KIT | KIT-Bibliothek | Impressum | Datenschutz

MOF‐Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents

Greifenstein, Raphael 1; Ballweg, Tim 1; Hashem, Tawheed 1; Gottwald, Eric ORCID iD icon 1; Achauer, David 1; Kirschhöfer, Frank 1; Nusser, Michael 1; Brenner-Weiß, Gerald 1; Sedghamiz, Elaheh 2; Wenzel, Wolfgang 2; Mittmann, Esther ORCID iD icon 3; Rabe, Kersten S. ORCID iD icon 3; Niemeyer, Christof M. ORCID iD icon 3; Franzreb, Matthias ORCID iD icon 1; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes.


Verlagsausgabe §
DOI: 10.5445/IR/1000149742
Veröffentlicht am 10.08.2022
Originalveröffentlichung
DOI: 10.1002/anie.202117144
Scopus
Zitationen: 55
Web of Science
Zitationen: 47
Dimensions
Zitationen: 57
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.04.2022
Sprache Englisch
Identifikator ISSN: 1433-7851, 1521-3773
KITopen-ID: 1000149742
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Angewandte Chemie International Edition
Verlag John Wiley and Sons
Band 61
Heft 18
Seiten e202117144
Vorab online veröffentlicht am 09.03.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page