parameter (unit: 1/K). This reduces the

number of parameters for the stiffness tensor from 42 to 22, and for the

total number of parameters from 58 to 38, which are only two additional

parameters in comparison to the material model with constant coeffi-

cients. These are the paramteter for the temperature dependence of the

heat capacity c′
0, and the parameter of the temperature dependence of

the stiffness tensor C′
0. The dependence on temperature of the thermal

stress coefficient and the thermal expansion coefficient result also in

terms of this parameter C′
0.

Considering the same special symmetry cases as for the material model

with constant coefficients, the following numbers of parameters yields.
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The total number of parameters of the isotropic case is then 9, for the

orthotropic case 20 and for the transverse isotropic case 14, which are

for each case 2 additional parameters.

The assumption in Equation (3.44) leads to the following formulation

for the stiffness tensor:

C = C0 + C
′
0△θ = C0(1 + C′

0△θ), (3.45)

The thermal stress coefficient reads then

β(ε) = β0 − C0C
′
0[ε]. (3.46)

and the thermal expansion coefficient simplifies to

α = (1 + C′
0△θ)−2

(
−C′

0C
−1
0 [σ] + C

−1
0 [β0]

)
. (3.47)

For △θ = 0 and σ = 0, this expression reduces to α = C
−1
0 [β0],

which can be denoted as α0 and for △θ = 0 and σ 6= 0 to

−C′
0C

−1
0 [σ] + C

−1
0 [β0] which can be denoted as ασ0

α0 = C
−1
0 [β0] (3.48)

ασ0 = C
−1
0 [−C′

0σ + β0]. (3.49)

Also for the model with temperature-dependent coefficients the fully

anisotropic case is considered in this thesis.
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3.2 Micromechanical Modeling of Thermoelasticity

3.2 Micromechanical Modeling of

Thermoelasticity

3.2.1 Constant Coefficients

The general Ansatz is the assumption of linearity of the directional

(tensorial) material coefficients in fiber orientation tensor. These are

the stiffness tensor C (or compliance tensor S), the thermal expansion

coefficient α (or the thermal stress coefficient β) and the thermal

conductivity coefficient κ. Therefore, in the following, decompositions

of second and fourth order tensors in general are considered, that can

be applied to the material coefficient tensors.

Second order tensors can be decomposed into a spherical and a devia-

toric part

A = A◦ + A′ (3.50)

with

A◦ =
1

3
tr(A)I, A′ = A −

1

3
tr(A)I . (3.51)

For fourth order tensors the harmonic decomposition (Böhlke and

Brüggemann (2001), Cowin (1989)) can be applied

A = h1P1 + h2P2 + H ′
1 ⊗ I + I ⊗ H ′

1 + 4J[H ′
2] + H

′ (3.52)

with the two projectors

P1 =
1

3
I ⊗ I, P2 = I

S − P1 (3.53)

where IS is the fourth order identity tensor on symmetric second order

tensors. The operator J is defined as

J[A] =
1

4
(Aimδjn +Ainδjm +δimAjn +δinAjm)ei ⊗ej ⊗em ⊗en. (3.54)
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The first two terms describe the isotropic part. H ′
1 and H ′

2 are

deviatoric tensors and H is the harmonic part. The deviatoric and

harmonic tensors are completely symmetric and traceless. (For the

exact calculation of the parts see Böhlke and Brüggemann (2001)).

The fiber orientation tensors of the third kind according to Kanatani

(1984) (see Section 2.5.3) of second D and fourth order D satisfy the

properties of A′ or H ′ and H′, respectively.

Thus, the Ansatz for directional (tensorial) material parameters of

second and fourth order is to replace the deviatoric and harmonic

tensors in the decompositions by the second and fourth order kanatani

third kind orientation tensors and to ad a constant at each. These

constants are then the remaining parameters.

The Ansatz is applied on the stiffness tensor C, the thermal expansion

coefficient α and the thermal conductivity coefficient κ.

The Ansatz for the stiffness tensor reads then

C0 = k1P1 + k2P2 + k3(D ⊗ I + I ⊗ D) + k4J[D],+k5D, (3.55)

the Ansatz for the coefficient of thermal expansion

α0 = kα1I + kα2D, (3.56)

and the Ansatz for the coefficient of thermal conductivity

κ0 = kκ1I + kκ2D. (3.57)

Thus the number of independent parameters reduces from 21 to 5 for

the stiffness tensor, and from 6 to 2 for the thermal expansion coefficient

and the thermal conductivity coefficient, when D and D are known.

These parameters are independent on the fiber orientation, because

the fiber orientation is taken into account via D and D. They can

depend on the properties of the individual materials, the fiber volume

fraction, for instance. Assuming these as constant, the parameter can
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3.3 Micromechanical Modeling of Thermoelasticity

be assumed as constant and the differences in the material coefficients

comes only from the fiber orientation tensors.

3.2.2 Temperature-Dependent Coefficients

For the micromechanical material model with temperature-dependent

coefficients, it is assumed that the coefficients at reference temperature

have the same form in dependence of the microstructure as the constant

coefficients in Section 3.2.1. This leads for the stiffness tensor to

C = C0(1 + C′
0△θ) (3.58)

with

C0 = C0(D,D) (3.59)

as defined in Equation (3.55).

For the thermal expansion coefficient yields then

α = (1 + C′
0△θ)−2

(
−C′

0C
−1
0 [σ] + C

−1
0 [β0]

)
, (3.60)

with

C
−1
0 [β0] = α0 = α0(D), (3.61)

where α0(D) is defined as in Equation (3.57). Here, α0 is the thermal

expansion coefficient at reference temperature (△θ = 0) and without

stress application (σ = 0) as defined in Equation (3.48). C′
0 and c′

0 are

assumed to be non-dependent on fiber orientation.

For the coefficient of thermal conductivity still yields Equation (3.57),

as it is assumed to be constant in temperature.

77



3 Material Model

3.3 Modeling of Failure

General Formulation. The basic form of the Tsai-Wu failure criterion

(Tsai and Wu, 1971) is a scalar failure function as a function of strength

tensors and stress components

f = F · σ + σ · F[σ] − 1, (3.62)

where failure is expected when f = 0. F and F (or Fij and Fijkl in

index notation) are strength tensors of second and fourth order. F

and F satisfy symmetry conditions to be senseful with the symmetry

properties of the stress tensor. F is symmetric (Fij = Fji) and F

has the major (Fijkl = Fklij ) and the two minor (Fijkl = Fjikl = Fijlk)

symmetries. The number of components is thus 6 for F and 21 for F,

which makes in total 27 parameters for the general anisotropic three

dimensional case. F is positive definite, to be physically meaningfull.

This ensures that its geometrical representation has a convex shape,

what physically means that there is a finite failure for each stress state.

In the three dimensional principal stress space the geometrical interpre-

tation of Equation (3.62) is an ellipsoid. The remaining stresses are then

σ11 = σ1, σ22 = σ2, σ33 = σ3. Here, the components F1111, F2222, F3333

describe the dimension of the ellipsoid in the three directions, physi-

cally meaning the anisotropic strength. The components F11, F22, F33

describe the shift of the ellipsoid, meaning the tension-compression

difference of the strength. The parameter F1122 describes the inclination

of the ellipsoid, meaning that a combined/multiaxial stress state can

increases or decrease the strength compared to a uniaxial stress state.

Special cases. Considering the general anisotropic case in a planar

stress state, all components in Equation (3.62) that contain a stress

component in the third direction vanish (for a planar stress state in

e1-e2-direction only σ11, σ22 and σ12 are remaining). The number of
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components in F remaining in Equation (3.62) reduces then to 3 and

in F to 6, which are in total 9 parameters.

Considering material symmetries in the coordinate system of the prin-

cipal directions of the material symmetry, the number of parameters

reduces.

For orthotropic material symmetry the shear normal stress coupling

terms in F (e.g. F1123) and the coupling terms between shear

stresses (e.g. F2312) vanish. The off-diagonal terms of F vanish

(F23 = F13 = F12 = 0), this means that the positive and negative shear

strength are equal. This reduces the number of parameters to 3 for F

and 9 for F, which makes in total 12 parameters.

For transverse isotropic material symmetry the number of parame-

ters reduces to 2 and 5 for F and F respectively, being a special

case of orthotropic material behavior with F1111 = F2222, F1133 = F2233,

F2323 = F1313 and F1212 = 1
2 (F1111 − F1122).

Considering an isotropic material behavior only 2 parameters for F and

1 parameter for F are remaining.

Assuming additionally that the tensile and compression strengths are

equal, only the 2 parameters in F, F1111 and F1122 are remaining. In

the principal stress space, the geometrical representation is then a

sphere around the coordinate origin with the radius corresponding to

the failure stress for uniaxial tension or compression in an arbitrary

direction.

Experimental determination of the parameters. All the parameters of

Fij and Fijkl in Equation (3.62) can be determined via experiments in

which special stress cases are applied. In the following the special case

of orthotropic material symmetry in planar stress state is considered for

the experimental determination of the parameters. For details on the

the identification of all parameters the reader is referred to Tsai and Wu

(1971).
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Orthotropic symmetry in planar stress state - experimental identifica-

tion of parameters. As material model for the parameter identification

(without considering the microstructure) orthotropic material symme-

try is assumed. Additionally, a planar stress state is considered. For the

orthotropic case in a planar stress state, there are 2 and 4 components for

Fij and Fijkl , respectively. There are the following 6 parameters for pla-

nar stress in the e1-e2-direction: F11, F22, F1111, F2222, F1122 and F1212.

The failure condition then reads

F11σ11 +F22σ22 +F1111σ
2
11 +F2222σ

2
22 +2F1122σ11σ22 +4F1212σ

2
12 −1 = 0.

(3.63)

From uniaxial tension and compression experiments in the principal

directions of the material symmetry (orthotropy), e1-direction and

e2-direction, the following failure stresses can be measured (absolute

values)

• σ+
f1: failure stress for uniaxial tension in e1-direction

• σ−
f1 : failure stress for uniaxial compression in e1-direction

• σ+
f2: failure stress for uniaxial tension in e2-direction

• σ−
f2 : failure stresss for uniaxial compression in e2-direction

From these failure stresses, the parameters F11 , F22, F1111, F2222 can

be calculated via

F11 =
1

σ+
f1

−
1

σ−
f1

, (3.64)

F22 =
1

σ+
f2

−
1

σ−
f2

, (3.65)

F1111 =
1

σ+
f1 σ

−
f1

, (3.66)

F2222 =
1

σ+
f2 σ

−
f2

. (3.67)
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From an equibiaxial experiment with σ11 = σ22 leading to failure at

σ11 = σ22 = σfb, the parameter F1122 can be calculated via

F1122 =
1

2 σ2
fb

(1 − σfb (F11 + F22) − σ2
fb (F1111 + F2222)) (3.68)

with the already known parameters F11 , F22, F1111 and F2222.

Tsai and Hahn (1980) give an empirical estimation of F1122

F1122 = −
1

2

√
F1111F2222 . (3.69)

From a pure shear experiment with failure at σf12 the parameter F1212

can be derived

F1212 =
1

4σ2
f12

. (3.70)

Another possibility to derive the parameter F1212 is a uniaxial tension

experiment in 45◦-direction to the principal material symmetry axes

with failure at σf45. Transforming the stress state into the principal

coordinate system, leads to the following stress components at failure

σ11 = σ22 =
1

2
σf45, σ12 = −

1

2
σf45. (3.71)

Using this stress state and Equation (3.63), F1212 can be calculated

F1212 =
1

σ2
f45

(1−
1

2
σf45(F11+F22)−

1

4
σ2

f45(F1111+F2222+2F1122)). (3.72)

3.4 Micromechanical Modeling of Failure

For micromechanical failure modeling, the general anisotropic case is

considered again (without orthotropy assumption as for the macro-

scopic Tsai-Wu failure model). The Ansatz is chosen, that the Tsai-Wu

strength tensors are linear in fiber orientation tensor. Thus, they have
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the following form

F = kf1P1 + kf2P2 + kf3(D ⊗ I + I ⊗ D) + kf4J[D] + kf5D, (3.73)

F = kf6I + kf7D, (3.74)

with the two projectors as defined in Equation (3.53) and the operator

J as defined in Equation (3.54). This reduces the number of parameters

from 21+6=27 to 5+2=7 for the fully anisotropic 3D case.
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Chapter 4

Experimental Investigations

4.1 Experimental Facilities

4.1.1 Biaxial Testing Device

The electromechanical biaxial testing device is depicted in Fig. 4.1.

It consists of four horizontally arranged independently controllable

actuators. The force is measured by load cells with a maximum force of

150 kN. The strain/displacement of each of the four axes is measured

by the displacement of the traverses and by an optical extensometer

(Zwick VideoXtens). This system measures the displacement of five

markers glued on the specimen and can calculate the strain for each

axis. It is possible to control the experiments by the force or by

the strain/displacement of the traverses or the strain measured by

the VideoXtens system. The VideoXtens system can also be used for

a midpoint control, which avoids undesirable transversal forces and

bending loads. Uniaxial experiments can be performed using only two

opposite axes.

Additionally, the strain field can be measured by digital image corre-

lation system by GOM (ARAMIS 3D 4M). The system consists of two

cameras which take high definition pictures of the specimen and a

digital image correlation software.

DIC works by comparing digital photographs of a test piece at different
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stages of deformation. The system can measure the surface displace-

ment and build up full field 2D and 3D deformation vector fields and

strain maps (McCormick and Lord, 2010). A match point is searched

on each picture. As it is almost impossible to find a match point by one

single pixel an area with multiple pixels, called facet, is used to perform

the matching process. The strain is calculated via the displacement of

these facets. For DIC to work effectively, the pixel blocks need to be

random and unique with a range of contrast and different intensity

levels (Yoneyama and Murasawa, 2000). Accordingly, a grey scale

patterns is applied by spraying paint onto the specimen as shown in

Figure 4.2.

Four axes Cameras for DIC

Load cell Integrated strain

measurement system

Hydraulic

clamping jaw

Figure 4.1: Biaxial testing device.
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Figure 4.2: Grey scale pattern.

4.1.2 Dynamical Mechanical Analysis

The DMA (Dynamical Mechanical Analysis) or Dynamical Mechanical

Thermo Analysis (DMTA) method can be used to determine thermo-

viscoelastic properties of a material (Grellmann and Seidler, 2011). The

specimen is subjected to a periodically (mostly sinusoidal) changing

load of constant frequency and amplitude. The temporal change of

stress and strain have the same frequency but different phase angles as

described in Section 2.4. Via the measuring of force or path (with given

specimen dimensions) and phase shift, storage modulus, loss modulus

and loss factor can be evaluated using the equations in Section 2.4.

The testing device GABO Eplexor® 500N as shown in Figure 4.3a is used

for the experiments in this thesis. The experiments can be performed in

a temperature range from −150◦C to 500◦C and a frequency range from

0.01 Hz to 100 Hz. The maximum static load is 1500 N, the maximum

dynamic load is 500 N (depending on the load cell), the maximum static

displacement is 35 mm, and the maximum dynamic displacement is
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1.5 mm. The measurements can be either stress or strain controlled.

Depending on the testing procedure, the following parameters can be

set and controlled: static load, dynamic load, static strain, dynamic

strain, frequency and temperature, and the so-called contact force,

which is used to measure the initial length and to tighten the specimen

in tensile tests and to ensure that the specimen rests in the holder in

compression tests.

(a) (b)

Figure 4.3: DMA testing device. (a) Photograph DMA, (b) Detail of (a).

The principle functioning is as follows. After the contact force is ap-

plied, the static load is adjusted by varying (lengthening or shortening)

the static load unit. The lower force axis via a leaf spring forms the coun-

terforce. The electrodynamic drive (shaker) generates a dynamically

oscillating force on the specimen. The dynamic counterforce is also

recorded directly by the force transducer. The analog signals recorded

by the force transducer and dynamic displacement measuring system
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further processed and evaluated in the process computer. The desired

measurement results are then calculated using the amplitudes of the

force and displacement signals and the phase shift. With the help of

the software, various testing procedures can be set, e.g. timesweep,

temperature sweep and frequency sweep. In timesweep all parameters

are kept constant and several measurements are performed under the

same conditions, in temperature and frequency sweep the temperature

and the frequency are varied respectively (Gabo, 2010).

4.1.3 Dilatometer

Dilatometry (DIL) is a technique that measures a dimensional change

(the length or volume) of a material under negligible stress as a function

of temperature. The Dilatometer used in this work is a pushrod

dilatometer DIL 402 Expedis Classic® from NETZSCH Gerätebau GmbH.

The specimen length is measured under temperature control in an oven

by a sensitive sensor system under a very small clamping force of

0.2 N. The thermal expansion cooefficient can then be computed as

△l(θ)/△θ (with the length l of the specimen and the temperature θ)

between each measuring point. High measuring rates allow for a an

almost continuous measurement of the thermal expansion. Due to the

very sensitive measuring sensors, small fluctuations due to vibrations

of enviromental influences lead to measurement noise. Therefore a

mean filter is applied to the direct experimental data. To determine

the magnitude of the mean filter, a Fourier analysis was applied to the

experimental data. The temperature range of the dilatometer is from

−100◦C to 1000◦C, enabled by nitrogen cooling and a heating oven.

Suitable specimens have a length of best 30 mm to 50 mm. Accuracies

of up to 0.003 % in strain (absolute value) and 1 K in temperature are

possible. Figure 4.4 show photographs of the dilatometer, with the

whole testing device in Figure 4.4a and a detailed view of the specimen

holder, pushrod and specimen in Figure 4.4b.
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(a) (b)

Figure 4.4: Dilatometer. (a) Photograph dilatometer, (b) Detail of (a).

4.1.4 Laser Flash Analysis

With laser flash method (LFA) thermal diffusivity, heat capacity and

thermal conductivity can be determined. The quantity that is directly

measured is the thermal diffusivity. Figure 4.5 shows the principle

functioning. A flat specimen is placed in a chamber with temperature

control. One side of this specimen is subjected a short energy pulse.

On the other side temperature over time is detected. From this

temperature course, thermal diffusivity can be determined. Using a

reference specimen with known heat capacity, also the heat capacity

of the measured specimen can be determined. Combining these two

material parameters with the mass density, also thermal conductivity

can be calculated (NETZSCH, 2021). Details on the basics of LFA

method can be found in Parker et al. (1961), who described first this

measuring method. Information on nowadays standard laser flash

methods can be found in Johra (2019), Cape and Lehman (1963) and

Cowan (1963).
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Figure 4.5: LFA technique (according to NETZSCH (2021)).

The laser flash apparatus used in this theses is a NETZSCH LFA Hyper-

flash 467®. A photograph of the testing device is shown in Figure 4.6.

