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Executive Summary

The number of electric vehicles is increasing exponentially and there is a high need for charging in-
frastructure. Furthermore, climate change motivates for the integration of renewable energy. Therefore,
a DC-coupled charging station connected to photovoltaic and a stationary battery system is being re-
searched for a workplace environment. The component sizes are economically optimized for 20 charging
points. The influence of a simple photovoltaic persistence forecast on the marginal charging tariff and
the self-sufficiency is analysed depending on the component sizes. It is shown, that the positive influence
of implementing a self-consumption maximizing charging strategy outweighs the monetary losses of
forecasting inaccuracies. The decrease in self-sufficiency compared to a perfect PV forecast for a system
without a stationary battery is 1 percentage point versus an increase of 20 percentage points compared
to uncontrolled charging. Although systems without a battery are more economic, it is also shown, that
systems with a battery can become economic for larger PV sizes.
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1 Motivation and literature study
Motivated by climate change, electricity production and mobility are to be restructured worldwide. In-
creasing sales of electric vehicles (EVs) require the expansion of charging infrastructure. Simultaneously
the share of renewable energy sources (RES) increases. The power generation by RES lead to fluctua-
tions on the supply side while uncoordinated charging activities lead to fluctuations on the demand side
causing technical and economic issues for the distribution grid [1]. Decentralized energy supply systems
with photovoltaic (PV) systems and stationary battery storage (BAT) ensure emission-free electricity pro-
duction. Together with an energy management system (EMS) which uses PV forecasting, they reduce
the impact on the electricity grid while reducing the operational costs (OC) of the system. Depending on
the use case, the charging station (CS) needs to be scalable. Dimensioning and operational optimization
are thus important economic aspects. Due to the inaccuracy of the PV forecast, there is an economic dis-
advantage. However, there is only little research on the economic impacts of PV forecasting inaccuracies
on costs, charging tariff or self-sufficiency in combination with the sizing of the system.

The influence of PV forecasts on the performance of the system has already been considered in the past
in the area of stationary home storage [2, 3]. A smaller residential CS with just one charging point and
a large-scale CS with 20 charging points both without a BAT have been analysed. The results for both
scenarios show that day-ahead PV power forecasting aid in optimally scheduling the charging and help
to reduce the burden on the grid. A system analysis of residential PV systems is carried out over 15 years
in [3]. It shows incorporating PV forecast in EMS can increase electricity self-consumption by 70%
as well as lower the levelized cost of electricity by around 12-15%. It also shows that forecast-based



operation strategies can enhance battery life. PV and BAT are profitable in the medium term due to high
self-consumption rates [4]. It shows a positive net present value (NPV) of a household PV System when
analysed over 20 years. However, in [3] and [4] financial analysis is only done for household energy
systems and not for a commercial environment.
Due to the long parking durations especially over daytime, the workplace is attractive for the maximiza-
tion of self-consumption and the use of RES [5]. An EMS based on the variation in the DC link voltage
is proposed in [6] for a PV-based CS. [7] demonstrate the influence of PV and BAT sizing on the amor-
tization period in different scenarios over 30 years. However, these studies did not integrate PV forecasts
in their EMS.
Seddig et al. investigate the impact of different PV power prediction models on the operation costs and
the flexibility of commercial, opportunity and commuter customers [8]. The authors in [9] proposed an
intelligent EMS that has increased PV self-consumption from 49% to between 62% and 87% with the
help of V2G, persistence PV forecasting and load predictions. [10] and [11] use a forecasting enabled
EMS in a mixed-integer linear programming framework for a workplace DC-linked CS. The PV power is
forecasted with an ARIMA model. The EMS minimizes the total costs while reducing stress on the grid
and increasing PV self-consumption. Consequently, the sustainability of the EV fleet is increased while
taking dynamic purchase tariff and feed-in tariff into account. It achieved an increase of around 8% in
self-consumption and reduced the exchange with the grid by 20%. The authors of [12] and [13] use PV
and load forecasting in their EMS to shift the power demand from the on-peak period to off-peak thus
also reducing the exchange with the utility grid by a factor of 2-3. In [14], linear programming is used to
reduce the costs of charging EVs from PV based on time of use tariffs and PV forecasting. Cost reduc-
tions of 6% and 15.2% compared to the base case are obtained for the simulation of 12 EVs powered by
a 50 kWp PV system. The charging rates depend on the predicted PV power, the demand of the EVs, and
the energy price from the utility grid. Three different scenarios are discussed in [15]. Wind and solar
energy of a chosen day are forecasted using time-series forecasting. Their results show that energy and
reserve scheduling obtains reduced daily operation costs compared to no energy and reserve scheduling
or V2G by 8.4% and 1.6%, respectively. However, the above research has been done on a smaller scale
with a smaller number of EVs, focusing on the EMS development and evaluating only short time periods.

