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Abstract

Spatially continuous data play an essential role in hydrogeology for scientific research,

risk assessment, and water management decision-making. However, most of this infor-

mation is collected only selectively through measurements at groundwater monitoring

wells and then regionalized. The predictive accuracy of these regionalized data, which

usually provide the foundation for subsequent analysis and decision-making processes,

depends on the design of the groundwater monitoring network (GMN), i.e., the spatial

distribution, the monitoring density, the sampling frequency, as well as the interpolation

technique and the interaction of these factors. This leads to a considerable optimization

potential for the GMN and the regionalization technique.

Appropriate GMNs are therefore important tools for the sustainable management and

protection of groundwater resources. They provide access points for monitoring ground-

water levels and sampling, thereby providing insight into groundwater conditions. Due

to the combination of high initial investment and relatively low spatial representativeness

of wells due to hydrogeologic heterogeneity, planning a suitable GMN is a major chal-

lenge. This work addresses techniques for better understanding groundwater dynamics

through (i) spatial and (ii) spatiotemporal optimization of groundwater level monitoring

networks (GLMNs) and (iii) more accurate spatial prediction of data obtained at these

monitoring wells, employing interpolation techniques.

For this purpose, the first part of this work comprises a comprehensive assessment of the

most frequently applied deterministic and geostatistical, uni- and multivariate interpo-

lation techniques for groundwater contour mapping in a study area characterized by a

complex interaction between karst and an alluvial aquifer and the low-permeability strata

of the Subalpine Molasse sediments. The studied methods were evaluated by global cross-

validation and eco-hydrogeologic information at karst springs, wetlands, surface waters,

and profile sections. The potential effect of the choice of interpolation method on sub-

sequent calculations was made by estimating the exchange processes between karst and

alluvial aquifers based on the calculated potential differences. The results show that the

choice of method, especially in the case of inadequate monitoring design, can have drastic

effects on further analyses. This study showed that geostatistical or kriging interpolation
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methods were superior to deterministic interpolation methods. When groundwater data

are sparse, co-kriging with spatially cross-correlated secondary variables (e.g., elevation,

river level) that are sampled more frequently can provide meaningful information about

the primary variable and thus reduce the variance of the estimation error.

In the second part of this work, different GLMN designs with varying monitoring den-

sities were investigated using numerically modeled groundwater surfaces with a range

of scales and dynamics. The objective was to provide insight into appropriate monitor-

ing approaches for reliable spatial estimation of groundwater levels (GWLs) and derive

the monitoring density at which a proper information/cost ratio is achieved. The in-

terpolation results were evaluated using global cross-validation and the actual spatial

error, computed from the numerical model surfaces as “a priori” references. Monitoring

networks with regular grid arrangements provided the most accurate spatial predictions

for the density spectrum studied but are not suitable due to their drawbacks, such as a

lack of extensibility. Comparably good performance was obtained when the maximum

kriging prediction standard error was used as a selection criterion for the selection of

new well locations to existing networks. In addition, a novel optimization strategy for

GMN based on mathematical quasi-random sequences was applied in this study. The

approach also produced good results and offers several advantages. No prior knowledge

of the aquifer through existing wells is required, and reproducible designs are obtained

independently of the expansion steps.

In part three, a data-driven sparse sensing algorithm approach for selecting sparse sen-

sor placements utilizing dimensionality reduction techniques was explored and adjusted

for the temporal and spatial optimization of an existing GLMN in the Upper Rhine

Graben. The optimization was performed by using a greedy search (QR) algorithm that

selects and ranks monitoring wells according to their information content about aquifer

dynamics. First, long-term hydrograph records were used as input data to indicate rep-

resentative monitoring wells or wells with redundant or low information content. Second,

optimization based on regionalized, weekly gridded GWL contour maps was performed

to identify eligible locations for additional wells. This search was controlled with a spa-

tial cost function that penalized less suitable sites. The approach studied has proven to

be a potentially valuable tool for optimizing the number of wells and their locations, for

network downsizing and expansion, or both combined.
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Kurzfassung

Räumlich kontinuierliche Daten sind in der Hydrogeologie für die wissenschaftliche For-

schung, die Risikobewertung und wasserwirtschaftliche Entscheidungsprozesse von we-

sentlicher Bedeutung. Die meisten dieser Informationen werden allerdings nur punktuell

durch Messungen an Grundwassermessstellen erhoben und anschließend regionalisiert.

Die Vorhersagegenauigkeit dieser räumlich interpolierten Daten, die in der Regel die

Grundlage für weitere Berechnungen und Entscheidungen bilden, ist stark abhängig von

der Konzipierung des Grundwassermessnetzes, d.h. von der räumlichen Verteilung und

Dichte der Grundwassermessstellen, der Beprobungshäufigkeit, dem Interpolationsver-

fahren sowie dem Wechselspiel zwischen diesen Faktoren. Daraus ergibt sich ein erhe-

bliches Optimierungspotenzial hinsichtlich des Grundwassermessnetzes und der Region-

alisierungstechnik.

Geeignetes Grundwassermessnetze sind daher wichtige Instrumente für die nachhaltige

Bewirtschaftung und für den Schutz der Grundwasserressourcen. Sie bieten Zugangs-

punkte für die Überwachung von Grundwasserständen und -proben und ermöglichen

so einen Einblick in die Grundwasserverhältnisse. Die Kombination aus hohen Er-

schließungskosten und einer verhältnismäßig geringen räumlichen Repräsentativität der

Brunnen aufgrund der hydrogeologischen Heterogenität machen die Konzeption eines

geeigneten Überwachungsnetzes zu einer großen Herausforderung. Diese Arbeit beschäf-

tigt sich mit Techniken zum verbesserten Verständnis der Grundwasserdynamik durch

(i) räumliche und (ii) räumliche-zeitliche Optimierung von Grundwasserstandsmessnet-

zen und (iii) verbesserter räumlicher Vorhersage der an diesen Überwachungsbrunnen

gewonnenen Daten unter Verwendung von Interpolationstechniken.

Zu diesem Zweck wurde im ersten Teil dieser Arbeit eine umfassende Untersuchung

der meistgenutzten deterministischen und geostatistischen, uni- und multivariaten In-

terpolationstechniken für die Erstellung von Grundwassergleichenplänen in einem Un-

tersuchungsgebiet durchgeführt, das durch eine komplexe Interaktion zwischen Karst,

einem alluvialen Grundwasserleiter und gering durchlässigen Schichten der alpinen Mo-

lasse gekennzeichnet ist. Die untersuchten Methoden wurden durch globale Kreuz-

validierung und öko-hydrogeologische Informationen an Karstquellen, Feuchtgebieten,
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Oberflächengewässern und Profilschnitten bewertet. Der mögliche Effekt der Metho-

denwahl auf die weitere Berechnung wurde durch Abschätzung der Austauschprozesse

zwischen Karst- und Alluvialgrundwasserleiter auf Basis der geschätzten Potentialunter-

schiede durchgeführt. Die Ergebnisse zeigen, dass die Verfahrenswahl, insbesondere bei

unzureichendem Überwachungskonzept, drastische Auswirkungen auf die nachfolgenden

Berechnungen haben kann. Die Studie hat ergeben, dass geostatistische oder Kriging-

Interpolationsmethoden den deterministischen Interpolationsmethoden überlegen sind.

Bei dürftiger Grundwasserdatenlage kann das Co-Kriging mit räumlich kreuzkorrelierten

Sekundärvariablen (z. B. Höhenlage, Flusspegel), die häufiger erfasst werden, wertvolle

Informationen über die Primärvariable bereitstellen und so die Varianz des Schätzfehlers

verringern.

Im zweiten Teil dieser Arbeit wurden räumliche Monitoringkonzepte mit unterschied-

lichen Messdichten an numerisch modellierter Grundwasseroberflächen mit verschiede-

nen Skalen und Dynamiken untersucht. Ziel war es, Einblicke in geeignete Monitoring-

ansätze für eine verlässliche räumliche Abschätzung des Grundwasserspiegels zu gewin-

nen und eine Überwachungsdichte abzuleiten, bei der ein angemessenes Informations/Ko-

sten-Verhältnis erreicht wird. Die Interpolationsergebnisse wurden mit globaler Kreuz-

validierung und dem tatsächlichen räumlichen Fehler evaluiert, der anhand der nu-

merischen Modellflächen als A-priori-Referenz errechnet wurde. Überwachungsnetze mit

einer regelmäßigen Gitteranordnung boten zwar genaueste räumliche Vorhersagen für

das betrachtete Dichtespektrum, sind jedoch aufgrund ihrer Nachteile, wie der man-

gelnden Erweiterungsfähigkeit, tendenziell ungeeignet. Eine vergleichbar gute Leistung

wurde erzielt, wenn der maximale Vorhersage-Standardfehler als Auswahlkriterium für

zusätzliche Brunnen für bestehende Messnetze verwendet wurde. In dieser Studie wurde

außerdem eine neuartige Optimierungsstrategie für Überwachungsnetze angewandt, die

auf mathematischen Quasi-Zufallsfolgen basiert. Der Ansatz liefert ebenfalls überzeu-

gende Ergebnisse und bietet mehrere Vorteile. Er bedarf keinerlei Vorkenntnisse über

den Grundwasserleiter durch vorhandene Brunnen und es werden unabhängig von den

Ausbaustufen reproduzierbare räumliche Anordnungen erzielt.

Im dritten Teil wurde ein datengesteuerter Sparse-Sensing-Algorithmus-Ansatz zur Aus-

wahl von spärlichen Sensorpositionen unter Nutzung von Techniken zur Dimensionsre-

duktion untersucht und für die zeitliche und räumliche Optimierung eines bestehen-

den Grundwasserstandsmessnetzes im Oberrheingraben adaptiert. Die Optimierung er-

folgt mit einem greedy search (QR)-Algorithmus, der die Überwachungsbrunnen nach

ihrem Informationsgehalt über Aquifer-Dynamik selektiert und einordnet. Als Ein-

gangsdaten wurden langjährige Ganglinien-Aufzeichnungen verwendet, um repräsenta-

tive Messstellen oder Messstellen mit redundantem oder niedrigem Informationsgehalt zu
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bestimmen. Des Weiteren wurde eine Optimierung auf der Grundlage regionalisierter,

wöchentlicher Grundwassergleichenkarten durchgeführt, um mögliche geeignete Stan-

dorte für zusätzliche Messstellen zu identifizieren. Die Suche wurde durch eine räumliche

Kostenfunktion gelenkt, bei der weniger geeignete Standorte abgewertet wurden. Der

untersuchte Ansatz hat sich als potenziell wertvolles Instrument für die Optimierung der

Brunnenanzahl und deren Standorte, für die Reduzierung und den Ausbau des Netzes

aber auch für eine kombinierte Nutzung beider Möglichkeiten erwiesen.
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Chapter 1

Introduction

1.1 Motivation

Groundwater is one of our most vital resources, providing about half of the world’s

drinking water and about 40 % of the water needed for irrigated agriculture (Siebert

et al., 2010; World Water Assessment Programme, 2009). It is essential to many ecosys-

tems, maintaining groundwater flow for surface waters and preventing land subsidence

and seawater intrusion. This makes groundwater a local resource with a global impact.

Despite these facts, groundwater, due to being hidden in the subsurface, is literally out

of sight for most of us, and is often perceived as an inexhaustible and quality-assured

natural resource. Increasing overexploitation due to population and economic growth

and changing climatic conditions expand the pressure on this resource. The majority of

groundwater is fossil groundwater (Jasechko et al., 2017). More than non-renewable en-

ergy sources, the finite resource of safe and clean freshwater will limit global population

growth unless changes are made to how we utilize and conserve this resource (Kinzelbach

and Kunstmann, 1998).

Groundwater resources are monitored worldwide by surveying GWLs, groundwater qual-

itys (GWQs) parameters, abstraction and spring discharge. Monitoring wells provide ac-

cess for measuring groundwater levels and collecting groundwater samples that represent

groundwater conditions at the particular well. This makes monitoring networks essen-

tial instruments to make the “invisible” groundwater “visible”. So far, however, there

are few uniform regulations and standards concerning the number, spatial distribution

and density of the monitoring locations, their monitoring frequency, and the parameters

measured. Groundwater’s lack of visibility and the resulting low awareness of it has led

to the neglect of systematic monitoring in many countries, despite the great importance

of groundwater resources for drinking water supply and their crucial role in conserving

some aquatic ecosystems. The planning and expansion (of mostly historically grown)
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Chapter 1 Introduction

monitoring networks are therefore mainly done on an ad hoc basis, which means there

is usually a high degree of subjectivity. Moreover, in many emerging and developing

countries, aquifers are often insufficiently or completely unmonitored.

Besides the importance of groundwater for a drinking water and ecosystems, and its

“invisibility”, the monitoring of groundwater is of great importance due to its mostly

low flow velocities and thus long residence times. If contamination is not detected and

appropriate action taken in time, it may take decades or longer to regain the requisite

quality. Consequences of overexploitation due to misestimation of the groundwater sup-

ply are manifold and can take decades to manifest. Impacts include ecosystem collapse,

salinization of coastal aquifers, loss of aquifer storage capacity due to compaction and

subsidence, and even desertification (Graaf et al., 2019), most of which are partly or

totally irreversible.

Groundwater monitoring is generally more challenging than monitoring surface waters.

Reasons for this are higher initial investments (e.g., drilling costs, well development, es-

pecially for deep aquifers), comparatively lower spatial representation of monitoring wells

due to hydrogeological heterogeneity, and the inaccessibility of the hidden groundwater

resource (IGRAC, 2020). Unlike surface water, groundwater offers hardly any visual ev-

idence since accessible sampling is generally only possible at spring locations (e.g., Frank

et al., 2019). Therefore, groundwater-related issues and crises often go unnoticed, espe-

cially on a smaller scale. The assistance of modern remote sensing methods is limited,

in contrast to surface waters, to coarse assessments of storage changes on a large spatial

scale (Liesch and Ohmer, 2016). This underlines the great importance of groundwater

monitoring in general, particularly the need for groundwater monitoring networks with

appropriate spatial coverage and monitoring frequencies (together often referred to as

monitoring optimization) and reliable techniques for regionalizing information obtained

at monitoring wells into spatially continuous information such as groundwater contour

maps, including uncertainty estimates. Especially since the quality of the monitoring

network dictates the quality of most subsequent investigations, analyses, and analytical

or numerical groundwater models (e.g., Ohmer et al., 2022a,b).

The following chapter is structured as follows: Section 1.2 provides a general overview

of the concept of groundwater monitoring, starting with the historical development from

the first systematic measurements on wells to the present day. The differences between

GMNs in their systematics, monitoring parameters, and objectives are explained, and

examples of national and international groundwater monitoring networks are given to

illustrate the range of current groundwater monitoring. Section 1.3 introduces network

optimization concepts with a focus on Pareto optimality, a cornerstone in the field of

optimization. Section 1.4 illustrates the most common methods to estimate spatially
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Chapter 1 Introduction

continuous GWL and groundwater quality parameters from point observations. The fo-

cus is on kriging techniques since this is the most commonly used interpolation technique

for groundwater contour maps and was applied in all three studies presented here. Sec-

tion 1.5 provides a brief outline of the three studies conducted in this thesis in connection

with the research questions that motivated this work.

1.2 Groundwater Monitoring

1.2.1 A Brief History of Groundwater Monitoring

According to Richter (1943) and Muzikar (2013), the first systematic recording of ground-

water levels in a well was carried out between 1865 and 1880 by the abbot Johan Georg

Mendel (Anonymous, 1881). He later became famous for his genetics research. Ap-

plied scientific groundwater monitoring dates back to the 19th century in England. This

period is characterized by rapid technical and scientific progress in the context of in-

dustrialization and urbanization. The rapid increase in the urban population due to

the high demand for factory workers and increasing industrialization led to shortages in

the supply of sufficient clean drinking water in rapidly growing cities. The deteriorat-

ing quality of urban water supplies is often cited as the leading cause of the increase

in mortality during this period (Davenport et al., 2019). To overcome this challenge,

an interdisciplinary collaboration between geologists and engineers was established for

the first time (Dassargues et al., 2021). At the same time, technical inventions such

as mechanical drilling and steam-driven water pumps made it possible to increase ex-

traction rates and access deeper groundwater resources. The expansive exploitation of

groundwater began.

In addition, scientific disciplines became increasingly specialized during this period.

Thus, the year 1856, when Henry Darcy published his famous law, is often cited as

the starting point of hydrogeology. In the following years, Dupuit (1863) derived a for-

mula for calculating the groundwater flow to a well based on Darcy’s equation. In 1870,

Dupuit’s formula was extended by Thiem to determine the hydraulic properties of the

aquifer with pumping tests.

In 1822, Conybeare and Phillips measured the GWL at four wells and drew the course

in a diagram over 25 km from the River Thames to the town of Epping. This is probably

the earliest hydrogeologic cross-section (Mather and London, 2004). The methodology

of hydrogeological profile sections was taken up and extended in several studies in the

following years (Clutterbuck et al., 1850; Lucas, 1876). Gustave Dumont produced the
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first hand-interpolated potentiometric groundwater map in Belgium in 1856 as part of

a feasibility study for large-scale drinking water production. Dumont used river level

measurements and 204 wells in an unconfined Cretaceous chalk aquifer (Dassargues et

al., 2021). The study was particularly innovative in that it examined the feasibility and

efficiency of the project and its potential impacts (e.g., on the groundwater levels of

private wells).

John Snow probably wrote the first study of groundwater contamination in 1854 during

the second cholera epidemic in London. Through a map showing the cluster of deaths

and the drinking water wells, Snow proved that the deaths were concentrated near a

water pump and that this was, therefore, probably the source. Shutting off this well led

to a quick end to the epidemic (Price, 2004).

In the late 19th to early 20th century, other European countries simultaneously followed

the first regular groundwater level measurements at several wells (Blum et al., 2013).

Muzikar (2013) describes that from 1899 onwards, quantitative and qualitative monitor-

ing (both chemical and microbiological analysis) was carried out at selected wells in the

Czech Republic. This would make it the oldest qualitative monitoring network. In most

European countries, systematic groundwater quality monitoring was not undertaken be-

fore the 1970s to 1980s (Jousma and Roelofsen, 2004). In the USA, groundwater levels

were systematically recorded beginning in 1885 as part of Kansas cooperative water

resources study. In 1903, the preliminary division of the Office of Ground Water was

established to collect well and spring data. The network of groundwater monitoring wells

was expanded nationwide by the end of 1960 (Holmes, 1985). In China, monitoring wells

have been operated since the 1970s, especially in large cities, to investigate groundwater

pollution and seawater intrusion. The network was extended to other cities and some ru-

ral regions in the following years (Zaisheng and Mengxiong, 2013). In many developing

countries, the first steps in monitoring were taken through international groundwater

assessment projects. Unfortunately, many of these projects have resulted in only short-

term records discontinued shortly after the project ended (Jousma and Roelofsen, 2004).

1.2.2 Objectives and Types of Groundwater Monitoring Networks

The factors that determine the design of a monitoring network are manifold. These

are primarily the monitoring objectives and parameters, the operator (usually water

supplier or public authority) and its financial capabilities, the scale of the monitoring

network (local, regional, national to international), the monitoring regions (concerning

the difference in climate conditions, land use, infrastructure, etc.) and the complexity

of the hydrogeological system. A categorization of groundwater monitoring networks
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can be made under numerous aspects. Except for a few clearly defined terms (e.g.,

GQMN/GLMN), there is no unified terminology describing and classifying the different

monitoring strategies. For reasons of uniformity, the terminology used in the following

section is aligned with that of Jousma and Roelofsen (2004).

Groundwater monitoring networks are divided according to their main tasks into ground-

water level monitoring network for the monitoring of groundwater level and its temporal

change, and groundwater quality monitoring network, for the monitoring of physico-

chemical parameters (e.g. temperature, pH, and electrical conductivity), natural water

constituents and pollutants.

Groundwater monitoring network operator groups are usually either public authorities

or water suppliers. Their GMNs differ in that the GMNs of water suppliers are designed

more to pursue operational objectives in terms of water management, while the GMNs

of authorities are designed to pursue technical objectives of oversight. This includes,

for instance, ambient monitoring, where background data on water quality and quantity

is collected in specific aquifers to detect and assess changes. However, there is no sharp

line, so authorities can also operate operational GMNs and vice versa.

Monitoring networks vary further in terms of their spatial coverage. Primary ground-

water monitoring networks (also referred to as background or reference networks)

are large-scale monitoring networks that usually cover aquifers of a large regional extent.

Secondary groundwater monitoring networks, on the other hand, are local and

designed for specific purposes.

Whereas GMNs for management objectives usually focuses on observing areas of special

interest with secondary networks, e.g., catchment areas of extraction wells, GMNs for

the technical objective of a holistic description of the groundwater system requires a

large-scale primary network of distributed monitoring wells covering the groundwater

system under study.

Groundwater Level Monitoring

Operational objectives of GLMNs may include developing groundwater resources for

drinking water supply, supplying agricultural production, ensuring protection and preser-

vation of conservation areas, including wetland restoration, documenting compensation

claims, and monitoring for ground subsidence.

Technical objectives of GLMN are the investigation of characteristics and parameters

of the aquifer e.g., determination of the horizontal and vertical flow directions, aquifer

delineation, assessment of the dynamics of the groundwater system and possible influ-
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ence of climatic changes, the quantification of the impact of groundwater abstraction or

surface water management activities.

While water suppliers usually solely operate secondary monitoring networks in the catch-

ment area of wells, authorities usually maintain primary and secondary networks. Moni-

toring wells are selected to be relatively evenly distributed over the area to be monitored,

thus providing an unbiased overall survey. Primary GLMN coverage ranges from small

valley aquifers to international coverage. For special purposes (e.g. development of a

groundwater level contour map) primary and secondary networks are often combined

into a wide-spaced regional network with denser coverage in areas of special interest.

In the past decades, automatic data acquisition with groundwater level probes and real-

time data transmission has steadily increased or has become the standard, especially in

industrialized countries. In many parts of the world, however, manual measurement is

still a common practice (IGRAC, 2020).

Groundwater Quality Monitoring

Operational objectives of groundwater quality monitoring networks (GQMNs) may in-

clude the spatial collection of reference background values, detection and monitoring of

diffuse contamination from agriculture (pesticides, fertilizers, herbicides), industry, and

point contamination from industry, landfills, etc., as well as the assessment of the ef-

fect of remedial actions. Categorization can be made between hazard-based monitoring,

where known contaminants and substance releases are monitored, and flow-based moni-

toring, where unknown contaminants in the flow of extraction wells are monitored. The

standard parameters measured are mostly TDS, EC, and major constituents. In addi-

tion, depending on the hazard potential on site, there is investigation-specific sampling

for possible pollutants from agriculture (fertilizers, herbicides, pesticides), industry and

domestic sewage (e.g., heavy metals, bacteria, pharmaceuticals, volatile organic com-

pounds), or pollutants of geogenic origin (e,g, arsenic, boron, etc.).

Technical objectives of GQMN are used to characterize the groundwater quality in the

observed region. Analogous to the GLMNs, the objective of primary GQMNs is to

provide an overall view of the investigated area and, on this basis, to monitor general

GWQ and trends. Secondary GLMNs are used locally for operational objectives.
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1.2.3 Groundwater Monitoring in the International Context

The following section is intended to provide a brief overview of the status of monitoring

networks on an international level. The aim is not to give a comprehensive overview but

rather to show that there are no uniform rules, objective standards, and a high degree

of subjectivity in developing the networks at this level.

Monitoring Networks at the National Level

As described, monitoring of groundwater levels has a long tradition in Europe. Ground-

water quality monitoring, on the other hand, has been systematically undertaken in

most European countries only since the 1970s and 1980s. A 1996 European Environment

Agency (EEA) survey of all member countries on their current GLMNs/ and GQMNs

revealed that the groundwater quality monitoring objectives of individual countries,

particularly the spatial and temporal coverage of monitoring wells and measurements,

varied significantly and reflect the broad spectrum of national regulations, institutional

frameworks, and economic environments (Koreimann et al., 1996). Thus, GQMNs have

developed based on national objectives and demands and the respective hydrogeological

settings. Monitoring is commonly undertaken by water suppliers or public authorities

to assess GWQ in relation to drinking water standards, industrial process requirements

and irrigation needs. The GQMNs density of the individual EU countries varied at the

time of the survey in 1996 between 0.003 wells/km² and 0.57 wells/km². The sampling

frequency varied from weekly to perennial, depending on the parameters studied, the

country, and the survey objective. The majority of respondents indicated that GLMNs

are primarily used to collect primary groundwater data, record temporal and spatial

changes, and manage groundwater resources and water supplies. While most GQMNs

are located primarily near or directly sampled from extraction wells, most GLMNs are

widely distributed across groundwater basins and aquifer types. In almost all countries,

a continuous recording of the GWL is undertaken. The frequency of recording usually

varies from weekly to twice a year. The monitoring network density of GLMNs varied

from 0.004 wells/km² to 7.3 wells/km² in 1996 (Koreimann et al., 1996).

The following countries as exemplary cases illustrate general disparities in national mon-

itoring networks. In Germany, the Federal Mnistry of the Enviroment, Nature Conser-

vation, Nuclear Safety and Consumer Protection (BMUV) is responsible for regulating

water resources through federal legislation. GMNs are the competence of the federal

states. Thus, each federal state operates its own quantitative and qualitative monitor-

ing network. In addition, there are numerous small-scale monitoring networks of local
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water suppliers, primarily in groundwater protection zones and well catchments. For

instance, the State Office for the Environment (LUBW) operates a network for moni-

toring GWQ on behalf of the state of Baden-Württemberg with 1,866 observation wells

(status 2020), subdivided into subnetworks depending on anthropogenic influence and

groundwater utilization in the catchment areas. Sampling of all monitoring wells takes

place every four years. This full investigation includes geogenic and anthropogenic pa-

rameters and substances. 1,450 monitoring wells in- and outside water protection areas

are monitored for nitrogen parameters at annual intervals. This analysis is carried out

semi-annually at 230 monitoring wells in water protection areas. It is carried out quar-

terly at around 70 monitoring wells subject to special protection regulations (problem

and remediation areas). The LUBW operates a GLMN with 412 monitoring wells (sta-

tus 2020), subdivided into three groups according to the type of the well and monitoring

interval. In cooperation with water suppliers, there is also a cooperative monitoring

network with about 1,300 to 1,900 monitoring wells (status 2018/2019) (LUBW, 2021a).