The temperature range of the measurements is from −100◦C to 500◦C

using a furnace and liquid nitrogen cooling. The measuring range

for thermal diffusivity is 0.01 mm2/s to 2000 mm2/s and for thermal

conductivity 0.1W/(mK) to 4000W/(mK)

Figure 4.6: Photograph LFA ( NETZSCH (2021)).
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4.2 Specimens

Specimens considered in this thesis were were extracted from the plates

manly using water-jet cutting for the SMC specimens, partly combined

with a milling or sawing treatment. The pure resin specimens were

cut by gentle milling. Figures 4.7 to 4.12 show the different specimen

geometries. Figure 4.7 shows a bone specimen. This specimen can be

used in the biaxial testing device (in uniaxial use). In this work it is

used for damage experiments and failure experiments. The rectangular

area marked in violet, the area of interest (AI) is used for the calculation

of the area-averaged strains by the DIC

ε̄I
ij =

1

AI

∫

AI

εijdAI. (4.1)

Figure 4.8 shows a biaxial cruciform specimen. The special design of

this specimen is presented in Section 4.5.1. This specimen is used in the

biaxial testing device for damage and failure experiments. The violet

marked square is the area of interest. The area-averaged strain over

this area is defined as in Equation (4.1).

The rectangular specimen in Figure 4.9 can be used in the DMA, and

as small specimen in the biaxial testing device. Stiffness and failure

experiments are conducted with this specimen geometry. The specimen

of Figure 4.10a fits into the DMA, the dilatometer, and also the biaxial

testing device. Figure 4.10b show a specimen that is suitable for

dialtometer and DMA. The small square shaped specimen of Figure 4.11

is used for the LFA experiments. Figure 4.12 shows a specimen that is

used for a shear experiment in the biaxial testing device. Reference is

made to the specimen geometries shown here at the appropriate places

in the text.
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230 mm

127 mm

20 mm18 mm 40 mm

60 mm

Figure 4.7: Bone specimen; use in: biaxial testing device.

70 mm

60 mm

Figure 4.8: Biaxial specimen; use in: biaxial testing device, for details see Section 4.5.1.
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70 mm

10 mm

Figure 4.9: Rectangular specimen; use in: DMA and as "small" specimen in biaxial testing
device.

50 mm

10 mm

(a)

35 mm

8 mm

(b)

Figure 4.10: Rectangular specimens, use in: dilatometer, DMA, biaxial testing device.

10 mm

10 mm

Figure 4.11: Quadratic specimen; use in: LFA.

10 mm

15 mm

5 mm

Figure 4.12: Shear specimen; use in: biaxial testing device.
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4.3 Thermoelastic Material Parameters

4.3.1 Introducing Remarks and Data Evaluation

In the following sections, the results of the experimental investigations

of the thermoelastic material behavior is presented. The considered

material parameters are Young’s modulus, Poisson’s ration, thermal

expansion coefficient, thermal diffusivity, thermal conductivity, and

heat capacity. Those which belong to the tensorial material coefficients

(see Section 3.1) are evaluated in special directions (the exact relation

between the measured material parameters and the material coeffi-

cients of the material model is explained in the parameter identification

chapter (see Section 5.1)). All of them, except Poisson’s ratio (because

only measurable with the biaxial testing device without temperature

control), are measured in dependence of temperature. The temperature

range considered for this purpose is −10◦C to 80◦C.

For each individual material parameter ξ(θ) (ξ denotes an any material

parameter in the following) a value for the room temperature (RT)

range is calculated. It is an average of all values taken between 10◦C

and 30◦C and referred to as ξRT. This introduces a kind of mean

filter avoiding that variations exactly around 20◦C influence the value

significantly. Which values exactly are taken for this is explained at the

corresponding point. Regarding the biaxial testing device, the values

are taken here at the current temperature in the laboratory (which can

vary between 15◦C and 25◦C), as it has no temperature control.

For each temperature and each parameter, measurements with several

specimens are taken. Statistical values (mean, standard deviation (std),

coefficient of variation (CV)) are calculated for the above mentioned

RT value ξRT according to Appendix A.3. Also the used boxplot

representation is elucidated in this appendix Section (Appendix A.3.2).

To evaluate the pronouncedness of the temperature dependence, the

relative difference between the value of a material parameter at −10◦C
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and 80◦C is introduced as

△ξrel,RT =
ξ (θ = 80◦C) − ξ (θ = −10◦C)

ξRT
. (4.2)

Here, ξ (θ = −10◦C) and ξ (θ = 80◦C) are the values of the material

parameter ξ(θ) at −10◦C and 80◦C. The difference is normalized to the

above mentioned RT value ξRT for comparability.

For all thermoelastic material parameters, specimens from SMC flow

plates (see Figure 2.4) and from pure resin were considered. Depending

on the parameter and the experimental method requiring a certain

specimen geometry, the measuring direction differs. Thus, stiffness and

thermal expansion coefficient are measured in different directions in the

0◦-90◦-plane (see Figure 2.4) and thermal diffusivity and thermal con-

ductivity in the direction perpendicular to this 0◦-90◦-plane. The latter

can be described as the plate thickness direction. For the parameters

measured in the 0◦-90◦-plane, the anisotropy ratio Γ0/90 is defined as

Γ0/90 =
ξ0◦

ξ90◦

, (4.3)

with the value of the parameter ξ0◦ measured in 0◦-direction and ξ90◦

measured in 90◦-direction at RT. Furthermore, the ratio of the values of

the parameters of the reinforced material to these of the unreinforced

material is introduced as

ΓSMC/PR =
ξSMC

ξPR
, (4.4)

with the value of the parameter for SMC ξSMC (in different then

indicated measuring directions) and for pure resin ξPR at RT.

Preliminary studies were performed to investigate the reproducibility

of the experimental results and possible influences of specimen condi-

tioning. As a result, all specimens are conditioned at 100◦C for 1 h to

enhance the reproducibility. As an example, the results of a preliminary
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study with the dilatometer, in which one specimen was tested several

times under different conditions, can be found in Appendix A.2.

4.3.2 Stiffness

As stiffness parameters Young’s modulus and Poisson’s ratio are

considered. The biaxial testing device is used for values at room

temperature for Young’s modulus and Poisson’s ratio. Here, stiffness is

determined using the displacement of the axes and the force. Poisson’s

ratio is determined within the scope of measurement accuracy (see

Section 4.5.2) by DIC. Additionally, for some specimens DMA exper-

iments for temperature-dependent Young’s modulus are performed

with assuming that storage modulus is equal to Young’s modulus here

(see Kehrer (2019)). For selected specimens Young’s modulus was

determined by DMA and biaxial testing device. The relative difference

was below 3 %. As specimen shapes the small rectangular ones of

Figure 4.9 and Figure 4.10a are used. These specimens fit into both

testing device.

Figure 4.13 shows the Young’s modulus over temperature for several

specimens. The markers of the measuring points are connected by

straight lines to indicate the course. The trend is significantly de-

creasing for the pure resin material and both SMC directions for all

specimens. The curves of the two pure resin samples are almost iden-

tical. In 0◦- and 90◦-directions the curves of the individual specimens

differ significantly, respectively. Tables 4.1 and 4.2 depict mean value,

standard deviation (std), and coefficient of variation (CV) as measure

for the scattering for Young’s modulus and Poisson’s ratio at room

temperature for the different SMC specimen directions and the pure

resin material. For Young’s modulus and Poisson’s ratio, the CV for

SMC is approximately 10 % in all directions, whereas the CV of Young’s

modulus of pure resin is approximately 2 %. Figure 4.14 illustrates

the statistical considerations via a boxplot representation for Young’s
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modulus of the SMC material in 0◦- and 90◦-direction. Details on

statistical analysis can be found in Appendix A.3.

The comparison of the values of the pure resin and SMC in 0◦- and

90◦-direction leads to an anisotropy ratio of Γ0/90 = 1.36 and a ratio

of reinforcement of ΓSMC-0/PR = 4.06 (see Equations (4.3) and (4.4)).

Table 4.3 shows the Young’s modulus at the edges of the considered tem-

perature range and the relative difference △Erel,RT (see Equation (4.2)).

E(θ = −10◦C) andE(θ = 80◦C) are the mean values over all specimens,

respectively. The scattering measures are similar to those for the RT val-

ues. For the pure resin material the difference is approximately 27 %, for

the SMC specimens it is less half of this value with approximately 10 %

with slightly more in 90◦-direction and slightly less in 0◦-direction.
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Figure 4.13: Young’s modulus E(θ) of pure resin (2 specimens) and SMC in 0◦-direction
(3 specimens), and 90◦-direction (3 specimens) over temperature θ.
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no of Mean Std CV

spec. in MPa in MPa in %

Pure resin 2 2660 56 2.13

SMC 0◦ 8 10801 1079 9.99

SMC 90◦ 7 7967 711 8.92

SMC 45◦ 6 9050 927 10.24

Table 4.1: Young’s modulus at room temperature ERT for pure resin and SMC in 0◦-, 90◦ -
and 45◦-direction; mean, standard deviation (std) and coefficient of variation (CV) for
indicated number of specimens (no of spec.)(Calculation as per Appendix A.3).

SMC 0 ◦ SMC 90 ◦
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Figure 4.14: Young’s modulus at RT ERT of SMC in 0◦-direction (8 specimens) and 90◦-
direction (7 specimens) determined by experiments with biaxial testing device and DMA:
boxplot representation (for explanation see Appedix A.3.2).

97



4 Experimental Investigations

no of Mean Std CV

spec. in - in - in %

SMC 0◦ 5 0.367 0.0213 5.8

SMC 90◦ 4 0.272 0.0258 9.4

SMC 45◦ 3 0.301 0.0340 11.3

Table 4.2: Poisson’s ratio at room temperature νRT for SMC in 0◦-, 90◦-, and 45◦-direction
; mean, standard deviation (std) and coefficient of variation (CV) for indicated number of
specimens (no of spec.) (Calculation as per Appendix A.3).

E (θ = −10◦C) E(θ = 80◦C) △Erel,RT

in MPa in MPa in %

Pure resin 2851 2132 −27.0

SMC 0◦ 11022 10170 −7.9

SMC 90◦ 8687 7422 −15.0

Table 4.3: Young’s modulus E at θ = −10◦C and θ = 80◦C (mean values over all (in
the full temperature range) tested specimens respectively) and normalized difference
△αrel,RT (see Equation (4.2)) for pure resin and SMC in 0◦- and 90◦- direction.

4.3.3 Thermal Expansion

Using the dilatometer presented in Section 4.1.3, the thermal expansion

in dependence on temperature was experimentally determined. The

considered temperature range was tested with a heating rate of 2 K/min

and a small measuring step width of 0.1 K.

The experiments were performed with several specimens in 0◦-

direction (5 specimens), 90◦-direction (5 specimens), 45◦-direction (1

specimen) and pure resin (2 specimens) of the specimen shapes shown

in Figures 4.10a and 4.10b.

Figure 4.15 shows the thermal expansion coefficient over temperature
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for several specimens. The trend is significantly increasing for the

pure resin material, with an increasing slope. For the 90◦ specimens

the trend is only slightly increasing and for 0◦ it is almost constant.

The curves of the two pure resin samples are almost identical. In 0◦-

and 90◦-directions the trend is the same respectively but scattering

is visible. Table 4.4 depicts mean value, standard deviation (std),

and coefficient of variation (CV) as measure for the scattering for the

thermal expansion coefficient at room temperature for the different

SMC specimen directions and the pure resin material (there are more

specimens than in the diagram (Figure 4.15) because not all specimens

were tested in the full temperature range). The room temperature

values αRT for the individual specimens are here calculated as the mean

of all values between 10◦C and 30◦C. The higher scattering of the

SMC specimens is here shown by the CV of approximately 10 % in

both directions, whereas the CV of pure resin is below 1 %. Figure 4.16

illustrates the statistical considerations via a boxplot representation for

the SMC material in 0◦- and 90◦-direction. Details on statistical analysis

can be found in Appendix A.3.

The comparison of the values of the pure resin and SMC in 0◦- and

90◦-direction leads to an anisotropy ratio of Γ0/90 = 0.70 and a ratio

of reinforcement of ΓSMC-0/PR = 0.23 (see Equations (4.3) and (4.4)).

Table 4.5 shows the thermal expansion coefficient at the edges of the

considered temperature range and the relative difference △arel,RT (see

Equation (4.2)). Here, a(θ = −10◦C) and a(θ = 80◦C) are the

mean values over all specimens, respectively, with scattering measures

similar to those for RT. For the pure resin material the difference is

pronounced with approximately 35 %, for SMC in 90◦-direction the

difference is approximately 10 % and for SMC in 0◦-direction the very

small value implies a almost constant behavior.
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Figure 4.15: Thermal expansion coefficient α(θ) of pure resin (2 specimens) and SMC in
0◦-direction (3 specimens), and 90◦-direction (3 specimens) over temperature θ.

no of Mean Std CV

spec. in 1/K · 10−5 in 1/K · 10−5 in %

Pure resin 2 6.13 0.247 0.40

SMC 0◦ 5 1.61 0.154 9.61

SMC 90◦ 5 2.30 0.208 9.04

SMC 45◦ 1 2.00 / /

Table 4.4: Thermal expansion coefficient at RT αRT for pure resin and SMC in 0◦-,
90◦-, and 45◦-direction; mean, standard deviation (std) and coefficient of variation (CV)
(Calculation as per Appendix A.3).

100



4.3 Thermoelastic Material Parameters

SMC 0 ◦ SMC 90 ◦0

1

2

3
·10−5

Material

α
R

T
in

1
/
K

Figure 4.16: Thermal expansion coefficient at RT αRT of SMC in 0◦-direction (5 specimens)
and 90◦-direction (5 specimens) determined by DIL experiments: boxplot representation
(for explanation see Appendix A.3.2).

α (θ = −10◦C) α(θ = 80◦C) △αrel,RT

in 1/K · 10−5 in 1/K · 10−5 in %

Pure resin 5.77 7.87 34.20

SMC 0◦ 1.62 1.60 −0.55

SMC 90◦ 2.34 2.57 9.95

Table 4.5: Thermal expansion coefficient α at θ = −10◦C and θ = 80◦C (mean values
over all tested specimens respectively) and normalized difference △αrel,RT (see Equa-
tion (4.2)) for pure resin and SMC in 0◦- and 90◦- direction.

4.3.4 Thermal Diffusivity

The thermal diffusivity is introduced as an additional material co-

efficient to the coefficients discussed in Section 3.1, since thermal
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diffusivity is directly determined via the LFA method (see Section 4.1.4).

The thermal diffusivity a is defined via the heat capacity cp, the thermal

conductivity κ, and the mass density ρ ( Salazar (2003), Johra (2019))

a(θ) =
κ(θ)

ρ cp(θ)
. (4.5)

The LFA experiments for determining thermal diffusivity described in

the following are also used for the determination of the heat capacity

and the thermal conductivity (Sections 4.3.5 and 4.3.6). In total, 3

pure resin and 8 SMC specimens were tested in the considered tem-

perature range of −10◦C to 80◦C with a step width of 10◦C. Due

to the for the testing device required specimen shape (see Section 4.2

and Section 4.1.4), the measurements can only be performed in the

plate thickness direction, i.e. perpendicular to the 0◦-90◦-plane (see

Figure 2.4). The experimental data is partly taken from Wehrle (2020).

Figure 4.17 depicts the results for all tested pure resin and SMC

specimens. Every specimen was tested four times, and the averages

of these four measurements are taken for the diagram. The diagram

(Figure 4.17) shows the thermal diffusivity over temperature. The

markers are located at the measurement points. They are connected

by straight lines to indicate the course. Both curves have a decreasing

trend. The thermal diffusivity of SMC is higher than that of the pure

resin for all temperatures, whereas SMC curves scatter more than

the pure resin curves. Table 4.6 depicts the mean values, standard

deviations (std) and coefficient of vaiation (CV) at room temperature

for pure resin (calculated over the 3 measured specimens) and SMC

(calculated over the 8 measured specimens). The room temperature

values for the individual specimens are here calculated as the mean

of the three values (at 10◦C, 20◦C, 30◦C). It can be noticed that the

mean value for the thermal diffusivity at room temperature for SMC is

about 1.2 times greater than the one for the pure resin (ΓSMC/PR = 1.2,
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see Equation (4.4)). Figure 4.18 illustrates the statistical considerations

via a boxplot representation. Table 4.6 and Figure 4.18 elucidate the

higher scattering for SMC and the low scattering for the pure resin.

Here must be taken into account that the number of specimens is

very small for the pure resin. Details on statistical analysis can be

found in Appendix A.3. With Table 4.7 the temperature dependence

can be analysed and compared. It shows the values of the thermal

diffusivity at the edges of the considered temperature range ( a(θ =

−10◦C) and a(θ = 80◦C), mean values over all specimens, respectively,

with standard deviation and CV similar to the values at RT) and the

relative difference △arel,RT (see Equation (4.2)) . For both materials

the normalized difference of the thermal diffusivity is around 20 %,

whereas for the pure resin the value is slightly greater than for SMC.
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Figure 4.17: Thermal diffusivity a(θ) of pure resin (3 specimens) and SMC (8 specimens)
over temperature θ (measured in plate thickness direction by LFA experiments).
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no of Mean Std CV

spec. in mm2/s in mm2/s in %

Pure resin 3 0.143 0.00146 1.02

SMC 8 0.172 0.00714 4.79

Table 4.6: Thermal diffusivity aRT at RT for pure resin and SMC (measured in plate
thickness direction by LFA experiments); mean, standard deviation (std) and coefficient
of variation (CV) of the indicated number of specimens (no of spec.) (Calculation as per
Appendix A.3).

Pure resin SMC

0.14

0.16

0.18

Material

a
R

T
in

m
m

2
/
s

Figure 4.18: Thermal diffusivity aRT at RT of pure resin (3 specimens) and SMC (8
specimens) determined by LFA experiments (in plate thickness direction): boxplot
representation (for explanation see Appendix A.3.2).
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a(θ = −10◦C) a(θ = 80◦C) △ arel,RT

in mm2/s in mm2/s in %

Pure resin 0.160 0.125 −24.5

SMC 0.187 0.155 −18.5

Table 4.7: Thermal diffusivity a at θ = −10◦C and θ = 80◦C and normalized difference
△arel,RT (see Equation (4.2)) for pure resin and SMC (mean values over all tested
specimens resp.; measured in plate thickness direction by LFA experiments).

4.3.5 Heat Capacity

The heat capacity was determined via the LFA experiments for the

thermal diffusivity described in Section 4.3.4. The test procedure, num-

ber of specimens and experiments, and data evaluation are therefore

the same as for the thermal diffusivity measurements in Section 4.3.4.

The measurement accuracy and reproducibility of the LFA method is

less for heat capacity than for diffusivity. Therefore, it is even more

important that several measurements of a specimen are performed.

Statistical evaluation has shown that the scatter between different

measurements of one specimen is of a similar order of magnitude as the

scatter between different specimens. However, the value averaged from

several measurements approximates the actual value with sufficient

accuracy. Studies on this can be found in Wehrle (2020).