This paper extends the existing literature by analysing the economic impact of PV forecast and sizing on
a corporate parking charging infrastructure. The EVCS is connected to the power grid, uses PV and BAT
as energy sources, and has both DC and AC charging points. It is coupled by a DC-bus. The objective
is to avoid efficiency losses due to DC coupling and to achieve economic benefits by considering the
overall concept. Using self-consumption maximized charging, the economic influence of PV forecasting
inaccuracies is investigated also concerning a higher number of 20 EVs as well as over a longer time
period of 1 year. The interplay with the sizing of the systems is taken into account.
This paper aims to show how PV forecast integrated smart charging strategies impact the costs and self-
sufficiency of the workplace EVCS based on implementing a persistence PV forecast (PF) and using
real-world EV and electricity price information.

Figure 1: Topology of the DC-coupled EVCS with AC and DC charging points, PV, BAT and grid connection [5]



2 Modelling of charging infrastructure and energy management
The following section gives an overview over the system setup including the most important equations
as well as an overview over the EMS. The perspective is that of an EVCS investor and operator who asks
how to size the system as well as what impact a self-consumption maximizing charging strategy with a
simple PV forecasting model might have.

2.1 System setup
Fig. 1 shows the EVCS’s structure. PV, BAT and EV are connected via a DC-bus. The EVCS is
connected to the grid. There are DC and AC charging points. As no dynamic grid prices or the feed-
in from BAT or EV into the grid are assumed, the basic power flow priorities for covering the EV
load are simulated as fixed in the order PV (1), BAT (2) and grid (3) [11]. The exchange of energy
between grid and BAT is not considered. The charging station was described in detail in [5, 16]. The
simulation was further developed regarding power dependent efficiencies for all converters as well as a
more sophisticated EMS.
Regarding the EMS, uncontrolled charging and self-consumption maximizing charging are considered.
Perfect knowledge of EV arrival and departure times as well as the EV charging demand is assumed. The
self-consumption can either be perfectly maximized (in case the PV prediction is perfect) or imperfectly
(in case the PV forecast is not perfect). As a benchmark, the considered PV forecasting model is the
offline PF model. A detailed description of the PV prediction model is to be found in [17].

2.2 Basic equations
Eq. 1 describes the annual costs per year a of the system. The costs for grid consumption are calculated
using the energy consumed from the grid EGrid and the electricity price pGrid. The costs for the BAT
usage and the PV direct usage comprise the energy drawn from the battery EBAT , the energy of the PV
direct-use EPV,dir. and the price from Germany’s renewable energy’s act pEEG.

C(a) = EGrid · pGrid + (EBAT + EPV,dir.) · pEEG (1)

The annual revenues are calculated using Eq. 2 considering the excess PV energy fed into the power grid
EPV,exc., the compensation for feeding into the grid pexc., the energy used for EV charging EEV and the
EV charging tariff pEV , as in:

R(a) = EPV,exc. · pexc. + EEV · pEV (2)
Using the annual costs and revenues calculated above, the net present value NPV is calculated using
Eq. 3 with the investment costs I0 comprising the sum of all component investments depending on the
component sizes and the interest rate z.

NPV = −I0 +
n∑

a=1

R(a)− C(a)

(1 + z)a
(3)

Finally, the charging station’s component sizes are optimized by minimizing the marginal tariff pEV
which is the minimum price the EV users would have to pay so that the NPV is zero after the assumed
lifetime. Eq. 4a and 4b depict the according objective function and its constraint, as in:

min pEV (4a)

s. t. NPV ≤ 0 (4b)

2.3 Implementation of PV prediction based charging strategy
Considering the assumption, that the load patterns are known, either due to a perfect load forecast or EV
user input, for each EV the latest time point for a charging start can be calculated. Until this time point,
the EVs can be charged only by PV and BAT energy, maximizing the self-consumption and minimizing
the grid impact as well as the charging costs.
Eq. 5 shows the criterion for each charging session. The energy demand at each charging point cp
ELOAD,EV needs to be covered between arrival and departure time, tarr and tdep, through meeting the
charging power PLOAD,EV on EV side. This charging power can be shifted in the limits of the arrival
time, departure time and maximum charging power while considering the power dependent efficiencies.