France’s groundwater quality monitoring network consists of about 1,400 monitoring

wells. The GMN is managed as a collaboration of more than 200 regional and local orga-

nizations. As many of these are local water suppliers, most monitoring wells are located

near groundwater abstraction wells. The sampling procedures are not standardized and

vary in sampling intervals and monitored parameters. The French GLMN operates on

a national scale and covers all groundwater bodies of national importance. It consists

of approximately 1,500 monitoring wells that monitor weekly in unconfined aquifers and

monthly in confined aquifers. In Italy, groundwater monitoring is not centralized. It

consists of a loose group of regional to local groundwater monitoring programs, operated

by Local Health Units and Local Water Supply Services. Data are collected in so many

ways that comparison does not seem helpful (IGRAC, 2020). The United States Geolog-

ical Survey (USGS) is responsible for collecting and providing groundwater data in the

USA. It operates several national monitoring networks (National Groundwater Moni-

toring Network (NGWMN), Active Groundwater Level Network, and Climate Response

Network) and regional monitoring networks (High Plains Aquifer Monitoring Program;

state-based and local networks). NGWMN comprises about 16,500 GWL and 4,000

GWQ monitoring wells selected from 10 federal, state, and local subnetworks across the

nation. The monitoring frequency depends on the monitoring category, aquifer type,

and groundwater extraction. It ranges from daily to quarterly for trend monitoring

and quarterly to triennial for surveillance monitoring. Since 2020, China’s Ministry of

Natural Resources has operated nationwide (previously, only around eleven percent of

the nation was monitored). The network operates approximately 20,500 GWL monitor-

ing wells covering an area of 3.5 million km². It monitors groundwater temperatures,

GWL, and GWQ parameters in major plains, basins, karst, and ecologically vulnerable
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areas (Liu and Zheng, 2016). The Federal Office for the Environment operates a na-

tional groundwater monitoring network (NAQUA) with about 600 monitoring sites for

Switzerland. These meet several selection criteria including adequate coverage of the

spectrum of geological and hydrogeological conditions, altitudes, and land uses within

the country. The distribution of monitoring sites is concentrated toward population

centers, intensive agriculture, and industry (BAFU, 2019; Chilton, 2009).

Multinational Networks

The EU Water Framework Directive

The Water Framework Directive (WFD) (EC, 2000) is a legislative framework developed

by the European Union to protect European waters. The Directive requires member

states to establish GMN to assess the chemical and quantitative status of groundwater at

the scale of groundwater bodies. The Groundwater Directive (EC, 2006) is the respective

daughter directive. It defines quality standards for evaluating the chemical situation

and establishes a framework for setting threshold values for nitrates and pesticides. It is

linked to other regulations, such as the Pesticide Regulation and the Nitrates Directive.

The GMNs are composed of three subnetworks: surveillance monitoring, operational

monitoring, and quantity monitoring. The surveillance monitoring program aims to

obtain background trends and baseline information on groundwater conditions. The

results are used to establish an operational monitoring program in a 6-year cycle. The

measured core determinants are dissolved oxygen, pH, electrical conductivity, nitrate,

and ammonium. In addition, selected determinants (temperature and several major and

trace ions) are recommended. The development of monitoring network designs is based

on a site-by-site basis. In principle, however, regional conceptual models of the ground-

water body, its spatial distribution, land-use distribution, and risk assessments should

be considered in selecting sites. The monitoring networks must provide a coherent and

representative overview of the chemical status of the groundwater body. Monitoring

frequency varies from semi-annual to quarterly, depending on aquifer type and expected

groundwater system dynamics. Depending on the results, the aquifer is classified as “at

risk” or “not at risk” for the next 6-year management cycle (EC, 2007). The opera-

tional monitoring is conducted for those groundwater bodies identified as “at-risk” of

not achieving the The Water Framework Directive good status objective. In most cases,

both the core and selected determinants are required at each monitoring site. The design

of the GMN and the sampling frequency depend on the particular pollution situation

and should capture the specific causes. Sampling is carried out at least once a year. The

quantitative monitoring network is designed to supplement the risk assessment proce-
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dure of the quantitative status of groundwater in groundwater bodies. The quantitative

status of groundwater is considered “good” if the long-term average annual abstraction

does not exceed the available groundwater resource. The selection of monitoring sites is

based on conceptual models of the water bodies to be observed. Measurement density

is based on the previous assessment of groundwater body status abstraction rates. It

can be reduced at low risk or must be increased in density at high risk. However, the

frequency of the monitoring also depends on the risk assessment and the annual fluctu-

ation within the water body. In Germany, for instance (as of 2017), 4,892 surveillance

monitoring sites, 2,273 operational monitoring sites, and nearly 6,000 monitoring sites

for quantitative status are operated by the federal states. In practice, member states

construct few if any new wells. Instead, they select a subset of existing wells that they

report for the WFD network. As a result, the differences in the national networks trace

through to the WFD network.

The EU Nitrates Directive

To protect groundwater in regions with intensive agricultural use, the European Commi-

sion adopted the Nitrates Directive (EC, 1991) in 1991. The Nitrates Directive requires

the Member States to develop and implement appropriate monitoring programs to evalu-

ate control programs’ effectiveness and identify groundwaters with nitrate levels greater

than 50 mg/l. The directive specifies basic principles and guidelines. Thus, each state

must operate a general monitoring network in all aquifers of national importance. Ar-

ticle 5 requires that a connection between the nitrate contamination of the waters and

agricultural use be established in selecting the monitoring sites. However, aspects such

as sampling site density, site selection, and sampling frequency are the responsibility of

the member states. The way sampling sites are chosen can strongly influence GWQ,

making a direct comparison of groundwater conditions in countries complicated. Sev-

eral countries (for example, Sweden, Hungary, Belgium, Lithuania, Ireland, Bulgaria)

are dominated by sampling sites used for drinking water supply and have reasonably

good GWQ (Lindinger and Scheidleder, 2004). In 2015, the German nitrate monitoring

network was redesigned and expanded from 198 monitoring sites to 697. In contrast to

the countries mentioned above, these monitoring wells are located in or downstream of

agricultural areas (BMU, 2016).

1.3 Groundwater Monitoring Network Optimization

Optimization of a GMN attempts to identify the temporal and/or spatial redundancy

or inadequacy of groundwater monitoring in an existing network in order to improve the
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cost-effectiveness while meeting regulatory and other requirements or adding new wells

in locations where data are insufficient for a cost-effective management plan (Reed et al.,

2000). In recent studies, two main approaches have emerged to address this optimization

problem: mathematical and geostatistical approaches. Geostatistical methods typically

use local or global kriging variance to identify spatially or temporally over- and under-

represented sites. Mathematical approaches employ different optimization algorithms,

from random search to heuristic algorithms, to maximize or minimize a given objective

function subject to constraints. Studies often combine these two approaches. A more

detailed overview of previous studies can be found in chapters 3.1 and 4.1.

Pareto optimality, named after the economist and sociologist Vilfredo Pareto (1848-

1923), has its origins in the economic equilibrium and welfare theories of the 19th century.

According to this theory, a social situation is economically efficient or Pareto-optimal

if it is impossible to make one person better-off without making someone else worse-

off. The concept of Pareto optimality was increasingly adapted and further developed

from the 1970s and 1980s in countless scientific fields (Chinchuluun et al., 2008). A

Pareto-efficient groundwater monitoring network provides maximum information about

the aquifer for a given cost budget. All Pareto-optimal solutions form the Pareto fron-

tier. Additional information gain can only be accomplished, for example, by adding

monitoring wells and thus increasing costs (Fig. 1.1). Conversely, in a Pareto-inefficient

GMN, information gain can be improved while costs remain unchanged, or expenses

can be decreased without loss of information. Identifying monitoring wells containing

redundant information allows these monitoring wells to be omitted from the subsequent

monitoring campaigns. The monitoring expenses are therefore decreased without any

significant loss of information. Alternatively, the capacity thus gained (e.g., GWL logger

or qualitative sampling) can be used on a more representative well that has not been

considered so far. This increases the information gain at a constant monitoring cost.

The principal objective of a GMN optimization is to find the best balance of required

system information at a reasonable cost. For an initial groundwater monitoring net-

work (consisting of very few monitoring wells), each additional well provides valuable

information. The information gain per new well (information per cost unit) decreases

with increasing numbers of wells in the network. A balanced, Pareto-optimal monitoring

network is located on the sweet spot of this Pareto frontier. It is complex enough to

detect relevant dynamics and provides only slightly less information than much more

complex GMNs.
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Figure 1.1: Concept of Pareto optimality for groundwater monitoring networks.

1.4 Regionalization of Groundwater Data

Spatially continuous data (or spatially continuous surfaces) are relevant for groundwater

management planning, risk assessment, and decision making. Since, as mentioned above,

the attributes of groundwater (level, chemical composition, etc.) are generally unknown

except at monitored locations, they must be estimated at unmonitored sites, so region-

alization from point to continuous spatial data is required. The most commonly used

technique for regionalization is spatial interpolation, but other options exist. The follow-

ing section discusses regionalization using interpolation of groundwater contour maps as

an example. However, the techniques described are also applicable to regionalization of

GWQ parameters.

Groundwater contour maps (unconfined aqui-fers) or piezometric surfaces (confined

aquifers) are essential instruments in hydrogeologic investigations. In addition to de-

termining groundwater flow directions, groundwater contour maps combined with addi-

tional data enable the analysis and estimation of hydraulic gradients, flow velocities, flow

rates, particle travel time, hydraulic conductivity, transmissivity, groundwater quantifi-

cation, and impact of groundwater extraction, and the interaction with surface waters

(Krešic, 2007). Apart from the interpolation procedure itself, the results primarily de-

pend on spatial and temporal data quality (the respective system under consideration).
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Since the assumptions made by interpolation are usually applied as a foundation for fur-

ther calculations, errors are propagated to all subsequent analyses. Groundwater contour

maps and flow networks are commonly produced using one of the following methods::

1. Manually constructed based on the triangular linear interpretation of neighboring

monitoring wells (Delaunay triangulation). Although the method is outdated, it

allows expert knowledge to be incorporated. Since this is a very time-consuming

method, it applies only to specific applications.

2. Computed using deterministic, geostatistical, or combined interpolation methods.

3. Computed through a numerical or analytical groundwater flow model.

Spatial interpolation and/or spatial prediction is a process of estimating values of the

target variable over the entire area of interest using some input training point data, an

algorithm, and the values of the covariates at new locations (Mitas and Mitasova, 2011).

Numerous spatial interpolation methods have been developed and applied for various

disciplines. General statements regarding selecting an appropriate interpolation method

are somewhat limited because many factors, such as sample size, sampling design, and

the variability and nature of the data influence the spatial interpolator. There are no

consistent findings on how these factors affect the performance of spatial interpolators

(Li and Heap, 2008).

Spatial interpolation methods can be separated into deterministic, geostatistical, and

combined methods. Deterministic methods use empirical model parameters. These

methods do not allow estimation of the uncertainty of the model, and there are usually

no strict assumptions about the variability of the attribute. For groundwater contouring,

commonly applied deterministic methods are, e.g., Thiessen’s polygons, inverse distance

weighting, or spline interpolation.

Although other techniques exist, kriging has been a synonym for geostatistical methods.

It is one of the most robust and widely used methods for interpolation and contouring

in different fields (Krešic, 2007). Kriging is, in fact, a collective term for a variety

of interpolators, all based on the same idea and basic equation. It was named by G.

Matheron after D. G. Krige, a South African mining engineer who first formulated the

basic idea in 1951. Matheron took these ideas and developed them into his theory of

regionalized variables.

Kriging assumes that the parameter being investigated is subject to a stationary random

function described as Z(x) = µ + ε(x). This means that the value Z at the location x

is the mean of the process plus random component resulting from a distribution with

zero mean and covariance function. The basic idea is that the sample points close to x0
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should get a larger weighting to improve the prediction. For this purpose, the technique

relies on a certain spatial structure of the data, modeled by the second-order properties,

i.e., variogram or covariance, of the underlying random function Z(x). The goal is to

determine the weights in the linear estimator (taking into account the structure) such

that the final estimate is unbiased and has minimal error variance among all linear

unbiased predictors. The resulting weights depend on the assumptions about the mean

value µ(x) and the variogram or covariance function of Z(x).

The variogram concept is founded on the premise that the spatial correlation between

two sampling points does not depend on their absolute geographic location but only on

their relative location (Wackernagel, 1995). For this purpose, the squared differences of

the measured points are plotted in pairs based on their relative distances or in defined

lags. The squared differences of the pairs are summed and divided by the number of

points. This gives the semivariance (half variance), which is plotted in a two-dimensional

graph as a function of distance from the reference point. In the ideal case, this results in

processes that mathematical functions can approximate. A semivariogram approaches

a limit (sill) in general (exception: linear variogram). The distance to the point where

the sill is attained is called range. If y(x = 0) > 0, then y is called a nugget, a measure

of noise. Calculating the standard deviation of the manipulated values estimates the

interpolation error. Such error estimates can be used as plausible parameter values for

model calibration and forecast uncertainty analysis (Anderson et al., 2015).

Since collecting additional (independent) measurements is often impractical, validation

of predictive models is usually done by CV, i.e., by subsetting the original set of points

into two datasets - calibration and validation without the subset - and then repeating the

analysis. The most common types of CV methods are k-fold CV (splitting into k equal

parts), leave-one-out (LOO) CV (each measurement is used for CV), and jackknifing

(similar to LOO, but aims to estimate the bias of the statistical analysis rather than

the predictions). It should be noted that CV is not necessarily independent because the

items used for CV are a subset of the original measurement. For example, if they are

biased or unrepresentative, the CV will not show the actual accuracy of the CV.

1.5 Outline

The focus of this cumulative thesis is, first, on the investigation of techniques to im-

prove the design of groundwater level monitoring networks in terms of a reasonable

balance of monitoring quality and monitoring costs in a temporal and spatial context

and, second, on the investigation of techniques for the spatial prediction of GWL based
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on observations at these networks. This was accomplished by three studies, submitted

to peer-reviewed (ISI-listed) journals. Two of them have already been published, and

one is currently under review. In the process of the studies, the following research ques-

tions were formulated and addressed in chapters 2, 3, and 4. The synthesis in Chapter

5 establishes a connection between the results and findings of the presented studies.

RQ 1: Which interpolation technique provides the best results for the studied alluvial

and karst aquifer?

RQ 2: How do the different interpolation methods deal with the

i spatially inhomogeneous distribution/patterns of the existing groundwater

monitoring network?

ii different surface types change from a pronounced hilly topography to a flat

riverine landscape?

ii different hydraulic pressure conditions within the aquifer which fluctuate from

unconfined to artesian?

RQ 3: What are the possible influences of the chosen methods on further computations,

namely the calculation of the estimated vertical groundwater exchange between

different aquifer systems?

RQ 4: Which are the most suitable error statistics to compare the performance of the

methods?

RQ 5: How can the results be validated with additional eco-hydrogeological data? This

includes, e.g., a comparison between calculated groundwater depth and geographic

locations of karst springs and wetlands and surface waters and a comparison of

computed flow accumulation with the areas of receiving waters.

RQ 6: Is there an extensible and transferable GLMN design that allows reliable spatial

estimates of GWL with a minimum number of monitoring wells?

RQ 7: What are the quality differences resulting from the use of various GLMN design

approaches?

RQ 8: At what monitoring well density does a reasonable information/cost ratio result?

RQ 9: Which is the most suitable CV error statistic (MAE, RMSE, RMSSE, ASE, or

NSE) to evaluate the quality of interpolated groundwater surfaces?

15



Chapter 1 Introduction

RQ 10: What is the ranking of monitoring wells in an existing network in terms of their

information content/reconstruction performance, i.e., in which order should the

wells be removed if a network reduction is desired?

RQ 11: How does a reconstruction/interpolation error develop when a given number of

monitoring wells are reduced? How does the error of reducing wells according to

information content compare to a random reduction?

RQ 12: When the goal is network extension, where should new wells be placed for

maximum information gain? How much is the increase in information, i.e., how

much will the spatial reconstruction error be reduced?

RQ 13: How well does a combined reduction/extension (i.e., replacement) of a certain

number of wells perform compared to a straightforward extension?

The objective of the study, presented in Chapter 2, was to investigate uncertainties

resulting from the choice of the interpolation techniques for predicting a continuous GWL

from point measurements at monitoring wells and the resulting error propagation in

downstream calculations, e.g., aquifer exchange processes (RQ 1, RQ 2, RQ 3). For this

purpose, nine frequently used deterministic and geostatistical interpolation techniques

were comprehensively compared. The evaluation was performed using leave-one-out CV

with six commonly applied error metrics (RQ 4) as well as detailed plausibility checks

at selected locations, e.g., the groundwater depths were calculated in wetlands, along

cross-sections in valley regions, and the course of the calculated major groundwater

streamlines was compared with the locations of large karst springs (RQ 5). In the

co-kriging method, additional variables associated with the GWL (e.g., elevation-, river-

level data) were added to improve the prediction accuracy.

nine interpolation methods:study area: validation: uncertainty propagation:

alluvial

karst

CV-statistics

streamlines/spring locations cross-sections

GW depths on wetlands
estimated vertical 
GW exchange
karst/alluvial:

Donauried

.

181 GW moni-
toring wells

2 aquifers:
- karst
- alluvial

1 aquitard:
- Alpine
  Molasses

OK OK
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LPI LPI

CoOK CoOK

-303 MCM/a

CoOK CoOK

CoOK CoOK

RBF RBF

EBK EBK
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IDW IDW

GPI GPI

Figure 1.2: Graphical abstract of the study presented in Chapter 2
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Chapter 1 Introduction

The region covered by the GLMN is characterized by a complex interaction of the re-

gional highly productive aquifers of the Upper Jurassic karst and the Quaternary alluvial

aquifer in the Danube valley with several wetlands, the Danube River, and the low per-

meability Molasse Formation controlling the aquifer exchange. In short, a wide range

of hydrogeologic conditions is present here on a small scale. Although several regional

water suppliers actively use the local groundwater, little is known about the exchange

processes of the aquifers due to the hydrogeological complexity. The resulting question

of the necessary complexity of a monitoring network to adequately represent the spatial

GWL was the motivation for the study presented in Chapter 3.

The study presented in Chapter 3 addresses the requirements for an optimal GLMN

to accurately predict spatial GWL with a reasonable information/cost ratio. For this

purpose, a total of 6 monitoring design approaches were comprehensively evaluated in

terms of monitoring density and spatial dynamics of the hydrogeological system (RQ 6).

These approaches consist of random sampling (which corresponds most to the spatial

distribution of most real existing measurement networks), two spatial coverage sampling

approaches, one geostatistical approach, and two regular grid sampling approaches. Since

the spatial and temporal variability of GWL beyond points such as wells and springs is

generally unknown, the interpolation of spatial GWL, as well as the evaluation of the

interpolation itself, must be based on information available at these points.

As the results of the first study indicated that the performance of CV assessment depends

on the number and distribution of monitoring wells and the variation in data, the study in

Chapter 3 instead used nine generic potentiometric groundwater surfaces extracted from

three large-scale numerical groundwater models as an “a priori” reference. The model

surfaces were chosen to reflect a wide range of hydrogeologic system characteristics at

different scales so that the overall performance of the monitoring approach studied can

be assessed. From an initial monitoring network of 10 wells, the network was extended

stepwise to up to 500 wells for each method investigated. For each extension step,

the GWL was interpolated, and the interpolation accuracy was calculated with the

six monitoring design approaches: nine MODFLOW „a priori“ GWL: 10-500 monitoring wells, 10 runs: „real“ error vs. cross-validation error:

i = 500

n = 10

Figure 1.3: Graphical abstract of the study presented in Chapter 3
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“real” groundwater surface and global CV. This procedure was repeated ten times for

design strategies with random components, and the results were averaged. The use of

the “a priori” GWL, assuming that it reflects actual groundwater conditions, allows

the investigation of the development of the prediction accuracy as a function of the

measurement density (RQ 7, RQ 8). In addition, conclusions can be made about the

suitability of global CV results to compare monitoring network designs (RQ 9).

The study presented in Chapter 4 exploits data-driven learning to optimize an ex-

isting GLMN in the Upper Rhine Graben (URG). The applied algorithms, which

are applied here for the first time to groundwater monitoring wells, identify domi-

nant low-dimensional structures (e.g., principle component analysis (PCA)) from high-

dimensional signals (e.g., hydrographs, gridded data) that enable low-loss reconstruction

with a drastically reduced subset. The input signals are ranked according to their in-

formation content in this process. Both well records (i.e., hydrographs, 1D case) and

spatially continuous GWL as gridded data (i.e. interpolation, numerical modelling, 2D

case) were used as input data. The regionalization was performed using the automated

ordinary kriging (OK) procedure, which was already used in the study in Chapter 3 and

proved to be appropriate in it. For the 1D case, this results in a ranking of monitor-

ing wells according to their importance to reconstruct the aquifer signal (RQ 10). This

ranking thus allows the removal of unimportant wells with less or redundant informa-

tion according to Chapter 1.3 (RQ 11) or to select a reasonable sub-network from the

existing monitoring network. For the 2D case, the ranking refers to any pixel on the

GWL contour maps as a potential monitoring site. The algorithm was controlled by a

non-uniform spatial step function, set to zero at existing wells and to a large value at

locations distant from infrastructure or on steep terrain. In addition to reducing the

monitoring network, this also allows an extension or combination of both based on the

spatially estimated groundwater dynamics (RQ 12, RQ 13).
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Figure 1.4: Graphical abstract of the study presented in Chapter 4

18



Chapter 2

On the Optimal Selection of Interpolation

Methods for Groundwater Level Contouring
An example of propagation of uncertainty regarding inter-aquifer exchange

This chapter is based on a study published in the Elsevier journal Advances in water

resources. The remainder of this part is an edited reprint of:

Ohmer, M., Liesch, T., Goeppert, N., Goldscheider, N., (2017). On the optimal selection

of interpolation methods for groundwater level contouring: An example of propagation

of uncertainty regarding inter-aquifer exchange. Advances in Water Resources Volume

109, 121-132, doi: 10.1016/j.advwatres.2017.08.016.

Highlights

• Nine interpolation methods for a Jurassic karst and a Quaternary alluvial aquifer

are compared.

• Calculated inter-aquifer exchange rates vary greatly depending on the chosen me-

thod.

• Plausibility was additionally validated with eco-hydrogeological data (e.g., wet-

lands).

• Best results achieved with co-kriging incorporating additional data, e.g., topogra-

phy.

Copyright Notice ©2017 Elsevier Ltd. This is an accepted version of this article

published in 10.1016/j.advwatres.2017.08.016. Clarification of the copyright adjusted

according to the guidelines of the publisher.
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Chapter 2 Optimal Selection of Interpolation Methods for Groundwater Contouring

Abstract

The selection of the best possible method to interpolate a continuous groundwater level

(GWL) from point data of monitoring wells is a controversial issue. In the present study,

four deterministic and five geostatistical interpolation methods: global polynomial inter-

polation (GPI), local polynomial interpolation (LPI), inverse distance weighting (IDW),

radial basis function (RBF), simple kriging (SK), ordinary kriging (OK), universal krig-

ing (UK), empirical Bayesian kriging (EBK), and co-ordinary kriging (CoOK)) and

seven error statistics: mean error (ME), mean absolute error (MAE), mean square er-

ror (MSE), mean absolute percentage error (MAPE), root mean square error (RMSE),

root mean square standardized error (RMSSE), Pearson r were examined for a Jurassic

karst aquifer and a Quaternary alluvial aquifer. We investigated the possible prop-

agation of uncertainty of the chosen interpolation method to calculate the estimated

vertical groundwater exchange between the aquifers. Furthermore, we validated the re-

sults with eco-hydrogeological data, including comparing calculated groundwater depth

and geographic locations of karst springs, wetlands, and surface waters. These results

show that calculated inter-aquifer exchange rates based on different interpolations of

groundwater potentials may vary greatly depending on the chosen interpolation method

(by factor> 10). Therefore, the choice of an interpolation method should be made with

care, taking different error measures and additional data for plausibility control into

account. The most accurate results have been obtained with co-kriging incorporating

secondary data (e.g., topography, river levels).

2.1 Introduction

Reliable GWL contour maps provide insight into manifold hydrogeological questions,

e.g., determination of regional hydraulic gradients, flow directions, groundwater depth,

flow velocities, recharge and discharge zones, hydraulic conductivities, aquifer suscepti-

bility, and catchment sizes to delineate protection areas. The comparison of GWL con-

tour maps of different points in time provides information about the temporal change

and, therefore, the recharge and discharge of the area of interest. Differences in the

hydraulic potential of two or more aquifers in the same area, separated by an aquitard,

allow conclusions about possible vertical groundwater exchange.

With conventional methods, the GWL can only be measured at distinct observation

points, such as monitoring wells, springs, and perennial surface water. By applying

geostatistical and deterministic interpolation methods, the GWL can also be estimated
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between those observation points. However, due to economic considerations, the num-

ber and spatial and temporal distribution of the hydraulic head observations are often

insufficient to reliably represent the GWL (Delbari, 2014; Varouchakis and Hristopulos,

2013). In hilly terrain, the estimation of the GWL is often problematic because the data

set is always sparse in relation to the topographic relief, and monitoring wells are almost

exclusively located in valley regions, while the GWL is usually a subdued replica of the

ground surface elevation (Hoeksema et al., 1989).