The diagram of Figure 4.19 shows the heat capacity over temperature

for all of the 3 pure resin and 8 SMC specimens. As for the diffu-

sivity temperature diagram the markers of the measuring points are

connected by straight lines to indicate the course. The pure resin curve

is above the SMC curve. Both curves have increasing trend, with

the slope being larger for pure resin. Slight scattering is visible for

both materials. Table 4.8 shows the mean values, standard deviations

(std) and coefficients of variation (CV) at room temperature for pure

resin (calculated over the 3 measured specimens) and SMC (calculated
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over the 8 measured specimens). The room temperature values for

the individual specimens are here the mean of the values at 10◦C

and 30◦C (faulty measuring value at 20◦C). The mean value for the

heat capacity at room temperature for SMC is about 0.75 of the one

for the pure resin (ΓSMC/PR = 0.75, see Equation (4.4)). Figure 4.20

visualizes the statistical considerations with a boxplot. The relatively

small scatter of maximum 3 % for pure resin and for SMC can be seen

in Table 4.8 and Figure 4.20. Here, the scatter of the pure resin values

is greater than that of the SMC values. It should be noted here that the

measurement inaccuracy for heat capacity of the testing device can also

be the cause of the scatter. Details on statistical analysis can be found

in Appendix A.3. With Table 4.9 the temperature dependence can be

analysed and compared. It shows the values of the thermal diffusivity

at the edges of the considered temperature range ( cp(θ = −10◦C) and

cp(θ = 80◦C), mean values over all specimen,s respectively, with std

and CV similar to the values at RT) and the relative difference △cp rel,RT

(see Equation (4.2)) . The temperature dependence of the heat capacity

is clearly present for both materials, whereby it is more pronounced for

the pure resin.
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Figure 4.19: Heat capacity cp(θ) of pure resin (3 specimens) and SMC (8 specimens) over
temperature θ (determined by LFA experiments).

no of Mean Std CV

spec. in J/gK in J/gK in %

Pure resin 3 1.40 0.0420 3.01

SMC 8 1.06 0.0135 1.28

Table 4.8: Heat capacity cp,RT at RT for pure resin and SMC (determined by LFA
experiments); mean, standard deviation (std) and coefficient of variation (CV) of the
indicated number of specimens (no of spec.) (calculation as per Appendix A.3).
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Figure 4.20: Heat capacity cpRT at RT of pure resin (3 specimens) and SMC (8 spec-
imens) determined by LFA experiments: boxplot representation (for explanation see
Appendix A.3.2).

cp(θ = −10◦C) cp(θ = 80◦C) △ cp rel,RT

in J/(gK) in J/(gK) in %

Pure resin 1.29 1.60 22.0

SMC 1.00 1.16 14.8

Table 4.9: Heat capacity cp at θ = −10◦C and θ = 80◦C and normalized difference
△ cp rel,RT (see Equation (4.2)) for pure resin and SMC (mean values over all tested
specimens; measured by LFA experiments).

4.3.6 Thermal Conductivity

The LFA experiments for the thermal diffusivity described in Sec-

tion 4.3.4 serve also to determine the thermal conductivity. There-
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fore the relation of Equation (5.26) is used with the values for ther-

mal diffusivity and heat capacity of the two previous sections and

the mass density taken from Trauth (2018) (ρSMC = 1.53 g/cm3 and

ρPR = 1.14 g/cm3). The same remarks regarding measurement accuracy

and reproducibility apply to thermal conductivity as to heat capacity.

Figure 4.21 shows the thermal conductivity over temperature for all of

the three pure resin and eight SMC specimens. Again, the markers

of the measuring points are connected by straight lines to indicate

the course. The pure resin curve is below the SMC curve. Both

curves indicate a nearly constant behavior of the thermal conductivity.

Scattering for SMC is more pronounced than for pure resin. In

Table 4.10 the statistical quantities (mean value, standard deviation

(std) and coefficient of variation (CV)) at room temperature (RT) can

be found for pure resin (calculated over the 3 measured specimens)

and SMC (calculated over the 8 measured specimens). The RT values

for the individual specimens are here the mean of the values at 10◦C

and 30◦C, corresponding to the available values for heat capacity. The

ratio of thermal conductivity at room temperature for SMC and pure

resin is about ΓSMC/PR = 1.2 (see Equation (4.4)). A visualization of the

statistical considerations is given in Figure 4.20 with a boxplot. The

CV for both materials is below 5 % and for pure resin slightly below

SMC. Details on statistical analysis can be found in Appendix A.3. The

temperature dependence in analysed in Table 4.11. It depicts the values

of the thermal diffusivity at the edges of the considered temperature

range ( κ(θ = −10◦C) and κ(θ = 80◦C), mean values over all specimens

respectively, with std and CV similar to the values at RT) and the

relative difference △κrel,RT (see Equation (4.2)) . The relative difference

is below 5 % for both materials, which confirms the nearly constant

behavior. From Figure 4.21 can be seen that there are more pronounced

fluctuations at low temperatures which influence that value; measuring

inaccuracies may here influence the values.
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Figure 4.21: Thermal conductivity κ(θ) of pure resin (3 specimens) and SMC (8 specimens)
over temperature θ (determined in plate thickness direction by LFA experiments).

no of Mean Std CV

spec. in W/(mm K) in W/(mm K) in %

Pure resin 3 2.27 · 10−4 0.062 · 10−4 2.72

SMC 8 2.79 · 10−4 0.114 · 10−4 4.10

Table 4.10: Thermal conductivity κRT at RT for pure resin and SMC (determined in plate
thickness direction by LFA experiments); mean, standard deviation (std) and coefficient
of variation (CV) of the indicated number of specimens (no of spec.) (calculation as per
Appendix A.3).
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Figure 4.22: Thermal conductivity κRT at RT of pure resin (3 specimens) and SMC
(8 specimens) determined by LFA experiments (in plate thickness direction): boxplot
representation (for explanation see Appedix A.3.2).

κ(θ = −10◦C) κ(θ = 80◦C) △κrel,RT

in W/(mm K) in W/(mm K) in %

Pure resin 2.36 · 10−4 2.28 · 10−4 −3.52

SMC 2.86 · 10−4 2.73 · 10−4 −4.66

Table 4.11: Thermal conductivity κ at θ = −10◦C and θ = 80◦C and normalized differ-
ence △κrel,RT (see Equation (4.2)) for pure resin and SMC (mean values over all tested
specimens; measured in plate thickness direction by LFA experiments).
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4.4 Damage and Failure

4.4.1 Damage

Introducing remarks. As introduced in Section 2.3.1, stiffness degrada-

tion is one important phenomenon of damage. Here, the anisotropic

stiffness degradation due to uniaxial and biaxial tensile load and the

influence of initial anisotropy is investigated. Therefore, in a first step

uniaxial tensile experiments with bone specimens are performed and

in a second step biaxial tensile experiments with cruciform specimens.

The results of the two experimental series are compared and merged.

All of the damage experiments are performed with the biaxial testing

device. Strain is measured by DIC. The considered strain values are

always the over the center area of the specimen averaged strains ε̄I
ij as

defined in Equation (4.1). For a shorter and clearer notation, especially

in the diagrams, in this section only ε11 and ε22 are written for ε̄I
11 and

ε̄I
22, respectively. The experimental data is partly taken from Schmidt

(2019).

Uniaxial testing with bone specimens. For the uniaxial damage

experiments, the bone specimens as introduced in Section 4.2 were used

(Figure 4.7). The testing procedure is based on cyclic uniaxial tension

with a stepwise load increase. Figure 4.23 shows the schematic strain

path. The load is applied path-controlled by the displacement of one

of the traverses. The strain rate is small (below 1 %/min) such that

it can be considered as quasistatic. Between the loading steps there

are long waiting times (75 s) in order to have as similar conditions as

possible with regard to viscoelastic effects at the beginning of each

cycle . This ensures that the stiffness evaluated at the beginning

of each cycle is comparable and changes are only/mainly due to

damage. Remarks on investigations concerning the viscoelastic effects

and the distinction of the different mechanical phenomena are given in
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Section 4.5.3. During these waiting times the force is controlled to a

low contact force (of negligeable order of magnitude compared to load

forces) to avoid compressive stress and buckling. Before starting the

testing procedure itselves, a pre-cycle is carried out to ensure that the

specimen settles in the clamping jaws. The strain of the pre-cycles is of

about ε11 = 0.2 %. Preliminary studies have shown that there occurs no

significant damage up to a normal strain of about 0.2 %.

0

Time t

S
tr

ai
n
ε

ε11

Measuring points

Damaging load

Figure 4.23: Schematic strain path for the experimental procedure of uniaxial stiffness
degradation experiments.

The stiffness is evaluated using the values of force and strain at

the measuring points marked in violet in Figure 4.23. These are at

the beginning of each cycle after the waiting times to have similar

conditions for each stiffness measurement. The lower measuring point

is at a strain of approximately 0.025 % and the upper is at a strain of

approximately 0.2 %. Thus Young’s modulus is calculated via

E =
△F1

△ε̄I
11 A

(4.6)
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with the force difference △F1 and the strain difference △ε̄I
11 in the

measuring direction (where ε̄I
ij is defined as in Section 4.2) and the cross

sectional area A of the specimen.

Considering the two different plate variants (see Figures 2.4 and 2.5

) and the different directions in the plates, three cases can be distin-

guished:

• Case a): Flow specimen, uniaxial damaging load in initially stiffer

direction (0◦)

• Case b): Flow specimen, uniaxial damaging load in initially less stiff

direction (90◦)

• Case c): Full specimen, uniaxial damaging load in an arbitrary

direction (0◦ and 90◦ are equal )

Figure 4.24 depicts the stiffness over the maximum reached strain

εmax = ε̄I
11,max for several specimens of all cases. The maximum reached

strain ε̄I
11,max is the maximum strain in the cycle before the measure-

ment cycle which is the maximum strain ever reached in loading history

until the instant of measurement. For comparability, the stiffness is

normalized to its initial value E0 for each specimen. The markers of

the individual stiffness measurements are connected by straight lines

to indicate the course.

The stiffness degradation is clearly visible for all cases. For the flow

specimens in 0◦-direction (green dashed thick lines), it is the less

pronounced, for the flow specimens in 90◦-direction (blue thin dashed

lines), it is the most pronounced and for the full specimens (red dotted

lines) it lies in between. At a maximum strain of 1.0 %, the stiffness

values (E/E0) lie at about 0.98 for the 0◦ flow specimens, at 0.89

for the 90◦ flow specimens, and at 0.95 for the full specimens. Due

to scattering and fluctuations the exact quantitative evaluation must

be considered with caution, but the tendency of the differences is

significantly visible.
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Figure 4.24: Normalized stiffness E/E0 over maximum reached strain (εmax = ε̄I
11,max)

in load history for bone specimens loaded with uniaxial tension.
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Biaxial experiments. The biaxial experiments are performed with the

reinforced cruciform specimens introduced in Section 4.2 and exploited

in detail in Section 4.5.1. Two testing procedures are performed with

two different loading ratios as damaging load, which corresponds in

principle to the testing procedure of the uniaxial damage experiments

with bone specimens.

In the first testing procedure the damaging load corresponds to uniaxial

tension. Figures 4.25 and 4.26 show a schematic strain and force path for

this loading procedure. The damaging load is applied in one direction

(e1-direction) in a stepwise increasing way until failure (corresponds

to the dashed black line in Figure 4.25 and Figure 4.26). Between

these loading steps, a constant small (non-damaging) uniaxial tension

(approx. 0.2 %) in the perpendicular direction is applied (solid grey

line). This allows for an observation of stiffness degradation in and

perpendicular to the main loading direction. Between every loading

step there are long waiting times (75 s) to have as similar as possible

conditions regarding viscoelastic effects. The tensile load is applied

path-controlled. Perpendicular to the respective loading direction, a

force control ensures a low contact force to avoid any compressive load

and buckling. This contact force can be considered as about zero (small

compared to forces during loading and stiffness evaluation cycles).

Thus the lateral contraction is allowed and the load states correspond

always to planar stress states. As for the uniaxial load, pre-cycle is

carried out before the testing procedure itself begins to ensure that the

specimen settles in the clamping.
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Figure 4.25: Schematic strain path for the experimental procedure with uniaxial tension
as damaging load for cruciform specimens.
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Figure 4.26: Schematic force path for the experimental procedure with uniaxial tension as
damaging load for cruciform specimens.

In the second procedure, the damaging load corresponds to equibiaxial

tension. Figures 4.27 and 4.28 show a schematic strain and force

path. In principle, the testing procedure corresponds to the first testing
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procedure. The difference is that the damaging load is equibiaxial

tension (equi path-controlled, can lead to slightly different strains and

different forces). In between the loading steps, now in both directions, a

small constant load (approx. 0.2 %) is applied to evaluate the stiffness.
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Figure 4.27: Schematic force path for the experimental procedure with equibiaxial tension
as damaging load for cruciform specimens.
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Figure 4.28: Schematic force path for the experimental procedure with equibiaxial tension
as damaging load for cruciform specimens.

118



4.4 Damage and Failure

The stiffness is evaluated using the values of force and strain at the

measuring points marked in violet in Figures 4.25 - 4.28. The lower

measuring point is at a strain of approximately 0.025 %, the upper at

a strain of approximately 0.2 %. For the uniaxial testing procedure in

main loading direction this is at the beginning of each cycle, for the

small measuring cycles it is at maximum and minimum of the load. As

the stress and thus Young’s modules can not be calculated directly, a

equivalent stiffness Ẽi is introduced for load in direction ei

Ẽi =
△Fi

△ε̄I
(i)(i)

, (4.7)

with △Fi being the force difference in the ei-direction and △ε̄I
(i)(i)

difference of the normal strain (averaged of the AI as introduced

in Section 4.2, parenthesis mean no summation over indices) in ei-

direction between the marked measuring points.

Both procedures are applied to specimens from flow plates (high

anisotropy, see Figure 2.4) and from full plates (almost planar isotrop,

see Figure 2.5). The cruciform specimens are cut from the plates such

oriented that the direction of the arms corresponds to the 0◦- and 90◦-

direction of the plates. For the uniaxial load and the flow specimens the

damaging load is applied in the flow direction (0◦) and in the non-flow

direction (90◦). This leads to 5 cases, where cases a), b), c) correspond

to the cases of the uniaxial bone specimens.

• Case a): Flow specimen, uniaxial damaging load in initially stiffer

direction (0◦)

• Case b): Flow specimen, uniaxial damaging load in initially less stiff

direction (90◦)

• Case c): Full specimen, uniaxial damaging load in an arbitrary

direction (0◦ or 90◦)

• Case d): Flow specimen, equibiaxial damaging load

• Case e): Full specimen, equibiaxial damaging load
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In the following, the color- and line-scheme presented in Figure 4.29

is used. Cold colors (bluish, greenish) correspond to flow specimens

and warm colors (reddish, yellow, orange) to full specimens. Thicker

lines correspond to the initially stiffer direction (0◦, parallel to the

flow direction) and thinner lines to the initially less stiff direction

(90◦, perpendicular to flow direction). Dashed lines refer to the main

(damaging) loading direction, solid lines to the not damagingly loaded

direction, as already used in Figures 4.25 to 4.28.

Flow specimen Full specimen

0◦-dir., initially stiffer dir., ‖ MFD
90◦-dir., initially less stiff dir., ⊥ MFD
Planariso, same stiffness

Figure 4.29: Color and line scheme.

Figure 4.30 shows the result for case a), where uniaxial damaging load

is applied in the initially stiffer direction (flow, 0◦). The equivalent

stiffness as defined in Equation (4.7) over the maximum reached strain

(εmax = ε̄I
11,max) in the loading direction is here depicted for several

biaxial specimens and a corresponding uniaxial bone specimen for

comparison. The maximum reached strain is the maximum strain in

the cycle before the measurement cycle which is the maximum strain

ever reached in loading history until the instant of measurement. For

comparability, the stiffness is normalized to its initial value for each
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specimen. Thus, also the stiffness evolution of the biaxial specimens

can be compared to the Young’s modulus evolution of the bone spec-

imens. The stiffness degradation is only slightly pronounced, almost

equivalent in the loading and the perpendicular direction, and slightly

more pronounced in the non-loading direction which is the initially

less stiff direction. So the damaging load in one direction leads also

to a stiffness degradation in the perpendicular direction. The bone

specimen’s and biaxial specimen’s curves are similar, whereas the bone

specimen’s curve lies slightly upper than the biaxial. The value of the

normalized (equivalent) stiffness at a maximum strain of 1.0 % lies at

about 0.98 in loading direction and at varies between 0.94 and 0.97 in

the perpendicular direction.
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Flow spec., load-dir., 0◦-dir.

Flow spec., non-load-dir., 90◦-dir.
Bone specimen

Figure 4.30: Normalized stiffness over maximum reached strain (εmax = ε̄I
11,max) in load

history; case a): flow specimens, uniaxial load in 0◦-dir. One color corresponds to one
specimen (2 tested specimens in total). Black line: corresponding bone specimen for
comparison.
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Figure 4.31 depicts the results for loading case b), where uniaxial

damaging load is applied in the initially less stiff direction (non-flow,

90◦). The representation corresponds to that in Figure 4.30. The stiffness

degradation is visible in both directions, but only slightly pronounced

in non-loading direction, and significantly more pronounced in loading

direction. The curve of the corresponding bone specimen fits good the

results of the biaxial specimen. The value of the normalized (equivalent)

stiffness at a maximum strain of 1 % lies at about 0.89 in loading

direction and at 0.98 in the perpendicular direction.
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Figure 4.31: Normalized stiffness over maximum reached strain (εmax = ε̄I
11,max) in load

history; case b): flow specimens, uniaxial load in 90◦-dir. One color corresponds to one
specimen (3 tested specimens in total). Black line: corresponding bone specimen for
comparison.
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In Figure 4.32 the results for loading case c) are depicted, where uniaxial

damaging load is applied to a full specimen. The representation corre-

sponds again to that in Figure 4.30. The stiffness degradation is visible

in both directions, and slightly more pronounced in loading direction.

The curve of the corresponding bone specimen fits good the results of

the biaxial specimen. The value of the normalized (equivalent) stiffness

at a maximum strain of 1 % lies at about 0.96 in loading direction and at

0.97 in the perpendicular direction.
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Full spec., non-load-dir.
Bone specimen

Figure 4.32: Normalized stiffness over maximum reached strain in load history; case c):
full specimens, uniaxial load. (1 tested specimen in total) Black line: corresponding bone
specimen for comparison.

Figure 4.33 shows the results for loading case d), where equibiaxial

damaging load is applied to a flow specimen. The representation

corresponds again to that in Figure 4.30, except that there is no corre-

sponding bone specimen here. The stiffness degradation is visible in
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both directions, and significantly more pronounced in the initially less

stiff direction (90◦). The value of the normalized (equivalent) stiffness

at a maximum strain of 0.5 % lies at about 0.95 in the initially stiffer

direction and at 0.83 in the less stiff direction.
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Flow spec., equibiax. load, 90◦-dir.

Figure 4.33: Normalized stiffness over maximum reached strain in load history
(εmax = ε̄I

11,max ≈ ε̄I
22,max); case d): flow specimens, equibiaxial load. One color corre-

sponds to one specimen (5 tested specimens in total), different dash pattern indicates 0◦

and 90◦ direction.