ELOAD,EV(cp) =

∫ tdep

tarr

PLOAD,EV dt ∀cp (5)

Considering the power dependent converter efficiencies, there are different levels for the balance equa-
tions. While meeting the energy demand of each EV has to be calculated on the specific side of each
EV (Eq. 5), the balance equations with power from PV, BAT and grid have to be calculated on the DC-
bus level. Therefore, Eq. 6 a to f show the required conversions from the different levels including the
respective efficiency η.

PLOAD,EV(cp, t) =PLOAD,DC-BUS(cp, t) · ηEV2DCBUS(PLOAD,EV(cp, t)) ∀t (6a)
PPV,DC-BUS(t) =PPV,DC(t) · ηPV2DCBUS(PPV,DC(t)) ∀t (6b)

PBAT,dischg.,DC-BUS =PBAT,dischg.,DC · ηBAT2DCBUS(PBAT,dischg.,DC) ∀t (6c)
PBAT,chg.,DC =PBAT,chg.,DC-BUS · ηDCBUS2BAT(PBAT,chg.,DC-BUS) ∀t (6d)

PGRID,from,DC-BUS =PGRID,from,AC · ηGRID2DCBUS(PGRID,from,AC) ∀t (6e)
PGRID,to,AC =PGRID,to,DC-BUS · ηDCBUS2GRID(PGRID,to,DC-BUS) ∀t (6f)

Eq. 7 shows the limitation that needs to be considered when calculating the latest time point for each
charging session. In every time point t, the sum of required load per charging point cp on the DC-bus
level has to be in the limits of the power from the grid PGRID,from,DC-BUS and the predicted PV power
PPV,pred.,DC-BUS on DC-bus level, calculated backwards in time between latest departure tdep and earliest
arrival tarr.

ncp∑
cp=1

PLOAD,DC-BUS(cp, t) = PGRID,from,DC-BUS(t) + PPV,pred.,DC-BUS(t) ∀t (7)

Eq. 7 is used repeatedly over the day to recalculate the latest charging time per charging session, as EVs
are arriving and the already covered energy changes due to the actual PV power. As long as PGRID is
lower than the maximum peak load, an actual PV power less than predicted means the latest charging
start is too late and EV demand cannot be covered. An actual PV power higher than predicted means
that EV demand is covered too early from the grid instead of the PV, so the self-sufficiency decreases.
A time resolution of 7.5min showed to be sufficient for calculating the latest charging start per charging
session.
Besides the consideration of a self-consumption maximizing charging strategy, uncontrolled charging
was considered as a benchmark. Uncontrolled charging means that every EV immediately starts charging
after arrival. In case not all load can be covered directly, the EV power is proportionally shifted to the
future. A perfect self-consumption maximizing charging strategy means that the PV power throughout
the day is known. For a more in-depth explanation of the uncontrolled and the perfect charging strategy
see [5].

2.4 Evaluation metrics
In addition to the marginal EV charging tariff pEV, the self-sufficiency of the system rSS and the share
of energy demand that could not be covered until EV departure rU are used as metrics to evaluate the
performance of the system.
Eq. 8 depicts the self-sufficiency, calculated using the directly used PV energy EPV,dir., the energy dis-
charged from the BAT to cover the load EBAT,dischg. and the covered load ELOAD,cov. on the DC-bus level.

rSS =
EPV,dir.,DC-BUS + EBAT,dischg.,DC-BUS

ELOAD,cov.,DC-BUS
(8)

Eq. 9 depicts the uncovered energy ELOAD,uncov. per energy demand ELOAD on the EV level. The energy
demand ELOAD is the sum of covered and uncovered load.

rU =
ELOAD,uncov.,EV

ELOAD,EV
(9)



3 Results and analysis
The calculations were performed using Matlab. The following section shortly introduces the used data
and assumed values. Subsequently, the system component sizes’ influence on the uncovered energy,
marginal charging tariff and self-sufficiency are evaluated. Finally, the impact of PV prediction inac-
curacies on the performance of an example system is evaluated regarding marginal charging tariff and
self-sufficiency.