Spatial interpolation methods including geostatistic techniques, have been applied to

various disciplines. A broad overview of comparative studies of interpolation methods

in environmental science can be found in Li and Heap (2008). Zimmerman et al. (1999)

compared the spatial interpolation accuracy of OK and UK and IDW as well as the

influence of surface types, sampling patterns, noise level, and strength of small-scale

spatial correlation on those methods by creating mathematical surfaces. They pointed

out that the kriging methods outperformed the deterministic methods over all levels and

factors. During past decades, different types of univariate kriging methods, e.g., OK and

SK, have been used to interpolate the GWL (e.g., Ahmadi and Sedghamiz, 2007; Guekie

et al., 2016; Möhler et al., 2014; Sadat Noori et al., 2013) and were compared with one

to several deterministic methods, e.g., IDW and RBF (Arslan, 2014; Chung and Rogers,

2012; Cooper et al., 2015; Delbari, 2014; Hua et al., 2009; Sun et al., 2009; Varouchakis

and Hristopulos, 2013; Xiao et al., 2016; Yao et al., 2014).

In addition, some studies used multivariate kriging methods like UK and co-kriging

(CoK) to incorporate the influence of the topography on the interpolated GWL (Ahmadi

and Sedghamiz, 2007; Arslan, 2014; Chung and Rogers, 2012; Cooper et al., 2015;

Delbari, 2014; Guekie et al., 2016; Hoeksema et al., 1989; Möhler et al., 2014; Sadat

Noori et al., 2013; Sun et al., 2009; Varouchakis and Hristopulos, 2013; Xiao et al., 2016;

Yao et al., 2014). An overview of the methods and evaluation statistics used in those

studies can be found in Tab. 2.1 and 2.2.

The majority of the previous studies compared only some of the methods and used

selected error statistics for evaluation, and often did not investigate possible consequences

of the chosen methods on further calculations or conclusions. In this study, almost

all current deterministic and geostatistical interpolation methods, namely GPI, LPI,

IDW, RBF, SK, OK, UK, EBK and CoOK, and error statistics, namely ME, MAE,

MSE, MAPE, RMSE, RMSSE, and Pearson correlation coefficient (r) are systematically

examined to answer the following research questions:

• Which interpolation technique provides the best results for the studied alluvial and

karst aquifer?
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• How do the different methods deal with the

(i) spatially inhomogeneous distribution/patterns of the existing groundwater mon-

itoring network (GMN)?

(ii) different surface types which change from a pronounced hilly topography to a

flat riverine landscape?

(iii) different hydraulic pressure conditions within the aquifer which fluctuate from

unconfined to artesian?

• Which are the most suitable error statistics to compare the performance of the

methods?

• How can the results be validated with additional eco-hydrogeological data? This

includes, e.g., a comparison between calculated groundwater depth and geographic

locations of karst springs and wetlands and surface waters and a comparison of

computed flow accumulation with the locations of receiving waters.

• What are the possible influences of the chosen methods on further computations,

namely the calculation of the estimated vertical groundwater exchange between

different aquifer systems?

Table 2.1: Methods for interpolating groundwater contour lines applied in comparative studies.
GPI: global polynomial interpolation; LPI: local polynomial interpolation; IDW: in-
verse distance weighting; BF: radial basis function; OK: ordinary kriging; EBK: em-
pirical Bayesian kriging; SK:simple kriging; UK: universal kriging; CoK: co-kriging;
MLR: multiple linear regression; GWR: geographic weighted regression; MC: mini-
mum curvature; DeK: Delaunay triangulation; ANN: artificial neural networks; ✓:
applied method; ✓ best method.

Authors GPI LPI IDW RBF OK EBK SK UK CoOK MLR GWR MC DeK ANN

Ahmadi and Sedghamiz (2007) ✓ ✓
Arslan (2014) ✓ ✓ ✓ ✓
Chung and Rogers (2012) ✓ ✓ ✓
Cooper et al. (2015) ✓ ✓ ✓ ✓ ✓ ✓
Delbari (2014) ✓ ✓ ✓ ✓
Guekie et al. (2016) ✓ ✓ ✓
Hua et al. (2009) ✓ ✓
Möhler et al. (2014) ✓ ✓
Sadat Noori et al. (2013) ✓ ✓ ✓ ✓
Sun et al. (2009) ✓ ✓ ✓
Tapoglou et al. (2014) ✓ ✓
Varouchakis and Hristopulos (2013) ✓ ✓ ✓ ✓ ✓
Xiao et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Yao et al. (2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 2.2: Evaluation statistics used in comparative studies. CV: cross-validation; OV:
orthogonal-validation; ME: mean error; MAE: mean absolute error; MAPE: mean
absolute percentage error; r: Pearson correlation coefficient; R2: coefficient of de-
termination; VSE: variance of standardized error; CVUD: cumulative vertical un-
certainty standard deviation; MSE: mean standardized error; RMSSE: root mean
square standardized error; τ -Test: Kendall rank correlation; 95 PPI: 95 percent pre-
diction interval; ✓: applied statistics.

Authors CV OV ME MAE MAPE RMSE R R2 VSE CVUD MSE RMSSE τ -Test 95 PPI

Ahmadi and Sedghamiz (2007) ✓ ✓
Arslan (2014) ✓ ✓ ✓ ✓
Chung and Rogers (2012) ✓ ✓ ✓ ✓ ✓
Cooper et al. (2015) ✓ ✓ ✓ ✓
Delbari (2014) ✓ ✓ ✓ ✓ ✓
Guekie et al. (2016) ✓ ✓ ✓ ✓ ✓
Hua et al. (2009) ✓ ✓ ✓
Möhler et al. (2014) ✓ ✓
Sadat Noori et al. (2013) ✓ ✓ ✓ ✓
Sun et al. (2009) ✓ ✓ ✓ ✓ ✓
Tapoglou et al. (2014) ✓ ✓ ✓ ✓
Varouchakis and Hristopulos (2013) ✓ ✓ ✓ ✓ ✓ ✓
Xiao et al. (2016) ✓ ✓ ✓ ✓
Yao et al. (2014) ✓ ✓ ✓ ✓

2.2 Methods

2.2.1 General Overview

We employed nine spatial interpolation methods for this study on a Jurassic karst aquifer

and a Quaternary alluvial aquifer. Of these were four deterministic methods (GPI, LPI,

IDW, and RBF) and five geostatistical methods (OK, SK, UK, EBK, and CoOK). For

the CoOK method, additional surface-elevation data, river levels, and long-term GWL

of monitoring wells not observed at the reference date were included (see also 2.2.6).

All model parameters were optimized by iterative cross-validation (CV). For clarity, the

parameters are given in the supporting information of this Chapter (Fig. S2a).

Spatial interpolation methods can be classified either as global or local methods. Global

methods use all available data of the study area for the estimation and show a general

trend. In contrast, local methods operate within a smaller area of variable size around

the point to be estimated and offer a more local variation. Furthermore, the interpola-

tion methods can be divided into exact and inexact methods. Exact methods generate

a prediction equal to the observation at the sample point, while inexact (smooth) meth-

ods generate a prediction that usually differs from the observed values at the sample

point (Li and Heap, 2008), which may be appropriate for data that include considerable

measurement errors compared to the total variations. Deterministic methods use closed-

form mathematical formulas or the solution of a linear system of equations to estimate

the value at a given location as a weighted sum of data values at surrounding locations,

while geostatistical or stochastic methods include an assessment of a statistical spatial
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autocorrelation of the data by variography. In contrast to the geostatistical methods,

which allow a probabilistic estimate of the interpolation quality, deterministic methods

cannot generate measures of uncertainty in addition to the estimations. Almost all in-

terpolation methods share the same formula to estimate the unknown value of Ẑ at the

point x0:

Ẑ(x0) =

n∑
i=1

λiZ(xi) (2.1)

where Z(xi) is the observed value at the data point xi. The number of the existing data

points is represented by n, and λi represents the weight function assigned to each data

point (Li and Heap, 2008; Oliver et al., 1996).

2.2.2 Deterministic Methods

Global Polynomial Interpolation (GPI)

GPI is a deterministic, global and inexact (smooth) trend surface analysis. It fits a

smooth two-dimensional polynomial function of first, second, or higher degree represent-

ing the surface through a set number of data points (Cooper et al., 2015). There are a

few decisions to make regarding the model parameters. The order of the function sets the

shape of the interpolated surface. We achieved the best results for both aquifers with a

first-order Polynomial that fits a flat plane through the dataset. The interpolated GWL

represents a gradual trend over the area of interest. The method is mainly recommended

for GWL that change slowly and gradually. Otherwise, interpolated surfaces are highly

susceptible to outliers, especially in the edge region (Johnston et al., 2004).

Local Polynomial Interpolation (LPI)

Unlike GPI, which adjusts a polynomial over the entire area, LPI adjusts several partially

overlapping polynomials within defined neighborhoods. It is a moderately quick, inexact,

and local, but compared to GPI, more flexible interpolator (Johnston et al., 2004). The

neighborhood shape, the minimum and maximum number of neighbouring points to

be included, and the sector configuration can be specified. The surface value at the

center of the neighborhood is estimated as the predicted value (Wang et al., 2014). It

provides a prediction, prediction standard error, and a condition number surface that

are comparable to OK measurement errors. As with GPI, the order of the function

determines the shape of the interpolated surface. As a constraint, the method depends

on the data values being normally distributed within the search neighborhood (Johnston
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et al., 2004). We used a first-order exponential Kernel function for both aquifers with

six neighbors for the Quaternary alluvial aquifer and 29 for the Jurassic karst aquifer.

Inverse Distance Weighting (IDW)

IDW is an extensively used, quick, deterministic, exact, and local interpolator. It esti-

mates the value of an unknown point by using a linear combination of values at sampled

points, weighted by an inverse function of the distance between these points. The method

assumes that closer points are more similar to predicted points than more distant points

(Li and Heap, 2008; Tobler, 1970). The weights are computed according to the equation:

λIDW
i =

1/dpi∑n
i=1 1/d

p
i

(2.2)

where di is the distance between the predicted point x0 and the observed point xi, n

is the total number of observation points used in the interpolation, and p is a power

parameter which decides how the weight decreases as the distance increases (Xie et al.,

2011). IDW cannot predict values above or below the maximum and minimum observed

values (Johnston et al., 2004). We determined a p of 4.88 for the alluvial and p of 10.26

for the karst aquifer with CV. The shape of the searching neighborhood was chosen that

all monitoring wells will be used for the prediction.

Radial Basis Function (RBF)

RBF covers a large series of exact, moderately quick interpolators (e.g., thin-plate spline,

spline with tension, multiquadric function, completely regularized spline) that use a

basic equation dependent on the distance between the predicted and the observed point

(Aguilar et al., 2005). There is no assessment of prediction errors, and they also do not

allow investigating the autocorrelation of the data. The name comes from the fact that

the function is radial-symmetric by definition. The approximates have the general form:

ẐRBF (x0) ≈
n∑

i=1

λiφ (|xi − ci|) (2.3)

where ẐRBF (x0) is approximated by a sum of n radial basis function φ(r) which have

different centers ci and are weighted by the coefficients λi. We achieved the smallest

RMSE with completely regularized spline functions for both aquifers.
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2.2.3 Geostatistical Methods

Kriging-Estimators

Kriging is a very flexible interpolator that can be exact or smooth. It allows a variety

of output surfaces including predictions, prediction standard errors, and probability

(Johnston et al., 2004). Each of the different kriging methods is based on the following

basic equation, which is a slight modification of Eq. 2.1:

Ẑ(x0)− µ(x0) =

n∑
i=1

λi [Z(xi − µ(xi))] (2.4)

where λi is the kriging weight derived from a covariance function or semivariogram, µ

is a known stationary mean (trend component), assumed to be constant over the whole

area of interest and calculated as the average of the data (Li and Heap, 2011).

Semivariance and Variogram

Before the actual prediction, the spatial correlation of the data is assessed by variography.

The semivariance γ of Z between the observation point xi and the prediction point x0

is defined as:

γ(xix0) = γ(h) =
1

2
var [Z(xi)− Z(x0)] (2.5)

where h is the distance between x0 and xi and γ(h) the semivariance. The plot of

γ(h) vs. h is called empirical semivariogram and represents the spatial autocorrelation

of the observed points. It quantifies the assumption that nearby data points are more

similar than distant data points (Tobler, 1970). Some important features of the γ(h)-

plot are the nugget, the sill/partial sill, and the range. In theory, the semivariance at

h = 0 should be zero. The nugget is a positive value of γ(h) at h very close to 0. It

represents variability at distances smaller than the typical sample spacing and includes

measurement errors. The sill is the semivariance value at which the semivariogram

levels off. The partial sill results from sill minus nugget. The range is the distance at

which the sill is reached. Points that are further apart from each other than the range

are considered spatially independent (Li and Heap, 2011). There is a great variety of

semivariogram models, such as spherical-, exponential-, and Gaussian models, which

significantly influence the prediction of the unknown values. The semivariogram model

and the associated parameters nugget, sill, and range are optimized in this study by

using CV with a focus on the estimation of the range parameter.
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Simple Kriging (SK)

The estimation of SK is based on (2.4) and (2.5). It is assumed that the trend component

is an exactly known constant over the whole area of interest and estimated by the mean

value of observed data, µ(x0) = µ, so that:

ẐSK(x0) = µ
n∑

i=1

λSKi (x0 + [Z(xi − µ)] (2.6)

We used a multiplicative skewing approximation method for both aquifers with a gamma

distribution for the alluvial aquifer and a Student’s t-distribution for the karst aquifer.

Ordinary Kriging (OK)

OK is similar to SK with the difference, that µ is an unknown trend constant that has

to be estimated. The most important consideration in OK is the assumption that the

mean value remains constant over the whole are to be interpolated:

ẐOK =

n∑
i=n

λOK
i (x0)Z(xi) with

n∑
i=1

λOK
i (x0) = 1 (2.7)

OK allows trend removal and data transformation. We interpolated the GWL with a

local smoothing (OKsm) (Gribov and Krivoruchko, 2004) as well as a standard (OKst)

neighborhood type.

Universal Kriging (UK)

UK, also known as kriging with a trend, kriging with an external drift, and regression

kriging (Hengl, 2009). It is a multivariate extension of OK. Instead of a constant trend

µ, it uses a linear or higher deterministic trend function µ(xi). As a trend function,

we achieved the most satisfactory results with an exponential kernel function for the

Quaternary alluvial aquifer and a Gaussian kernel function for the Jurassic karst aquifer.

Co-Kriging (CoK, CoOK)

CoK uses information from one or more correlated secondary variables. The variables

do not necessarily have to be measured at the same location but should be in the same

range (Johnston et al., 2004). CoK exists for all kriging methods mentioned. In this
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study, we used co-ordinary kriging (CoOK). The primary variable of interest Z1 and

both autocorrelation for Z1 and CV between Z1 and the secondary variables are used to

improve the prediction. In CV, individual observation points are systematically removed

from the data set one by one, and their values are re-estimated with the model used. (see

also Section 2.2.4). The prediction of Z1 cannot impair thereby because if there is no

cross-correlation, it falls back to autocorrelation for Z1 (Johnston et al., 2004; Rivoirard,

1990). The secondary variables (support points) used for CoOK A-D are given in 2.2.6.

Empirical Bayesian Kriging (EBK)

EBK provides a straightforward and robust interpolation method that automates the

most difficult aspect of building a solid kriging model by automatically calculating pa-

rameters through subsetting and simulation. The semivariogram parameters in EBK

are estimated using intrinsic random functions (restricted maximum likelihood method)

(Johnston et al., 2004).

2.2.4 Validation Methods

Cross-Validation (CV)

The performance of a spatial interpolation method is affected by several factors, such as

sampling density and distribution and data variation (Li and Heap, 2011). Therefore, the

performance must be carefully evaluated in each case. The CV method is a statistical

method to assess interpolation accuracy. In CV, each observed point is sequentially

omitted, and the value is predicted using the residual data. The difference between

each observed and the respective predicted value is the CV error. CV can also be used

to select the best possible modeling settings for the respective method (e.g., search

radius, power option, kernel parameter). Based on the results of the CV, the following

evaluation statistics or error measures were used to compare the accuracy of the different

interpolation methods, where mi is the observed value and pi is the predicted value at

position i.

Mean Error (ME)

The ME is the average (arithmetic mean) of the errors. It indicates the average direction

of the errors. An overestimation is characterized by positive bias, and an underestimation

is marked by negative bias. ME is only conditionally suitable as an indicator of accuracy
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because negative and positive estimates counteract each other, and the resultant ME

tends to be lower than the actual error (Li and Heap, 2011):

ME =
1

n

n∑
i=1

(pi − oi) (2.8)

Mean Absolute Error (MAE)

The MAE is the arithmetic mean of the absolute error values. It indicates the magnitude

of the error, which shows the accuracy of the method:

MAE =
1

n

n∑
i=1

|pi − oi| (2.9)

Mean Square Error (MSE)

The MSE measures the magnitude of the error (accuracy), weighted on the squares of

the errors. Therefore, it is sensitive to outliers as it attaches major weight on larger

errors:

MSE =
1

n

n∑
i=1

(pi − oi)
2 (2.10)

Root Mean Square Error (RMSE)

The RMSE is the square root of MSE. It has similar properties as MSE but has the

advantage that it possesses the same unit as the required value (e.g., meter):

RMSE =

√√√√ 1

n

n∑
i=1

(pi − oi)2 (2.11)

Root Mean Square Standardized Error (RMSSE)

The RMSSE should be close to 1. An RMSSE greater than 1 means a general underes-

timation in the variability of the predictions, a RMSSE smaller than 1 means a general

overestimation in the variability:

RRMSE =

√√√√ 1

n

n∑
i=1

[
pi − oi
σi

]2
(2.12)
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Mean Absolute Percentage Error (MAPE)

The MAPE expresses the accuracy as a percentage of the error:

MAPE =
100

n

∣∣∣∣pi − oi
pi

∣∣∣∣ (2.13)

Pearson r

The Pearson r measures the linear correlation between the predicted and the observed

rescaled covariance. Generally, it is in the range of -1 to 1:

Pearson r =

∑n
i=1(oi − ō)(pi − p̄)√∑n

i=1(oi − ō)2
√∑n

i=1(pi − p̄)2
(2.14)

We use the squared Pearson r as a general coefficient R2.

2.2.5 Study Area

The study area is located in southern Germany, on the border region of the federal states

of Baden-Wuerttemberg and Bavaria (Fig. 2.1). The area comprises one of the most

important freshwater sources in Germany, which holds about one billion cubic meters

and provides over 3 million people with high-quality drinking water (Flinspach et al.,

1997). The region is hydrogeologically characterized by a complex interaction between

the karst aquifer of the up to 550 m thick Upper Jurassic Limestones of the Swabian Alb

and the alluvial aquifer situated within the Danube valley with its numerous ecologically

important wetlands and the Danube River itself. The riverine landscape of the Donauried

covers nearly half of the study area, which is 2800 km². North of the Danube River,

the rocks of the Upper Jurassic make up the high plateau of the Swabian Alb, which

submerges below the Tertiary sediments of the pre-alpine Molasse with an average of

1–2° in SSE-direction. The low-permeable heterogeneous layers of the wedge-shaped

Molasse might act as a hydraulic barrier preventing significant exchange between the

karst and the alluvial aquifer. The north-eastern part of the study area is covered by

large parts of a Miocene meteorite impact crater, the Noerdlinger Ries. The impact

destroyed extensive areas of exposed rocks down to the crystalline bedrocks, leaving

only small, economically insignificant groundwater reservoirs (Winkler, 1972). Hence, it

has been excluded for the interpolation of the GWL.
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Figure 2.1: Geological map of the study area.

Upper Jurassic Karst Aquifer

Due to its thickness and heterogeneity, the Upper Jurassic karst consists of several

individual karst aquifers. The groundwater flowing from the north to the Donauried

belongs to the zone of deep karst. This deep karst zone is further divided (Villinger,

1977) into an open deep karst zone and a zone of covered karst below the Molasse.

In the transitional area between these two zones, the covering layers are either locally

present or thin so that the water level is unconfined in this northern edge region of

the Molasse. The main karst aquifer is situated in the 200m– 450 thick sequence above

the low permeable Lacunosa-Marls (ki 1), starting with the advanced karstified Upper

Kimmeridge Limestones (Felsen- and Bankkalke, ki 2–3) to the Hangende Bankkalk

Formation (ti H). Regional layers of the impermeable Cement-Marl can lead to local

areas with perched groundwater.
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Alpine Molasse

The Paleogene/Neogene Molasse is characterized by alternating bedding from sandy to

clayey layers. Accordingly, a distinction must be drawn between strongly anisotropic

horizontal and vertical hydraulic permeabilities. The horizontal permeabilities of the

individual layers are in the range of 5× 10-10 m/s for silty clays and 4× 10-4 m/s for

silty sands. A large-scale effective vertical hydraulic conductivity should be at the lower

end of this range.

Quaternary Alluvial Aquifer

The homogeneous fluviatile Quaternary gravels with high to very high permeabilities

represent valuable groundwater reservoirs,that completely cover the Molasse sediments

within the Danube valley. They are found locally at the northern edge of the Molasse

directly above the Upper Jurassic Limestones, where a large-scale groundwater exchange

between the two aquifers can be assumed. Hydraulic conductivities between 5× 10-4 to

1× 10-2 m/s were determined in pumping tests (Bierer, 1987).

2.2.6 Available Data

Water level observation

Although a large number of monitoring wells are available, there is a large discrepancy

between the period and the interval of the observations of the individual monitoring

wells. GWL observations from 03/11/2013 were used as the basis for this study since

this date ensured the best compromise between quantity and qualitative spatial coverage

of the monitoring wells. Data from a total of 104 monitoring wells within the Quaternary

alluvial aquifer and 77 within the Jurassic karst aquifer (65 unconfined, 12 confined to

artesian) were included for all methods.

Support Points

Besides the reference date observations, additional variables were used for co-kriging

interpolation to improve the prediction in areas with low spatial coverage of data points.

For sites with no available monitoring wells with observations at 03/11/2013, long-term

values of monitoring wells observed in other years have been used as long they have a

coherent measuring interval of at least five years and no observable trend. This results

in additional data from 40 monitoring wells in the karst aquifer and 57 monitoring wells
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in the alluvial aquifer. A digital elevation model (DEM) based on SRTM1-data with a

resolution of 1′′ (about 25 m× 25 m) was used to define the topography (USGS, 2014).

The surface elevation within the study area varies from 376 to 689 m asl. In addition,

16 river levels (daily average March 11, 2013, monitoring wells: 13 in the area of the

Quaternary alluvial aquifer and 3 in the area of the Jurassic karst aquifer) were used,

where direct contact of groundwater and surface water was expected. The following

support points were used for the respective interpolation methods:

• CoOK A: monitoring wells with long-term observation values (not observed at the

reference day),

• CoOK B: DEM,

• CoOK C: DEM, river levels,

• CoOK D: monitoring wells long-term values, DEM, river levels.

2.2.7 Data Processing

The GWL data were evaluated using ArcGIS (10.4), Spatial Analyst and Geostatistical

Analyst tools. The model parameters for each interpolation method, e.g., nugget, partial

sill, and others, were optimized using CV, focusing on estimating the range parameter.

A complete overview of all used model parameters is available in the support information

of this chapter (Fig. S2a).

2.2.8 Calculation of Groundwater Exchange

The large-scale hydraulic effects of the Molasse on water exchange between the two

aquifers have been poorly studied to date. The karst water level underlying the Mo-

lasse is in any part confined to artesian. A higher karst aquifer groundwater potential

indicates areas of potential upward infiltration into the alluvial aquifer, while a lower

potential indicates possible downward infiltration into the karst aquifer. The exchange

of groundwater between the two aquifers in the area of the entire contact zone was

quantified according to Darcy’s law by using the following equation:

Q =
K ·A ·∆h

M
(2.15)

K is the mean hydraulic conductivity for the leaky confining Molasse with 10-7 m/s, ∆h

the potential difference between the two aquifers, A the size of the contact area, and M
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the thickness of the Molasse which was determined by interpolation of data from 126

borehole logs.

2.3 Results and Discussions

2.3.1 Cross-Validation Results

Tab. 2.3 shows the CV results for all methods used in this study including error ranking.

By combining the results of all validation methods in an average error ranking the order

of suitability of the methods are for the Jurassic karst aquifer: CoOK D > LPI> EBK

> CoOK A > CoOK C > CoOK B > OKsm > UK > RBF > OKst > GPI > IDW >

SK and the Quaternary alluvial aquifer: CoOK D > CoOK C > CoOK A > OKst >

OKsm > EBK > LPI > CoOK B > IDW > RBF > SK > UK > GPI.

Therefore, CoOK D, which uses additional long-term values of monitoring wells not ob-

served at the reference date and DEM data and river levels, provides the best results for

both aquifers. CoOK B (additional DEM values only) has the largest error parameters

within the co-kriging methods. EBK also offers promising results for both aquifers. LPI

achieves good results for karst while underperformed for the alluvial aquifer. The nega-

tive bias of the ME of LPI, CoOK A, and CoOK D for the Jurassic karst aquifer and LPI,

SK, UK, and CoOK D for the Quaternary alluvial aquifer indicates an underestimation

while the other methods tend to overestimate the GWL. SK generates the greatest er-

rors for the Jurassic karst aquifer and GPI for the Quaternary alluvial aquifer. The error

estimations for the most frequently used methods, IDW and OK, show a substandard

position in the ranking. The ranking of the methods shows no significant deviations

due to the use of different error statistics. Only Pearson r shows deviations for some

methods, which can lead to a different interpretation as long the method is compared

with only one or a few other methods.

Fig. 2.2 shows an error histogram grouped in 1 m (Quaternary alluvial aquifer, yellow)

and 2.5 m groups (Jurassic karst aquifer, blue) as well as a scatter-plot of observed

and predicted values. For Jurassic karst aquifer, all methods overestimate the low GWL

within the deep karst and underestimate the high water levels. This effect is most evident

in SK and would result in a much lower gradient than in reality. Underestimated levels

are primarily located in the area of the Swabian Alb. Those miscalculations could

result from the variable topography or possible local areas with perched groundwater.