Figure 4.34 shows the results for loading case e), where equibiaxial

damaging load is applied to a flow specimen. The representation

corresponds to that in Figure 4.33. The stiffness degradation is, as

to expect, equal in both directions. This can be also considered as

a validation. The value of the normalized (equivalent) stiffness at a

maximum strain of 0.5 % lies at about 0.95 in both directions.
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Figure 4.34: Normalized stiffness over maximum reached strain in load history
(εmax = ε̄I

11,max ≈ ε̄I
22,max); case e): full specimen (1 tested specimen in total), equibiaxial

load.

Conclusion damage experiments. The experiments with the bone and

biaxial specimens have shown that the stiffness degradation depends

on the loading case as well as on the initial anisotropy. For comparable

cases, the uniaxial and biaxial experiments match well.

To compare the stiffness degradation of the different cases, a linear fit

to the normalized stiffness data of all specimens of one case and one

direction is performed for each case and each direction. The linear fit

starts at a strain of 0.2 %. The relation can be expressed by the following

equations

E/E0 = 1 − d(εmax − 0.2), Ẽ/Ẽ0 = 1 − d(εmax − 0.2), (4.8)

with εmax in %. Figure 4.35 shows exemplarly the experimental data

points for all specimens (uniaxial and biaxial) of case c) (full plate) in
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loading direction and the fitted curve (straight line). This visualizes

that a linear fit matches the principle course of the stiffness degradation

curves well. Figure 4.36 shows the linear fits for the different cases.

Table 4.12 depicts the values of the slope (d in Equation (4.8)) of the

linear fits for all cases. Both highlight the dependence of stiffness

degradation on both the loading case and the initial anisotropy. For

uniaxial load, the difference in slope of main loading direction to non-

load direction for full specimens (influence of loading case) is 0.038,

and between load in 0◦-direction and load in 90◦-direction (influence

of initial anisotropy) it is 0.10. This implies, that the influence of initial

anisotropy is even higher than of load case. Overall, it can be stated

that the stiffness reduction is not very pronounced. For all loading and

anisotropy cases, the stiffness before failure still has a value above 80 %

and most above 90 % of its initial value.
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Figure 4.35: Normalized stiffness over maximum reached strain for case d); experimental
data of all specimens and linear fit.
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Ẽ
/
Ẽ
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Figure 4.36: Stiffness degradation of the different cases: (a) case a): flow spec., load in
0◦-dir.; (b) case b): flow spec., load in 90◦-dir.; (c) case c): full spec., load in one dir.;
(d) case d): flow spec. equibiax. load; (e) case e): full spec. equibiax. load. Linear fit to
the experimental data. Color and line scheme according to Figure 4.29.
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Spec. Direction Direction Slope d

flow or full load, non-load 0◦, 90◦, arb. in Eq. (4.8)

a) flow
load 0◦ 0.033

non-load 90◦ 0.053

b) flow
load 90◦ 0.135

non-load 0◦ 0.032

c) full
load arb. 0.087

non-load arb. 0.049

d) flow
equibiax. load 0◦ 0.148

equibiax. load 90◦ 0.191

e) full equibiax. load arb. 0.177

Table 4.12: Slope (d in Equation (4.8)) of stiffness degradation for the different cases and
directions. arb. means an arbitrary direction of a (approximately) planar isotropic full
specimen.

4.4.2 Failure

Failure is investigated using partly the experiments that were con-

ducted for the stiffness degradation investigation in Section 4.5.1 and

some additional experiments with same testing procedure considering

here the moment of failure (see Figures 4.23, 4.25 to 4.28). From

these experiments, the failure stress is evaluated for small rectangular

specimens (see Figure 4.9), bone specimens (see Figure 4.7), and for

biaxial specimens (see Figure 4.8) from flow plates (see Figure 2.4).

Additionally one shear experiment was performed with the specimen

geometry in Figure 4.12. For bone specimens and small specimens the

uniaxial failure stress is calculated directly by

σf =
Ff

A
, (4.9)
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where Ff is the maximum force before failure and A the cross sectional

area of the specimen. Shear stress was calculated accordingly. For

the biaxial cruciform specimens, stress can not be computed straight

forward. For the stiffness degradation evaluation in Section 4.4.1 only

the normalized values were considered using the equivalent stiffness

depicted in Equation (4.7). To compare the actual failure stress, an

experimental evaluation of the stresses and strains in uniaxial bone

specimens and uniaxial loaded biaxial cruciform specimens was per-

formed. This leads to a relation between the failure force of a biaxial

specimen and its stress state. The stress in a biaxial cruciform specimen

can thus be calculated via

σ̃ =
F

d
f(ε) (4.10)

where σ̃ is the equivalent stress (corresponding to the actual stress), F

is the force, d is the thickness of the specimen and f is a scalar numeric

factor that can depend on the strain ε. For higher strains (greater than

0.5 %) the value of f remains constant (f ≈ 0.00106 1/mm). Thus, the

failure stress of biaxial cruciform specimens can be calculated via

σf, biax =
Ff

d
f. (4.11)

The procedure to find these relations is described in Section 4.5.1. It

must be noted that this relation is only valid for this special biaxial

specimen geometry.

Table 4.13 depicts the mean values, standard deviation (std) and co-

efficient of variation (CV) of the failure stresses for small specimens,

bone specimens and uniaxial loaded biaxial specimens in 0◦, 90◦ and

45◦ (only small specimens). The mean values agree well, especially for

bone specimens and biaxial specimens. The mean values of the small

specimens are only slightly smaller. Thus in a second step, all specimen

geometries are evaluated together. The results are depicted in Table 4.14.
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Figure 4.37 shows the statistical evaluation of the failure stress for all

specimens in a boxplot representation (for details on statistic evaluation

and illustration see Appendix A.3). The mean value in 0◦-direction is

about 1.8 times greater than in in 90◦-direction and in 45◦-direction

the value lies in between. The CV is between 14 % and 27 %. This

indicates a pronounced scattering of the failure stress. Considering

the 0◦-direction, the scattering is smaller than in the other directions.

Figure 4.37 illustrates that there are two outliers. Without these outliers

the relative standard deviation reduces do 9 %. The standard deviation

in 45◦-direction is at a high value of approximately 27 %, where here

must be taken in to account that there is only a small number of tested

specimens.

Table 4.15 depicts the statistical values for the failure stress for the

cruciform specimens exposed to equibiaxial load. As the equibiaxial

load is applied path controlled, the stresses in the two perpendicular

directions are not equal. Thus, failure stress is evaluated in both

directions separately. The failure stress values are, as to expect, smaller

than for the uniaxial load, but especially in 90◦-direction only very

slighty. With a CV of 8 % and 16 % the scatter is in a similar range as

for the uniaxially tested specimens.

The failure stress measured in the shear experiment is 55.6 MPa. Here

must be mentioned that only two experiments were performed, the

stress state corresponds not to a pure shear stress state and early failure

in the edges occured.
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Dir. Spec. no of Mean Std CV

geom. spec. in MPa in MPa in %

0◦ small 5 158.1 24.3 15.3

0◦ bone 4 172.6 32.4 18.8

0◦ biax 3 164.9 5.6 3.4

90◦ small 4 89.3 25.2 28.2

90◦ bone 2 98.8 27.5 27.8

90◦ biax 3 96.1 12.3 12.8

45◦ small 4 109.7 30.5 27.8

Table 4.13: Failure stress σf of SMC in different directions under tensile load (separate
consideration of different specimen geometries); mean, standard deviation (std) and
coefficient of variation (CV) (Calculation as per Appendix A.3).

no of Mean Std CV

spec. in MPa in MPa in %

0◦ 12 164.6 23.4 14.2

90◦ 9 93.7 19.7 21.1

45◦ 4 109.7 30.5 27.8

Table 4.14: Failure stress σf of SMC in different directions under tensile load (all specimen
geometries); mean, standard deviation (std) and coefficient of variation (CV) (Calculation
as per Appendix A.3).

131



4 Experimental Investigations

Dir. no of Mean Std CV

spec. in MPa in MPa in %

0◦
7

111.5 18.6 16.7

90◦ 88.0 7.6 8.7

Table 4.15: Failure stress σf of SMC under equibiaxial (equi path controlled) tensile
load; mean, standard deviation (std) and coefficient of variation (CV) (Calculation as per
Appendix A.3).
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Figure 4.37: Failure stress σf of SMC (flow plate) for uniaxial tensile load in 0◦-, 90◦-,
45◦-direction: boxplot representation (for explanation see Appedix A.3.2).
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4.5 Additional Investigations

4.5.1 Biaxial Specimen Design Investigations

The considered special biaxial specimen design was introduced by

Schemmann et al. (2018c) and further investigated in this thesis. The ad-

vantage of this specimen design is that the specimen arms are reinforced

by unidirectional carbon fiber tapes which avoids early failure in the

specimen’s arms. This feature is essential for biaxial damage and failure

investigations. Figure 4.38 show a photograph of the specimen and

Figure 4.39 a schematical cross sectional view. For the manufacturing,

the cruciform shaped specimens are cut by water jet cutting from fully

contnuous carbon fiber reinforced plates which are manufactured as

described in Section 2.1.2. In a second step the center area is milled out

with a gentle milling process in order to expose the pure discontinuous

glass fiber reinforced SMC material.

70 mm

60 mm

cut (Fig. 4.39)

0
◦

90
◦

z

Figure 4.38: Biaxial discontinuous glass fiber SMC specimen with continuous carbon fiber
reinforced arms, with milled pockets, area of interest AI in violet. Cut for cross section in
Figure 4.39 in turquoise.
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Figure 4.39: Cross section (cut) of biaxial specimen of Figure 4.38.

In the following, some aspects of investigations on this specimen design

are presented.

• Investigation on the homogeneity of the strain field in the center area

of this specimen design are discussed in Lang et al. (2018).

• In Lang et al. (2019) first results are presented that state the com-

parability of the stiffness degradation with uniaxial tested bone

specimen. In this theses detailed investigations of the stiffness

degradation behavior of bone specimens and these biaxial specimens

are conducted. One result concerning the suitability of the presented

specimen design is that the stiffness degradation of the biaxial

specimens is similar to the stiffness degradation of bone specimens

for a comparable load case.

• Furthermore it was investigated weather the anisotropy ratio deter-

mined by measurements with the biaxial specimen correspond to the

real anisotropy ratio of the SMC material and not to geometry or

other effects. Therefore, small specimens were cut from a preliminary

non-damaging tested biaxial specimen as shown in Figure 4.40.

The anisotropy ratio of the biaxial specimen and the anisotropy

calculated from the small specimens matched well (Γ0/90, biax = 1.32

and Γ0/90, small = 1.28).
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Figure 4.40: Small specimens cut from biaxial specimen.

• Simulations with slight variation of geometry at slits end were

performed to investigate if these changes influence the stress in the

center aera. The simulations showed that variations of about 1mm

lead to changes in stress of maximum 1 %.

• The stress state in the center area of the biaxial specimen cannot be

calculated straight forward. In order to asses the averaged stress, an

experimental evaluation of the stresses and strains in uniaxial bone

specimens and uniaxial loaded biaxial cruciform specimens was per-

formed. Specimens with comparable anisotropy ratios were chosen

(anisotropy on biaxial specimen within one specimen, anisotropy of

bone specimen between two specimens of same plate close to each

other). It is assumed that stiffness of these specimens is similar

and thus stress is comparable for similar measured strain states.

This procedure leads to a relation between force (which is measured

directly) of a biaxial specimen and its stress state. The stress in a

biaxial cruciform specimen can thus be calculated via

σ̃ =
F

d
f(ε) (4.12)

where σ̃ is the equivalent stress (corresponding to the actual stress),

F is the force, d is the thickness of the specimen and f is a

scalar numeric factor that can depend on the (normal) strain ε.

Figure 4.41 shows the factor over strain. The factor f decreases and
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converges for higher strains (greater than 0.5 %) to a constant value

(f ≈ 0.00106 1/mm).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5
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1.5

·10−2
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f
in

1
/
m

m

Figure 4.41: Factor f(ε) for the relation of equivalent stress in crucifom specimen and
measured Force in dependence of normal strain (see Equation (4.12))

4.5.2 DIC Investigations

In order to examine the suitability of the DIC strain measurement for

the experiments of this work, several investigations and considerations

were carried out.

The given accuracy is according to manufacturer a strain of ε ≈ 0.03 %.

Non-damaging strains for SMC that should be used for stiffness deter-

mination are below 0.2 %. Thus, measuring errors above 10 % could

occur.

Experiments were performed in which a rigid body movement was

applied to a specimen to check if the strain field measured by DIC is

equal to zero or if erroneously deformations are detected. The result is,

that strain fluctuations were detected up to 0.15 %. Using spacial mean
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filter and changing parameters of the DIC evaluation (facette size e.g.)

reduces these errors to a strain of 0.025 %. But the local resolution is

thus reduced, too.

To investigate the reproducability of the strain field and to investigate

weather strain field on the different sides of a specimen coincide, one

specimen was measured several times with a non-damaging uniaxial

tensile load:

• Measurement 1: front side (m1)

• Measurement 2: back side (m2)

• Measurement 3: front side (m3)

The geometry of the specimen is given in Figure 4.9. The strain

field at comparable load situations was compared. The forces at

the obeservation moment differ of about maximum 1.3 %. Thus, the

assumption of a comparable load situation can be made. The averaged

strain matches for all three considered measurements with a difference

of maximum 3 %. Thus, the averaged strain values are reproducable

and similar for front and back side. Figure 4.42 shows the strain

fields (ε11) for the three measurements. It is visible that the strain

fields differ. Measurement 1 and Measurement 3 (same specimen

side) show a similar strain field, but still small differences are visible.

The strain field of Measuremnt 2 show a significantly different strain

field. It can be concluded that the strain field on one specimen side is

reproducible including certain differences and the strain field on the

other specimen side is different. Probably surface effects are measured

due to microstructure variations over the thickness of the specimen.

Additionally, the specimens are relatively small compared to standard

specimens for the DIC measuring area. Thus, edge effects may play a

role, too.

These investigations show that DIC is suitable for determining the

locally resolved strain field at the surface. However, the measured

strain field cannot be transferred to the entire specimen thickness (in
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the case of the approximately 2mm to 3mm thick SMC specimens).

For both the local strain field and the averaged stain the measurement

inaccuracies must be taken into account, especially for small strains

and small specimens.

e1

e2

(a) (b) (c) (d)

Figure 4.42: Strain fields (ε11) measured by DIC of one specimen measured several times
on front and back side. (specimen dimensions: 10mm x 50mm). (a) m1: front side, (b) m2:
back side, (c) m3: front side, (d) legend: ε11 in %.

4.5.3 Comparison of Viscoelastic and Damage Effect on

Stiffness of SMC

Investigations on bone specimens were performed that enable to asses

the effect of viscoelasticity and damage, respectively, on stiffness. The

diagram of Figure 4.43a shows the schematic strain curve of the testing

procedure, with long waiting times between the loading cycles in

order to have the same conditions regarding viscoelastic effects at the

beginning of each cycle. The colored sections in the load paths are the

sections in which the stiffness was calculated, which is plotted in the
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diagram of Figure 4.43b. In this diagram, stiffness values are plotted

over cycles, which means over a maximum achieved strain, where per

cycle the strain was increased by 0.2%. So, dark purple is the stiffness

at the beginning of each cycle (approximately between 0 % and 0.2 %

strain, ), light purple is the stiffness calculated between 0.2 % and 0.4 %

strain, blue between 0.4 % and 0.6 %, etc (in rainbow colors).

Thus, the dark purple points (connected with dark purple line) in

Figure 4.43b show the stiffness at the beginning of each cycle and

illustrate a stiffness reduction caused by the damaging strain in the

previous load cycles. Thus, in each curve by itself, one can see a

stiffness reduction due to damage.

If we now compare different color points in the same cycle (i.e. the

same damage state), we can see the stiffness differences at different

strain levels. For example, let us consider the values at cycle 6: the

stiffness at the beginning of the cycle (dark-purple) is significantly

greater than the stiffness at greater strains towards the upper end of the

cycle (e.g. green). This difference in stiffness could be due to nonlinear

elasticity or viscoelasticity. Moreover, the stiffness at the beginning

of unloading, i.e. at large strain, is rather as large as at the beginning

of loading ( this cannot be seen in these diagrams). This implies that

viscoelastic effects, rather than nonlinear elasticity, are likely involved.

Comparing the stiffness differences within one color after different

cycles (damage) with the stiffness differences of different colors in the

same cycle (viscoelasticity), it is visible that the stiffness differences are

in similar orders of magnitude or the viscoelastic caused differences

are even greater.

However, Kehrer (2019) has shown that the viscoelastic effects in DMA

measurements are very small for SMC at room temperature.
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Figure 4.43: Viscoelastic versus damage effects. (a) Testing procedure, (b) Stiffness over
cycle, e.g. max. strain.
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4.6 Summary and Discussion of Experimental

Results

In this section all experimental results are summarized, discussed, and

related to each other.

Table 4.16 shows the coefficient of variation (CV) for all identified

parameters for pure resin and the different SMC directions. This allows

to compare the scattering of all material parameters. The CV for pure

resin is below 3 % for almost all determined parameters. Assuming a

homogeneous material behavior of the resin, this is an indication of

high measuring accuracy. For heat capacity, the error is slightly above

3 %. The reason for the slightly larger scatter here probably lies in the

measurement inaccuracy of the LFA method for the heat capacity.

The thermoelastic material parameters of SMC measured in the dif-

ferent directions in the 0◦-90◦-plane (Young’s modulus, Poisson’s ra-

tio, thermal expansion coefficient) show CVs of around 10 %. The

parameters measured in plate thickness direction (thermal diffusivity,

thermal conductivity) show CVs below 5 %. A probable reason for

the different heights of scattering is that the microstructure in terms of

fiber orientation varies more in the 0◦-90◦-plane. In the plate thickness

direction only very slight orientation variations are possible because the

thickness of the plate is much smaller than the fiber length.

CV of failure stress reaches values of up to 20 %. Additionally to the

varying fiber orientation, micro defects that can lead to early failure

play a more pronounced role.

Scattering of all SMC parameters is also caused by other microstructure

differences than fiber orientation, as for example fiber volume content

distribution.
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E ν α κ cp a σf

Pure resin 2.13 / 0.40 2.72 3.01 1.02 /

SMC 0◦ 9.99 5.82 9.61 / / / 14.2

SMC 90◦ 8.92 9.47 9.04 / / / 21.1

SMC perp. / / / 4.10 / 4.79 /

SMC non-dir. / / / / 1.28 / /

Table 4.16: Coefficient of variation (CV) in % for all experimentally determined material
parameters for pure resin and different SMC directions (perp.: perpendicular to 0◦-90◦-
plane, non-dir.: non-directional).