3.1 Data and assumed values
The PV power data are from the KIT Campus North 1MW PV field located at 49.1°N and 8.44°E. The
measurement data from the year 2016 correspond with the solar output from a 9 kWp PV array with
southerly orientation and a 15◦ tilt. The temporal resolution is 5min.
The efficiency data for power conversion are from in-house measurements [19] and from manufacturers.
The data provide power level related efficiencies as evaluated in [20] and are depicted in Fig. 2.
The charging data were provided by the project partner [18]. Probability distributions of arrival and
departure times as well as the energy demand of the EVs were derived from over 5800 charging sessions
and used as a basis for generating a fictive dataset over one year for 10 · 5 kW DC and 10 · 3.7 kW AC
charging points.

Figure 2: Power dependent conversion efficiencies for the different converters as well as the onboard-charger
(OBC) for AC charging. Bidirectional converters are labelled with (bid.).

Table 1: Values assumed for the simulation

Unit Value Source
Electricity grid price pGrid

Ct
kWh 18.5652 [21]

EEG apportionment pEEG
C

kWh 0 [22]
Feed-in tariff pexc. C

kWh 4.74 / 6.06 / 6.24 [22]
Interest rate z % 0

Converter costs cconv C
kW 150 [23]

PV costs cPV
C
kW [24]

BAT costs cBAT
C
kW [25]

Observation period n year 20

Fig. 3a shows the occurrences of arrival times and parking durations from dataset analysis. Most EVs
arrive in the morning and stay for longer times. A smaller number of EVs arrive throughout the day and
stay for a shorter time period. Fig. 3b shows the occurrences of energy demand and parking duration
from dataset analysis. Patterns show that the energy demand is less when parking for a shorter time



(a) (b)

Figure 3: Occurrences of the combination of arrival time (3a) as well as energy demand (3b) and parking duration.

period. Higher energy demands mostly occur with longer parking durations. The analysis furthermore
revealed an average energy demand of 13.88 kWh per charging session with an average arrival time of
7 o’clock and an average parking duration of 7.1 h. After generating a fictive dataset based on the real
charging data, a yearly energy demand of about 100 000 kWh in total was calculated.

The electricity grid price, interest rate, component costs and similar values were either assumed to be
fixed or derived as an equation. The values and sources are listed in Table 1 for the German market in
July 2022. The assumed costs for components are derived from source and calculated without VAT due
to the company environment. The observation period is 20 years, the simulation is performed with data
from one year.

3.2 Evaluation of the economically optimal system
Before determining the economically optimal system, an evaluation of the uncovered load depending on
the grid converter size helps to narrow down the sizing problem. As was shown in [5], the load cannot
fully be covered by PV power especially in winter due to the geographical conditions as well as the tilt
of the PV array.
Fig. 4 shows a heat map of the uncovered energy in % depending on the grid converter size and the PV
size. Only from a grid converter with 75 kW rated power the uncovered energy is below 1% of the total
energy demand. Therefore, although there are way cheaper options available with less grid power, the
economically optimal system is determined for a grid converter ≥ 75 kW rated power.
Evaluating the same heat map for a system with a self-consumption maximizing charging strategy using
the PV prediction, the uncovered load was only slightly higher than using uncontrolled charging. The
seasonal difference, especially concerning winter, was less than 0.03 percentage points (pp). The most
significant difference were the rather constant energy losses in winter over PV size, while the energy
losses decreased with the PV size in all other seasons.
Applying Eq. 3 for the uncontrolled charging strategy explained in Sect. 2.3, the charging infrastructure
was optimized with a grid converter size ≥ 75 kW. A PV size of 120 kW peak showed to be optimal, no
BAT and a grid converter with 75 kW, see Table 2. The investment costs turned out to be 149 750AC for
an assumed lifetime of 20 years. The grid converter with a rated power of 75 kW is sized rather small
compared to the 10 AC and 10 DC charging points with a maximum peak load of 87 kW. This indicates
longer parking durations which do not need a larger grid connection. The marginal charging price pEV of
16.99 Ct

kWhwithoutVATisabout2
Ct

kWh lowerthantheassumedindustrialelectricitygridpricewithoutVAT.
This indicates that the charging station is overall more economic than only charging from the grid with-
out PV. The marginal charging price is 20.02 Ct

kWh with VAT for the EV users. An analysis of the impact
of a BAT is done later on in the paper.

3.3 Evaluation of the influence of different component sizes
Fig. 5a and Fig. 5b show scatter plots of the marginal charging tariff pEV (Eq. 4a) over the PV size. The
values with application of the self-consumption maximizing charging strategy are shown. The colour



Figure 4: Share of uncovered load rU in % over PV size in kWp and grid converter size in kW.

(a) BAT size shown in the colour bar.

(b) Grid converter size shown in the colour bar.