Overestimated levels are located in the deep karst and the western part of the study

area. Both are areas with a low density of monitoring wells.
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Table 2.3: Cross-validation results. IDW: inverse distance weighting; GPI: global polynomial
interpolation; RBF: radial basis function; LPI: local polynomial interpolation; OK:
ordinary kriging; SK: simple kriging; UK: universal kriging; CoOK: co-ordinary
kriging; EBK: empirical Bayesian kriging; ME: mean error; MAE: mean absolute
error; MSE: mean standard error; RMSE: root mean standard error; RMSSE: root
mean square standardized error; MAPE: mean absolute percentage error; Pearson
r: Pearson correlation coefficient. Error ranking: 1 = “best method”...13 = “worst
method”

Karst aquifer Interpolation method

Validation method IDW GPI RBF LPI OKsm OKst SK UK CoOK A CoOK B CoOK C CoOK D EBK

ME 1.55 0.21 0.86 -0.95 1.14 1.06 2.57 1.34 -1.10 0.74 0.26 -0.47 0.85
MAE 7.51 12.48 8.89 6.72 6.52 6.93 14.06 7.81 7.07 6.62 6.65 6.38 6.38
MSE 206.7 291 243 97 196.6 198.3 492.2 196.6 187.1 188.7 167.8 149.8 160
RMSE 14.38 17.06 15.59 9.85 14.02 14.08 22.18 14.02 13.68 13.74 12.95 12.24 12.65
RMSSE - - - 1.09 2.84 2.13 0.66 1.52 0.59 0.6 0.73 1.49 0.97
MAPE 1.61 2.6 1.91 1.46 1.39 1.47 3.12 1.67 1.29 1.42 1.44 1.38 1.37
Pearson r 0.914 0.999 0.985 0.961 0.918 0.918 0.867 0.919 0.922 0.922 0.932 0.938 0.934

Interpolation method

Error ranking IDW GPI RBF LPI OKsm OKst SK UK CoOK A CoOK B CoOK C CoOK D EBK

MAE 9 12 11 6 3 7 13 10 8 4 5 1 2
MSE 10 12 11 1 8 9 13 7 5 6 4 2 3
RMSE 10 12 11 1 7 9 13 8 5 6 4 2 3
MAPE 9 12 11 7 4 8 13 10 1 5 6 3 2
Pearson r 12 1 2 3 11 10 13 9 8 7 6 4 5
Average 10.25 9.25 8.75 3 7.5 9 13 8.5 4.75 6 5 2.75 3.25

Alluvial aquifer Interpolation method

Validation method IDW GPI RBF LPI OKsm OKst SK UK CoOK A CoOK B CoOK C CoOK D EBK

ME 0.3 0.04 0.27 -0.24 0.27 0.25 -0.14 -0.16 0.26 0.34 0.01 -0.09 0.45
MAE 2.04 3.26 2.19 1.89 1.46 1.37 2.33 3.12 1.41 1.53 1.09 1.02 1.5
MSE 13.59 18.71 15.55 7.31 4.86 4.75 16.1 18.79 4.62 9.08 3.15 2.28 7.29
RMSE 3.69 4.33 3.94 2.7 2.2 2.18 4.01 4.33 2.15 3.01 1.77 1.51 2.7
RMSSE - - - 1.06 0.98 0.95 0.25 3.57 1.28 0.68 0.68 1.25 0.74
MAPE 0.47 0.74 0.5 0.43 0.33 0.31 0.54 0.7 0.32 0.35 0.25 0.23 0.34
Pearson r 0.993 0.99 0.991 0.996 0.997 0.997 0.992 0.99 0.997 0.995 0.998 0.999 0.996

Interpolation method

Error ranking IDW GPI RBF LPI OKsm OKst SK UK CoOK A CoOK B CoOK C CoOK D EBK

MAE 9 13 10 8 5 3 11 12 4 7 2 1 6
MSE 9 12 10 7 5 4 11 13 3 8 2 1 6
RMSE 9 12 10 7 5 4 11 13 3 8 2 1 6
MAPE 9 13 10 8 5 3 11 12 4 7 2 1 6
Pearson r 9 13 11 7 5 4 10 12 3 8 2 1 6
Average 9 12.6 10.2 7.4 5 3.6 10.8 12.4 3.4 7.6 2 1 6

2.3.2 Groundwater Level Contour Maps

The comparison of the error statistics shows only minor differences between the results

of the different interpolation methods. For example, a R2> 0,9 for almost all techniques

shows that they all provide sufficient interpolation results. Therefore, additional methods

for plausibility control are required, e.g., optical validation of the resulting GWL contour

maps. Due to the pronounced anisotropy and heterogeneity of the karst aquifer caused

by the local change in hydraulic permeabilities, the interpolated GWL contour maps

can only give a general large-scale picture of the groundwater. This is also reflected in
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Figure 2.2: Histograms for ME and plots of observed vs. predicted GWL. CoOK; OK; IDW;
GPI; SK; RBF; LPI; UK; EBK; [a]: best (CoOK D), worst (GPI) and most popular
methods (IDW, OK) for Quaternary alluvial aquifer; [b]: best (CoOK D), worst
(SK) and most popular methods (IDW, OK) for Jurassic karst aquifer; [c]: other
methods for Quaternary alluvial aquifer and [d] for Jurassic karst aquifer. Gray
line: observed values; purple dashed line: R2 predicted values.

the higher errors and lower R2 values compared to the Quaternary alluvial aquifer. A

primary flow direction of karst water flowing southeast from the Swabian Alb is shown in

all GWL contour maps. As the Jurassic strata dip below the molasse, the groundwater

gradient decreases sharply in all interpolated maps, especially in the western areas where

many karst springs are located at the alluvial boundary. Most GWL contour maps of

the Quaternary alluvial aquifer show that flow conditions are determined by the main

course of the Danube and the rivers Iller and Lech. Along the northern boundary of the
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Quaternary alluvial aquifer near Langenau, a large-scale rotation of the flow direction

in a southerly direction indicates significant amounts of infiltrated karst water from the

Swabian Alb area.

Fig. 2.3 shows the generated GWL contour maps from the best [a] and worst [d] meth-

ods according to the error ranking in Tab. 2.3, as well as from OK [b] and IDW [c] as

the most commonly used methods for both aquifers (Jurassic karst aquifer: blue lines;

Quaternary alluvial aquifer: orange lines). In the area where the low permeable Molasse

separates the two aquifers, the potential differences of the two aquifers were calculated

to identify possible groundwater exchange zones. Within the blue areas, the Jurassic

karst aquifer has a higher potential (likely rise). The Quaternary alluvial aquifer within

the orange areas has a higher potential (potential descent). White areas mean an equi-

librium. The results show an increase of the karst water potential around Langenau

and southwest of Donauwoerth (see also Fig. 2.3). This confirms the results of previ-

ous investigations (Bierer, 1987; Udluft, 2000; Villinger, 1977). The different distances

between the monitoring wells and the inversely proportional weight to the distance on

IDW create vast, so-called “bull’s eye” artifacts, which are circular regions of equal

values around the known data points. The high gradient thus implied is limited to a

small-scale region halfway between the monitoring wells. For the Jurassic karst aquifer,

nearly all methods show an eastward change of direction in the area south of the Danube.

The intensity and location of this bending vary significantly within the methods. The

remaining GWL contour maps interpolated with the other methods can be found in the

supporting information of this chapter (Fig. S2b).

Fig. 2.4 shows an SW-NE cross-section through the unconfined karst of the Swabian

Alb. Within the green areas, the distance between the monitoring wells is less than 2.5

km, yellow less than 5 km, orange less than 10 km. In cross-section, only the areas with

a higher density in monitoring wells show plausible results, independent of the method

used, while artifacts can be seen in other regions. The best method can not replace

a sufficient GMN. Again, the bullseye effect of IDW is evident. The GWL contours

produced by OK and CoOK D show a very similar course in most regions. The GWL

contours of CoOK D are more perturbed due to the incorporation of the secondary

variable, especially the terrain surface. This leads to probable overfitting, especially in

areas with high depths to groundwater. In the southwestern part of the cross section,

the GWL contours of SK are roughly the same as those of the other methods. However,

in the northeast direction, the method tends to over- and underestimate the GWL. In

Kessel valley and Woernitz valley, all methods fail because of the low density of the

measuring network. This results in an overestimation of the interpolated GWL within

the valley. We validated the results additionally with hydrogeological expectations. This
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Figure 2.3: Estimated GWL contours and potential differences Jurassic karst aquifer vs Qua-

ternary alluvial aquifer, based on a: CoOK D, b: OK, c: IDW, d: GPI and SK.

includes a comparison between calculated groundwater depth and geographic locations

of karst springs and wetlands and surface waters as well as a comparison of the calculated

flow accumulation resulting from the modeled GWL and the locations of real receiving

waters.
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Figure 2.4: Cross section with topography and GWL contours generated by CoOK D, OK,
IDW, and SK.

Fig. 2.5 shows the pattern of groundwater depth for the Quaternary alluvial aquifer in

the lowland fens area Swabian Donaumoos (fen area marked black). Since lowland fens

are permanently water-saturated wetlands fed by groundwater and rainfall, the difference

between the modeled surface and the DEM surface should ideally be close to zero. The

yellow areas show groundwater depth between 3 and 0 m (GWL<DEM), the green areas

show negative groundwater depth between 0 and -3 m (GWL>DEM). All areas with

groundwater depth higher than 3 m and -3 m were displayed colorless. The soil (Letten)

in this area of the Donaumoos was accumulated from clayey lake deposits. These soils

form a hydraulic barrier for the groundwater and can lead to confined conditions within

the aquifer. Accordingly, negative groundwater depth is not unexpected. CoOK D and

OK may best reflectthe edge of the fen best. For both methods, confined conditions

within most fen areas were calculated. CoOK D seems to overestimate the GWL in the

western part of the fen. This is shown by the artesian conditions with groundwater depth

above 3 m (blank area). These overestimations are also apparent with IDW and, to a

lesser extent, in OK. GPI overestimates the entire southern flank while the northeast

flank is underestimated.

Fig 2.6 shows the results for the karst aquifer following the same procedure as for the

alluvial aquifer. At a perennial spring, the GWL has at least the potential of the terrain.

Therefore, the springs can also be used to validate the quality of the interpolated surfaces.

Furthermore, the resulting flow direction of the respective methods was calculated with
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Figure 2.5: Maps of groundwater depth for the Quaternary aquifer in the Donaumoos area
generated by CoOK D, OK, IDW and GPI

the D8 single-flow algorithm (O’Callaghan and Mark, 1983), which is implemented in

ArcGIS. For an accurately modeled GWL, the course of the calculated receiving water

(shown as purple lines) should be similar to the course of the real receiving waters (shown

as light blue lines). Though none of the methods could reproduce the receiving waters

in detail, the results of CoOK D and OK match the general course, whereas IDW and

SK underperform.

Tab. 2.4 shows the calculated water exchange of both aquifers, calculated according

to section 2.2.8 The estimated exchange rates within the methods fluctuate by up to

a factor of more than 10. Depending on the methods, an exchange range from 273.96

million m3/yr (Quaternary alluvial aquifer→ Jurassic karst aquifer) to 2,772.63 million
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Figure 2.6: Maps of groundwater depth for the Jurassic aquifer and location of perennial karst
springs as well as a comparison between rivers and flow directions resulting from
the interpolations generated by CoOK D, OK, IDW and SK

m3/yr (Quaternary alluvial aquifer← Jurassic karst aquifer) could be the consequence.

However, the methods in the upper end of the error ranking are in a range between 300

million m3/yr and 500 million m3/yr.

2.4 Conclusions

A total of nine deterministic and geostatistical (multivariate and univariate) methods

were compared with seven error statistic methods as well as with hydrogeological expec-

tations, including the comparison between calculated groundwater depth and geographic
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Table 2.4: Estimated vertical groundwater exchange rates between the Quaternary alluvial
aquifer and the Jurassic karst aquifer. Pos. exchange rate: Quaternary→ Jurassic.
Neg. exchange rate: Quaternary← Jurassic. Q: Quaternary , J: Jurassic

IDW GPI RBF LPI OKsmth

Quaternarymean GWL [m asl.] 426.67 428.8 427.29 427.6 427.02
Jurassicmean GWL [m a.sl] 427.29 425.24 432.69 423.14 427.08
Exchange [mio m3/yr] -247.12 -484.45 -974.19 -196.97 -332.24

OKstd CoOK A CoOK B CoOK C CoOK D

Quaternarymean GWL [m asl.] 426.78 426.97 426.97 426.46 426.57
Jurassicmeanc GWL [m a.sl] 425.72 428.61 426.87 428.28 427.41
Exchange [mio m3/yr] -227.06 -526.12 -429.64 -485.76 -303.24

UK EBK SK CoOK CQ/SKJ SKQ/LPIJ

Quaternarymean GWL [m asl.] 427.25 426.78 429.02 426.57 429.02
Jurassicmean GWL [m a.sl] 429.61 425.55 447.66 447.66 423.14
Exchange [mio m3/yr] -640.34 -411.84 -2,451.13 -2,772.63 273.96

locations of karst springs as well as wetlands and surface waters. In the multivariate ap-

proaches, additional surface elevation data, river levels, and long-term GWL of wells not

observed at the reference date were included to improve the predictions. The quality of

the results for each method has been estimated by qualitative (maps and cross-section)

and quantitative (CV) tools.

Several important points emerge from the results of the previous section. There is

not a “universal superior method” for GWL interpolations. Which method performs

best depends on the number and spatial distribution of the available monitoring well

and the characteristics of the area (type of aquifer, topography, etc.). IDW is often

used but is nearly never the “best” method. Particularly between remote monitoring

wells, IDW tends to create “bull’s eye” artifacts. Geostatistical methods mostly perform

better than deterministic methods. In hilly terrain, the estimation of GWL is often

problematic because the data set is always sparse with respect to topographic relief,

and monitoring wells are almost exclusively located in valley regions, while the GWL is

usually a subdued replica of the ground surface elevation (Hoeksema et al., 1989). This

often leads to underestimating the GWL below mountains ranges and overestimating

the GWL in valleys. If available, additional data (e.g. topography) can help to improve

the results here. The consequences of the selection of the interpolation methods can

be severe inaccurate or even false computations of recharge, discharge, flow directions,

delineation of protection zones, etc. Therefore, it is advisable to compare the results of

different methods, using various error statistics, to determine their plausibility and to

indicate possible ranges for calculations based on interpolation results.

Of all tested geostatistical methods, it appears that CoOK D (incl. long-term values of

monitoring wells not observed at the reference date, DEM data, and river levels) appears
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to be the most accurate method for both aquifers studied. Our results show that the

calculated exchange rates between the two aquifers, based on different interpolations of

groundwater potentials, can vary greatly depending on the interpolation method chosen.

In our example, by a factor of more than ten or from 273.96 million m3/yr to -2,772.63

million m3/yr when comparing the worst-case scenario (highest mean level Quaternary

alluvial aquifer with lowest mean level Jurassic karst aquifer and vice versa). Therefore,

the choice of an interpolation method should be made judiciously, taking into account

the different error measures and additional data for plausibility check. If a clear choice

is not possible, further calculations based on interpolated GWL contours should include

an error estimate.

An inadequate GMN cannot be replaced by a suitable interpolation method. When the

data variation is high, the monitoring density should be increased to capture the spatial

change and, therefore, improve the respective method’s performance.
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Supporting Information

This supporting information provides an overview of all used model parameters (S2a)

and resulting GWL contour maps of the investigated interpolation methods (S2b).

Order QUATERNARY

1 JURASSIC

1

Power Smoothing Factor Angle Major Semiaxis Minor Semiaxis Weights

4.88 1.00 0.00 35941.81 35941.81 104  Neighbors

10.26 1.00 0.00 27556.81 27556.81 77  Neighbors

Kernel Function Kernel Parameter Sector Type Max./Min. Neighbors Major Semiaxis Minor Semiaxis Semiaxis

Completely Regularized Spline 1.60E-03 1 Sector 8/8 35941.81 35941.81

Completely Regularized Spline 1.63E-03 4 Sectors 8/8 27556.81 27556.81

Exploratory Trend Surface Analysis Order of polynomial Kernel Function Goodness of Fit Advanced mode Neighborhood type

41 1 Exponential 2.629999201 False Standard

45 1 Exponential 9.85124788 False Standard

Maximum neighbors Minimum neighbors Sector type Angle Major semiaxis Minor semiaxis

1000 0 1 Sector 0 23814.09 23814.09

1000 0 1 Sector 0 23658.76 23658.76

Anisotropy factor Bandw idth Use Spatial Condition Number Threshold Spatial Condition Number Threshold Weights 

1 19051.27 True 27.92 6 neighbors

1 18927.01 True 21.23 29 neighbors

Transformation type Order of trend removal Variable Enable Calculate Nugget

None None Semivariogram True False

None None Semivariogram True False

Nugget Measurement Error Type Parameter Major Range Anisotropy

2.357589605 100 Stable 2 61181.43 False

1.118006499 100 Stable 2 24494.91 False

Calculate Partial Sill Partial Sill Lag Size Number of Lags Neighborhood type Smoothing factor

False 2357.59 7647.68 12 Smooth 1

False 1118.01 3061.86 12 Smooth 1

Copy from Variogram Angle Major semiaxis Minor semiaxis Anisotropy factor X

True 0 61181.43 61181.43 1 4411600.50

True 0 24494.91 24494.91 1 4391983.30

Y Value Weights 

5363191.00 455.69 104 neighbors

5396312.60 458.54 75 neighbors

Transformation type Order of trend removal Variable Enable Calculate Nugget

None None Semivariogram True False

None None Semivariogram True False

Nugget Measurement Error Type Parameter Major Range Anisotropy

2.357589605 100 Stable 2 61181.43 False

1.118006499 100 Stable 2 24494.91 False

Calculate Partial Sill Partial Sill Lag Size Number of Lags Neighborhood type Maximum neighbors

False 2357.59 7647.68 12 Standard 15

False 1118.01 3061.86 12 Standard 5

Minimum neighbors Sector type Copy from Variogram Angle Major semiaxis Minor semiaxis

10 1 Sector True 0 61181.43 61181.43

2 1 Sector True 0 24494.91 24494.91

Anisotropy factor Weights 

1 15 neighbors

1 5 neighbors

Transformation type Decluster before transformation Order of trend removal Number of bins Type

Normal Score False None 10 Multiplicative Skew ing

Normal Score False None 8 Multiplicative Skew ing

Number of modifiers Base distribution Variable Model Nugget Enable Calculate Nugget

7 Gamma Covariance True False

1 Student's t Covariance 0.680021642 True False

Nugget Measurement Error Type Parameter Major Range Anisotropy

0.41 100 Stable 1.45 41409.38 False

0.68 100 Stable 1.50 28476.57 False

Calculate Partial Sill Partial Sill Lag Size Number of Lags Neighborhood type Smoothing factor

False 0.66 5176.17 12 Smooth 1

False 0.32 3559.57 12 Smooth 1

Copy from Variogram Angle Major semiaxis Minor semiaxis Anisotropy factor Weights 

True 0 41409.38 41409.38 1 (104 neighbors)

True 0 28476.57 28476.57 1 (77 neighbors)

OKSTD

SK

IDW

RBF

GPI

LPI

OKSmth

Semivariogram 0,38; 0,54 Stable 2 17503.32 2187.91

Semivariogram 0; 0 Stable 1.87 15315.97 1914.50

Semivariogram 0; 647,93 Stable 1.59E+00 29989.64 3748.7

Semivariogram 0; 874,12 Stable 1.16328125 69628.17 8703.52

Semivariogram 0; 828,29 Stable 1.59 45253.22 5656.65

Semivariogram 0; 436,860; 214,77 Stable 1.35 34085.98 4260.75

Semivariogram 0; 0; 990,34; 0 Stable 1.84 32962.15 4120.27

Semivariogram 0,81; 0,81; 415,9; 137,04 Stable 2 13145.16 1643.14

Number of Lags Smoothing Factor

12 1

12 1

12 1

12 1

12 1

12 1

12 1

12 1

Exploratory Trend Surface Analysis Order of Polynomial Kernel Function Goodness of Fit Maximum neighbors Major semiaxis

61 0 Exponential 3.23 1.00E+03 5426.6

49 0 Gaussian 24.91 1.00E+03 10648.31

Minor semiaxis Anisotropie factor Bandw idth Nugget Parameter Major Range

5426.6 1 4341.28 0.52703 0.78 17205.87

10648.31 1 5464.71 0 1.27 9408.45

Partial Sill Lag Size Number of Lags Smoothing factor Major semiaxis Minor semiaxis

0.85 2150.73 12 1 17205.87 17205.87

72.35 1176.05 12 1 9408.45 9408.45

Subset Size Overlap Factor Number of Simulation Transformation Semivariogram Type Neighborhood type

100 1 100 None Pow er Standard Circular

100 1 100 None Pow er Standard Circular

Maximum neighbors Minimum neighbors Sector type Angle Radius

15 10 1 0 35941.81

15 10 1 0 41228.19

C

D

UK

BK
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A
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Figure S2a: Overview of the model parameters of the interpolation methods used in the study
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Figure S2b: Estimated GWL contours and differences in potential between Jurassic karst
aquifer and Quaternary alluvial aquifer based on the remaining interpolation meth-
ods used in this study.
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Chapter 3

On the Optimal Spatial Design for

Groundwater Level Monitoring Networks

This chapter is based on a study published in the AGU journal Water Resources Re-

search. The remainder of this part is an edited reprint of: Ohmer, M., Liesch, T., Gold-

scheider, N., (2019). On the Optimal Spatial Design for Groundwater Level Monitoring

Networks. Water Resources Research, 55, 9454-9473, doi: 10.1029/2019WR025728.

Key Points

• A new low-discrepancy method (R2 method) for an extensible groundwater level

monitoring network design is proposed.

• We define a range of groundwater level monitoring network densities with an op-

timized information/cost ratio.

• We show that global cross-validation error parameters are not suitable for the

comparative assessment of different sampling designs

Copyright Notice ©2019 Ohmer et al. This is a version of an open access article under

the terms of the Creative Commons Attribution License Creative Commons Attribution
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Abstract

Groundwater monitoring networks (GMNs) are essential, as systematic data collected

at monitoring wells provide a crucial understanding of the dynamics of hydrogeological

systems as well as the basis for many other applications. This study investigates the in-

fluence of six groundwater level monitoring network (GLMN) sampling designs (random,

grid, spatial coverage, and geostatistical) with varying densities on the accuracy of spa-

tially interpolated groundwater level (GWL). To obtain spatially continuous prediction

errors - in contrast to point cross-validation (CV) errors) - we used nine potentiomet-

ric groundwater surfaces from three regional MODFLOW groundwater flow models with

different resolutions as a priori references. To assess the suitability of frequently used CV

error statistics: mean absolute error (MAE), root mean square error (RMSE), root mean

square standardized error (RMSSE), average standard error (ASE), and Nash–Sutcliffe

model efficiency coefficient (NSE)), we compared them with the absolute prediction er-

ror (APE). Additionally, we defined upper and lower thresholds for an appropriate

spatial density of monitoring wells. Below the lower threshold, the observation density

appears insufficient, and additional monitoring wells significantly improve the results.

Additional monitoring wells above the upper threshold lead to minor and inefficient im-

provements. According to the APE, systematic sampling leads to the best results but is

often not suited for GLMN due to its nonprogressive characteristic. Geostatistical and

spatial coverage sampling are considerable alternatives, which are in contrast progressive

and allow evenly spaced and, in the case of spatial coverage sampling, yet reproducible

coverage with accurate results. We found that the global CV error statistics are not suit-

able for comparing different performances of different sampling designs. However, they

allow rough conclusions about the quality of the groundwater level monitoring network.

3.1 Introduction

Groundwater is an important yet spatially extensive, concealed, and inaccessible re-

source. Therefore, an effective GMN is essential, as systematic data collected at mon-

itoring wells provide a crucial understanding of the dynamics and quality of the hy-

drogeological system. A GMN is defined by a spatial arrangement of monitoring wells

and a temporal sampling frequency (Loaiciga et al., 1992). Economic considerations

most strongly influence the number and location of monitoring wells. Therefore, design-

ing an optimal GMN is a task of balancing prediction accuracy with cost minimization

(Krivoruchko, 2011). Since a high spatial resolution is usually associated with dispropor-

tionate costs, often only domains of high water management importance are adequately
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monitored. The design, that is, the selection of the location and number of the monitor-

ing wells, is a vital part of any study involving modeling and prediction based on spatial

data. A groundwater model can only be as good as the model input data available.

Therefore, poorly distributed monitoring wells can lead to wrong assumptions or a bias

of the regional image. Unsuitable interpolation methods can yield drastic overestimates

or underestimates of the groundwater level in areas with a low monitoring density, as

the parts with a high monitoring density are disproportionately weighted (Ohmer et al.,

2017). Groundwater-quality observations are subject to the same problem. However, we

focus on the regional GWL as a monitoring parameter in this study.

Varieties of studies dealing with the optimization of GMN have been published in the

last 20 years. The literature focuses on optimizing groundwater monitoring network de-

sign to observe the groundwater-quality groundwater quality monitoring network, and

the number of studies dealing with groundwater level (groundwater level monitoring

network) is limited. The majority of approaches for GLMN design optimization are

based on geostatistical analysis and, therefore, on minimizing uncertainty in parameter

estimation. Several studies apply undifferentiated kriging (Prakash and Singh, 2000;

Theodossiou and Latinopoulos, 2006), ordinary kriging (OK; Nunes et al., 2004; Yang et

al., 2008), universal kriging (UK; Kambhammettu et al., 2011; Kumar et al., 2005; Olea,

1984). OK and UK (Ahmadi and Sedghamiz, 2007), OK and co-kriging (CoK; Ma et

al., 1999), or indicator kriging (IK; Cameron and Hunter, 2002) to interpolate the GWL

and use either the mean or maximum kriging variance to determine where additional

monitoring wells should be built and/or identify well redundancy. Some recent works

use the kriging variance as a part of a multicriteria decision-making analysis (MCA).