With Table 4.17, the influence of the different factors on the material

parameter can be analysed. The relative change of the individual

parameter due to the different causal factors are given and defined as

△ξcause
rel,RT =

ξcause
max − ξcause

min

ξRT
. (4.13)

Here, ξRT is the averaged RT value as introduced in Section 4.3.1, and

ξcause
max and ξcause

min are the maximum and minimum values, where only

the indicated factor (cause) is changed and the other causes remain

unchanged. In particular, this means the following:

• △ξmicr
rel,RT: relative difference between maximum and minimum value

occurred in measurements (at room temperature, in one direction)

related to the mean value; probably mainly caused by microstructure

variations

• △ξ
temp
rel,RT: relative difference between the values of the edges of the

considered temperature range (as already defined in Equation (4.2))

• △ξdam
rel,RT: difference between the value of the parameter in a fully

undamaged state and the value at maximum damaged state before

failure related to the undamaged value, only applicable for Young’s

modulus
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• △ξvisco
rel,RT: only applicable for Young’s modulus, relative difference

between maximum and minimum value due to visco effects for

Young’s modulus occured in the considered load procedure in the

investigations presented in Section 4.5.3

Not all of the above factors can be applied to all parameters. However,

these considerations allow to assess which factors should be considered

under given conditions when modeling the material behavior. Relative

differences in the range of 20 % occur due to microstructure variations

for Young’s modulus and thermal expansion. For the other parameters

the relative difference is smaller, in a range up to about 10 %. As

mentioed above the reson lies here in the smaller fiber orientation

variation. Thus, measuring of these parameters in the 0◦-90◦-plane

would probably lead to variations in the same order of magnitude as

for Young’s modulus and thermal expansion. In each case this shows

that microstructure is important to account for.

Changes due to temperature dependence of the parameters occur

between approximately 0 % and 20 % depending on the individual

parameters and directions.

Changes of Young’s modulus due to damage are small in 0◦-direction

but up to almost 20 % in 90◦-direction. But when a certain damage state

is reached the material is no longer applicable. The effect of viscoelastic

effects (see Section 4.5.3) is in the same order of magnitude. Thus, even

when not modeling, it is important to be aware of these effects, to, for

example, adjust testing procedures for damage experiments to exclude

these effects.
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△ξmicr
rel,RT △ξ

temp
rel,RT △ξdam

rel,RT △ξvisco
rel,RT

in % in % in % in %

E0◦ 14.9 9.5 ∼ 5 ∼ 20

E90◦ 24.3 13.0 ∼ 18 /

α0◦ 17.3 0.6 / /

α90◦ 22.7 9.95 / /

κ 10.7 4.66 / /

cp 3.3 14.8 / /

a 8.1 18.5 / /

Table 4.17: Comparison of the influence of microstructure (or undefined scattering),
temperature, damage and visco effects on material parameters. Absolute values of
relative difference △ξcause

rel,RT
(Equation (4.13)) of the individual parameters for pure resin

and SMC in different directions.
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Chapter 5

Parameter Identification -
Merging Modeling and
Experiments

5.1 Thermoelastic Model

5.1.1 Introducing Remarks

In the following two sections the two thermoelastic material models

(with constant and with temperature-dependent coefficients) intro-

duced in Section 3.1 are considered. The parameters are identified

using the experimental results presented in Section 4.3. The parameter

identification was performed so that model and experiment match at

room temperature. Thus, a comparability of the two models is given.

SMC from flow plates (see Figure 2.4) and pure resin material is consid-

ered. For the parameters measured in the plate thickness direction (ther-

mal diffusivity, thermal conductivity), and non directional parameters

(heat capacity), values averaged over all specimens are used. However,

for those measured in the 0◦-90◦-plane (stiffness and the coefficient of

thermal expansion), selected specimens are considered, since the scatter

of the SMC parameters is too high for meaningful results.

All of the material coefficients introduced in Section 3.1 are considered.

For the tensorial coefficients, particular parameters/components corre-
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sponding to the experimentally measurable parameters are considered.

These are specified for each coefficient. Here, the 0◦- and 90◦-direction

of Figure 2.4 correspond to the e1- and e2-direction, respectively,

and the plate thickness direction, perpendicular to the 0◦-90◦-plane,

corresponds to the e3-direction.

In order to assess the quality of the models, the relative error is

introduced as

ǫrel(θ) =
ξmod(θ) − ξexp(θ)

ξexp(θ)
, (5.1)

where ξmod(θ) is the value of the parameter determined by the material

model and ξexp(θ) is the value of the parameter determined by the

experiment. The relative error is considered over the entire observed

temperature range for each parameter.

5.1.2 Constant Coefficients

For the material model with constant coefficients (Section 3.2.1), the

values of the modeled parameter are set to the room temperature values

ξRT (see Section 4.3.1).

Measurement of stiffness is conducted in form of Young’s modulus and

Poisson’s ratio. The Young’s modulus E(n) is defined as the ratio of

tensile stress σ and tensile strain ε when applying uniaxial stress in

direction n. Young’ s modulus can then be expressed in terms of the

stiffness tensor C by

E(C,n) = ((n ⊗ n) · C−1[n ⊗ n])−1. (5.2)

Considering the directions n = e1 and n = e2, E(C, e1) = E1 and

E(C, e2) = E2 correspond to the the Young’s modulus measurements in

0◦- and 90◦-direction, respectively. For the same case of uniaxial tensile

stress into direction n, Poisson’s ratio is defined as the negative ratio

of normal strain in one perpendicular direction n⊥ to normal strain in
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loading direction n. It can then be expressed in terms of stiffness tensor

as

ν(C,n) = −
((n ⊗ n) · C−1[n⊥ ⊗ n⊥])−1

((n ⊗ n) · C−1[n ⊗ n])−1
. (5.3)

Considering again directions n = e1 and n = e2, ν(C, e1) = ν12 and

ν(C, e2) = ν21 corresponds to the Poisson’s ratio of measurements in

in 0◦-direction (with lateral contraction in 90◦-direction) and vice versa,

respectively.

The results for two individual SMC specimens are considered, one with

0◦ and one with 90◦ as measuring direction, taken from the same plate

with similar microstructure (27f-18-0 and 27f-14-90, FOTs can be found

in Appendix A.6) and one pure resin specimen (arbitrary direction).

The values from the tensile experiments presented in Section 4.3.2

lead for these specimens and the pure resin material to the following

identified parameters:

• EPR = 2619 MPa

• ESMC,1 = 11415 MPa

• ESMC,2 = 8352 MPa

From the dilatometer measurements presented in Section 4.3.3, the

components of the thermal expansion coefficient can be identified. The

thermal expansion coefficient, evaluated in one direction n can be

expressed in dependence of the thermal expansion tensor α as

α(α,n) = α · (n ⊗ n). (5.4)

Considering again the directions n = e1 and n = e2, α(e1) = α11 and

α(e2) = α22 correspond to the the thermal expansion taken from

dilatometer measurements in 0◦- and 90◦-direction, respectively. The

same two specimens are considered as for Young’s modulus. The

following parameter values are identified:

• αPR = 6.30 · 10−5 1/K

147



5 Parameter Identification - Merging Modeling and Experiments

• αSMC,11 = 1.76 · 10−5 1/K

• αSMC,22 = 2.39 · 10−5 1/K

Analogously to the thermal expansion coefficient, thermal conductivity

or thermal diffusivity can be expressed, whereas here, the measuring

direction is the third, plate thickness direction corresponding to n = e3.

Thus, the parameters κ33 and a33 are identified:

• κPR = 2.27 · 10−4 W/(mm K)

• κSMC,33 = 2.79 · 10−4 W/(mm K)

• aPR = 0.142 mm2/s

• aSMC,33 = 0.172 mm2/s

Heat capacity is measured as cp, which is the heat capacity at constant

pressure, where in the material model (Section 3.1) the heat capacity at

constant strain cε is considered. It is assumed that the difference is very

small, and therefore cε ≈ cp is valid As cp is no directional coefficient,

the following two parameter values are identified:

• cp PR = 1.40 J/(g K)

• cp SMC = 1.06 J/(g K)

The remaining parameters are the reference temperature, which is here

chosen as the room tempertatur (RT=20◦C) and the constant mass den-

sity, taken from Trauth (2018) (ρPR = 1.14 g/cm3 and ρSMC = 1.53 g/cm3).

In the following diagrams, Figures 5.1 to Figure 5.5, all individual

parameters are displayed over temperature for the different SMC direc-

tionas and pure resin. For each parameter, the modeled values, which

means here the constant value over the entire temperature range, the

experimental results, and the relative error as defined in Equation (5.1)

is shown.

Young’s modulus (Figure 5.1), shows an increasing error of up to 25 %

for pure resin and slightly more than 10 % for 90◦ SMC and slightly

less than 10 % for 0◦ SMC at 80◦C due to the decreasing trend of the

experimental data. In a temperature range up to approximately 50◦C
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the error for SMC in both directions remains under 5 %.

The increasing course of the thermal expansion coefficient (see Fig-

ure 5.2), leads to negative error values with up to about −20 % for

pure resin and 90◦ SMC. The approximately constant course in the 0◦

direction leads to a maximum error of below 5 %. On the other hand,

for SMC in 90◦-direction, the 5 % are already exceeded at a temperature

of 40◦C.

Heat capacity (Figure 5.3) reaches relative errors of up to about 10 % for

pure resin and for SMC at 80◦C as well as at −10◦C whereas the error

for SMC is slithly smaller than for the pure resin.

For the thermal conductivity (see Figure 5.4), the error remains always

under 5 % for all temperatures for SMC as well as for pure resin.

The error of thermal diffusivity (Figure 5.5) reach absolute values of up

to approximately 10 % at −10◦C and 80◦C for SMC and for pure resin

due to the decreasing trend. The 5 % are exceeded already at 40◦C and

0◦C.
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Figure 5.1: Young’s modulus E(θ) of pure resin and SMC over temperature θ; experimen-
tal results (selected specimens), modeled results (constant fit to the experimental data)
(upper diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.2: Thermal expansion coefficient α(θ) of pure resin and SMC over temperature
θ; experimental results (selected specimens), modeled results (constant fit to the experi-
mental data) (upper diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.3: Heat capacity cp(θ) of pure resin and SMC over temperature θ; experimental
results (mean of all measured specimens), modeled results (constant fit to the experimen-
tal data) (upper diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.4: Thermal conductivity κ(θ) (in plate thickness direction) of pure resin and SMC
over temperature θ; experimental results (mean of all measured specimens), modeled
results (constant fit to the experimental data) (upper diagram) and relative error ǫrel (see
Equation (5.1)) (lower diagram).
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Figure 5.5: Thermal diffusivity a(θ) (in plate thickness direction) of pure resin and SMC
over temperature θ; experimental results (mean of all measured specimens), modeled
results (calculated by the fits of cp and κ) (upper diagram) and relative error ǫrel (see
Equation (5.1)) (lower diagram).
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5.1.3 Temperature-Dependent Coefficients

Analogously to the definition of the Young’s modulus in Equation (5.2),

the linearly temperature-dependent Young’s modulus can be expressed

as follows

E(θ) = E′
0△θ + E0 (5.5)

where E0 is the Young’s modulus measured at the reference tempera-

ture θ0. This leads to

E1(θ) = E′
01△θ + E01, E2(θ) = E′

02△θ + E02 (5.6)

for the two directions n = e1 and n = e2. Considering the Ansatz in

Equation (3.44)

C = C0(1 + C′
0△θ) (5.7)

leads to

C′
0 =

E′
01

E01
=
E′

02

E02
. (5.8)

For the thermal expansion coefficient yields as in Equation (3.60)

α = (1 + C′
0△θ)−2

(
−C′

0C
−1
0 [σ] + C

−1
0 [β0]

)
. (5.9)

with

ασ0 = C
−1
0 [(−C′

0σ + β0)] (5.10)

this leads to for the component α11 to

α11(θ) =
1

(1 + C′
0△θ)2

α11,σ0, (5.11)

where α11,σ0 corresponds to the value of the thermal expansion coef-

ficient at the reference temperature measured by dilatometer. Thus,

the course of the temperature-dependent thermal expansion coefficient

is defined by the constant C′
0, taken from the identified temperature-
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dependent Young’s modulus from the DMA measurements and the

thermal expansion coefficient measured at the reference temperature.

According to the Ansatz in the thermomechanical material model with

temperature-dependent coefficients, heat capacity at constant strain

cε(θ) is linear in temperature. With the above mentioned assumption

of cp ≈ cε heat capacity in function of temperature reads

cp(θ) = c′
p,0(△θ) + cp,0, (5.12)

with △θ = θ − θ0, with the reference temperature θ0 = 20◦C.

Thermal conductivity is still assumed to be constant. Thus for the

measured component yields

κ33 = κ33,0. (5.13)

From the assumptions for heat capacity and thermal conductivity

follows for the thermal difusivity

a33(θ) =
κ(θ)

ρ cp(θ)
=

κ33,0

ρ (c′
p,0(△θ) + cp,0)

. (5.14)

To identify the parameters of the coefficients assumed to be linear,

stiffness and heat capacity, a linear fit using least square method is

applied to the experimental data with the constraint, that the value

at θ = 20◦C corresponds to the reference temperature value ξRT. For

the Young’s moduli of SMC the additional constraint of Equation (5.8)

is included. The thermal conductivity is the same as for the model

with constant coefficients and thus set to the room temperature value

for the entire temperature range. The derived quantities thermal

expansion and thermal diffusivity are calculated using these identified

parameters according to Equations (5.11) and (5.14). The constant

reference temperature and mass density correspond to those of the
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material model with constant coefficients.

Figures 5.6 to 5.10 show for each individual parameter the experi-

mental data, the modeled values and the relative error as defined in

Equation (5.1) for the different SMC directions and pure resin over

temperature.

Young’s modulus (Figure 5.6), shows for pure resin error of maximum

2 %. For the two SMC directions the error remains under 4 %. Here,

the Young’s modulus is slightly overestimated in the 90◦-direction and

slightly underestimated in the 0◦-direction for high temperatures due

to the constraint of Equation (5.8). Nevertheless up to a temperature of

50◦ the error remains under 2 %.

Figure 5.7 shows that the principal course of the expansion coefficient

for the two SMC directions and pure resin is well matched by the model.

However, errors occur in the range of more than 10 %, for 90◦ SMC

only at low temperature and for 0◦ SMC and pure resin also at high

temperatures.

The relative error for heat capacity (Figure 5.8) remains below 5 % for

pure resin and both SMC direction over the entire temperature range.

For pure resin it remains even under 2 % excluding one value.

For the thermal conductivity (see Figure 5.9) it yields the same as for the

parameter identification of the model with constant coefficients. Thus,

as already stated in the previous section, for the thermal conductivity

(see Figure 5.9), the error remains below 5 % for all materials and all

temperatures.

The course of thermal diffusivity (Figure 5.10) remains under 5 % for

SMC in both directions and pure resin over the entire temperature

range. The largest error occurs at low temperatures; at high tempera-

tures the error remains under 2 %.
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Figure 5.6: Young’s modulus E(θ) of pure resin and SMC over temperature θ; experimen-
tal results (selected specimens), modeled result s(linear fit to experimental data) (upper
diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.7: Thermal expansion α(θ) of pure resin and SMC over temperature θ; experi-
mental results (selected specimens), modeled results (calculated from fit values from E)
(upper diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.8: Heat capacity cp(θ) of pure resin and SMC over temperature θ; experimental
results (mean of all measured specimens), modeled results (linear fit to experimental data)
(upper diagram) and relative error ǫrel (see Equation (5.1)) (lower diagram).
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Figure 5.10: Thermal diffusivity a(θ) (in plate thickness direction) of pure resin and
SMC over temperature θ; experimental results (mean of all measured specimens),
modeled results (calculated from cp and κ) (upper diagram) and relative error ǫrel (see
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5.2 Micromechanical Thermoelastic Model

5.2.1 Introducing Remarks

In the following sections the parameter identification of the microme-

chanical models presented in Section 3.2 is described. The considered

material coefficients are stiffness and thermal expansion coefficient and

thermal diffusivity or thermal conductivity. Results of the experiments

of Section 4.3 at reference temperature are used for this purpose. The

microstructure information was delivered by Ludwig Schöttl (Institute

of Applied Materials (IAM-WK, KIT), working in the same IRGT in

the research area characterization). The microstructure was analysed

via micro computer tomography (micro-CT). Here, the averaged ori-

entation tensors over "small" specimens were used (small specimens =

specimens of the geometries in Figures 4.9, 4.10a, 4.10b, 4.11, depending

on measuring method). This averaged orientation tensor is calculated

according to Equations (2.95) and (2.96) with the data from micro-CT

and evaluation algorithms identifying fibers from the micro-CT data.

Details on this procedure can be found in Pinter et al. (2018) and Schöttl

et al. (2020).

As for the thermomechanical parameter identification, the 0◦- and

90◦-direction of Figure 2.4 correspond to the e1- and e2-direction,

respectively, and the plate thickness direction, perpendicular to the

0◦-90◦-plane, corresponds to the e3-direction.

A relative error is defined as follows

ǫrel =
ξmod − ξexp

ξexp
(5.15)

where ξmod is the value of a parameter calculated via the microstruc-

ture information and the then identified parameters for an individual

specimen and ξexp is the experimental value for this parameter of this

specimen. The relative error is considered for each specimen.
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5.2.2 Stiffness

For the micromechanical modeling of the stiffness tensor, the ansatz

introduced in Section 3.2 (Equation (3.55)) is used

C(k,Di,Di) = k1P1 +k2P2 +k3(D ⊗ I + I ⊗ D) +k4J[D],+k5D (5.16)

with the parameter set k = (k1, k2, k3, k4, k5) that is to identify. To

determine these five parameters, results of several tensile experiments

are used of specimens with known microstructure, i.e. known fiber ori-

entation tensor. Experimental investigations presented in Section 4.3.2

provide here the experimental results for Young’s modulus and Pois-

son’s ratio. Microstructure is provided by micro-CT scan as mentioned

in Section 5.2.1. With these data, the parameters are optimized with

least square minimization to the experimental results with n values (one

value per specimen) for Young’s modulus and m values for Poisson’s

ratio (there are not for all specimens values for Poisson’s ratio). These

values correspond to measurements in direction ni (or nj) on specimen

with averaged orientation tensor Di, Di (or Dj , Dj). This can be

expressed as

k from: min
( n∑

i=1

(Ei,mod − Ei,exp

Ei,exp

)2

+

m∑

j=1

(νj,mod − νj,exp

νj,exp

)2)
, (5.17)

with

Ei,mod = E(k,Di,Di,ni) = E(C(k,Di,Di),ni) (5.18)

and

νi,mod = ν(k,Di,Di,ni) = ν(C(k,Di,Di),ni) (5.19)

withE(C,n) and ν(C,n) as defined in Equation (5.3) and the parameter

vector

k = (k1, k2, k3, k4, k5). (5.20)

164



5.2 Micromechanical Thermoelastic Model

The differences between modeled and experimental value of Young’s

modulus and Poisson’s ratio are normalized to the experimental values

to have comparable weights of both. For the optimization the solver

software Midaco (Mixed Integer Distributed Ant Colony Optimization)

is used. Midaco uses a gradient-free, evolutionary algorithm that

treats the problem as black-box. Limits for the parameters as well

as equality and inequality constraints can be entered (Schlüter et al.,

2009). Parts of the implementation are taken from Bauer and Lang

(2021) and some tools from Bauer (2021a) are used. Since the parameter

k1, corresponding to 3K (K : compression modulus), is indifferent to

the optimization, because the strain in the e3-direction (plate thickness

direction) is not measurable, it is set to a fixed value. This value

is estimated via a meanfield methods (Bauer, 2021b). Likewise, no

Young’s modulus can be determined in the e3-direction (E3 ). In order

to ensure that physically meaningful values are obtained, constraints

were specified which stipulate that for all specimens the value of E3 is

greater than the pure resin value and smaller than the 90◦ SMC value.