Figure 5: Marginal charging tariff pEV in Ct/kWh without VAT over PV size in kWp with application of the self-
consumption maximizing charging strategy and PV forecasting inaccuracies.



Table 2: Dimensioning of the DC-coupled EVCS based on the uncontrolled charging strategy.

Unit Value
PV size kWp 120

BAT capacity kWh 0
Grid converter size kW 75

Marginal charging tariff pEV
Ct

kWh 16.99
Invest costs I0 C 149 750

indicates the BAT capacity and grid converter size respectively. The horizontal line represents the grid
price pGRID. Marginal charging tariffs below the grid price mean that charging the EVs with PV power
in addition costs less than charging from the grid only. Therefore, the system is more economic than a
system with only a grid connection. From both graphics it becomes clear that from a PV size of about
60 kWp on even the systems with a BAT capacity up to 60 kWh become economical. The systems
without BAT are the most economical. However, a system with a smaller grid converter and with a BAT
can be more economical than a system with a larger grid converter and without BAT. This turns around
from a PV size of about 135 kWp. The minimum marginal charging tariff is reached for PV sizes larger
than 120 kWp, initially for the smallest grid converter of 75 kW. Both BAT and grid converter sizes
initially have a negative impact on the marginal charging tariff with increasing size. The prices reach
down to 4.5 Ct

kWh less than the assumed industrial grid price without VAT.

Fig. 6a and Fig. 6b display the same form of scatter plots as above for the self-sufficiency rSS (Eq. 8)
of the system. The self-sufficiency indicates how much of the EV demand can be covered by the PV
and BAT. Therefore, the metric is especially helpful to evaluate the impact of a BAT. It becomes clear
that systems with larger BAT are more self-sufficient than other systems. The maximum self-sufficiency
of 65% is reached for a PV size of 150 kWp. This makes up a difference of over 10 pp for the same
PV size and no BAT. Regarding the grid converter size, its impact is reciprocal to the impact of the BAT
size. The smaller the grid converter, the higher the self-sufficiency. However, the impact is less than 1
pp. Later on, the impact of the self-consumption maximizing charging strategy is shown and therefore,
the comparatively lower marginal charging tariffs as well as a higher self-sufficiency are shown.

3.4 Evaluation of BAT and PV prediction influence
After the identification of an economically optimal system in the boundaries of uncovered load less than
1%, the impact of the different charging strategies as introduced in Sect. 2.3 on the marginal charging
tariff pEV (Eq. 4a) as well as the self-sufficiency rSS (Eq. 4a) are analysed. The grid converter size
impact showed to be far smaller than the impact of the BAT size. Therefore, the grid converter size is
fixed with 75 kW while the PV size is varied between 0 and 150 kWp. The different curves display the
three charging strategies and the BAT sizes of 0, 30 and 60 kWh. Accordingly the economically optimal
system can be derived as analysed on the basis of Table 2 as well as the surrounding component sizing
impact can be seen.
The PV prediction that is chosen for this specific analysis is the so called persistence forecast (PF) as
explained and analysed in [17]. The PF is often used as a benchmark for evaluating different forecasting
methods. Its advantages are its simplicity, low computational costs as well as offline capability.
Fig. 7 shows the influence of the PV prediction on the marginal charging tariff pEV. Without a PV,
the different curves start at a similar price depending on the BAT size with the lowest charging price of
about 21 Ct

kWh without VAT for systems without a BAT and the highest price of about 23.7 Ct
kWh without

VAT for a system with a BAT of 60 kWh. With increasing PV size, the curves divert. In case of an
(unrealistic) perfect PV forecast, the price is lowest with down to about 13.9 Ct

kWh without VAT with a
PV size of 150 kWp. The system with the uncontrolled charging strategy and with a 60 kWh BAT is
most expensive with a minimum at about 125 kWp PV size and about 17.9 Ct

kWh without VAT.
From the beginning on the prediction based charging strategy is less expensive than uncontrolled charg-
ing. The difference between the perfect and the prediction based charging strategy stays at about 0.1 Ct

kWh .
Calculated with the yearly energy demand of 100 000 kWh, this sums up to a monetary loss of about
100AC per year. At the same time the gain of about 4 Ct

kWh in comparison to the uncontrolled charging
strategy means a surplus of 4000AC per year for implementing a charging strategy.

It is interesting, that systems with a BAT and with perfect charging yield a similar marginal charging
tariff to systems without BAT and with application of imperfect prediction especially at bigger PV sizes.