Chandan and Yashwant (2017) considered multiple parameters in addition to the kriging

variance such as GWL fluctuation, land use, hydrology, and recharge lineament density,

to optimize an existing GLMN. In Uddameri and Andruss (2014), the kriging vari-

ance was linked to a monitoring priority index calculated from a weighted average of

several criteria (groundwater-variability, recharge, surface/groundwater interaction, and

groundwater fluxes across district boundaries). A similar approach can be found in Zhou

(2013). Esquivel et al. (2015) used for their MCA a weighted linear combination that

takes groundwater fluctuations, rates of decline, observation density, hydraulic gradi-

ents, mountains, and water bodies, for example, into account. Additional studies use

information theory (entropy estimation) to evaluate the spatial location and temporal

measuring frequency of monitoring wells (Alfonso et al., 2014; Leach et al., 2016; Ma-

soumi and Kerachian, 2008; Mogheir et al., 2009). Further studies apply kriging-based

genetic algorithms (Babbar-Sebens and Minsker, 2010; Dhar and Patil, 2012; Kollat and

Reed, 2006; Luo et al., 2016; Reed et al., 2007; Yeh et al., 2006), algorithms based on
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Kalman filter with space-time covariance matrix as input (Júnez-Ferreira and Herrera,

2013; Wu, 2004; Zhang et al., 2005).

Some authors also take the temporal component of GMNs into account (i.e., frequency of

measurements based on groundwater fluctuations; e.g. Ahmadi and Sedghamiz (2007),

Cameron and Hunter (2002), Chandan and Yashwant (2017), Kambhammettu et al.

(2011), Nunes et al. (2004), and Theodossiou and Latinopoulos (2006). However, the re-

sults are always a compromise between the spatial and temporal components. Moreover,

the influence of the individual components is difficult to quantify. Since the temporal

component (i.e., measuring interval) can be easily varied, whereas the repositioning of

sampling points represents a disproportionately greater effort, focusing solely on the

spatial arrangement seems justified. Therefore, our study focuses on the spatial compo-

nent and assumes a steady-state potentiometric groundwater surface to find the optimal

spatial arrangement of sampling points regardless of the temporal component.

Most of the studies mentioned here have in common that a large amount of auxiliary data

for the respective study areas have been incorporated into the optimizations. Therefore,

the results cannot be easily transferred to other sites where these data may not be avail-

able. This study aims to find out if there is a universally applicable design approach that

can achieve the best possible results without a priori knowledge of the hydrogeological

situation. For this reason, we compared six design strategies as general as possible and

analyzed their results in nine areas of investigation. We assumed “real” GWL to be

known as they are taken from large-scale numerical groundwater models for this simula-

tion experiment. The idea behind this approach is to compare the interpolated surfaces

resulting from the respective GLMN design to the “real” surface and thereby compute

the “real” error in addition to the CV error.

In detail, the research objectives are to answer the following questions:

• Is there an extensible and transferable GLMN design that allows reliable spatial

estimates of GWL with a minimum number of monitoring wells?

• What are the quality differences resulting from the use of various GLMN design

approaches?

• At what monitoring well density a reasonable information/cost ratio result?

• Which is the most suitable CV error statistic (MAE, RMSE, RMSSE, ASE, or

NSE) to evaluate the quality of interpolated groundwater surfaces?

We applied six design strategies on nine different potentiometric groundwater surfaces

to answer these questions, starting with initial ten monitoring wells each. Based on the
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GWL of the monitoring wells, a groundwater surface was interpolated and the deviation

from the real groundwater surface calculated, along with global CV error statistics. The

GMN were then gradually densified up to 500 monitoring wells, the interpolation and

error calculation being repeated after each step. The design strategies, which contain

random components, were repeated ten times to include the influences caused by them.

3.2 Methods

3.2.1 Interpolation Methods

In a previous study, we examined and compared nine different interpolation methods:

inverse distance weighting (IDW), radial basis function (RBF), simple kriging (SK),

ordinary kriging (OK), universal kriging (UK), empirical Bayesian kriging (EBK) and

co-ordinary kriging (CoOK), as well as local polynomial interpolation (LPI) and global

polynomial interpolation (GPI), to find the most suitable method to interpolate a con-

tinuous GWL from monitoring well data (Ohmer et al., 2017). The best results were

achieved with CoOK based on global CV error statistics. In this type of kriging, addi-

tional correlated secondary variables (e.g., digital elevation model (DEM), springs, and

wetlands) are used to improve the prediction. Since secondary data are generally not suf-

ficiently available everywhere, we decided not to consider this method here and instead

use the second-best method, OK, which is one of the most frequently used geostatistical

estimators (e.g., Siska et al., 2005; Wackernagel, 1995).

Geostatistics is based on the work of Krige (1951) and was further developed by Matheron

(1963) with his theory of regionalized variables. Kriging is a generic name for a group

(e.g., SK, OK, and UK) of generalized least squares regression algorithms (Li and Heap,

2008). Before the prediction, the spatial correlation of the regionalized data is assessed

by a semivariogram analysis. The semivariance γ of Z between two points xixo separated

by distance h is defined as:

γ = (xixo) = γ(h) =
1

2
var[Z(xi)− Z(xo)] (3.1)

An empirical semivariogram is a graphical representation of the semivariance (γ(h) vs. h)

that represents the spatial autocorrelation of the data points. It quantifies the assump-

tion that nearby data points tend to be more similar than more remote points (First

Law of Geography, according to Tobler, 1970). This empirical semivariogram is used as

the first estimate of the theoretical semivariogram needed for the spatial interpolation.
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Important features of the semivariogram are the nugget, the range, and the sill/partial

sill. The nugget effect is a positive value of γ(h) at h close to 0. It allows the variogram

to assume a nonzero value for two observations with a distance of less than the minimum

bin size. It accounts for a sum of measurement error and microscale irregularities. A

method that produces an estimate equal to the observed value at the sample points is

called exact; all others are called inexact. The sill is the semivariance value at which the

semivariogram levels off for stationary data sets (Bohling, 2005). Partial sill results from

the difference between sill and nugget. The range is a value of distance at which the sill

is reached. Points further away than the range are regarded as spatially independent (Li

and Heap, 2008). OK is robust and straightforward and, therefore, probably the most

widely used kriging technique (Heuvelink and Pebesma, 2002). Each of the different

kriging methods is based on the following basic equation:

ẑ(x0)− µ(x0) =

n∑
i=1

λi[Z(xi)− µ(xi)] (3.2)

where ẑ is the estimated value at a point of interest x0, n is the total number of observed

GWL, and Z(xi) is the observed GWL at well xi. λi are the kriging weights derived

from a covariance function or semivariogram; µ is, in the case of OK, the Lagrange

multiplier that has to be estimated and is considered to be constant over the area to be

interpolated (Li and Heap, 2008):

ẐOK =
n∑

i=n

λOK
i (x0)Z(xi) with

n∑
i=1

λOK
i (x0) = 1 (3.3)

We used an omnidirectional Gaussian semivariogram model, which is flexible, and a

good candidate for a default model (Krivoruchko, 2011). Its parabolic behavior at

the origin represents very smoothly varying properties (Bohling, 2005). The associated

parameters partial sill, range, search neighborhood, and specific search distance were

optimized using automated CV diagnostics to minimize the RMSE for each case. A

systematically small constant nugget of 0.05 m was used to ensure the stability of the

resulting kriging matrices (Coburn et al., 2006; Johnston et al., 2004).

It should be noted that the use of a single variogram model (Gaussian) might not be the

optimal way to quantify spatial correlation, especially for nonstationary data. However,

it is a necessary simplification owed to the automation process, which still allows com-

parability of the spatial design methods, while the best possible interpolation result is

not the focus of this study.
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3.2.2 Data and Data Processing

The spatial and temporal variability of the GWL is generally unknown except for wells,

springs, wetlands, and interacting surface waters. Therefore, the accuracy assessment of

interpolated/predictive GWL can only take place at these measured locations using CV

and error statistics (e.g., MAE, RMSE, NSE, and RMSSE). Therefore, the expected

level of fit of these results is primarily dependent on the number and distribution of the

monitoring wells.

To quantitatively determine and compare the effects of the different GLMN designs on

the accuracy of the predicted GWL, we used nine potentiometric groundwater surfaces

extracted from simulation results of three regional MODFLOW groundwater flow models

as an a priori reference. The model data are publicly accessible from the USGS (Feinstein

et al., 2012; Jones et al., 2017; Parsen et al., 2016). The idea behind this approach

was to compare the interpolated surfaces to the “real” surface and thereby compute

the “real” error in addition to the CV error. This has been done with completely

artificial surfaces to compare different network designs (Aguilar et al., 2005; Heuvelink

and Pebesma, 2002; Romero et al., 2005; Wilde, 2009). Still, artificial surfaces may

not have the same properties as typical groundwater surfaces in terms of variability,

roughness, gradients, and so on. To use surfaces computed by numerical groundwater

models, which incorporate the hydraulic properties of the aquifer, are based on physical

processes of groundwater flow, and therefore produce not “real” but at least “realistic”

surfaces, seems to be the best compromise. The resulting groundwater surfaces each

consist of 100 m× 100 pixels with pixel sizes of 100 m× 100 m, 200 m× 200 m, or

500 m× 500 m. The pixel size corresponds approximately to the element size of the

groundwater models.

The different resolutions of the surfaces were chosen to assess if and how the resolution

affects the results. The resolution can, for example, influence elevation and slope values

(Chunmei et al., 2013), as small-scale variabilities below the pixel size are eliminated.

However, this does not allow comparing the observation density and resulting errors with

each other directly. A detailed overview of essential parameters of the surfaces is given

in Tab. S3a, GWL contour maps of the surfaces are shown in Fig. 3.1.

For the simulation experiment, we used the following automated workflow for all surfaces:

1. Ten initial monitoring wells are distributed randomly on every surface from a

random number generator (exceptions are the systematic sampling and low dis-

crepancy sampling methods, see section 3.2.3).
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Figure 3.1: GWL contour maps and histograms extracted from three MODFLOW models:
lower Apalachicola-Chattahoochee-Flint River Basin, Georgia (Jones et al., 2017),
Dane County, Wisconsin (Parsen et al., 2016) und Upper Fox River Basin, Wis-
consin (Feinstein et al., 2012), as a priori reference to evaluate the investigated
observation network designs qualitatively and quantitatively.
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2. Based on the GWL of the available observation points, an empirical variogram is

computed, and an optimized (by CV) Gaussian semivariogram model is fitted to

the data.

3. Based on the semivariogram, the GWL is interpolated with OK.

4. The prediction error (the difference between the real and the predicted surface)

and different CV error statistics are calculated.

5. The location for an additional monitoring well is computed, depending on the used

design method(see section 3.2.3),

6. Steps (2) to (4) are repeated until the GMN includes 500 monitoring wells. Steps

(1) to (6) are repeated ten times for the methods that include random components,

and the results were averaged to consider errors caused by random initialization

or random addition of point locations.

3.2.3 Sampling Designs

When planning a new or extending an existing GLMN, one of two fundamentally different

strategies must be chosen. One is the design-based sampling approach based on classical

sampling theory; the other is the model-based approach based on geostatistics. The

main difference between the two is how they deal with the randomness they use to give

the inference a stochastic structure (Särndal et al., 1978). The additional monitoring

wells (or, in general, samples) in a design-based observation network are selected so that

each location within the study area has the same probability of being chosen. Another

term for design-based sampling is, therefore, probability sampling. These probabilities

provide the foundation for statistical inference from the observations (Gruijter et al.,

2006). In a model-based network, a theoretical construction(model) is used to deal with

the differential probabilities of the potential observation points. The model is built

upon information on prior knowledge and assumptions (Geuna, 2000). It contains the

prescription for the statistical inference. A detailed description of sampling theory and

the contrast between the two strategies can be found in Särndal et al. (1978), Hansen

et al. (1983), Brus and Gruijter (1997) and Brus (2010). Fig. 3.2 shows an overview of

the observation network designs compared in this study.

Design-Based Approach: Spatial Statistical Sampling and Probability Sampling

Four standard types of statistical sampling methods are generally used in “classical”

statistical surveys (Kish, 1995). These methods are simple random sampling (SRS),
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Figure 3.2: Schematic overview of the GMN design approaches compared in this study

random grid sampling (random systematic sampling), stratified sampling, and cluster

sampling. For this study, SRS and random grid sampling were chosen. Stratified sam-

pling and cluster sampling are usually used when a heterogeneous distribution of values

can be broken down into internally homogeneous parts or when values tend to cluster

together (Gilbert, 1987). Neither is the case for GWL.

Simple Random Sampling simple random sampling is the most straightforward and

frequently used sampling design approach in survey sampling. It is assumed that n

points are located randomly from N potential sites with an “equal probability of se-

lection” (EPS) throughout a domain. The advantages are that it is simple to use and

free from bias and prejudice. Disadvantages are poor spatial coverage and the possible

occurrence of clustering, redundancy, and regions with no observation points. The addi-

tional observation points with SRS were selected in this study using the ESRI ArcGIS

tool GenerateRandomPoints. This tool creates a specified number of random points to

a defined extent.

Random Grid Sampling In random grid sampling (or random systematic sampling),

samples are taken at regularly spaced intervals over space with the first point m chosen
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randomly. The approach is classified as probability sampling since, with the first point

selected randomly, each location within the study area initially has the same probability

of being selected. Examples of a systematic grid are rectangular, triangular, hexagonal,

or radial grids. If the starting point is not chosen randomly, the approach is classified as

model-based (see section 2.3.2), as, for example, in regular systematic sampling and cen-

tric systematic sampling (Delmelle, 2014). The main advantage of a systematic sampling

over SRS is that it can be more conducive to covering more extensive areas through a

maximized sampling coverage while clustering and redundancy are prevented. Moreover,

it allows to add a degree of system into the process of random selection (Fischer and

Nijkamp, 2014). Gridded sampling designs are particularly suitable for large investiga-

tion areas, which should be covered with a limited number of sampling points (Gruijter

et al., 2006). The disadvantage of this method is that the smallest separation distance

is fixed. Since the kriging variance is described as a function of the separation distance,

this can lead to unnecessarily large nugget effects for the model semivariogram (Vieux,

2016). Furthermore, the approach is not progressive, so the number of overall observa-

tion points must be known beforehand. It is impossible to progressively add more points

without breaking the order. Therefore, systematic sampling methods are not suitable for

constructing extensible observation networks. We added two methods for comparison,

as they are often referred to as the most efficient design for survey sampling (Birch et al.,

2007; Olea, 1984).

The systematic random approach used in this study is a triangular grid based on regular

hexagonal polygons. The points are placed in the center and at the corners of a hexagon

(shared with three other hexagons). The hexagons have a width w =
√
3 ·sidelength and

a height h = 2 ·sidelength. Therefore, the lateral distance dhz between adjacent hexagon

center points is w while the longitudinal distance is h ·3/4. In contrast to other methods,

no additional points can be added progressively without breaking the grid symmetry.

Instead, the existing points were replaced in the next iteration step by as many points

as were necessary to maintain a regular grid with the next-larger number of points.

Model-Based Approach

Centered Grid Sampling Though very similar to random grid sampling, the centered

grid sampling is referred to as a model-based approach since, in contrast to random grid

sampling, the starting point is not chosen randomly but purposefully so that the area

of investigation is well covered, especially when the overall number of points is low. For

the rectangular grid used in this study, the investigated area was divided into n × n

square intervals, and the observation points were set in their center (centric systematic
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sampling). The shortest distance d between the observation points equals the side length

of the square divided by the square root of the sample size
√
A/n where A is the area

of the square. As with all regular grids, this method is not progressive. An existing

network cannot be extended under the applicable laws.

Spatial Coverage Sampling Spatial coverage sampling is a technique that optimizes

an objective function of the distance between the observation points (Brus, 2010). We

have chosen two low-discrepancy sequences as objective functions. In quasi-random or

low-discrepancy sampling, the position of sampling points is based on low-discrepancy

sequences (also called quasi-random or subrandom sequences). These sequences repre-

sent numbers that are better equidistributed than pseudo-random numbers (Dalal et al.,

2008). To construct higher-dimension low discrepancy, as in the case of two-dimensional

sampling design, several one-dimensional sequences are combined in a component-wise

manner, that is, that the x and y coordinates of a two-dimensional area are constructed

by pairing consecutive numbers of two different low discrepancy series in an [0, 1]× [0, 1]

space and then adjusted to the actual spatial extent of the area to be sampled. Discrep-

ancy refers to the density of points on an area or sampling space in a two-dimensional

context. A high discrepancy means that there are large areas of empty space or regions

with a disproportionally high point density (as it may be the case in a random distri-

bution). Therefore, SRS can lead to a high discrepancy, while systematic sampling has

the lowest discrepancy. Fully deterministic low-discrepancy sequences were developed

to optimize Monte Carlo simulations because they fulfill requirements as if they were

genuinely random numbers. At the same time, higher accuracy and faster convergence

can be achieved with fewer samples than pseudo-random numbers, reducing computa-

tional costs. Low-discrepancy sampling methods thus constitute a good compromise of

being progressive (like SRS) and having a low discrepancy (like systematic sampling).

Therefore, they are frequently used in sampling problems. Furthermore, they allow for a

better distribution of sample separation distances than gridded sampling schemes while

minimizing sampling bias and clustering. To our knowledge, low-discrepancy sequences

have not yet been applied to developing GMN designs before.

A categorization of the different types of low-discrepancy sequences is mainly done by

the method of constructing their bias (hyper)parameter. These are either prime num-

bers (Van der Corput, Halton, and Faure sequence), polynomials (Sobol and Niederre-

iter sequence), or irrational fractions (Kronecker and R-sequence). In this study, the

Halton sequence and the R-sequence were investigated, as they are more suitable for

low-discrepancy in two dimensions than other low-discrepancy series (Roberts, 2018).
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The Halton sequence (Halton, 1960) is a generalization of the van der Corput sequence

(Corput, 1935) to higher dimensions. It uses arbitrary coprime numbers as a base for

each dimension. The most frequent selection for two dimensions, due to its apparent

simplicity and sensibility, is to select the first primes, which is referred to as the (2,3)-

Halton sequence. To generate the sequence for 2, the interval [0,1] is divided in half,then

in fourths, eighths, and so forth, which generates 1/2, 1/4, 3/4, 1/8, 5/8, 3/8 and so forth.

Equivalently, the Halton sequence for 3 is generated by dividing the [0,1] interval in

thirds, ninths, twenty seventh, and so forth, giving 1/3, 2/3, 1/9, 4/9, 7/9, 2/9 and so forth.

The coordinates for the sampling points are constructed by placing the x coordinates ac-

cording to the 2-Halton sequence and y coordinates according to the 3-Halton sequence,

adjusting the numbers of the sequence to the actual spatial coordinate extent of the

area.

The Halton sequence constitutes a good source for a low discrepancy in two dimensions

since the selection of small coprime bases ensures a minimal correlation between dimen-

sions (Worley, 2016) and is therefore regularly used in ecological sampling (Brown et al.,

2015; Kermorvant et al., 2019).

Recently, a new low discrepancy quasi-random sequence that offers a substantial im-

provement over current state-of-the-art sequences has been proposed Roberts (2018).

The new additive recurrence sequence (R-sequence) is a recurrence method based on

irrational numbers (generally called Kronecker sequences), which uses the golden ra-

tio as a basis. For the two-dimensional case (R2-sequence), it produces more evenly

spaced points than any of the other known methods. The generalized version of the

golden ratio ϕd is defined as the unique positive root xd+1 = x+ 1. That is, for d = 2,

ϕ2 = 1.3247 . . . This value was conjectured to most likely be the optimal value for a

related two-dimensional problem (Hensley and Su, 2001). In two dimensions the x and

y coordinates of the nth term (n = 1, 2, 3, . . .) are defined as decimal place of:

xn =

(
0.5 +

1

ϕ2
· n

)
and yn =

(
0.5 +

1

ϕ22
· n

)
(3.4)

Geostatistical Sampling

Model-based sampling techniques, specifically geostatistical sampling when the postu-

lated model is a geostatistical model, have been applied in several recent studies to assess

and locate additional monitoring wells in a GLMN (see section 3.1).

In geostatistical sampling, a geostatistical model, the model variogram, is used to identify

locations for additional sampling points (Gruijter et al., 2006). These are selected based
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on the predefined selection criterion, usually by minimizing the mean or the maximum

kriging variance (Olea, 1984).

σ2OK = V ar(Z)−
n∑

α=1

λαC(h0α) (3.5)

The kriging variance depends on the covariance model and the data configuration but is

independent of the data values. For a given covariance model, two identical sample loca-

tion distributions would independently yield the same kriging variance regardless of the

data (Goovaerts, 1997). Heuvelink and Pebesma (2002) examined the validity of kriging

variance by numerical analysis of two-dimensional Gaussian distributed realizations and

by mathematical-statistical description. They show that the prediction error variance is

independent of the data values. Therefore the kriging variance is still a correct assess-

ment of the local uncertainty even if, in parts of the area, the variations are larger or

smaller than elsewhere. However, these findings do not apply to the non-Gaussian case.

We used the maximum prediction standard error (square root of the kriging variance)

as the selection criterion for placing additional sampling points. This approach is im-

plemented in the ArcGIS Tool “Densify Sampling Network” and is therefore referred to

as densify sampling network (DSN) (Johnston et al., 2004).

Reference

We introduce a reference method (REF) to evaluate the quality of the tested approaches.

After each interpolation, the predicted surface is compared with the “real” surface, and

an additional well is set at the point with the largest difference between the two surfaces.

The idea behind this approach is that the resulting arrangement is the best possible

design for each respective surface. Hence, we assume that it theoretically represents the

lower limit for the smallest prediction error achievable with a given number of monitoring

wells.

Progressive Versus Nonprogressive Designs

Progressive (sequential) sampling design creates an observation network by optimally

adding one or several new points step by step, whereas, in nonprogressive (simultaneous)

sampling design, all points have to be added at once. While some methods are either

progressive or nonprogressive, others can be used in both ways (though they are usually

referred to as progressive only). The latter is the case for SRS and the spatial coverage
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sampling strategies (R2 and Halton), where the results are the same whether one, several,

or all points are added at a time. The DSN method constitutes an exception. It can be

progressive or nonprogressive, but the results may differ. DSN places additional points at

the highest prediction standard error, which depends on son the locations of the existing

observations points and the semivariogram model. The semivariogram is recomputed

in each densifying process and therefore leads to different results, depending on if a

number of points are added one by one (sequential) or all at one time (simultaneously).

In practice, the differences in the results are often minor, at least when a certain number

of observations is reached since the addition of additional points only leads to minor

changes in the modeled semivariogram. The grid sampling methods are nonprogressive,

in the sense that only a certain number of points can be added at a time without

breaking the grid symmetry (and therefore are usually referred to as nonprogressive

only). Whether a progressive or nonprogressive method is preferred may depend from

case to case. However, in GLMN design, progressive methods have the advantage of

allowing for an extension of the network at a later stage.

3.2.4 Validation Methods

The absolute prediction error is the absolute mean difference between the real GWL

and the predicted GWL, divided by the surface area. For the methods with a random

component (REF, SRS, triangular random grid, and DSN), a mean value was calculated

from 10 runs.

APE =

∑n
i=1

∣∣∣Ẑ(x) − Z(x)

∣∣∣
area

(3.6)

The standardized absolute prediction error (SAPE) is the APE divided by the maximum

APE of all methods per surface (except REF). The SAPE makes it easier to compare

the error propagations of the individual surfaces with each other.

SAPE =
APE

maxAPEallmethods
(3.7)

The mean standardized absolute prediction error (MSAPE) is the mean SAPE of the

individual design approaches for all nine surfaces. Since the real value for an actual

GWL at the time of the prediction is generally unknown, the real prediction error is also

unknown. The interpolation can therefore only be validated at the observation points,

using CV and error statistics to assess the accuracy of the interpolation. Based on the

results of the CV, the following error measures were used to compare the accuracy of
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the different interpolation methods, where n is the number of observations, oi is the

observed value, and pi is the predicted CV value at the position i.

The mean absolute error is the arithmetic mean of the absolute error values. It indicates

the magnitude of the error:

MAE =
1

n

n∑
i=1

|pi − oi| (3.8)

The root mean square error represents the root of the averaged square error:

RMSE =

√√√√ 1

n

n∑
i=1

(pi − oi)2 (3.9)

The average standard error is the average of the prediction standard errors:

ASE =

√√√√ 1

n

n∑
i=1

(pi − (
n∑

i=1

pi)/n)2 (3.10)

The root mean square standardized error with psi as the standardized predicted value

and osi:

RMSSE =

√√√√ 1

n

n∑
i=1

(psi − osi)2 (3.11)

The Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970)) with µo as the

arithmetic mean of the measured values is used to quantify how well a model simulation

can predict the outcome variable. The NSE ranges from minus infinity to 1 (perfect fit):

NSE = 1−
∑n

i=1[pi − oi]
2∑n

i=1[oi − µ(o)]2
(3.12)

In a detailed review, Li and Heap (2008) have compiled a comprehensive assessment of

error statistics. They conclude that MAE and RMSE are similar measures that estimate

the average error but do not provide information about the relative size of the average

difference or the nature of the difference. In contrast to MAE, RMSE is very sensitive

to outliers (Hernandez-Stefanoni and Ponce-Hernandez, 2006; Ikechukwu et al., 2017;

Vicente-Serrano et al., 2003; Willmott, 1982). Nonetheless, both are among the best

measures of model performance (Willmott, 1982). The following criteria for using error

measurements are proposed to assess the performance of spatial interpolation. MAE,
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RMSE, and ASE should be as small as possible. ASE and RMSE should be nearly iden-

tical, and RMSSE should be close to 1, indicating the estimated prediction uncertainty

is consistent. ASE>RMSE or RMSSE> 1 implies an overestimation of the variability

of the predicted values; ASE < RMSE or RMSSE < 1 implies an underestimation (Hu

et al., 2004).