In total, 7 specimens are considered, with values for Young’s modulus

for all of them and values for Poisson’s ratio for 3 of them. This results

in the weighting of Young’s modulus being slightly greater than that of

Poisson’s ratio. The optimized paramers k are given in Appendix A.4.

Table 5.1 depicts for all of the seven specimens the experimental

values for Young’s modulus, the modeled values (calculated with

Equation (5.18) and the optimized parameters k) and the relative error

(see Equation (5.15)). Table 5.2 shows the same for the three specimens

and Poisson’s ratio. The tables show that absolute errors occur in

the range 0 % to 20 % for both Young’s modulus and Poisson’s ratio.

For most specimens, the error for Young’s modulus remains in the

range up to about 10 %. For one specimen the Young’s modulus is

significantly underestimated (ǫrel ≈ −20 %). For Poisson’s ratio, the

errors for all specimens remain below 10 %, whereby the specimen for

which Young’s modulus has the large error of 20 % the Poissons’s ratio
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error is approximately 5 %.

Performing the parameter identification/optimization procedure with-

out two outlier specimens lead to the results in Tables 5.3 and 5.4. The

relative error remains now below 10 % for all considered specimens

for Young’s modulus, and below 6 % for all specimens except one.

Poisson’s ratio errors occur up to 10 %.

Specimen (dir.) Eexp Emod ǫrel

in MPa in MPa in %

T1f-1-0 (0◦) 10200 11539 13.1

T1f-3-90 (90◦) 7590 7656 0.9

27f-18-0 (0◦) 11400 11358 −0.4

27f-14-90 (90◦) 8390 7613 −9.3

28f-2-45 (45◦) 10480 10080 3.8

28f-9-0 (0◦) 13500 10693 −20.8

27f-3-45 (45◦) 7610 8539 12.2

Table 5.1: Young’s modulus of SMC; experimental results Eexp, modeled results Emod

(calculated by Equation (5.18) with optimized parameters) and relative error ǫrel (see
Equation (5.15)).

Specimen (dir.) νexp νmod ǫrel

in - in - in %

27f-14-90 (90◦) 0.27 0.30 9.75

28f-2-45 (45◦) 0.34 0.33 −3.97

28f-9-0 (0◦) 0.38 0.36 −5.87

Table 5.2: Poisson’s ratio of SMC; experimental results νexp, modeled results νmod

(calculated by Equation (5.19) with optimized parameters) and relative error ǫrel (see
Equation (5.15)).
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Specimen (dir.) Eexp Emod ǫrel

in MPa in MPa in %

T1f-1 0 (0◦) 10200 11165 9.46

T1f-3-90 (90◦) 7590 7966 4.95

27f-18-0 (0◦) 11400 10878 4.57

27f-14-90 (90◦) 8390 7889 −5.97

28-2-45 (45◦) 10480 9854 −5.97

Table 5.3: Young’s modulus of SMC; experimental results Eexp, modeled results Emod

(calculated by Equation (5.18) with optimized parameters) and relative error ǫrel (see
Equation (5.15)); parameter identification without outliers.

Specimen (dir.) νexp νmod ǫrel

in - in - in %

27f-14-90 (90◦) 0.27 0.29 7.2

28f-2-45 (45◦) 0.34 0.31 −10.7

Table 5.4: Poisson’s ratio of SMC; experimental results νexp, modeled results νmod

(calculated by Equation (5.19) with optimized parameters) and relative error ǫrel (see
Equation (5.15)); parameter identification without outliers.

5.2.3 Coefficient of Thermal Expansion

For the micromechanical modeling of the thermal expansion coefficient,

the ansatz introduced in Section 3.2 (Equation (3.56)) is used

α = kα1I + kα2D. (5.21)

To identify the two parameters kα1 and kα2, several dilatometer experi-

ments are used of specimens with known microstructure, i.e. known

fiber orientation tensor. The experimental investigations presented
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in Section 4.3.3 deliver here the results for the thermal expansion

coefficient. Microstructure is provided by micro ct scan as mentioned

in Section 5.2.1. With these data, kα1 and kα2 are fitted with least square

method to the n experimental results, measured in direction ni on

specimen with averaged orientation tensor Di. This can be expressed

as

kα1, kα2 from: min
( n∑

i=1

(αi,mod − αi,exp)2
)
. (5.22)

with

αi,mod = α(kα1, kα2,Di,ni)

= αi,mod · (ni ⊗ ni)

= (kα1I + kα2Di) · ni ⊗ ni

(5.23)

being the component of the thermal expansion coefficient correspond-

ing to the experimental dilatometer result αi,exp. Evaluating Equa-

tion (5.23), for example, in e1-direction leads to

αi,mod = kα1 + kα2D11=̂α11,exp. (5.24)

In total, 8 specimens corresponding to 8 experiments (one experiment

per specimen) are considered for the optimization. As experimental

value, the room temperature value αRT (introduced in Section 4.3.1) is

taken.

For the optimization python’s polyfit algorithm is used (Python NumPy

Developers (2022)). For coding tools from Bauer (2021a) are used. The

optimization delivers values for kα1 and kα2. These values can be found

in Appendix A.4.

Table 5.5 depicts for all of these 8 specimens the experimental values,

the modeled values (calculated with Equation (5.23) and the optimized

parameters kα1 and kα2) and the relative error (see Equation (5.15)). The

absolute relative error is below 8 % for all specimens except two, where
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errors of up to −27 % and 16 % occur. The parameter identification

procedure is in a second step perfomed without these outlier specimens.

The results are depicted in Table 5.6. The error remains now below

4 % for all specimens and for most even below 3 %. This means that

for the specimens considered, the model can predict the coefficient of

expansion with a maximum error of less than 4 %.

Specimen (dir.) αexp αmod ǫrel

in 10−5 1/K in 10−5 1/K in %

T1f-1-0 (0◦) 1.51 1.44 4.39

T1f-2-0 (0◦) 1.62 1.59 1.32

T1f-3-90 (90◦) 2.27 2.45 −7.76

27f-18-0 (0◦) 1.76 1.64 6.79

27f-14-90 (90◦) 2.39 2.47 −3.30

28f-2-45 (45◦) 2.00 2.01 −0.68

28f-9-0 (0◦) 1.46 1.85 −27.00

27f-3-45 (45◦) 2.78 2.32 16.40

Table 5.5: Thermal expansion coefficient of SMC; experimental results αexp, modeled
results αmod (calculated by Equation (5.23) with optimized parameters and orientation)
and relative error ǫrel (see Equation (5.1)).
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Specimen (dir.) αexp αmod ǫrel

in 10−5 1/K in 10−5 1/K in %

T1f-1-0 (0◦) 1.51 1.53 −1.76

T1f-2-0 (0◦) 1.62 1.66 −2.43

T1f-3-90 (90◦) 2.27 2.33 −2.61

27f-18-0 (0◦) 1.76 1.69 3.93

27f-14-90 (90◦) 2.39 2.35 1.79

28f-2-45 (45◦) 2.00 1.99 0.65

Table 5.6: Thermal expansion coefficient of SMC; experimental results αexp, modeled
results αmod (calculated by Equation (5.23) with optimized parameters and orientation)
and relative error ǫrel (see Equation (5.1)); parameter identification without outliers.

As there is no measurement in the e3-direction (plate thickness direc-

tion), this cannot be taken into account in the optimization. However,

it was checked whether evaluation of Equation (5.23) with optimized

parameters yields physically reasonable results for the third diagonal

component α33. This means in this case that the values are between

the pure resin and the 90◦ value which is true for all specimens. The

non-diagonal components are not measurable either. The evaluation of

equation (5.23) provides values for these components that are at least

one order of magnitude, mostly more, below those of the diagonal

component.

5.2.4 Thermal Diffusivity and Conductivity

The ansatz for micromechanical modeling of thermal conductivity is

given in Equation (3.57) and reads

κ = kκ1I + kκ2D (5.25)
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This ansatz can be transferred to the thermal diffusivity, which is

related to thermal conductivity (for constant temperature or constant

coefficients) by a constant factor. It yields

a =
1

ρ cp
κ. (5.26)

This leads to the micromechanical ansatz for thermal diffusivity

a = ka1I + ka2D =
1

ρ cp
kκ1I +

1

ρ cp
kκ2D. (5.27)

The parameter identification is performed with the thermal diffusivity,

since it is the directly measured coefficient and there is a higher mea-

surement accuracy here. Three specimens with known microstructure

were considered here. The identification procedure corresponds exactly

to the one described for the thermal expansion coefficient. The identi-

fied parameters can be found in the Appendix A.4. Table 5.7 depicts

for the three experimental values, the modeled values (calculated with

Equation (5.27) and the optimized parameters ka1 and ka2) and the

relative error (see Equation (5.15)). The relative error remain below 1 %

for all of the three specimens.

Specimen (dir.) aexp amod ǫrel

in mm2/s in mm2/s in %

T1f-q-1 0.1736 0.1742 0.33

T1f-q-2 0.1760 0.1756 0.24

28f-q-3 0.1701 0.1700 0.08

Table 5.7: Thermal expansion coefficient of SMC; experimental results αexp, modeled
results αmod (calculated by Equation (5.27) with optimized parameters and orientation)
and relative error ǫrel (see Equation (5.1)).
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As described before, the only measuring direction here was the plate

thickness direction (perpendicular to the 0◦-90◦-direction). Calculating

the other two diagonal components of thermal diffusivity with the

identified parameters lead to values that are 4 to 6 times greater than

the ones in the measuring direction.

5.2.5 Remark on Micromechanical Temperature

Dependent Thermoelastic Model

As discussed in Section 3.2.2 no additional parameters are to identify

for the micromechanical material model with temperature-dependent

coefficients.

5.3 Failure Model

The Tsai-Wu failure criterion is applied to the experimental failure data

of the uniaxial, equibiaxial and shear experiment. Here, the assump-

tion of orthotropic material behavior is made, whereby the principal

direction of material symmetry corresponds to the plate directions (0◦,

90◦, perp.). This assumption is supported by the experimental studies,

where the shear strains are negligibly small for biaxial loading and also

stated in Trauth (2018). Thus, all planar Tsai-Wu parameters can be

identified (see Equation (3.63)).

Although the scattering is considerable, mean values are taken to

identify the Tsai-Wu parameters to identify the principle performance

of the Tsai-Wu ansatz.

As no compression failure experiments were performed in the scope

of this theses, the tension compression ratio of the dissertation Trauth

(2018) are taken, where specimens from the same manufacturing pro-

cess were analysed. She distinguishes between 0◦ and 90◦ and for

each direction between flow region and charge region. Charge region
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corresponds to the grey area in Figure 2.4 in the center (initial placement

of SMC semifinished material before hot pressing) and flow region

corresponds to the white area besides (which the material reaches

during flow during hot pressing). This leads to four different ratios.

A comparison of the results of this thesis with the results of the thesis

of Trauth shows that the same tendency is observed. A table with

the comparable values can be found in Appendix A.5. Thus, for each

specimen the corresponding compression failure value is calculated

and from these values a mean value for compression in 0◦ and 90◦ is

computed (flow and charge region here considered together for mean

calculation).

From these data, the following components of the failure ten-

sors of the Tsai-Wu criterion can be identified according to Equa-

tions (3.64) to (3.67):

• F11 = 2.528 · 10−4 1/MPa

• F22 = 6.396 · 10−4 1/MPa

• F1111 = 2.213 · 10−5 (1/MPa)2

• F2222 = 4.684 · 10−5 (1/MPa)2

To identify the parameter F1122 the equibiaxial experiments are needed.

As the experiments are performed equi-path-controlled and the mate-

rial is anisotropic, the stress state is not equibiaxial (see Table 4.15).

Thus, Equation (3.68) is slightly changed to

F1122 =
1

2 σfb11 σfb22
(1 − σfb11 F11 − σfb22F22 − σ2

fb11 F1111 − σ2
fb22 F2222).

(5.28)

This results in the following for the parameter F1122:

• F1122 = −2.451 · 10−5(1/MPa)2.

To identify the parameter F1212, the two variants described in Sec-

tion 3.3 are applied and compared. Deriving F1212 from the 45◦

experimental data according to Equation (3.72) lead to
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• F1212 = 3.824 · 10−5(1/MPa)2.

The calculation using the experimental data of the shear experiment

and Equation (3.70) lead to

• F1212 = 8.1 · 10−5(1/MPa)2.

The results are in the same order of magnitude, but differ by about a

factor of two. It must be mentioned here that the result of the shear

test is critical, since there was a failure in the edges and, in addition,

there was not a pure shear stress state. Furthermore, the calculation

according to equation (3.72) is very sensitive to slight changes of the

other parameters.

Figure 5.11 visualizes the resulting failure surface in the planar prin-

cipal stress space (σ1-σ2-plane) for the first quadrant (tension-tension

quadrant). The shape of the failure surface resulting from the identified

parameters represents an ellipse. In addition, the individual experi-

mental results are plotted in the diagram (all uniaxial and biaxial from

Section 4.4.2) scattering around the ellipse.

Figure 5.12 shows a larger section of the ellipse over all four quadrants

and additionally the averaged compression failure values estimated

from the experiments.
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Figure 5.11: Failure loci in the principal stress space in the e1-e2-plane, experimental
failure stress values from uniaxial and biaxial tensile experiments and failure surface,
calculated by the mean values of the experimental failure stresses after the Tsai-Wu failure
criterion for the planar, orthotropic case (see Equation (3.63)).
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Figure 5.12: Failure loci in the principal stress space in the e1-e2-plane, experimental
failure stress values from uniaxial and biaxial tensile experiments adn estimated com-
pression data and failure surface, calculated by the mean values of the experimental
failure stresses after the Tsai-Wu failure criterion for the planar, orthotropic case (see Equa-
tion (3.63)).

5.4 Micromechanical Failure Model

For the parameter identification of the micromechanical failure model

(Section 3.4), some remarks are mentioned here first. Due to the lack of

a large enough number of specimens with known microstructure which

could be tested until failure, a procedure with comparative specimens

was performed. The Young’s modulus of specimens (of the geometry
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5.4 Micromechanical Failure Model

in Figure 4.9) with known microstructure, tested for stiffness only, was

compared with the Young’s modulus of specimens (of the same geom-

etry) with unknown microstructure, tested for failure. The assumption

was made that specimens with similar Young’s modulus have also

similar microstructure. A comparison of the specimens can be found

in Appendix A.5. A comparison procedure was also carried out for

the equibiaxial tested cruciform specimens with missing microstructure

information. Here, the anisotropy ratio of the biaxial specimen was

compared with the anisotropy ratio of two small rectangular specimens,

which have very similar (known) microstructure and were oriented in

0◦ and 90◦. In total, 5 uniaxial and 2 biaxial specimens with matching

properties (Young’s modulus and anisotropy ratio, respectively) were

found.

For the uniaxial specimens the same tension compression relation taken

from Trauth (2018) is used as described in the previous section. Thus,

the four different factors connecting compression to tension are applied

to the experimental tensile data for each individual specimen. Thus, a

slight microstructure information is included for tension-compression

ratio with the assumption that microstructure is similar in same plates

with distinction in 0◦-flow, 0◦-charge, 90◦-flow, 90◦-charge. The as-

sumption is supported by the comparison of the tendency of the failure

stresses depicted in Table A.5 in Appendix A.5.

The shear experiment is not considered for the parameter identification

due to a lack of comparable microstructure information and uncertain-

ties in the experimental result.

Thus, with the experimental failure data of the above mentioned

specimens, the above mentioned assumptions and the microstructure,

the parameters of the micromechanical failure model can be identified

according to Equations (3.74) and (3.73)

F = kf1P1 + kf2P2 + kf3(D ⊗ I + I ⊗ D) + kf4J[D] + kf5D, (5.29)

177
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F = kf6I + kf7D. (5.30)

As kf1 is not independently sensitive from kf2 for the considered

experimental data, the two parameters are merged as a new parameter

kf12. In Appendix A.5 selected components of Fijkl are given in written

out form, which clarifies the relationships.

The parameters are identified with a least square method using the

solver software Midaco (Schlüter et al., 2009) as described in Sec-

tion 5.2.2. The parameters were identified with the modeled values

from Equations (5.30) and (5.29) and the corresponding experimental

values calculated according to Equations (3.64) to (3.67) and (5.28). The

resulting values for the parameters are given in Appendix A.4. With

these parameters the full failure surface in the planar principal stress

space can be derived from the microstructure.

Figure 5.13 shows the ellipses that result from the different microstruc-

tures of the specimens that served for the identification and the corre-

sponding experimental failure results. The markers of the experimental

failure stress value and the corresponding ellipse, calculated with the

microstructure corresponding to the specimen have the same color. For

each ellipse there are at least two experimental points, the tensile failure

stress value and the corresponding calculated compression failure

value. For some ellipses, there is an additional experimental point at

the biaxial stress state, because the same comparative specimen with

known microstructure is taken. From this visualisation the matching of

model and experiment and the variety of different ellipse shapes due to

microstructure can be assessed. Table 5.8 depicts the experimental ten-

sile and after Trauth (2018) calculated compression failure stress values,

the modeled values and the relative error as defined in Equation (5.15).

The modeled values are calculated using the micromechanical ansatz

for failure (Equation (5.30) and (5.29)), and evaluating the Tsai-Wu

criteron (Equation (3.62)) for the corresponding stress state. For most
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5.4 Micromechanical Failure Model

specimens the error remains below 10 %, most even less and a few

above. One outlier is identifiable, with an error of 45 %.
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Figure 5.13: Failure loci in the the e1-e2-plane, experimental failure stress values and
failure surface, calculated by the microstructure and the identified parameters of the
micromechanical failure model. The same color indicates the corresponding failure
ellipses and experimental failure values.