(a) BAT size shown in the colour bar.

(b) Grid converter size shown in the colour bar.

Figure 6: Self-sufficiency rSS in % over PV size in kWp with application of the self-consumption maximizing
charging strategy and PV forecasting inaccuracies.

Figure 7: Marginal charging tariff in Ct/kWh for a grid converter of 75 kW and different BAT sizes comparing the
cases of uncontrolled, prediction based and perfect charging.



From 75 kWp on all displayed curves are below the industrial grid price. Also, from about that point on
the price difference between the systems that apply a charging strategy with those that do not become
most distinctive.

Fig. 8 shows the influence of the PV prediction on the self-sufficiency rSS. Different to the marginal
charging tariff, the impact of charging strategy and BAT size on the self-sufficiency clearly separates
the different curves from small PV sizes on. The highest self-sufficiency of about 65% is achieved
for a system with perfect PV forecast, 60 kWh BAT and 150 kWp PV. It is 30 pp higher than the self-
sufficiency of the system without BAT using uncontrolled charging. The difference between imperfect
and perfect prediction amounts to a self-sufficiency decrease of about 1 pp in case of a system without
BAT. In comparison to uncontrolled charging the self-sufficiency increase is 20 pp. Although the imper-
fect PV forecast introduces losses in the self-sufficiency, even the system without BAT has an about 10
pp higher self-sufficiency compared to a system with uncontrolled charging with a 60 kWh BAT. This
shows, that applying a self-consumption maximizing charging strategy nevertheless lessens the grid im-
pact. The increase of self-sufficiency of about 5 pp due to a BAT in comparison of the different systems
with prediction based charging still can speak for the choice of a BAT, as more than 5000 kWh less grid
consumption per year can be achieved. Although a BAT is more expensive, the prices below the grid
price for higher PV sizes as well as the self-sufficiency increase with BAT can argue for the choice for a
BAT.

Figure 8: Self-sufficiency in % for a grid converter of 75 kW and different BAT sizes comparing the cases of
uncontrolled (uncontr.), prediction based (pred.) and perfect (perf.) charging.

4 Conclusion and outlook
A DC-coupled EVCS with PV, BAT and connection to the power grid was sized and simulated for the
demand of 10 AC and 10 DC charging points. Different to existing literature, a long time period of over
one year and the impact of component sizing were considered. The approach supports companies with
the conditions for installing a profitable EVCS.

The impact of forecast accuracy is evaluated by comparing a system with perfect PV forecast, persistence
PV forecast and uncontrolled charging. It is shown that implementing a self-consumption maximizing
charging strategy outweighs the losses due to prediction. A minimum marginal charging tariff of about
4.5 Ct/kWh less than the industrial grid price without VAT was calculated for a PV of 120 kWp and a
grid converter of 75 kW. These optimal values apply as long as the EV load forecast is perfect. Cal-
culated with the yearly energy demand of about 100 000 kWh derived from real workplace charging
data, the monetary loss compared to a perfect PV forecast amounted to 100AC per year. In comparison
to uncontrolled charging a surplus of 4000AC per year was achieved. The decrease in self-sufficiency
compared to a perfect PV forecast was only about 1 pp and outweighed the increase of more than 20 pp
compared to uncontrolled charging in case of a system without BAT. Systems with BAT with a PV larger
than 80 kWp become economic. However, systems without BAT are most economic. At the same time,
a BAT of 60 kWh could increase the self-sufficiency up to 10 pp.



The system was sized with the criterion that less than 1% of the EV demand was allowed to remain
uncovered. This criterion might have been too strict and needs to be analysed regarding the distribution
of the load losses’ uniformity and socio-economic aspects. Furthermore the approach showed that if
the grid connection offers more power than the load peak power, the load prediction is more important
than the PV prediction. Therefore a comparison of the influence of load and PV forecasting shall be
analysed in the future. Regarding the workplace environment and the long parking durations, the load
uncertainty is not as striking as in other scenarios such as public charging. This motivates for a more
in-depth analysis regarding different use cases, also including battery ageing and vehicle-to-grid.
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[20] N. Munzke, F. Büchle, A. Smith, and M. Hiller, “Influence of efficiency, aging and charging
strategy on the economic viability and dimensioning of photovoltaic home storage systems,”
Energies, vol. 14, no. 22, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/22/7673

[21] “Preise Netznutzung 2022” [Online]. Available:
https://www.transnetbw.de/files/pdf/transparenz/netzzugang-und-entgelt/preisblaetter/
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