3.3 Results and Discussion

We divided the presentation of the results into three sections. In section 3.3.1, the

spatial distributions of the added monitoring wells from the tested approaches are shown

and compared on example (ACF A). Since a priori known potentiometric groundwater

surfaces are used, the CV errors and the “real” prediction errors based on the GLMN can

be computed. Therefore, in section 3.3.2, a comparison of the tested design approaches

based on these real prediction errors (APE) is drawn. Section 3.3.3 finally contains a

comparison based on the CV results.

3.3.1 Resulting Spatial Distribution

The GLMN designs resulting from each approach are shown for the example of ACF A in

Fig. 3.3. The reference method results in a network design with concentrated observation

density and clustering in the more variable southern part of the area. In contrast, there

are large regions with a low density even with 500 monitoring wells in the less variable

northern part with lower gradients. This clustering is because an additional point is set

at the location of the largest deviation between the interpolated and the actual surface

(APE). Thus, the first 37 additional monitoring wells are placed exclusively in the

south (light blue points). After that, points will also be set further north, although a

concentration of additional points will remain in areas of high variability (cyan points).

SRS exhibits point clustering and regions without points. Since the points are placed

randomly, this effect can be stronger or weaker from case to case. To take this random

component into account, the placement was repeated ten times for SRS. The figure

shows one of the ten examples.

To varying degrees, the low discrepancy methods (Halton and R2 method) and the

geospatial method DSN show uniformly distributed arrangements of the observation

points. The Halton method shows a very even global point distribution. Locally, how-

ever, the method tends to place individual points closer together as the number of mon-

itoring wells increases (cyan and light yellow points). DSN shows a uniform local point
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Figure 3.3: Resulting spatial distribution of the monitoring wells for surface ACF A based on
the investigated network designs at the start (dark blue), less than 55 (≤ P1, light
blue), less than 172 (≤ P2, cyan), and for 500 (≤ Pmax, off white) monitoring wells
(the numbers for the nonprogressive methods are adapted according to grid symme-
try). Progressive: design that can be extended with n additional monitoring wells.
Nonprogressive: design that is not extensible without breaking the symmetry of the
grid (points marked by white outlines). The Geostatistical sampling design (DSN)
uses the prediction standard error as a selection criterion for placing additional
sample points.

distribution with relatively consistent neighboring distances. Since the kriging variance

depends on the distance to the closest n-observation points, a high prediction standard

error results at the boundary of the research area, and additional points are placed along
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that edge. The R2 method shows both an even global distribution and uniform distances

to the neighboring n-observation points across all observation densities.

3.3.2 Absolute Prediction Errors

Fig. 3.4a shows the APE for all tested design approaches for surface ACF A as an

example (diagrams for all surfaces are provided as supporting information, Fig. S3c) as

a function of the number of monitoring wells. The points P1, P1 and P2 were defined

such as the numerical derivatives of the mean SAPE of all methods (excluding REF) are

5× 10−3 and 1× 10−3, respectively. Consequently, a additional monitoring well results

in a reduction of the initial mean SAPE by 0.5 % for P1 and 0.1 % for P2. Hence, it can

be used to define a well density for the respective information/cost ratio.
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Figure 3.4: (a) APE of the tested methods for ACF A (left y-axes) as a function of the number
of monitoring wells and the derivative of the mean SAPE of the methods (excluded
REF; right y-axes). (b) Detailed view of P1, P2, and Pmax. P1 and P2 are points at
which the numerical derivative of the mean SAPE of the methods (excluded REF)
has the value 5 × 10−3 and 1 × 10−3. (c) The ratio of the APE of the individual
design approaches to the mean APE of all methods (excluding REF). A value < 1
means that the individual design approach is better than average, > 1 that it is
poorer than average.

The idea behind the thresholds P1and P2 is that below P1, the observation density seems

insufficient, and the placement of additional monitoring wells leads to a substantial im-

provement of the results. In contrast, above P2 further monitoring wells show only minor
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and thus possibly inefficient improvements. The decision at which information/cost ra-

tio these points are defined can only serve as a rough guideline and must, of course, be

adapted to the respective requirements of each site.

The theoretical maximum information content is reached at a density of 1 point per

pixel. That is, the value is known for each grid cell. The grid size of the output maps

needs to match the sampling density and scale at which the processes of interest occur

(Hengl, 2009), since small-scale variabilities can only be displayed up to pixel size, and

the coarser the resolution of a GWL, the more small-scale variations disappear. P1 was

achieved for ACF A with 55 observation points and P2 with 172 observation points. Fig.

3.4b and 3.5b show a detailed view of P1, P2, and Pmax (for the maximum tested number

of 500 observation points). Fig. 3.4c and 3.5c show the deviations of the MSAPE of the

individual design approaches from the mean MSAPE of all methods (except REF). A

value< 1 means that the individual design approach performs better than average,> 1

that it performs worse than average.
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3.3.3 Cross-Validation Results

Although assessing the error based on the deviation from the real GWL (APE) seems nec-

essary to determine both the number of monitoring wells required and the best method

for their placement, this deviation will not be available in practice. Only the error at

the existing observation points can be determined by CV. Thus, we compare the APE

with different CV error statistics to examine whether one of them is more appropriate

as a proxy for the averaged APE and suitable point densities for assessing an informa-

tion/cost ratio.

Figure 3.6a shows a comparison of the averaged standardized APE (SAPE) of all design

approaches, and the averaged, standardized global CV error estimates (MAE, RMSE,

ASE, and NSE), as well as the averaged RMSSE for all surfaces. Along with the averages,

the ranges between the minimum and maximum curves are given as shaded areas in the

same color. For a better comparison, NSE is shown as 1-NSE. The standardization aims

to present the error developments of the different design approaches to be compared with

each other. Furthermore, it should be shown whether and to what extent conclusions

can be drawn from the shape of the individual CV curves compared to the SAPE curve

regarding the assessment of an information/cost ratio.

Figure 3.6b Pearson r between the CV-error estimates and the APE. Except for RMSSE,

all methods consistently strongly correlate with APE. RMSE (between 0.950 and 0.995)

and MAE (0.965 and 0.997) show the strongest correlation to the APE, making them

reliable qualitative error estimators. This is followed by 1-NSE (0.883-0.987). Since the

RMSSE should go to 1, the Pearson r of |1− RMSSE| instead of RMSSE was calculated.

This variable shows the worst correlation with the APE (-0.633 to 0.896) of the tested

estimators.

Since both MAE and RMSE have the same units as the estimated quantity, Fig. 3.6c

compares them with the APE to examine to what extent their value is suitable for

quantifying the actual absolute error. Since RMSE squares the errors before averaging

them, it gives a relatively high weight to large errors. Thus, the RMSE is clearly above

the APE and the MAE for every surface. The APE corresponds approximately to 1/2

RMSE and to 2/3 MAE, which can, according to our data, therefore be used as a rough

quantitative estimate for the actual error.

This can also be seen in Fig. 3.6d, which illustrates the development of the ratios of APE

and the CV error estimators (APE/MAE,APE/RMSE,APE/ASE, and APE/(1-NSE)).

The standard deviation caused by the different design approaches is essentially lower for

RMSE (0.09) and MAE (0.08) than for APE (0.22), RMSSE (1.29), and 1-NSE (0.24).
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1-NSE shows the most irregular course. The ratio changes from 0.7 at the beginning to

0.03 at 500 observation points.

Fig. 3.7 shows a comparison of the APE for all design approaches (Fig. 3.7a) and the

individual results of the CV errors (Fig. 3.7b) as a ranking at the points P1, P2, and

with 500 monitoring wells (Pmax) for all nine surfaces. The results are ranked according

to the error size (RMSSE and NSE ranked by proximity to 1) for better clarity. A

table with the actual errors can be found in the supporting information Tab. S3b. The

results show that it is not possible to evaluate the different design approaches based on

their CV errors. There is a moderate to strong negative Spearman rank correlation with

increasing measurement density between the APE-based error ranking and the CV error

estimates (except RMSSE). Thus, the SRS design, which led to the largest errors on

any surface, is mainly classified as the supposedly best design approach. On average,

the triangular grid producing the smallest APE is predominantly classified as the least

suitable design. We, therefore, advise not to evaluate different designs based on their

CV-error statistics.

3.4 Conclusions

The focus of this study was to compare different design approaches for GLMN to find

out if there is an extensible design that allows reliable spatial estimates of GWL with

an optimal information/cost ratio. Additionally, we examined what quality differences

result from the use of different design approaches and which are the most suitable error

statistics to evaluate the quality of the interpolated GWL. For this purpose, we used

nine potentiometric groundwater surfaces extracted from three regional MODFLOW

groundwater flow models to compare the interpolation results to an a priori reference.

The sampling designs examined were random sampling, grid sampling (triangular and

rectangular grid), spatial coverage sampling (low-discrepancy methods), and geostatis-

tical sampling (densify sampling network).

The results show that the number of monitoring wells has a more beneficial influence on

the interpolation result than their spatial distribution (design), as long as a reasonably

even spatial distribution is given. All tested sampling designs led to significantly better

results than SRS, but none of these designs proved superior to the others. Which method

performs best is primarily dependent on the density of the GLMN and the characteristics

of each individual potentiometric groundwater surface.

Interpolated GWL based on systematic sampling approaches (rectangular and triangular

grid) showed, on average, the smallest actual APE at all observation densities. Due to
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Figure 3.6: (a) Comparison of the SAPE, RMSSE, and the standardized averaged MAE,
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Figure 3.7: Comparison of the (a) ranking of the six investigated methods on all surfaces based
on their absolute prediction errors (APE) and (b) the CV error estimates (MAE),
(RMSE), (RMSSE) and ASE, NSE, from best (1, blue) to worst (7, red, RMSSE
and NSE ranked by proximity to 1), along with the Spearman rank correlation
between the APE and the CV error estimates from 1 (green) to -1 (purple).

their nonprogressive nature, they are only suitable for constructing a new GLMN with a

defined number of monitoring wells, which will not be extended in the future. On average,

the triangular grid design showed better results than the rectangular grid design.

The geostatistical DSN method, in which the location of an additional observation point

is selected based on the maximum prediction standard error, resulted in the lowest APE

among the tested progressive network designs. Despite its insignificantly higherAPE

than the grid designs, DSN has the advantage that the resulting design can be sequen-

tially extended and is, therefore, more appropriate for most GLMNs. However, since

DSN selects new observation points based on the maximum prediction standard error,

it requires an existing kriging interpolation. Therefore, it can only be used for adding

new sampling locations to an existing GMN.

Consistently good results have been achieved with the low-discrepancy methods (Halton

and R2 method), which, to our knowledge, have not yet been used for GLMN designs

before. Moreover, their locations are only based on mathematical sequences and can

be determined without prior measurements. Furthermore, the placement of the obser-

vations points is reproducible and does not change over time (with possibly different

69



Chapter 3 Optimal Spatial Design for Groundwater Level Monitoring Network

measurements, as is the case for DSN). Among the low-discrepancy methods, the R2

method delivers better results than the Halton method and should be preferred.

Based on the SAPE, we defined the points P1 and P2 where an additional well leads

to a reduction of the initial mean SAPE by 0.5 % for P1 and 0.1 % for P2. Below P1,

the observation density seems insufficient, and the placement of additional monitoring

wells leads to a substantial improvement of the results. In contrast, above P2 further

monitoring wells only lead to minor and thus inefficient improvements. On average,

for all surfaces and methods, the observation density for P1 is 5.1 × 103/pixel and

1.56× 102/pixel for P2, respectively, that is, about 0.51 % of all possible sampling options

(imaginary pixels of a grid reflecting the assumed variability of the GWL should be

sampled, while on average when over 1.56 % of all possible sampling options are sampled,

the error reduction becomes considerably less, and the resulting information/cost ratio

might become too low. By comparing density per pixel with a real observation density in

monitoring wells per km2, it must be assumed that the resolution of the grid is adapted

to the actual variability of the GWL to be expected. Therefore, P1 and P2 can be used

as rough guideline values for the required number of monitoring wells in the planning of

a GLMN as well as the evaluation of an existing one.

From the results of global CV, we conclude that one should avoid comparing different

designs based on the global average CV error estimation since there are strong negative

correlations between APE and the CV-error estimates, especially at higher observation

point densities. Thus, the CV error statistics are not appropriate for evaluating the

results of different methods and comparing different design approaches. Which methods

perform best can differ significantly from the actual error depending on the surface

and the CV statistics used. The basic benefit of CV comes not from using it in a

global sense but rather in looking at the spatial distribution of the individual CV errors

(correlated residuals, bias, normal distribution, etc.). According to our results, the

CV error statistics, especially MAE and RMSE, can be helpful as a rough quantitative

estimate for the actual error, though.
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Supporting Information

This supporting information provides a comparative overview the important parameters

and properties of the GWL model surfaces (S3a), overviews of the investigated methods

based on their APE for all nine surfaces (S3b) and a comparison of the actual errors

with the CV error estimates (S3c)

Table S3a: Overview of important parameters and properties of the groundwater model sur-
faces. For easier comparison, all groundwater heights were converted from the orig-
inal height above sea level to a minimum value of zero.

Name
Low. Apalachicola-Chatta-
hoochee-Flint River Basin,
Georgia/Florida, USA

Dane County, Wisconsin,
USA

Upper Fox River Basin,
Wisconsin, USA

Author (Jones et al., 2017) (Parsen et al., 2016) (DeSimone et al., 2002)
Shorthand symbol ACF A ACF B ACF C DANE A DANE B DANE C FOX A FOX B FOX C
Number of pixels 100 × 100 100 × 100 100 × 100
Pixel size [m] 500 100 200 100 200
Total Area [km2] 2,500 100 400 100 400

Main aquifer system

Unconfined to semiconfined
part of the Floridan Aquifer
system partially covered
with residuum limestone

Unlithified deposits on high
permeable fractured sandstones

and dolomites (unconfined
to semiconfined)

allow, unconfined aquifer-
system of glacial/alluvial
deposits and Silurian

dolomite
GWS differencemax [m] 67.69 64.49 75.33 26.86 25.96 53.79 76.47 80.13 74.86
Mean GWS height µ [m] 19.57 23.77 24.51 12.48 11.67 35.93 32.2 47.12 28.84
Std dev of GWS height, σ [m] 9.66 10.57 14.13 5.86 6.55 9.19 17.39 13.86 10.81
Hydraulic gradientmaxmax [%] 2.24 1.23 1.31 1.34 0.93 3.26 3.76 2.78 3.64
Hydraulic gradientmean [%] 0.35 0.21 0.25 0.44 0.23 0.57 0.77 0.42 0.62
Hydraulic gradientstd dev. [%] 0.33 0.14 0.17 0.21 0.14 0.47 0.49 0.45 0.55
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Table S3b: Comparison of the (a) Results of the six investigated methods and REF on all
surfaces based on their absolute prediction errors (APE) as well as the CV error
estimates (b) mean absolute error (MAE), root mean square error (RMSE), root
mean square standardized error (RMSSE) average standard error (ASE) and Nash-
Sutcliffe model efficiency coefficient (NSE)

a. b.

APE MAE RMSE
ACF DANE FOX ACF DANE FOX ACF DANE FOX

P1 A B C A B C A B C A B C A B C A B C A B C A B C A B C

SRS 4.9 2.9 2.9 1.1 1.2 1.5 4.2 2.2 3.6 4.6 2.9 2.9 1.0 1.1 1.5 3.9 2.2 3.4 7.4 4.0 4.0 1.4 1.5 2.3 5.3 4.0 4.9
rect. 4.4 2.8 2.5 0.8 0.9 1.3 3.6 1.7 3.0 6.4 3.1 2.6 1.3 1.4 1.9 5.0 2.9 5.0 9.1 4.3 3.4 1.6 1.8 2.7 6.1 4.6 6.5
triang. 4.5 2.6 2.7 0.8 0.9 1.1 3.7 1.9 3.2 7.8 3.4 3.7 2.0 1.7 2.2 5.2 2.8 4.3 11.1 4.5 5.2 2.6 2.3 3.2 6.6 4.2 5.7
Halton 4.9 2.8 2.4 0.8 0.8 1.3 4.0 1.8 2.8 6.5 3.6 3.0 1.1 1.6 2.0 4.8 1.6 4.3 9.6 4.8 4.4 1.5 2.1 2.7 5.9 2.4 6.5
R2 4.7 2.8 2.5 0.8 0.9 1.3 3.7 1.7 3.1 6.5 3.7 2.8 1.5 1.7 1.9 6.8 2.4 4.6 9.2 4.8 3.4 2.1 2.1 2.9 8.8 3.9 6.3
DSN 5.0 2.7 2.4 0.8 1.0 1.2 4.0 1.9 3.3 7.4 3.8 3.8 1.4 1.6 2.3 5.5 3.4 4.6 1.6 5.0 5.3 1.9 2.0 3.3 7.2 5.0 6.4

Pearson correlation: -0.2 -0.6 -0.1 -0.4 -0.8 0.9 -0.6 0.0 -0.7 -0.1 -0.6 0.0 -0.4 -0.8 -0.9 -0.5 0.1 -0.8
P2

SRS 3.3 1.8 2.0 0.6 0.7 1.0 2.5 1.2 2.1 3.3 1.8 1.9 0.6 0.7 0.9 2.5 1.1 2.0 5.3 2.6 3.0 0.9 1.0 1.5 3.6 2.2 3.2
rect. 2.8 1.5 1.6 0.4 0.5 0.7 2.0 0.8 1.5 4.4 2.2 2.6 0.7 0.9 1.2 3.2 1.7 2.8 6.7 2.9 3.5 1.0 1.2 1.6 4.3 2.9 4.0
triang. 2.7 1.5 1.7 0.4 0.5 0.6 1.9 0.8 1.5 4.4 2.3 2.8 0.9 0.9 1.4 3.8 1.8 2.8 6.6 3.0 3.7 1.2 1.2 2.0 5.0 3.1 4.2
Halton 2.8 1.5 1.8 0.4 0.6 0.8 2.1 1.1 1.7 4.0 2.2 2.2 0.6 0.8 1.0 2.9 1.2 2.4 6.1 3.1 3.1 0.8 1.0 1.4 4.0 2.1 3.6
R2 3.1 1.5 1.6 0.4 0.5 0.7 1.9 1.0 1.6 4.1 2.5 2.3 0.7 0.9 1.2 3.6 1.5 2.8 6.1 3.3 3.1 1.1 1.1 1.7 4.8 2.7 4.1
DSN 2.8 1.6 1.6 0.4 0.5 0.7 2.0 0.8 1.5 4.8 2.0 2.6 0.8 1.0 1.4 3.5 1.8 3.0 7.7 3.2 3.8 1.1 1.4 2.1 4.6 3.1 4.4

Pearson correlation: -0.7 -0.8 -0.6 -0.7 -0.8 -0.9 -0.9 -1.0 -0.9 -0.7 -0.8 -0.5 -0.6 -0.7 -0.7 -0.9 -1.0 -0.9
Pmax

SRS 2.0 1.1 1.1 0.2 0.3 0.5 1.2 0.4 1.0 2.0 1.1 1.2 0.2 0.3 1.2 1.2 0.5 1.0 3.4 1.6 1.8 0.3 0.5 0.7 1.9 1.1 1.6
rect. 1.6 0.8 0.8 0.1 0.2 0.3 0.8 0.3 0.6 2.6 1.5 1.7 0.3 0.4 1.7 1.7 0.6 1.2 3.9 1.9 2.5 0.4 0.6 0.8 2.4 1.1 1.9
triang. 1.5 0.8 0.8 0.1 0.2 0.3 0.7 0.3 0.6 2.9 1.6 1.8 0.3 0.4 2.0 2.0 0.7 1.4 4.3 2.1 2.5 0.4 0.6 0.9 2.7 1.3 2.1
Halton 1.8 0.9 0.9 0.2 0.3 0.4 1.0 0.4 0.8 2.4 1.3 1.4 0.2 0.4 1.5 1.5 0.6 1.1 3.6 1.7 2.0 0.4 0.5 0.8 2.3 1.1 1.8
R2 1.6 0.8 0.8 0.1 0.3 0.4 0.9 0.4 0.7 2.8 1.6 1.6 0.3 0.4 1.7 1.7 0.7 1.3 4.2 2.1 2.3 0.4 0.6 0.8 2.3 1.3 1.9
DSN 1.6 0.8 0.8 0.1 0.2 0.3 0.8 0.3 0.6 2.9 1.6 1.7 0.3 0.4 1.8 1.8 0.7 1.3 4.4 2.0 2.5 0.4 0.6 0.9 2.5 1.2 2.0

Pearson correlation: -1.0 -0.9 -0.9 -0.8 -0.9 -1.0 -1.0 -0.8 -1.0 -0.9 -0.9 -0.9 -0.8 -0.9 -0.9 -0.9 -0.6 -0.9

b.

|1- RMSSE| ASE |1 - NSE |
ACF DANE FOX ACF DANE FOX ACF DANE FOX

P1 A B C A B C A B C A B C A B C A B C A B C A B C A B C

SRS 0.1 0.1 0.0 0.0 0.1 0.2 4.8 0.9 3.9 6.1 2.9 2.2 1.2 1.2 1.1 4.8 2.6 4.9 0.66 0.17 0.09 0.06 0.06 0.07 0.10 0.10 0.24
rect. 0.1 0.5 0.3 3.1 0.4 0.2 5.3 0.4 5.5 8.1 3.0 3.2 1.0 1.2 1.3 5.3 3.1 6.6 0.90 0.18 0.06 0.08 0.07 0.09 0.13 0.11 0.36
triang. 0.1 0.6 1.0 0.6 0.2 0.4 4.8 0.3 4.7 9.8 2.9 3.8 0.7 1.4 1.7 4.8 3.2 6.1 1.01 0.13 0.16 0.20 0.13 0.10 0.12 0.09 0.27
Halton 0.2 0.4 0.1 0.7 0.2 0.2 5.1 0.1 5.5 7.3 2.7 3.0 1.8 1.5 1.5 5.1 2.8 6.5 0.99 0.19 0.11 0.07 0.10 0.09 0.11 0.03 0.37
R2 0.1 0.8 0.3 0.2 0.2 0.3 6.7 0.1 5.3 7.8 4.8 3.3 1.2 1.8 1.2 6.7 3.0 6.2 1.02 0.16 0.00 0.13 0.10 0.09 0.21 0.08 0.39
DSN 0.1 0.6 0.1 0.7 0.3 0.3 5.8 0.2 5.4 9.7 3.6 3.0 1.5 1.6 1.8 5.8 4.3 6.6 0.79 0.17 0.11 0.08 0.90 0.10 0.16 0.09 0.31

Pearson: 0.0 -0.6 0.3 -0.5 -0.4 -0.5 -0.4 0.8 -0.8 -0.2 0.0 -0.5 0.0 -0.4 -0.7 -0.4 -0.2 -0.8 -0.5 0.6 0.2 -0.3 -0.8 -1.0 -0.5 0.2 -0.8
P2

SRS 0.0 0.1 0.4 0.1 0.2 0.1 3.2 0.0 2.2 5.3 1.8 1.5 0.9 3.2 0.7 1.9 1.9 3.8 0.31 0.01 0.04 0.00 0..2 0.03 0.04 0.03 0.09
rect. 0.0 0.3 0.8 0.4 0.3 0.2 3.6 0.3 3.0 6.8 2.0 1.9 0.8 3.6 0.9 2.2 2.2 4.7 0.49 0.01 0.06 0.00 0.03 0.03 0.06 0.05 0.14
triang. 0.1 0.4 0.9 0.0 0.1 0.3 3.9 0.3 3.2 6.9 2.2 2.0 0.8 3.9 1.2 2.2 2.2 4.9 0.44 0.01 0.07 0.00 0.04 0.04 0.08 0.05 0.16
Halton 0.1 0.4 0.9 0.2 0.2 0.0 3.8 0.2 2.6 6.3 1.8 1.7 0.9 3.8 0.9 1.7 1.7 4.1 0.37 0.01 0.05 0.02 0.02 0.02 0.05 0.02 0.11
R2 0.0 0.6 0.9 0.0 0.0 0.3 3.9 0.1 3.1 6.3 3.3 1.9 0.8 3.9 0.9 2.3 2.3 4.5 0.45 0.01 0.05 0.00 0.03 0.03 0.07 0.04 0.15
DSN 0.0 0.7 0.7 0.3 0.3 0.2 3.9 0.1 3.4 7.5 2.2 2.2 0.9 3.9 1.9 2.6 2.6 4.8 0.44 0.01 0.06 0.00 0.04 0.04 0.07 0.04 0.15

Pearson -0.5 -0.6 -0.8 0.0 0.0 -0.7 -0.9 -0.7 -0.9 -0.8 -0.4 -0.7 0.5 -0.9 -0.9 -0.8 -0.8 -0.9 -0.6 -0.3 -0.3 -0.6 -0.7 -0.6 -0.9 -0.9 -0.8
Pmax

SRS 0.3 0.3 0.2 0.6 0.3 0.1 1.9 0.2 0.6 4.7 1.2 1.1 0.5 0.6 0.5 1.9 1.3 2.9 0.13 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.02
rect. 0.3 0.4 0.9 0.2 0.1 0.0 2.4 0.2 0.9 5.5 1.3 1.3 0.5 0.6 0.6 2.4 1.3 3.4 0.17 0.00 0.03 0.00 0.01 0.01 0.02 0.01 0.03
triang. 0.2 0.3 0.5 0.3 0.1 0.1 2.4 0.1 1.1 5.6 2.4 1.3 0.5 0.6 0.7 2.4 1.3 3.6 0.20 0.03 0.03 0.00 0.01 0.01 0.02 0.01 0.04
Halton 0.3 0.4 0.8 0.2 0.0 0.0 2.2 0.1 0.8 5.0 1.2 1.2 0.5 0.5 0.6 2.2 1.2 3.2 0.14 0.03 0.02 0.00 0.01 0.01 0.02 0.01 0.03
R2 0.2 0.4 0.6 0.3 0.0 0.0 2.4 0.2 0.9 5.3 2.1 1.3 0.5 0.6 0.6 2.4 1.4 3.4 0.19 0.04 0.03 0.00 0.01 0.01 0.02 0.01 0.03
DSN 0.3 0.5 0.7 0.2 0.0 0.0 2.4 0.2 1.0 5.8 1.5 1.4 0.5 0.6 0.7 2.4 1.5 3.4 0.18 0.30 0.03 0.00 0.01 0.01 0.02 0.01 0.03

Pearson 0.8 -0.3 -0.7 0.9 -0.1 -0.1 -0.9 0.4 -0.9 -0.9 -0.6 -0.8 -0.8 -0.1 -0.9 -0.9 -0.5 -1.0 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.4 -0.8

72



Chapter 3 Optimal Spatial Design for Groundwater Level Monitoring Network

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

 REF SRS rectangular grid triangular grid Halton sequence R -sequence2 DSN

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

P1

P1

P1

P2

P2

P2

P2

P2

P2

P2

P2

P2

P1

P1

P1

P1

P1

P1

1

1

5 5

1

0.1

1
1

0.5
1

0.5

1

0.5

5

1

5

1

0.5

5

0.5

0.5

5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

 a
b
so

lu
te

 p
re

d
ic

tio
n
 e

rr
o
r 

(A
P

E
) 

in
 m  sta

n
d
a
rd

ize
d
 a

b
so

lu
te

 p
re

d
ictio

n
 e

rro
r (S

A
P

E
) in

 m

 number of monitoring wells

a

ACF A

b

ACF B

c

ACF C

d

DANE A

e

DANE B

f

DANE C

g

FOX A

h

FOX B

i

FOX C

1

1

1

1

1

1

1

1

1

Figure S3c: APE, (semi-log plot) and SAPE of the tested methods for all nine surfaces. P1

and P2 are points at which the numerical derivative of the mean APE of the
methods (excluded REF) has the value 0.05 and 0.01. Consequently, an additional
monitoring point results in a reduction of the initial mean SAPE by 0.5 % for P1

and 0.1 % for P2 and hence can be used for the definition of a well density for the
respective information/cost ratio.
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Chapter 4

Spatiotemporal Optimization of

Groundwater Monitoring Networks Using

Data-driven Sparse Sensing Methods

This chapter is based on a study published in the Copernicus journal Hydrology and

Earth System Sciences (HESS).