179



5 Parameter Identification - Merging Modeling and Experiments

Specimen σf, exp σf, mod ǫrel

in MPa in MPa in %

26f-19-90 85 80 5.8

26f-19-90 −185 −168 9.2

26f-37-0 177 156 11.9

26f-37-0 −293 −280 4.4

26f-18-90 58 84 −44.7

26f-18-90 −127 −183 −44.1

26f-36-0 162 185 −14.2

26f-36-0 −268 −285 −6.3

26f-33-90 96 91 5.1

26f-33-90 −208 −196 5.8

Table 5.8: Failure stress σf. Experimental results σf,exp (real experimental data for tensile
failure stress (positive values) and from experimental tensile values estimated values
for compression tensile stress (negative values)), modeled results σf, mod (calculated by
micromechanical failure model with optimized parameters and orientation) and relative
error ǫrel (see Equation (5.1)).

5.5 Summary and Discussion of Results

5.5.1 Thermoelastic Model

In the following, the parameter identification results of the two pre-

sented thermoelastic material models (with constant coefficients and

with temperature-dependent coefficients) are summarized, analyzed

and compared. Causes for weaknesses are identified and the suitability

for application is discussed. Table 5.9 summarizes the results for

both models. For each parameter and both models, the maximum

absolute values of the relative error (see Equation (5.1)) of the entire

temperature range are depicted for pure resin and SMC (partly in
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5.5 Summary and Discussion of Results

different directions: E and α in 0◦ and 90◦, κ and a in plate thickness

direction). Additionally, the temperature range in which the absolute

relative error remains below 5 % is given .

From the table it can be seen that the model with constant coefficients

matches the material behavior for most parameters only in a tem-

perature range around reference temperature (corresponding here to

room temperature). Only the realtive errors of the thermal expansion

coefficient of 0◦-SMC and the thermal conductivity for SMC and pure

resin remain under the 5 % for the entire temperature range. For

other parameters errors of up to 25 % for pure resin and up to 20 %

for SMC occur. The model with temperature-dependent coefficients

shows a better matching for almost all parameters. All parameters

except thermal expansion coefficient remain under 5 % for the entire

temperature range. For SMC the values remain even below 4 %. It can

be concluded that the model with temperature-dependent coefficients

describes the real material behavior very well.

The additional assumption of Equation (3.44), leading to the constraint

of Equation (5.8), lead to a slight underestimation of Young’s modulus

in 0◦-direction and a slight overestimation in 90◦-direction for high

temperatures. Without this constraint, the Young’s modulus’ error

would be even lower (below 2 %). But also with this assumption the

error remains small (below 4 %). The advantage of this assumption

is a simplification regarding the parameter identification, reducing the

number of parameters from 58 to 38 for the fully 3D anisotropic case.

And an error of below 4 % is still acceptable. The higher error values

for thermal expansion occur as no direct fit was applied, but instead the

temperature dependence was calculated using the fitted values from

Young’s modulus fit according to Equation (5.11) and (5.8). A direct

fit, (not taking C′
0 from E fit, see Equation (5.8)) would lead to smaller

errors. This means, that the relation between Young’s modulus and

thermal expansion coefficient can not be fully represented. However,

the principal course and the difference of the course of the different
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5 Parameter Identification - Merging Modeling and Experiments

SMC directions and pure resin of the modeled and experimental

temperature-dependent coefficients of thermal expansion match very

well (see Figure 5.7).

Constant coefficients Temp. dep. coefficients

|ǫrel,max| Temp. range for |ǫrel,max| Temp. range for

in % |ǫrel| < 5 % in ◦C in % |ǫrel| < 5 % in ◦C

EPR 24.8 −1 to 35 1.7 full

ESMC0◦ 6.0 −10 to 72 2.6 full

ESMC90◦ 13.0 −10 to 46 3.6 full

αPR 26.0 5 to 37 17.3 1 to 31

αSMC0◦ 3.9 full 12.2 10 to 35

αSMC90◦ 18.4 −10 to 35 8.5 3 to 80

κPR 3.8 full 3.8 full

κSMC 2.6 full 2.6 full

cp PR 9.4 10 to 35 3.6 full

cp SMC 8.2 −5 to 50 1.4 full

aPR 14.1 5 to 35 3.5 full

aSMC 10.8 5 to 45 2.8 full

Table 5.9: Maximum absolute value of relative errors ǫrel,max (see Equation (5.1)) and
temperature range with an absolute relative error below 5 % for all thermoelastic material
parameters for the material model with constant coefficients (Section 5.1.2) and the
material model with temperature-dependent coefficients (Section 5.1.3). "full" indicates
full temperature range.

5.5.2 Micromechanical Thermoelastic Model

In the following, the parameter identification of the micromechanical

thermoelastic model (Section 5.2) is summarized and discussed for

the different parameters. Table 5.1 and Table 5.5 show that large

relative errors between model and experimental results up to 20 %

182



5.5 Summary and Discussion of Results

can occur for Young’s modulus and for thermal expansion coefficient.

Table 5.3 and in particular Table 5.6 show that excluding some outliers

can lead to better results. For Young’s modulus errors of up to 10 %

remain. For thermal expansion coefficient, the errors remain below 4 %.

This means that thermal expansion coefficent can be predicted with

the micromechanical model and the optimized parameters (without

outliers) with an accuracy of 4 %, which is a good result.

There are several possible reasons for errors for the occuring errors. One

possibility is that the linear approach cannot represent real material

behavior with sufficient accuracy. Another possibility is that it is not

optimum to consider the microstructure data averaged over an entire

sample. Maybe the fiber orientation is not homogenuous within one

specimen and the specimen size over which is averaged could play a

role.

One likely important reason is that the assumption of a homogeneous

fiber volume fraction in the material does not hold. Trauth (2018)

analyzed the fiber volume content and found that it varies between

21.5,vol% and 28.0 vol%. This could also be a reason for the outliers.

There could be fiber accumulations or fiber gaps in these specimens.

The fact that the outliers in stiffness and thermal expansion coefficient

occur at the same specimens, with the same shift to fiber and resin

properties, respectively, supports this supposition. Measurement inac-

curacies, especially for Poisson’s ratio, may also be a factor, leading to

higher errors for stiffness (Young’s modululus and Poisson’s ratio) than

for thermal expansion.

The evaluation off errors between experiment and model for thermal

diffusivity yields that here occur only very small errors below 1%. It

must be noted that the optimization was performed for only 3 samples

and measured values. As previously described, the only measurement

direction here was the plate thickness direction (perpendicular to the 0◦-

90◦-direction). The microstructure in this direction varies only slightly.

Therefore, the points for the linear fit are very close to each other. This
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can lead to larger errors for more strongly varying microstructure in the

other directions, which could not be validated.

For all tensorial material coefficients, all components can be calculated

using the identified/optimized parameters and mictostructure infoma-

tion(FOT). For the measurable parameters/components, the accuracy

can be validated.

5.5.3 Failure Model

Using the mean values of the uniaxial tensile experiments of this

thesis combined with the tension-compression ratio of Trauth (2018),

the equibiaxial experiments and the 45◦-tensile tests or shear test, all

parameters of the Tsai-Wu failure criterion were determined for the

planar case and the assumption of orthotropic material behavior.

The latter assumption is supported by equibiaxial tensile experiments

(with only normal tensile stress), where the strain has been measured

by DIC. The values of the shear components of the strains were

magnitudes below the normal strain components. Also Trauth (2018)

postulated this assumption. The planar stress case corresponds to the

experiments performed in this thesis.

The appearance of an elliptic shape (and not a hyperbolic) in the

planar principal stress space shows that the Tsai-Wu failure criterion

is principally suitable for the description of failure for SMC.

In the scope of this thesis only experiments in the tensile-tensile quad-

rant have been performed. Additionally the uniaxial compression ex-

periments of Trauth (2018) were available. According to Figure 5.12 in

the compression-compression biaxial stress state large failure stresses of

above 600 MPa would occur according to the model with the identified

parameters. The shape of the ellipse is very sensitive to changes in the

tension-tension and uniaxial compression failure stress values. Thus, it

must be considered critically, if theses failure stresses would be reached

in experiments. Furthermore large scattering occurs for failure stresses.

184



5.5 Summary and Discussion of Results

Thus, with only the failure criterion derived by the mean values, no

reliable failure stresses can be predicted. Microstructure considerations

are essential here.

5.5.4 Micromechanical Failure Model

Using the assumptions described in Section 5.4, it was possible to

estimate the parameters of the micromechanical failure model. Table 5.8

shows that the errors between modeled and experimental failure stress

values remain below 10 % for most specimens. Compared to a maxi-

mum relative difference to the mean value of 25 % (outliers excluded)

of the experimental data it represents an improvement. One outlier can

be identified in Table 5.8 with a large error of 40 %. Here, the influence

of defects plays an important role, because these defects can cause early

failure independent of the general microstructure. Quality assurance

can be a solution here to identify outliers before. Figure 5.13 visualizes

the matching of model and experiment. Furthermore, this diagram

visualizes the variety of the different ellipses created by the optimized

parameters and the microstructure of considered specimens.
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Chapter 6

Applications

6.1 Thermoelasticity

In order to combine and validate all results, all findings are applied to a

sample SMC specimen with known microstructure. For this specimen,

the material parameters are calculated via the material models with the

optimized parameters and measured by different testing devices and

subsequently compared. To measure all of the parameters, the speci-

men has to match into different testing devices. Thus, the specimen

must be machined between the different experiments. Figure 6.1 shows

the different stages of the specimen and indicates which testing device

belongs to the respective step. With the known microstructure and the

micromechanical material model, the directional material coefficients

(stiffness tensor, thermal expansion coefficient, thermal diffusivity) are

determined. The experimental assessable parameters are derived from

the tensorial coefficients. As the considered specimen is a 90◦-specimen,

these are Young’s modulus E2, Poisson’s ratio ν21, thermal expansion

coefficient α22, and thermal diffusivity a22. For heat capacity as

non-directional material coefficient the identified averaged value is

considered.

Exemplarily, the full modeled tensorial coefficient of thermal expansion

at room temperature αRT is given:




1.75 · 10

−5
8.15 · 10

−9 −1.32 · 10
−7

2.24 · 10
−5

1.46 · 10
−7

sym 2.88 · 10
−5



 1/K, (6.1)
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where the second diagonal component corresponds to the measured

value (α22). Table 6.1 depicts the modeled and the experimental values

at reference temperature and the relative error (see Equation (5.15)).

For all parameters except heat capacity and thermal conductivity the

relative error is below 3 %. The reason for this higher error lies

probably in measuring inaccuracies and reproducibility weakness of

the LFA method for heat capacity and thus also for thermal conductivity

which is derived from heat capacity. Also the temperature-dependent

behavior of the parameters is considered. For Young’s modulus, Equa-

tion (5.6) is used with the value for E0 calculated by the micromechan-

ical model (see Table 6.1). E′
0 is determined with Equation (5.8) with

C′
0 determined in the thermoelastic parameter identification beeing not

microstructure dependent. For thermal expansion, Equation (5.11) is

used with α0 calculated by the micromechanical model (see Table 6.1).

This is valid because the applied stress in the dilatometer measurement

is negligible small. Temperature-dependent thermal diffusivity is

evaluated according to Equation (5.14). Figure 6.2 shows for Young’s

modulus and thermal expansion coefficient experimental data, the

modeled values and the relative error as defined in Equation (5.1). The

principle trend is matched well for both parameters. Only at the edges

of the considered temperature range errors of up to 10 % occur, in a

wide temperature range (0◦C to 70◦C) the error remains below 5 % for

both parameters. Figure 6.3 shows the modeled and the experimental

thermal diffusivity over temperature and the relative error. For the

entire temperature range the error remains below 5 %.
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70 mm
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cut

cut

Figure 6.1: Sample validation specimen.

ξRT,exp ξmod ǫRT,rel in %

ERT in MPa 8420 8564 1.7

νRT in - 0.30 0.29 −2.7

αRT in 10−5 1/K 2.31 2.24 −3.0

aRT in mm2/s 0.170 0.172 1.1

cp RT in J/(gK) 1.21 1.06 −11.6

κRT in 10−4 W/(mmK) 3.12 2.79 10.6

Table 6.1: Experimental and modeled values at RT and relative error of the different
material parameters for the validation specimen.
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Figure 6.2: Young’s modulus E and thermal expansion coefficient α of validation
specimen over temperature θ; experimental results and modeled results (upper diagrams)
and relative error ǫrel (see Equation (5.1)) (lower diagrams).
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Figure 6.3: Thermal diffusivity a of validation specimen over temperature θ; experimental
results and modeled results (left diagram) and relative error ǫrel (see Equation (5.1)) (right
diagram).
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6.2 Failure

6.2 Failure

Two sample specimens were considered for the validation of the mi-

cromechanical failure model. The geometry of the specimens corre-

sponds to Figure 4.9. Using the known microstructure of the specimens

and the micromechanical model for (Equations (3.74) and (3.73)), the

planar components of the Tsai-Wu strength tensors are calculated. The

planar failure ellipse is determined. Evaluating Equation (3.62), for

the load case which is here uniaxial tension leads to the modeled

failure stress values. The failure stress values were also determined

experimentally. Figure 6.4 shows for both considered specimens the

failure ellipse, determined by the micromechanical model and the

known microstructure, and the corresponding experimental failure

values in the same color, respectively. For one of the two specimens (the

one loaded in e2-direction), modeled and experimental failure stress

match well, for the other one early failure in the experiment occurred.

The relative errors between model and experiment is approximately 5 %

and 20 % respectively for the failure stress values.
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Figure 6.4: Failure loci in the the e1-e2-plane, experimental failure stress values of the
validation specimens and failure surface (Tsai-Wu ellipse), calculated by micromechanical
model and the known microstructure of the validation specimens.
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Chapter 7

Summary and Conclusion

As stated in Section 1.2 the overall objective of this thesis is to model and

to experimentally characterize the anisotropic temperature-dependent

thermomechanical behavior of SMC composites on the macroscale,

taking into account the microstructure. In the following, the results of

these tasks are summarized and concluded. The results are structured

along the main subjects, which are represented by the chapters of

this work: Firstly, the material model development (Chapter 3),

secondly a detailed experimental investigation (Chapter 4), thirdly,

the combination of both, to identify the material parameters and to

validate the model (Chapter 5) and finally the application on sample

specimens (Chapter 6).

Two thermodynamically consistent material models for thermo-

elasticity are presented: one with constant material coefficients

and one with temperature-dependent coefficients. The considered

material coefficients are heat capacity, stiffness/ compliance, thermal

expansion/ thermal stress, thermal conductivity. For the first model,

all of these material coefficients are assumed to be constant, in

particular independent of temperature. For the second one, the

material coefficients are expressed as functions of temperature, starting

with the assumption that heat capacity and stiffness are linear in

temperature. This leads to a 1/θ2 dependence in temperature of the

thermal expansion coefficient. Thermal conductivity is still assumed

to be constant. These assumptions were made in close accordance
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with preliminary experimental studies. The number of parameters

which can be more than one per coefficient for the fully anisotropic 3D

case is analyzed and the reduction of parameters for special cases is

considered.

In a second step the microstructure is taken into account. The

overall assumption is that all directional material coefficients (of the

thermoelastic material model with constant coefficients) are linear

in terms of fiber orientation tensors. In particular this means that

the stiffness tensor is expressed linear in terms of fiber orientation

tensors of kanatani 3rd kind of second and fourth order, which

reduces the number of parameters from 21 to 5. For the coefficient

of thermal expansion and for the thermal diffusivity or conductivity,

this assumption leads to 2 parameters instead of 6. Here, these two

coefficients are expressed linearly as a function of the 2nd order

fiber orientation tensor of kanatani 3rd kind. The micromechanical

ansatz includes the assumption of a homogeneous fiber volume

content distribution. The approach is also applicable for the model

with temperature-dependent coefficients. Here, the parameter value

calculated by means of the micromechanical model corresponds to the

reference temperature value.

For failure modeling a Tsai-Wu ansatz is chosen, considering only the

behavior at room temperature. The general 3D fully anisotropic case is

considered and as special case the planar, orthotropic case, where the

number of parameters reduces to 6.

Here, as for the thermoelastic model, in a second step the microstruc-

ture is taken into account. Now, the fully anisotropic case is considered

again. The assumption is, similar as for the thermoelastic parameters,

that the Tsai-Wu strength tensors are linear in orientation tensors. They

are expressed in terms of kanatani 3rd kind orientation tensors of

fourth and second (fourth order strength tensor) or only second order

(second order strength tensor). The number of parameters is reduced

from 27 to 7.
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Detailed experimental investigations of the SMC composite and partly

the pure resin material were performed with several testing devices

to characterize the full thermoelastic material behavior as well as the

damage and failure behavior. On the one hand, the results of the

experimental investigations in themselves represent an added research

value. On the other hand, they serve as a basis for the parameter

identification of the models described above.

The investigated thermoelastic material parameters are Young’s

modulus, Poisson’s ratio, thermal expansion, heat capacity, thermal

conductivity, and thermal diffusivity. Due to different required

specimen geometries the parameters are measured in different

directions. The first three mentioned are measured in the 0◦-90◦-plane,

the latter two in the thickness direction of the plate. For heat capacity

as scalar parameter the measuring direction doesn’t play a role.

All of the parameters (except Poisson’s ratio) were determined in

dependence of temperature in a considered range of −10◦C to 80◦C.

Thermal expansion coefficient for SMC measured in 0◦-direction and

thermal conductivity show an almost constant behavior. All other

parameters exhibit a significant temperature dependence of up to

20 % relative change of the parameter values between the edges of

the temperature range. Statistical considerations are made to assess

the scattering of the parameters. The coefficient of variation (CV) of

pure resin is maximum 3 % for all measured parameters, indicating

a high measuring accuracy and reproducibility. The CV of the heat

capacity is slightly higher, which is due to the fact that there are limits

of the measurement accuracy of the used LFA method for heat capacity.

The scattering of the SMC parameters measured in the 0◦-90◦-plane is

higher (CV of approx. 10 %) than those of the parameters measured in

the plate thickness direction (CV below 10 %). The reason here is that

the orientation of the fibers in the plate thickness direction can vary

much less than in the 0◦-90◦-plane. Further reason for the scatter of all

parameters of SMC probably lies in other microstructure differences,
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such as inhomogeneous fiber volume content distribution.

Detailed damage investigation on SMC composite were performed. As

a measure for damage, stiffness degradation was considered. To asses

the influence of load case and initial anisotropy, uniaxial and biaxial

tensile experiments were performed. A testing procedure was used

that allowed to distinguish between different mechanical phenomena,

so that the differences in stiffness could be clearly attributed to

damage. Stiffness degradation of the biaxial and corresponding

uniaxial experiments matched well. The summarized result is that

the stiffness degradation depends on the initial anisotropy and on the

load case (uniaxial load or equibiaxial load), whereas the influence

of initial anisotropy is even more pronounced. Stiffness reduces to

maximum 80 % of its initial value. Damage is not included in the

material model, but the detailed experimental results represent added

value in themselves.

Using the same experimental setup the failure behavior was inves-

tigated. Results for uniaxial and biaxial tensile failure stresses were

found. A high scattering was observed including several outliers. A

reasonable explanation is that additional to microstructure variations in

fiber orientation and volume content, microdefects play an important

role for early failure.

These biaxial damage and failure experiments were possible due to

a special cruciform specimen design introduced by Schemmann et al.