The remainder of this part is a reprint of: Ohmer, M., Wunsch, A., Liesch, T., (2022).

Spatiotemporal optimization of groundwater monitoring networks using data-driven

sparse sensing methods. Hydrology and Earth System Sciences Discussions, 26, 4033-

4053, doi: 10.5194/hess-26-4033-2022.
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Chapter 4 Spatiotemporal Optimization of Groundwater Monitoring Networks

Abstract

Groundwater monitoring and specific collection of data on the spatiotemporal dynamics

of the aquifer are prerequisites for effective groundwater management and determine

nearly all downstream management decisions. An optimally designed groundwater mon-

itoring network (GMN) will provide the maximum information content at the minimum

cost (Pareto optimum). In this study, PySensors, a Python package containing scal-

able, data-driven algorithms for sparse sensor selection and signal reconstruction with

dimensionality reduction is applied to an existing GMN in 1D (hydrographs) and 2D

(gridded groundwater level contour maps). The algorithm first fits a basis object to

the training data and then applies a computationally efficient QR algorithm that ranks

existing monitoring wells (for 1D) or suitable sites for additional monitoring (for 2D) in

order of importance, based on the state reconstruction of this tailored basis. This proce-

dure enables a network to be reduced or extended along the Pareto front. Moreover, we

investigate the effect of basis choice on reconstruction performance by comparing three

types typically used for sparse sensor selection (i.e., identity, random projection, and

SVD, respectively, PCA). We define a gridded cost function for the extension case that

penalizes unsuitable locations. Our results show that the proposed approach performs

better than the best randomly selected wells. The optimized reduction makes it possible

to adequately reconstruct the removed hydrographs with a highly reduced subset with

low loss. With a GMN reduced by 94 %, an average absolute reconstruction accuracy

of 0.1 m is achieved, in addition to 0.05 m with a reduction by 69 % and 0.01 m with

18 %.

4.1 Introduction

Groundwater is a vital resource for drinking water supply and industrial, commercial,

and agricultural uses. Therefore, effective groundwater management and monitoring

practices are critical to ensure the availability and quality of water supplies for future

generations. A GMN is defined by a spatial arrangement of groundwater monitoring

wells and a temporal sampling frequency (Loaiciga et al., 1992). In most cases, there are

economic interests behind groundwater management and thus also behind a monitoring

network. As a result, while many monitoring networks meet the basic requirements for

groundwater management, they are scientifically insufficient to monitor aquifer dynam-

ics. Considering monitoring costs and monitoring quality (i.e., the information gained

by monitoring) as axes in a two-dimensional coordinate system, optimal GMNs lie along

a Pareto front on which the maximum information content is achieved for the respective
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Chapter 4 Spatiotemporal Optimization of Groundwater Monitoring Networks

budget. Moreover, existing GMNs are usually grown historically regarding the locations

and number of monitoring wells and are therefore primarily inefficient. This means that

the monitoring quality is relatively low for the given costs. Thus, optimization could

reduce the operating costs without loss of monitoring quality by optimizing the moni-

toring network regarding the number of wells and their location (Emmert et al., 2016).

Furthermore, directives such as the European Water Framework Directive (WFD; EC,

2000) or the European Nitrates Directive (ND; EC, 1991) demand the integration of

regional monitoring networks into national or international networks. Selecting a rea-

sonable subset of these networks capable of capturing the dynamics of the groundwater

body is an essential and challenging task.

Usually, GMNs are classified according to their purpose into a groundwater quality

monitoring network (GQMN), i.e., mostly multivariate, and groundwater quantity/

groundwater level monitoring network (GLMN), i.e., univariate. This classification does

not preclude a GMN from performing both tasks. However, optimization approaches

usually address one of the two tasks. To date, there are neither standard regulations

for the planning and expansion of existing GMNs nor established methods. Instead, a

high degree of subjectivity prevails. In the last few decades, many studies have been

published dealing with the optimization of GMNs. The widely varying requirements

for optimizing monitoring networks led to various approaches that attempt to meet

these requirements differently. The choice of method usually depends on the GMN type

(GQMN vs. GLMN), scale (local, regional, and national), uni- or multivariate network,

optimization strategy (extension of GMN vs. reduction of redundant wells), consider-

ation of dynamics (spatial vs. spatiotemporal), and, last, purpose of the monitoring

network. With the latter, a distinction is usually made between risk-oriented moni-

toring (mainly concerning groundwater quality in the catchment of waterworks) and

surveillance monitoring, e.g., according to the European WFD.

In general, the design of a monitoring network is considered a nonlinear and non-convex

optimization problem whose optimal criterion measures the useful information contained

in the information matrix of the design (Ushijima et al., 2021). GMN optimization ap-

proaches are commonly divided into the following three categories based on the tech-

niques applied: (a) those based on hydrogeological conceptual models and hydrogeolog-

ical expert knowledge, (b) those based on numerical groundwater flow models (Kim and

Lee, 2007; Singh and Datta, 2016; Sreekanth et al., 2017; Thakur, 2017), and (c) those

based on data analysis with (geo-)statistical techniques. Many studies have focused on

the geostatistical ability of kriging frameworks to determine new monitoring wells based

on the reduction of estimation variance as the optimization criterion (Bhat et al., 2015;

Li et al., 2011; Nunes et al., 2004; Ohmer et al., 2019; Thakur, 2015; Varouchakis and
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Hristopulos, 2013). With the steady increase in computational capacity in recent years,

there are a growing number of studies that tackle these optimization problems using

traditional datadriven heuristic optimization criteria such as genetic algorithms (GAs;

Ayvaz and Elçi, 2018; Dhar and Patil, 2012; Khader and McKee, 2014; Komasi and

Goudarzi, 2021; Pourshahabi et al., 2018; Puri et al., 2017; Reed and Kollat, 2013; Yud-

ina et al., 2021), artificial neural networks (ANNs; Alizadeh et al., 2018), particle swarm

optimizations (PSOs; De Jesus et al., 2021; Gaur et al., 2013; Guneshwor et al., 2018),

support vector machines (SVMs; Asefa et al., 2004; Bashi-Azghadi and Kerachian, 2010)

and relevance vector machines (RVMs; Ammar et al., 2008; Khalil et al., 2005), or a

combination of these approaches. Further studies use entropy and information-theory-

based approaches (Alizadeh and Mahjouri, 2017; Hosseini and Kerachian, 2017; Keum

et al., 2017) and Kalman filtering (KF; Júnez-Ferreira et al., 2016; Kollat et al., 2011).

In most of the mentioned studies, the optimization of the GMN amounts to a compu-

tationally intensive combinatorial search with innumerable multi-dimensional iteration

steps, since many complex physical systems are described by a high-dimensional state

[x ∈ Rn]. Moreover, improved data recording and increasing storage leads to fast and

strongly growing system complexities and, therefore, to increased computing time be-

yond Moore’s law (Moore, 1965). However, the dynamics of such complex systems

often evolve on a low-dimensional attractor, which can be used to predict and control

these systems. Pattern extraction is associated with the search for coordinate trans-

formations that simplify the system dynamic and the computational effort (Brunton

and Kutz, 2017). In recent years, powerful new techniques in data science have been

developed that are capable of analyzing complex data and extracting essential features

and correlations from high-dimensional dynamic systems. Sparse sampling (Baraniuk,

2007; Candes and Wakin, 2008; Candes et al., 2005), sparse reconstruction (Annoni

et al., 2018; Castillo and Messina, 2020; Yildirim et al., 2009), and sparse classification

(Brunton et al., 2016), enable the recovery of relevant information from remarkably few

measurements. Although sparse sampling, such as compressed sensing, is a common

and powerful method often used in other fields of science including seismic and medical

image processing, fluid dynamics, or remote sensing, to our knowledge, there are only

a few studies in the field of hydrogeology that applied sparse sensing for hydrogeolog-

ical tasks. Hussain and Muhammad (2013) utilized sparse signal extraction methods

based on l1-norm minimization to exploit the spatial sparsity in hydrodynamic models

and thereby reduce the number of measurements needed to reconstruct the signal. Lee

et al. (2021) used compressed sensing for generating groundwater level (GWL) contour

maps based on sparsely sampled or incomplete data from a groundwater model below

the Nyquist–Shannon sampling criterion (Shannon, 1949). They found that compressed
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sensing performed much better compared to traditional interpolation methods such as

kriging. Ushijima et al. (2021) developed an experimental design algorithm to select

locations for a network of monitoring wells with maximum information. The combi-

natorial search was performed with a genetic algorithm (GA) combined with a proper

orthogonal decomposition (POD) to reduce the computational cost of using the GA.

POD, which is often formulated using the singular value decomposition (SVD), is a di-

mensionality reduction method that extracts relevant large coherent structures/patterns

(lowdimensional features) from high-dimensional data (Pollard et al., 2017).

This study focuses on a data-driven algorithm to optimize a GMN regarding the number

and locations of monitoring wells for temporal and spatial GWL reconstruction. The

algorithm uses data-driven sparse-sensing techniques and QR-based sensor placement

algorithm that ranks sensors, in our case monitoring wells, according to their information

content. It is based on work by Silva et al. (2021), Manohar et al. (2018) and Clark et al.

(2019), implemented in the PySensors package, and has, e.g., been successfully applied

in a similar context of sensor placement for sea surface temperature reconstruction,

fluid flow data (Clark et al., 2019; Manohar et al., 2018), and wind flow data (Annoni

et al., 2018), as well as for classification tasks in, e.g., image recognition or cancer

classification by microarrays (Brunton et al., 2016). We have adapted this methodology

for the first time for the application to GMN, as we see the following advantages over

existing methods: (i) it can simultaneously take spatial and temporal information into

account, (ii) it allows the ranking of existing monitoring wells based on their information

content, (iii) based on the ranking, an existing network can be reduced, while the values

either of the abandoned wells or a spatially continuous GWL can be reconstructed, (iv)

it proposes locations for an extension of a network that account for the best possible

gain in knowledge, and (v), if necessary, allows the application of a cost function for the

extension of the network (Clark et al., 2019), either to prefer more suitable locations

(e.g., in terms of infrastructure) or to exclude certain areas (like inaccessible terrains,

steep slopes, etc.).

We apply the adapted algorithm to a real-world GLMN to demonstrate its suitability

for groundwater monitoring networks in general. The data set used for this purpose

consists of weekly GWL monitoring between 1990 and 2015 from 480 monitoring sites in

the Upper Rhine Graben (URG)’s upper alluvial aquifer. In particular, we show how the

algorithm can be applied to address the following questions regarding the optimization

of an existing network:

• What is the ranking of monitoring wells in an existing network in terms of their

information content/reconstruction performance, i.e., in which order should the

wells be removed if a network reduction is desired?
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• How does the reconstruction/interpolation error vary as wells are progressively

removed from the monitoring network in the order of the proposed ranking, and

how does this compare to the removal of randomly selected wells?

• When the goal is network extension, where should new wells be placed for max-

imum information gain? How significant is the increase in information, i.e., how

much will the spatial reconstruction error be reduced?

• How well does a combined reduction/extension (i.e., replacement) of a certain

number of wells perform compared to a straightforward extension?

4.2 Methodology

4.2.1 Mathematical Background

Compressed Sensing

Most multi-dimensional natural signals are compressible (respectively sparsely repre-

sentable). That mean that when the signals are transformed into a convenient coordi-

nate system (basis), only a limited number of basis modes are active. These basis modes

correspond to the large mode amplitudes (Brunton and Kutz, 2017). In data compres-

sion, for example, JPEG or MP3 compression, only these values are stored to efficiently

reconstruct the input signal with a considerable reduction in data size and little loss of

information. A compressible signal x ∈ Rn can be written as a sparse vector s ∈ Rn on

a new orthonormal basis of Ψ ∈ Rn×n such that, in the following:

x = Ψs (4.1)

Vector s is K-sparse if it is a linear combination of only K basis vectors (exactly K

nonzero elements). The theory of compressed sensing uses this principle as it attempts

to infer the sparse representation s in a known transformed basis system with a very

small, low-dimensional (compressed) subsample.

y = Cx = (CΨ)s = Θs (4.2)

where the vector y ∈ Rp is a set of incoherent observations and C ∈ Rp×n an observation

matrix of p linear observations. Θ is the condition number. The objective in compressed
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sensing is to find the l1-norm of sparsest vector ŝ (under a set of conditions) that is

consistent with y, as follows:

s = argmin
s′

∥∥s′∥∥
1

such that y = Θs′ (4.3)

which almost certainly end up with the sparsest possible solution for s (Baraniuk, 2007;

Candes and Wakin, 2008; Candes et al., 2005; Donoho, 2006).

Sparse Sensor Placement

While compressed sensing uses random measurements to reconstruct high-dimensional

unknown data from a universal basis Ψ ∈ Rn×n, data-driven sparse sensor placement

collects available information about a signal from observed samples to build up a tailored

basis Ψr ∈ Rn×r for the respective signal and thus to identify optimal sensor placements

for the reconstruction of this signal with low-losses. Let the full signal be an unknown

linear combination of basis coefficients a ∈ Rr (vector of mode amplitudes of x in basis

Ψ):

x =
r∑

k=1

ψkak = Ψra (4.4)

The central challenge is to design an incoherent (i.e. rows of C not correlated with

columns ψ of Ψr) measurement matrix C that allows to identify the optimal p observa-

tions yi to accurately reproduce the signal x, as follows:

y = Cx = (CΨr)a = Θa (4.5)

For n sensor observations and a given p sensor budget, the sampling matrix C must be

structured as follows:

C = [eγ1 eγ2 . . . eγp]
T (4.6)

Here ej ∈ Rn are the canonical basis vectors with unit entry at index j and zeros

elsewhere. Thus each row ofC only observes from a single spatial location, corresponding

to the sensor location. The observations are made up of p elements selected from x,
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y = Cx = [xγ1 xγ2 . . . xγp]
T (4.7)

with γ ∈ Np as an index set of the sensor locations that designates the index with

cardinality |γ| = p and, additionally, the number of sensors n ≥ r of Ψ for a well-

defined linear inverse problem (Manohar et al., 2018). The unknown x can thus be

reconstructed by approximating a with the Moore-Penrose pseudoinverse of (4.5) to the

following:

C⋆ = argmin
C∈Rp×n

|x−Ψ(CΨ)†y|22 (4.8)

Where † denotes the Moore-Penrose pseudoinverse, it is assumed that optimal sensor

selection C⋆ is mostly a sparse subset selection operator, and the nonzero entries in the

rows represent the monitoring wells.

Taylored Basis Ψr

As described above, in data-driven sparse sensing, the universal basis Ψ is replaced by a

tailored basis Ψr, which is built from the training data Xtr, e.g., by using dimensionality

reduction techniques. In this study, we are using the following three basis types which

are typically used for sparse sensor selection:

• Identity basis: Centered raw data is used directly without dimensionality reduc-

tion. Ψr = Xtr. Since no low-rank approximation of the data is performed, no

information is lost. However, this comes at the cost of a longer computation time

(Silva et al., 2021).

• Random Projection basis: Dimensionality is reduced by projecting the input

data onto a randomly generated matrix Ψr = GXtr where the entries G ∈ R2p×m

are drawn from a Gaussian density function with mean zero and variance 1/n

(Dasgupta, 2000; Li et al., 2006).

• SVD/principle component analysis (PCA): Linear dimensionality reduction

is performed using a truncated SVD. SVD is a numerically robust and efficient

method for extracting dominant patterns from low-dimension (Golub and Kahan,
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1965; Halko et al., 2011). For a matrix X ∈ Cn×n, the SVD is given by the

following:

X = UΣVT = ΨΣVT ≈ ΨrΣrV
T
r where U ∈ Rn×r,Σ ∈ Rr×r,V ∈ Rm×r,

(4.9)

The columns of Ψ are the left singular vector of X. They are often termed as

spatial correlations, principal components, features or POD modes of the data set.

Where U and V are unitary matrices and Σ is a diagonal matrix.

QR Pivoting for sparse sensors

While the previous steps serve to best fit the basis to the training data, the next steps

aim to determine the resulting optimal sensor locations that minimize the reconstruction

error. This optimization problem is solved using an approximate greedy solution using

reduced QR factorization with column pivoting (Brunton and Kutz, 2017; Halko et al.,

2011). The QR factorization decomposes a matrix a ∈ Rm×n into a unitary matrix Q

and an upper-triangular matrix R and a column permutation matrix C (4.6), such that

ACT = QR. The diagonal inputs of R are determined by selection of the pivot columns

with maximum l2-norm within all modes in the library. Subsequently, the orthogonal

projection of the pivot column is then subtracted from all other columns, and the process

is iteratively repeated over all columns. Thus, QR factorization with column pivoting

yields r column indices (which correspond to sensor locations) that best sample the r

basis modes (columns) ΨT
r .

Ψr
TCT = QR (4.10)

Since the pivot columns represent the sensors, the QR factorization results in a hierar-

chical list of all n pivots, where the first p pivots are optimized for the reconstruction of

Ψr. This means that, in the GMN optimization based on hydrograph data, all monitor-

ing wells are ranked based on their information content. When using spatial input data,

e.g., from interpolation or model results, all gridded input data cells are ranked based

on their information content. Thus, it allows recommendations for the placement of

additional monitoring wells at locations with supposedly high information content. The

used QR decomposition approach includes a cost constraint function (Clark et al., 2019).

This constraint allows different costs to be considered when selecting sensor placement,

such as favoring or excluding certain areas.
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4.2.2 Application Cases

In principle, there are the following two possible application cases of the algorithm

regarding groundwater monitoring data: (i) the application to the observed data at the

wells (i.e., hydrographs) only and (ii) the application of spatially continuous gridded

information that has been regionalized based on the well data (e.g., by interpolation).

While the optimization based on hydrographs only serves to rank the individual wells of

the network according to their information content and thus to identify and eliminate

redundant wells, the spatially continuous input data also allow a GMN extension at

optimal locations and the best possible reduction of the spatial prediction error.

4.2.3 Error metrics

The calculation of the reconstruction error for a given set of measurements is done

using the root mean square error (RMSE) for the scoring function. We further used

the following metrics widely used for calibration and evaluation of hydrological models:

mean absolute error (MAE), Nash–Sutcliffe model efficiency coefficient (NSE), Kling-

Gupta efficiency (KGE), squared Pearson’s correlation coefficient ( R2), and relative Bias

(rBias). In the following equations, o stands for observed values, r for the reconstructed

values, cov is the covariance, σ is the standard deviation, µ is the arithmetic mean, n

stands for the number of measurements.

The RMSE is one of the most commonly used error index statistics. In general, the

lower the RMSE, the better the model performance. It is useful for comparing different

models performances for a given time series. However, only the relative root mean square

error (rRMSE) is meaningful in comparing the model performance between different time

series.

RMSE =

√√√√ 1

n

n∑
i=1

[oi − ri]2 and rRMSE =

√√√√ 1

n

n∑
i=1

[
oi − ri

omax − omin

]2
(4.11)

Analogous to the RMSE, the smaller the MAE, the better the performance, as follows:

MAE =
1

n

n∑
i=1

|oi − ri| (4.12)

The NSE (Nash and Sutcliffe, 1970) is a widely used goodness of fit measure of hydrologic

models, as it normalizes model performance into an interpretable scale (Knoben et al.,

2019). The NSE ranges between -∞ and 1, where 1 indicates a perfect correspondence
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between observations and reconstructions, while a NSE = 0 indicates that the model

has the same explanatory power as µ(o).

NSE = 1−
∑n

i=1[oi − ri]
2∑n

i=1[oi − µ(o)]2
(4.13)

The KGE (Gupta et al., 2009) was proposed as an alternative to the NSE because it

addresses several shortcomings of the NSE (Knoben et al., 2019). Like the NSE, a

KGE = 1 indicates a perfect model correspondence. However, explicit statements on

benchmark performance have varied so far.

KGE = 1−
√
[r − 1]2 + [α− 1]2 + [β − 1]2 (4.14)

with

r =
cov(o, r)

σ(o)σ(r)
, α =

σ(r)

σ(o)
, β =

µ(r)

µ(o)
(4.15)

where r is the linear correlation between o and r, α is a measure of the variability error,

and β is a bias term.

We use the squared Pearson (r, eq. 4.15 ) correlation coefficient as a general coefficient

R2. It describes the degree of collinearity between measured and reconstructed data. R2

ranges from 0 to 1, with higher values indicating lower error variance. In general, values

above 0.5 are considered acceptable.

R2 =

[
cov(o, r)

σ(o)σ(r)

]2
(4.16)

The relative bias is a measure for a systematic over- or underestimation of a model.

The optimal rBias is 0. Positive values indicate model underestimation of bias; negative

values indicate model overestimation of bias (Gupta et al., 1999).

rBias =
1

n

n∑
i=1

[
oi − ri

omax − omin
] (4.17)

Statements about model performance in section 4.3 section are based on Moriasi et al.

(2007) guidelines for model evaluation.
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4.2.4 Data and Study Area

Hydrogeological Framework

The Upper Rhine Graben (URG), also known as Rhine Rift Valley, is a 300 km long and,

on average, 50 km wide structural trough. It was formed in the Oligocene in response to

the alpine orogenesis and subsequently filled with fluvial to lacustrine sediments of the

Late Miocene, Pliocene, and Quaternary (Przyrowski and Schäfer, 2015). The Pliocene

and Quaternary alluvial gravels and sands represent the largest groundwater reservoir

in central Europe (LUBW, 2006). Based on their permeability and the appearance of

finegrained horizons, the Pliocene and Quaternary gravels are subdivided into three (lo-

cally also more) aquifers, partly separated by fine-grained sediments (Wirsing and Luz,

2007). The study region is in the Baden-Württemberg part of the URG (Fig. 4.1).

The Rhine forms the western boundary, Kaiserstuhl volcano complex is the southern

boundary. To the East, the URG is bounded by a rift flank uplift composed of a system

of troughs and highs, which follow the ENE structural grain of the Variscan fold belt

(Derer, 2003). Along the study area these are, from South to North, the Black For-

est high, Kraichgau-basin, and Odenwald-Spessart-high. Groundwater recharge occurs

predominantly through lateral inflow and infiltration of streams from the Black Forest

valleys in the east, the Freiburg basin in the southwest, and the infiltration of the Rhine

and other surface waters.

Data and Preprocessing

The data set used in this study consists of weekly GWL measurements from 480 wells in

the uppermost aquifer within the Quaternary sand/gravel deposits of the URG, covering

the period from 1990 to 2015 (i.e., 1304 time steps). Data values that deviate by more

than ±3 σ from the moving average (with a window size of 11 values) are considered

outliers and were removed from further processing. Data gaps were subsequently filled

based on information from highly correlated neighboring hydrographs using the cluster-

ing results of Wunsch et al. (2021). Where this did not yield plausible results or was

not possible due to similarly missing data in neighboring hydrographs, an alternative

PCHIP (piecewise cubic hermite interpolating polynomial) interpolation was performed.

To avoid possible bias, the measurement data are globally and locally centered. The

data set is split into two subsets: the first 80 % (January 1990-December 2009, 1043

time steps) is used to train the algorithm and the last 20 % for test/validation (January

2009-December 2014, 261 time steps). The well data are publicly available from the

Baden-Württemberg State Office for Environment web service (LUBW, 2021b).