(2018c) and further investigated in this thesis. The cruciform specimens

arms are reinforced by unidirectional carbon tapes which leads to the

advantage that no early failure in the arms occur before damage can be

observed in the center area.

Finally all experimental results are discussed, compared and related to

each other.

196



The material model and experiments are combined in a parameter

identification. Starting with the thermoelastic modeling, the 3D model

is evaluated in the directions that correspond to the measured material

parameters (for the tensorial coefficients). The pure resin material and

SMC in different directions is considered. Because of the stronger

variation of fiber orientation and thus varying material properties in

the 0◦-90◦ plane, sample specimens are considered here for the corre-

sponding parameters (Young’s modulus, Thermal expansion), whereas

the mean values are taken for the other parameters. For the material

model with constant coefficients, the material parameters are set to the

experimental values at room temperature. For the material model with

temperature-dependent material coefficients, a linear fit is performed

for Young’s modulus and heat capacity with the constraint that the

value at room temperature is exact (for comparability with the constant

coefficient model). Thermal conductivity is still constant. For the

thermal expansion coefficient, the values of the linear fit of Young’s

modulus and the measured room temperature value are combined to

calculate thermal expansion over temperature. Thermal diffusivity

is calculated using the fits of heat capacity and thermal conductiv-

ity. For all material parameters and both models, the error between

experimental results and modeled results is evaluated for the entire

temperature range (−10◦C to 80◦C). The two models are analyzed and

compared. The model with constant coefficients is only suitable for

temperatures around reference temperature (approx. 5◦C to 35◦C) to

ensure an error below 5 %. On the other side, the material model with

temperature-dependent parameters provides very good results. The

error between experimental and modeled values remains below 5 %

for both materials (for SMC even below 4 %) for the entire considered

temperature range for all parameters, except the thermal expansion

coefficient. The occurring errors for thermal expansion suggest, that

the model cannot represent the relation between Young’s modulus and

thermal expansion coefficient perfectly. However, the principle course
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of the temperature dependence of the coefficient of thermal expansion

agrees very well.

For the parameter identification of the micromechanical thermoelastic

model, results from the experimental investigations on specimens

with known averaged microstructure were used. The microstructure

information is taken from micro-CT scans (provided by Ludwig Schöttl

from IAM, KIT). Thus, the parameters of the micromechanical model

for stiffness tensor (using the experimental results for Young’s modulus

and Poisson’s ratio), thermal expansion and thermal diffusivity or

conductivity can be identified. The complete coefficients (i.e. all

components of tensors) are thus determined by the optimized param-

eters of the model and the microstructure. For the measured material

parameters the error between modeled value and experimental value

is analysed. Excluding outliers, for Young’s modulus relative errors of

up to 10 % occur, for thermal expansion coefficient, the relative error

remains below 4 %. For thermal diffusivity the error is even below 1 %,

but here few experimental data were available. Possible reasons for

the occuring errors are that the assumption of constant fiber volume

content in all samples does not hold and uncertainties exist in the

measurement of Poisson’s ratio.

For the Tsai-Wu failure criterion under the assumption of orthotropic

material behavior and considering the planar stress state, all param-

eters, i.e. the remaining components of the strength tensors, were

determined using the experimental results of the failure experiments

of this thesis and tension compression relation of Trauth (2018). The

used experiments of this work are uniaxial tensile tests in different

directions, one shear experiment and in particular equibiaxial tensile

tests with the above mentioned special cruciform specimen design. The

identification of the Tsai-Wu parameters provides results that lead to

an elliptic representation of the failure surface in the planar principal

stress space. This shows that failure behavior of SMC can principally

be described by the Tsai-Wu failure criterion. The high scatter of the
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experimental data suggests that the microstructure should be taken into

account.

Parameter identification of the micromechanical failure material model

was not performed directly. However, using assumptions that allow

the microstructure to be estimated (for uniaxial and biaxial specimens),

it was possible to perfom a parameter identification. This leads to a

first estimation of the parameters of the micromechanical failure model.

Using these parameters, the failure surface in the planar principal

stress space can be calculated with the optimized parameters and

microstructure. Comparison of the experimental failure stresses and

the modeled failure stresses from the model leads to relative errors of

up to about 10 % for most specimens. Outliers with large errors are

present. As mentioned above, a likely reason is that microdefects can

lead to early failure, regardless of the overall microstructure of a sample.

Quality assurance could be a measure to identify such outliers.

To conclude and validate all investigations, all results are applied to

exemplary specimens with known microstructure. One specimen was

tested in all testing devices. The directional thermoelastic parameters

(Young’s modulus, Poisson’s ratio, thermal expantion coefficient, ther-

mal diffusicity) were determined using the micromechanical model

with the known microstructure and the identified parameters. Those

modeled and experimental values are compared and the relative error

considered. The relative error is below 3 % at room temperature. For

almost the full temperature range (0◦C to 70◦C) the error remains

below 5 %. For heat capcity the experimental values were compared

to the model that was fit to the mean values. Thermal conductivity

was derived from heat capacity and thermal diffusivity. Heat capacity

and thermal conductivity exhibit larger errors around 10 %. The

reason is probably as mentioned above the lack of measuring accu-

racy/reproducibility for heat capacity and (thus also for conductivity)

of the LFA method.
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For two specimens the failure surface in the planar principal stress

space was calculated using the micromechanical failure model. For one

of these two specimens the failure stress prediction matches well, for

the other one early failure occured.

Overall, the temperature-dependent thermomechanical material behav-

ior and the failure behavior were completely determined with the help

of the material models in combination with known microstructure. The

material behavior could be predicted with an accuracy of approxi-

mately 95 % for a large part of the material parameters in accordance

with the experiments.
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Appendix

A.1 Specimen Designation

The specimen names used throughout this thesis are composed of plate

name, specimen number, direction and partly on shape information.

For rectangular (non quadratic) and bone specimens (Figures 4.7, 4.10a,

4.10b, 4.9, 4.10, 6.1) specimen names are schematically as follows:

Pp-n-d,

where "P" is the plate designation, "p" is the plate (flow path) variant

(f:flow, v:full), "n" is the specimen number, and "d" indicates the

direction of the specimen in the plate (0◦, 90◦, 45◦). For example, the

specimen "28f-14-90" is a specimen from plate "28f" which is a plate with

long flow path (see Figure 2.4), specimen number is "14" and the length

direction is in 90◦-direction according to Figure 2.4.

For small quadratic specimens (Figure 4.11) the designation is

Pp-q-n,

where "q" indicates the quadratic shape.

General specimen designations are sometimes shortened. For example,

"flow specimen" means specimen cut from plate with long flow path

(Figure 2.4). 90◦ specimen means for rectangular or bone specimens

that the specimen length direction corresponds to the 90◦-direction of
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the plate. "Small" specimen includes all specimens with dimensions up

to 70 mm x 10 mm.

A.2 Preliminary Study on Dilatometer

Measurements

Figure A.2.1 depicts the results for the strain over temperature for

several measurement of a sample specimen (Geometry: 35 mm x 8 mm

x 2 mm, Orientation: 0 ◦ ). Reference temperature is room temperature

(20 ◦C), so here the thermal strain is equal to zero. The five measure-

ments (m1 to m5) are as follows:

• m1: no preliminary conditioning, temperature range of −30 ◦C to

100 ◦C

• m2: directly after m1

• m3: a few month later than m1 and m2

• m4: directly after m3

• m5: a few month than m4 after conditioning of 1 hour at 100 ◦C

Figure A.2.1a depicts the a large temperature range of −10 ◦C to

80 ◦C. It can be seen that the principle course of the different measure-

ments coincide. But at higher temperature there are slight differences.

FigureA.2.1b depicts the corresponding detail. The line of measurement

m1 is different from that of m2. The first measurement can be consid-

ered as temperature conditioning (during measurement the specimen

has a temperature of approximately 100 ◦C during approximately one

hour). m3 is similar to m1, which implies that the conditioning is

reversible. m4 and m5 match perfectly and are similar to m2. The

conditioning could change the specimen in terms of curing or moisture.

That it is reversible suggests that moisture is more likely. In any

case, conditioning at 100 ◦C in the oven ensures reproducibility of
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measurements, so all specimens are conditioned by this procedure

before measurement.
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Figure A.2.1: Exemplary specimen (T1f-1-0) several dilatometer measurements, εθ

(=△l/l0) over temperature θ. (a) T1f-1-0 several DIL measurements, (b) T1-1-0 several
DIL measurements, detail.

A.3 Statistics

A.3.1 Statistical Quantities

In the following, statistical quantities are defined that are used for data

evaluation. Here, n data value are considered.

The mean x̄ of a quantity x is defined as the arithmetic average of all

data values

x̄ =
1

n

n∑

i=1

xi. (A.1)
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The median separates the upper and the lower half of all data values.

The standard deviation µ (std) is defined by

µ =

√
1

n− 1
(x̄ − xi)2. (A.2)

Coefficient of variation µrel (CV) is the standard deviation normalized

to the mean value

µrel =
µ

x̄
. (A.3)

The upper and lower quartiles (x0.25, x0.75) can be described as the

medians of the upper and lower half.

The interquartile range (iqr) is the difference between upper and lower

Quartile

riq = x0.25 − x0.75. (A.4)

More detailed explanations can be found e.g. in Arens et al. (2018).

A.3.2 Boxplot Representation

Figure A.3.1 shows a boxplot representation for sample data.

204



A.4 Statistics

0.15

0.16

0.17

0.18

0.19

0.20

Material

ξ R
T

in
x
x

Figure A.3.1: Sample boxplot representation: • = individual experimental data, � = mean,
· · · = median, box = lower and upper quartile, T-lines = minimum and maximum or 1.5
iqr

The whiskers (T-lines) are extended to the outerst data point within 1.5

iqr. Data points which are out of this range are defined as outliers.

If there are no outliers, the T-lines correspond to maximum and mim-

imum data value (which is the case in Figure A.3.1). More detailed

explanations can be found in e.g. Hunter et al. (2012) and Arens et al.

(2018).
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A.4 Values of the Optimized Material

Parameters

A.4.1 Thermoelasticity

Tables A.1 and A.2 depict the values of the identified material param-

eters of the thermoelastic material model with temperature-dependent

coefficients (see Section 3.1.2 and Section 5.1.3) for SMC and pure resin.

Parameter Value Unit

E1,0 11414.89 MPa

E2,0 8352.43 MPa

C′
0 −0.00134125 1/K

c0 1.060 J/(gK)

c′
0 0.00157 J/(gK2)

α11,σ0 1.7638 · 10−5 1/K

α22,σ0 2.392 · 10−5 1/K

κ33,0 2.79 · 10−4 W/(mm K)

Table A.1: Values of the identified material parameters of the thermoelastic material
model with temperature-dependent coefficients for SMC.
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Parameter Value Unit

E0 2619.218 MPa

C′
0 −0.00304 1/K

c0 1.3996 J/(gK)

c′
0 0.00368 J/(gK2)

ασ0 6.299 · 10−5 1/K

κ0 2.270 · 10−4 W/(mm K)

Table A.2: Values of the identified material parameters of the thermoelastic material
model with temperature-dependent coefficients for pure resin.

A.4.2 Micromechanical Modeling of Thermoelasticity

Table A.3 depicts the values of the identified material parameters of

the micromechanical thermoelastic material model (see Section 3.2 and

Section 5.2).

Coefficient Parameter Value Unit

Stiffness k1 27000 MPa

k2 5969.99 MPa

k3 994.2627 MPa

k4 1308.817 MPa

k5 126.9981 MPa

Thermal expansion kα1 2.2901 · 10−5 1/K

kα2 −2.42658 ·

10−6

1/K

Thermal diffusivity ka1 0.10599 mm2/s

ka2 0.42871 mm2/s

Table A.3: Values of the identified material parameters of the micromechanical thermoe-
lastic material model for SMC.
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A.4.3 Micromechanical Failure Modeling

Table A.4 depicts the values of the identified material parameters of the

micromechanical failure model (see Section 3.4 and Section 5.4).

Coefficient Parameter Value Unit

F kf12 0.000084247 (1/MPa)2

kf3 −0.000001419 (1/MPa)2

kf4 −0.000035460 (1/MPa)2

kf5 0.000025743 (1/MPa)2

F kf6 0.006213415 1/MPa

kf7 −0.001383797 1/MPa

Table A.4: Values of the identified material parameters of the micromechanical failure
model for SMC.

A.5 Additional Tables Parameter Identification

of Micromechanical Failure Model

Table A.5 depicts the failure stress values taken from Trauth (2018) and

measured in this theses under distinct consideration of the two direc-

tions, 0 ◦ and 90 ◦ and flow region and charge region (cf. Figure 2.4).
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Mean σf,AT Mean σf,JL ǫrel

in MPa in MPa in %

FR 0◦ 183 167 −8.743

CR 0◦ 167 157 −5.988

FR 90◦ 101 105 3.960

CR 90◦ 84 84 0.000

Table A.5: Comparison of failure values measured by Trauth (2018) (σf,AT) and in this
thesis (σf,JL) under consideration of flow region (FR) and charge region (CR)

Table A.6 depicts Young’s modulus of specimens with known mi-

crostructure (FOT), measured via micro CT scan and Young’s modulus

of specimens with known experimental failure stress. In one row are

specimens with similar Young’s modulus. For parameter identification

of micromechanical failure model the orientation information of these

specimens is used for the corresponding destructivily tested specimens

with thus known failure stress (cf. Section 5.4). The values for Young’s

modulus are both taken from measurements with biaxial testing device,

respectivily.

Comp. scan Exp. failure Escan Eexpfail ǫE
rel σf,expfail

specimen specimen in MPa in MPa in % in %

28f-16-90 26f-33-90 8150 8288 1.69 96

27f-18-0 26f-37-0 11172 11283 0.99 177

27f-14-90 26f-19-90 8222 8182 −0.49 85

T1f-1-0 26f-36-0 10290 10216 −0.71 162

T1f-3-90 26f-18-90 6860 7010 2.19 58

Table A.6: Young’s modulus Escan of specimens with known microstructure (Comp. scan
specimen) and Young’s modulus Eexpfail of specimens with known experimental failure

stress (σf,expfail), and relative difference ǫE
rel

.
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Table A.7 depicts the values of anisotropy ratio of two uniaxial spec-

imens with similar known microstructure (FOT) and the anisotropy

ratio of cruciform biaxial specimens with known failure stress.

Γ0/90 uniax Γ0/90 biax ǫE
rel

in - in - in %

1.39 1.42 2.16 %

1.39 1.43 2.88 %

Table A.7: Anisotropy ratio Γ0/90 uniax of two uniaxial specimens with similar known
microstructure (FOT), anisotropy ratio Γ0/90 biax of cruciform biaxial specimens, and

relative difference ǫE
rel

.

The following equations (Equations (A.5) to (A.10)) show components

of the micromechanical modeled Tsai-Wu strength tensors

F11 = kf6 + kf7D11, (A.5)

F22 = kf6 + kf7D22, (A.6)

F1111 =
1

3
kf1 +

2

3
kf2 + +2D11kf3 +D11kf4 +D1111kf5, (A.7)

F2222 =
1

3
kf1 +

2

3
kf2 + +2D22kf3 +D22kf4 +D2222kf5, (A.8)

F1122 =
1

3
kf1 +

2

3
kf2 + (D11 +D22)kf3 + 0kf4 +D1122kf5, (A.9)

F1212 = 0kf1 + 0kf2 + 0kf3 +
1

4
(D11 +D22)kf4 +D1212kf5. (A.10)
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A.6 Orientation Tensors of Specimens

Table A.8 depicts the components of the fiber orientation tensors of

fourth order (kanatani first kind (see Section 2.5.3)) for the considered

specimens in Section 5.2 and Section 5.4. The first row shows the order

of the 15 independent components.

211



A Appendix

Specimen Components of N

N3333, N3323, N3322, N2322, N2222,

N3313, N3312, N2312, N2212, N3311,

N2311, N2211, N1311, N1211, N1111

28f-16-90 0.000640, −0.000279, 0.003183, −0.005110, 0.231767,

0.000100, −0.000053, 0.001567, −0.000725, 0.003998,

−0.002615, 0.126273, 0.005570, 0.000329, 0.500684

28f-9-0 0.001238, −0.000235, 0.006121, −0.004404, 0.433549,

−0.000060, 0.000296, −0.000284, 0.029459, 0.004844,

−0.001414, 0.129597, −0.000932, 0.028251, 0.284088

28f-2-45 0.000735, −0.000151, 0.004434, −0.002842, 0.364408,

−0.000090, 0.000268, −0.000977, 0.016455, 0.004311,

−0.001212, 0.131080, −0.002501, 0.014135, 0.355208

27f-18-0 0.000645, −0.000212, 0.004466, −0.004282, 0.540313,

0.000380, 0.000039, 0.002046, 0.018572, 0.003417,

−0.000533, 0.115772, 0.004757, 0.014643, 0.211733

27f-14-90 0.001068, −0.000302, 0.003675, −0.002552, 0.180144,

0.000439, −0.000149, 0.001733, −0.008827, 0.005819,

−0.001467, 0.116599, 0.007333, −0.022144, 0.566603

27f-3-45 0.001097, −0.000345, 0.004030, −0.003318, 0.23877,

0.000294, −0.000220, 0.001824, −0.001578, 0.005612,

−0.001027, 0.122594, 0.006748, −0.025353, 0.495653

T1f-3-90 0.000107, −0.000006, 0.001735, 0.000028, 0.183037,

−0.000142, 0.000357, −0.001193, 0.034552, 0.003762,

−0.001413, 0.125909, −0.008407, 0.061640, 0.554045

T1f-1-0 0.000138, −0.000003, 0.003800, 0.000443, 0.637317,

0.000037, −0.000439, 0.000595, −0.061085, 0.001997,

−0.000256, 0.107902, 0.000936, −0.023785, 0.135145

Table A.8: Fiber orientation tensors of the specimens considered in this work.
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Sheet molding compound (SMC) composites belong to the fiber reinforced 
plastics and are a versatile high-performance class of materials. The aim of 
this work is to model and experimentally characterize the thermomechanical 
material behavior of SMC composites on the macroscale with consideration 
of the microstructure. The unified approach of modeling and experiments 
is significant to this work. Anisotropic temperature-dependent thermoelastic 
material behavior and failure behavior are considered in the modeling. To 
account for microstructure, the material coefficients are expressed in terms 
of fiber orientation tensors. Experiments with various testing devices are per-
formed, including temperature-dependent investigations of the thermoelastic 
properties. A focus of the experiments is on biaxial damage and failure in-
vestigations using special cruciform tensile specimens with reinforced arms.  
Using the experimental results in combination with microstructural informa-
tion taken from micro-CT scans, the model parameters are determined. Thus, 
with the model containing the determined parameters, all material properties 
considered can be calculated if the microstructure is known. The model is 
applied to sample specimens whose microstructure is obtained from micro-CT 
scans. To validate the whole process, those modeled results are compared 
with experimentally determined properties of the sample specimens.
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