85



Chapter 4 Spatiotemporal Optimization of Groundwater Monitoring Networks

1
6
0

140

120

160

120

100

R
h
in
e

R
h
in
e

Rh
ine

Rh
ine

Rh
ine

Rh
ine

N
eckar

N
eckar

Berlin

Munich

Frankfurt

Cologne

Hamburg

Stuttgart

¯

3400000

3400000

3450000

3450000

5
4
5
0
0
0
0

5
4
5
0
0
0
0

5
4
0
0
0
0
0

5
4
0
0
0
0
0

5
3
5
0
0
0
0

5
3
5
0
0
0
0

0 10 20 305
km

Mannheim

Heidelberg

Karlsruhe

Pforzheim

Baden-Baden

Straßbourg

Offenburg

FRANCE

GERMANY

B
la

ck
 F

o
re

st

KS

K
ra

ic
h
g
a
u
 

B
a
si

n

U
pp

er
 R

hi
ne

 G
ra

be
n

P
a

la
ti
n

a
te

 F
o

re
st

O
d
e
n
w

a
ld

RLP

AL

BW

HE

180 
140 
100 

80 
1,355 
1,000 
500

GW-monitoring wells

Study area

Major river

Upper Rhine Graben

Minor river

National border

Larger city

Mean
GW-level

1990-2015
[m a.s.l]

Elevation
[m a.s.l]

Lahr
Lahr

Kinzig

Kinzig

Rench
Rench

M
urg

M
urg

A
lb

A
lb

Oos
Oos

P
finz

P
finz

Figure 4.1: Study area within the URG and the 480 monitoring wells used for optimization.
RLP: Rhineland-Palatinate; He: Hesse, BW: Baden-Württemberg, Al: Alsace
(France); KS: Kaiserstuhl volcanic complex.

Groundwater level contour maps

We used the hydrograph data to generate 1304 weekly GWL contour maps with a grid

size of 50× 50 m using ordinary kriging. In addition to finding a sparse set of monitor-

ing wells for the optimal temporal reconstruction of other hydrographs, the objective is

to identify monitoring wells that allow optimal spatiotemporal reconstruction of GWLs

from a subset of the wells. Moreover, the spatially continuous information of the grid-

ded contour maps is used to suggest additional locations for an extended network. We

used an isotropic Gaussian semivariogram model for interpolation, which is flexible and,

therefore, a good candidate for a standard model (Krivoruchko, 2011). The associated

parameters partial sill (42.7 m), range (17 853 m), lag size (1485 m), and nugget (0.05

m) were optimized using automatic cross-validation (CV) diagnostics to achieve the
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lowest mean square error. It should be noted that the use of a single variogram model

(Gaussian) may not be the optimal way to quantify spatial correlation, especially for

nonstationary data. However, this is a necessary simplification due to the automation

process that still produces comparable interpolation results, while the best possible in-

terpolation result is not the focus of this study. Just as with the hydrographs, the first

80 % (January 1990–December 2009; 1043 time steps) of the contour maps were used

to train the algorithm and the last 20 % for test/validation (January 2009–December

2014;261 time steps).

4.3 Results and Discussions

The following section is structured as follows. First, the grid search results regarding the

three types of basis used, the number of basis modes, and a varying number of sensors are

presented and discussed. Since we are applying the presented sensor placement approach

to a groundwater monitoring well optimization, we use the term “well” as a synonym

for sensors in the following. This is followed by the results of the GMN optimization

based solely on the hydrograph data set. Finally, the results of the GMN optimization

with the interpolated GWL as inputs are shown.

4.3.1 Grid Search Results

Fig. 4.2a shows the RMSE between the estimated and actual GWLs for the validation set

as a function of the number of wells that the network is reduced to, the type of tailored

basis (identity basis, random projection, and SVD basis), and the number of basis modes

used. Since the number of wells and basis modes interacts, it is necessary to determine

the appropriate number of basis modes that will result in the lowest reconstruction

error for a given number of wells. If the number of wells is close to the number of

basis modes, the reconstruction error increases significantly for all three basis mode

types used. While the number of basis modes for identity and random projection is

theoretically open-ended, the dimensionality for SVD, and thus the number of basis

modes, must be less than the number of wells. Although there are SVD methods (e.g.,

randomized SVD; Halko et al., 2011) that allow oversampling with an additional number

of random vectors, our results show that the accuracy of SVD generally decreases as the

number of basis modes increases, which is consistent with the findings of Silva et al.

(2021). Therefore, we decided against an SVD method with oversampling and opted

for the truncated SVD implemented in PySensors (Silva et al., 2021), thus using a

maximum of 480 basis modes. All 1043 time steps (in the training set) were used as
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the maximum number of basis modes for identity and random projection. According to

previous studies, the number of basis modes should be at least equal to the number of

wells p + 10 (Silva et al., 2021). Clark et al. (2019) used 2p basis modes, which in our

case equals a maximum of 960 (for all 480 wells) and, thus, is covered by the maximum

of 1043 basis modes in the grid search.
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Figure 4.2: Grid search CV results. (a) Reconstruction error (RMSE) vs. the number of
monitoring wells and the number of basis modes for the three basis projections
described in basis: identity (Ψr = xtr), random projection (Ψr = GXtr), SVD
(Ψr = Utr). (b) Minimum RMSE achieved with a given number of QR-selected
monitoring wells (Pareto front) and the same number of randomly selected wells
(median of 100 runs, grey shading represents the total range) for comparison. (c)
The corresponding number of basis modes, that leads to the lowest RMSE in b.
Accordingly, b and c represent a section through a at the respective minimum on
the axis n monitoring wells.

The results show that, with only a few basis modes, SVD has the highest accuracy

(Fig. 4.2a). As the number of basis modes exceeds the number of remaining wells, the

identity and random projection basis perform better. In general, random projection and

identity basis perform similarly. With fewer than 950 basis modes, slightly better results

are obtained with random projection; above 950, the identity basis performs marginally

better. Fig. 4.2b shows the lowest RMSE per number of wells achieved in the grid search,

and Fig. 4.2c shows the corresponding number of basis modes. The gray dashed line in

Fig. 4.2b shows the median of reconstruction errors from 100 iterations, with a random

well selection as a benchmark. Except for SVD basis with fewer than 50 wells, all three

basis types perform considerably better compared to reconstruction with the randomly

placed wells and independently of the number of wells. Our findings are consistent with

those of Clark et al. (2019) and Manohar et al. (2018), and Silva et al. (2021), where SVD

consistently underperforms compared to random projection and identity basis. However,

the latter two show almost identical results with an optimized number of basis modes
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(Fig. 4.2b), with random projection performing marginally better with a small number

of wells and identity basis performing slightly better with a larger number of wells.

For consistency reasons, and based on the grid search results, we decided to compute

the optimization steps shown in the following uniformly with identity basis and a fixed

number of 1043 basis modes. This combination, on average, shows the best results for

any chosen number of remaining wells (Fig. 4.2c).

As examples, all results of the following section are presented using five reduction stages:

10 %, 25 %, 50 %, 75 %, and 90 %. Thus, in the 25 % stage, the 25 % wells with the

lowest information content are removed, and their hydrographs are predicted using the

remaining optimal 75 % of the monitoring wells. The reduction stages are also shown in

the grid search results (Fig. fig:2b and c). The color scheme of the reduction stages is

kept for all remaining figures.

4.3.2 Ranking of Wells and Network Reduction with Hydrograph Data

Figure 4.3 shows the result of the ranking of the monitoring wells computed with an

identity basis and using 1043 basis modes. The ranks are assigned from 1 (essential well

with high information content) to 480 (most redundant well); thus, lower numbers mean

a higher ranking concerning their information content and importance to reconstructing

potentially removed redundant wells.

The reduction stage at which the respective wells are removed is indicated in parentheses.

The color scheme ranges from dark red for redundant monitoring wells that can be

eliminated with a minor loss in prediction accuracy to dark blue for important monitoring

wells that contain essential information about the system and are needed for the accurate

reconstruction of signals at other monitoring wells. In addition, Fig. 4.4 shows the

centered hydrographs of the most important 10 % and the most redundant 10 % of all

hydrographs. Most of the important wells (blue; removal at a reduction of > 90 %) show

a pronounced flashiness (i.e., high frequency and rapidity of shortterm changes) and

strong irregular patterns during the recording period. These dynamics indicate a strong

interaction with surface waters or boundary inflows, for example, from side valleys of the

rift flanks, which can also be seen in Fig. 4.3 from the location of the wells. Additionally,

the most important wells include those with a distinct trend, which can be best seen for

the two highest-ranked wells at the bottom, showing an upward trend over the considered

period.

In contrast, the redundant wells show low flashiness and also include wells with high

seasonality, though most of the signals seem to be dominated by interannual variations.
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Figure 4.3: QR based ranking of monitoring wells based on hydrograph information content,
from 1 (high information content, blue) to 480 (redundant, red). The hydrographs
of the highlighted wells (pink) are shown in Fig. 4.6.

Most of these wells are located in the northern part of the study area within the URG.

Since the eastern boundary in this area is the Kraichgau basin, the landscape profile

is less pronounced than in the Black Forest hill range in the south and the Odenwald

in the north. Therefore, less recharge occurs through stream infiltration, which is often

the reason for more pronounced short-term variations or flashiness. The hydrographs

of all wells can be found in the Appendix. Overall, the ranking shows that the most

important wells include the ones with a noticeable unusual behavior, i.e., patterns that

are not present in many of the other wells (like flashiness, trends, and jumps) and thus are

hard to reconstruct. Overall, the more redundant wells either show a higher seasonality

or tend to show low variability. Both patterns are common to a larger number of the

wells and can be reconstructed more easily.

While the ranking itself already contains essential information and could be used, for

example, to equip higherranked monitoring wells with higher-quality sensors or measure

them with a higher time frequency, we use the ranks here to reduce the original network

well by well, with most of the results shown only for the five abovementioned reduction

stages, i.e., GMN reduction by 10 %, 25 %, 50 %, 75 %, and 90 %.
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Figure 4.4: Stacked z-transformed hydrographs of the 10 % “most important” monitoring wells
(blue, bottom) and the 10 % “most redundant” monitoring wells (red, top). Col-
oring and stacked order reflecting ranking order.

The upper part of Fig. 4.5 shows the development of the prediction accuracy of the GMN

reduction for the error measures NSE, KGE, and R2 (left), as well as rBias, RMSE, and

MAE (right), for the validation data set (mean and ranges of the reconstructed validation

period of all predicted/removed wells). Even with only a few optimally selected wells, the

predictive power is considerably higher than the mean value of the time series (NSE=0).

An average performance for the validation period of all predicted removed wells rated as

satisfactory (NSE> 0.5) is already achieved with only nine remaining wells (corresponds

to a reduction of 98.1 %), those rated as good (NSE> 0.65) with 21 remaining wells

(95.6 %), and those rated as very good (NSE> 0.75) with 54 remaining wells (88.7 %).

With more than 191 wells (60.2 %), the NSE rises above 0.9. KGE and R2 behave in

much the same way as NSE. A KGE of 0.75 is achieved with nine wells (98.1 %) and 0.9

with 144 wells (70.0 %). R2 of 0.75 is achieved with 22 wells (95.4 %) and of 0.9 with

155 wells (67.7 %), respectively. A MAE of 0.1 m is achieved with 31 monitoring wells

(93.5 %) remaining, 0.05 m with 147 wells (69.4 %), and 0.01 m with 394 wells (17.9 %).

From a reduction of more than about 75 %, the removal of each subsequent well leads

to a disproportionate decrease in accuracy, with a very steep drop from about 95 % on.
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When the reduction is less than 75 %, the gradient shows a nearly linear course, meaning

a linear (but small) performance increase with more monitoring wells. The rBias also

approaches zero at a reduction below 75 %. Thus, we conclude that about 25 % of

the wells could be seen as a kind of absolute minimum that is required to adequately

describe the system dynamics in the considered study area, despite the average NSE of

the reconstruction still being rated as good for only the optimally selected 10 % of the

wells.
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Figure 4.5: Top: Reconstruction error metrics (KGE, R2, NSE, MAE, RMSE, rBias) as a
function of the number of QR-ranked remaining monitoring wells for the identity
basis and 1043 basis modes (lines are mean values, shading represents total range of
recontstruction errors over all removed wells). Bottom: Same reconstruction error
metrics at the reductions steps 10 %, 25 %, 50 %, 75 %, and 90 %, as boxplots
over all removed wells, and compared to the same number of randomly removed
monitoring wells.

The lower part of Fig. 4.5 displays the performance of the QR-optimized wells compared

to an equal number of randomly selected remaining wells for a reduction by 10 % (48

wells) to 90 % (432 wells) of the GMN. Removing wells based on the ranking results

leads to a lower prediction loss. Only at a reduction of more than 90 % are the er-

rors in the same range as for the randomly removed wells. Therefore, the information

content of these 10 % remaining wells is probably not sufficient to reflect the overall
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dynamics. Again, from about 75 % downwards, the performance differences become

more pronounced, with a considerably higher average, 25 % quantile, and minimum

NSE, KGE, and R2 values (lower MAE and RMSE, respectively). Below a reduction of

25 %, the 75 % quantile and minimum NSE, KGE, and R2 values are also clearly higher

(lower for MAE and RMSE, respectively). This clearly shows that the advantages of

the data-driven optimization method come into play, especially for moderate to smaller

reductions of a GMN.

Figure 4.6 shows the temporal reconstruction accuracy at the considered reduction stages

from 10 % to 90 % for eight selected wells (see also Fig. 4.3). These wells were chosen to

reflect the dynamics spectrum and represent the full ranking range. The reconstruction

is always based on the higherranked remaining wells (but keeping the chosen reduction

stages). Consequently, well 154-304-1, the highest-ranked well shown with rank 59 (bot-

tom), which could theoretically be reconstructed with a maximum of 58 remaining wells,

is reconstructed with 10 % of the wells (48). Similarly, well 132-257-4, the lowest-ranked

well with rank 478 (top), which could theoretically be reconstructed with a maximum

of 477 wells, is reconstructed with 90 %, 75 %, 50 %, 25 %, and 10 % remaining wells

(432, 360, 240, 120, and 48, respectively) for a comparison.

The results show that the individual dynamics of the hydrographs can already be ade-

quately reconstructed with a 10 % subset of the monitoring network. As expected, as

the number of wells increases, the accuracy improves on average, hydrographs are repro-

duced more consistently, and short-term peaks are reproduced more accurately. Though

these seem to be only, comparatively, slight improvements, considering the overall dy-

namics for some wells and time steps, the absolute errors can be up to several tens of

centimeters, albeit achieved by many additional wells. Whether this justifies the in-

creased operating costs of the monitoring network depends on the task at hand. The

reconstruction results for the other wells can be found in the Appendix.

4.3.3 Network Reduction and Extension Based on Gridded GWL Maps

This application case is based on spatially continuous gridded weekly GWL contour

maps from 1990 to 2015. Analogous to the hydrograph data set, the first 80 % of this

period was used for model training and the last 20 % for evaluation. According to the

ranking, we investigate how well the GWL can be reconstructed with two reduction

stages in which 10 % and 20 % of the GMN are removed. We have selected these

reduction stages since, in the analysis of the reduction stages with hydrographs, the

advantages of the datadriven optimization method were more pronounced for moderate

to smaller reductions of a GMN. Moreover, reducing an existing network by more than
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Figure 4.6: Hydrograph reconstruction at the five reduction stages 10 % - 90 % exemplary
shown for eight monitoring wells, along with the respective error measures.

20 % seems unrealistic in practice. Furthermore, we extend the existing network by 10 %

and 20 % wells and analyze where new wells are placed to supposedly improve the GMN.

To account for more or less suitable locations (e.g., with regard to infrastructure), we

apply costs with a non-uniform spatial step function on a 50× 50 grid (corresponding to

the used GWL grid) into the QR factorization. The cost function grid is assigned zero

(no additional costs) at existing monitoring well locations to ensure that existing wells
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remain since, technically, the extension (by e.g., 10 %) is realized such that 110 % of new

wells are placed on the gridded GWL maps. At potentially well-suited additional sites,

which are defined within 50 m of roads and paths, outside surface waters, and where

the slope is less than 20 %, we assigned a cost value of 21. For all other areas that are

considered as not suitable, the cost weighting is set to 22. Alternatively, a gradual cost

function can be used, where the weighting increases with distance to the infrastructure

or similar. It should be noted that the weighting depends on the system, basis, and cost

function and must be adjusted for the particular case (Clark et al., 2019). We assigned

the mentioned weighting factors iteratively until it resulted in the desired behavior. With

the weightings chosen in this way, it was possible to achieve a result such that the first

480 wells are placed at existing monitoring wells, and all subsequent wells are placed at

suitable locations, while the algorithm avoids the other locations. Finally, we combine a

reduction/extension scenario, where the original number of wells is kept, but the 10 %

and 20 % most redundant wells are removed and replaced afterward. Technically, this

is done in a two-step procedure, consisting of the reduction step followed by the above-

described extension, where the cost function is adapted for the existing wells.

The maps on the left side of Fig. 4.7a1-3 show the spatial distribution of the monitoring

wells as a result of a 10 % (yellow dots) and 20 % (red dots) reduction (a1), and a 10 %

(light blue dots) and 20 % (dark blue dots) extension (a2) of the GMN, as well as a

combined reduction/extension of the GMN (a3). For the latter, redundant 10 % and

20 % monitoring wells were eliminated and replaced with wells at optimal locations. We

should note that the ranking based on the spatially interpolated data is different from

the ranking based on the hydrographs alone (see Appendix S4a).

This variation can be explained by the ranking reflecting the information content regard-

ing the reconstruction with the lowest possible error. While, in the case of hydrographs,

the goal is to reconstruct the hydrographs of the removed wells, here the goal is to re-

construct the interpolated surface (which constitutes a best guess of spatially continuous

GWL based on the available data).

While the first 10 % of reduced wells are evenly distributed across the study area, the

subsequent removal step (i.e., additional 10 %; thus, 20 % removed wells in total) elim-

inates well clusters in the central and northern regions. This seems conclusive because

clusters of nearby wells tend to show similar dynamics and thus do not add much infor-

mation to an interpolation, according to Tobler’s law. Optimal locations for additional

wells are identified primarily along the western and eastern margins, i.e., along the Rhine

and downstream of the alluvial valley aquifers of the adjacent Black Forest. These are

areas with expected higher groundwater dynamics (e.g., high seasonal magnitudes and

high flashiness) and, on the other hand, due to the elongated geometry of the URG,
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Figure 4.7: (a): Location of removed monitoring wells in a 10 % (yellow) and 20 % (red) QR-
based monitoring well reduction (left map, a1), in a 10 % (light blue) and 20 %
extension (center map, a2), and a combined reduction/extension in which 10 %
and 20 %, respectively, of the monitoring wells were removed and replaced with
wells at optimal locations (right map, a3). (b): Cost function grid used for the
GMN extension. (c): Boxplots show the mean and max. absolute error of the
reconstruction of the 216 GWL contour maps of the test set obtained with the
mentioned GMN reduction/extension.

areas with increased interpolation uncertainty (transition from interpolation to extrap-

olation). Optimal well locations are primarily, but not exclusively, located in areas of
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increased variability (standard deviation of the interpolated GWL; see Fig. 4.7a2 and

a3).

The box plots in Fig. 4.7c show the mean (left) and maximum (right) absolute error of

the reconstructed 261 GWL contour maps of the evaluation set for all abovementioned

scenarios. It has to be noted that the MAE is now taken as the mean over the spatial

axis, i.e., for each of the reconstructed 261 GWL contour maps separately (whereas,

with the hydrographs, the MAE was taken as the mean over the time axis for each

reconstructed well). This was done because, in the application case, the focus is on

the error of a spatial reconstruction of GWL contours and not explicitly on time series.

Correspondingly, the maximum absolute error (maxAE) is the maximum over the spatial

axis for each of the reconstructed 261 GWL contour maps. We therefore also refer to

them as mean and maximum spatial reconstruction errors. Thus, the boxes in Fig. 4.7c

show the variability in the mean absolute error and maximum absolute error over the

261 time steps.

On average, the model can reconstruct the GWL contour maps with very high accuracy,

with mean absolute errors far below 1 cm. This seems very low compared to the recon-

struction of the hydrographs. However, this is due to the fact that the reconstruction of

a large number of many similar values (i.e. raster pixels) is much easier for the model,

for the following two reasons: (i) there are many more training patterns for each type of

dynamics than with the hydrographs alone, and (ii) the overall dynamics are reduced by

the interpolation itself, which smooths the data spatially and temporally. Taking these

limitations due to spatially interpolated data into account, it seems more reasonable to

focus on the maximum absolute error, which allows the identification of areas with higher

errors, where the model (with the existing data) cannot produce reliable reconstructions

and additional wells would bring the most information.

When comparing the maxAE (Fig. 4.7c; right) for all scenarios, we see that a reduction

in the network increases the spatial reconstruction error by a factor of about 2 for 10 %

reduction and about 3 to 4 for 20 %. For comparison, the gray box (100 %) shows the

reconstruction errors with an unchanged GMN (this error results from the fact that the

model is trained with the first 80 % of all time steps, but the reconstruction is performed

for the unknown 20 % of the evaluation data set). An extension of the network by

10 % can considerably reduce the spatial reconstruction error to about less than two-

thirds, while an extension by 20 % reduces it further to 1/10 of the initial value. Most

interestingly, the reconstruction errors for the combined reduction/extension scenarios

with 90 %/10 % and 80 %/20 %, respectively (thus an unchanged number of 480 wells

in total), are slightly below the straightforward GMN extension with 110 % (528 wells)

and 120 % (576 wells). To a lesser degree, this also applies to the mean absolute errors,
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at least for the 80 %/20 % scenario, which performs slightly better than an extension

by 20 %, and considerably better than a 10 % extension. In practice, that means that,

with a combined reduction/extension, for example, sensors/data loggers that become

available can be used elsewhere at better locations. This reduces the installation costs

of the additional wells and the operating costs of the GMN and, moreover, performs

about the same as or even better than a pure extension.

4.4 Conclusions

This study investigated data-driven sparse sensing approaches based on the work of

Silva et al. (2021), Clark et al. (2019), and Manohar et al. (2018) and adapted them to

optimize an existing GLMN. The algorithm fits a tailored basis to the training data,

subsequently used in a QR decomposition to rank the monitoring wells by importance

based on reconstruction performance. This approach allows us to remove groundwater

monitoring wells with low information content if needed, equip monitoring wells with

higher rank with higher quality sensors, or measure with a higher time frequency. When

using spatially continuous input data (by interpolation or numerical simulation), the

ranking is performed according to the same scheme for all locations. This rank can be

used as a decision-making aid to search for locations for additional monitoring wells. We

incorporated a cost function to eliminate inaccessible locations from the site selection

process. Adjusting the cost constraint allows a specific adaptation to the individual

problem definition.

Our results show that identifying redundant, low-ranking monitoring sites would allow a

drastic reduction of the monitoring network, with a minor loss of information, compared

to a random reduction (which corresponds to a reduction based on other criteria, as is

often the case in practice). In the case of a desired network extension, the reconstruction

quality can benefit from the additional removal of unsuitable wells.

As in related previous studies (Clark et al., 2019; Manohar et al., 2018), using the

identity data basis (raw data without dimensionality reduction) and the total number

of available base modes yielded a lower reconstruction error for a given number of wells

compared to other basis mode types and numbers. This is because no information is lost

when constructing a low-ranking approximation to the data. However, for larger data

sets than the one used in this study, an optimization without previous dimensionality

reduction can lead to impractically long computation times. Just as in the work of Clark

et al. (2019), and Manohar et al. (2018), a randomized projection of the data in our study

performed, on average, only slightly worse than the raw data and may be worthwhile
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for large data sets or multiple computational runs due to lower computational costs.

Even though the widely used SVD basis gave the worst results for our data set, the

reconstruction errors are still lower than for a random network optimization.

In addition to GLMNs, this approach can also optimize groundwater quality or multi-

variate monitoring networks. As with all data-driven methods, the quality of the results

depends strongly on the availability of the input data (spatial and primarily temporal).

Since this approach relies on detecting patterns in data and placing monitoring loca-

tions based on those patterns, it benefits from large data sets. Therefore, we see the

main application of this technique in optimizing monitoring networks of regional-scale

groundwater systems, where a comprehensive overview of the variability and quantity

of groundwater bodies and the assessment of long-term changes in natural conditions is

the monitoring objective.

Overall, we could demonstrate that modern data-driven methods of sparse sensing are

well suited for the application to GMNs, as long as there is a good historic data ba-

sis. The applied method can be used for an optimization regarding the number of wells

and their location, for a network reduction and extension, or for both combined. Us-

ing hydrographs (1D) as input data, the applied approach allows an information-based

assessment of an operated monitoring network. The outcomes can be used to identify

representative key wells for selecting expressive subnetworks, equip the critical wells

with improved data loggers, or release installed sensors/loggers at redundant wells for

more suitable locations. The spatial dependency structures and the sphere of influence

of wells can be considered in optimizing with two-dimensional input data, both for re-

duction and for an extension of monitoring networks tailored to the dynamics of the

aquifer. Although optimized reduction can generally lead to greater cost efficiency, it

should always be done judiciously and in combination with expert knowledge of the

system.

Code and Data Availability Pysensor Software is available at: https://github.com/

dynamicslab/pysensors.The well data are publicly available at the web service of the

Baden-Württemberg State Office for Environment (LUBW, 2021b). Our Python code

files are available on Ohmer (2022)
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Supporting Information

This supporting information provides a comparison of the QR-based ranking with 1D

hydrograph data and with 2D interpolated GWL contour maps (S4a) and stacked z-

transformed hydrographs of monitoring wells in order of model ranking (S4b-S4c).
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Rank 1 - 240 (<51%)

Figure S4b: Stacked z-transformed hydrographs of monitoring wells. Rank 1 -240
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Rank 241 - 480 (reduction < 50%)

1992 1996 2000 2004 2008 2012

Figure S4c: Stacked z-transformed hydrographs of monitoring wells. Rank 241 -480
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Chapter 5

Synthesis and Outlook

5.1 Summary and Synthesis

This cumulative work pursued two central objectives. The first objective focused on

exploring strategies to improve the design of large-scale groundwater level monitoring

networks in terms of their ability to cost-effectively capture the spatial and temporal

dynamics of the hydrogeologic system and provide spatially continuous estimates of

the quantitative status of groundwater. The second objective aimed to investigate and

evaluate existing interpolation techniques for spatial prediction of this quantitative state

from existing monitoring networks.
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Figure 5.1: Overview of the studies carried out within the scope of this thesis at a glance and
their objectives.

For the latter objective, Chapter 2 provides a comprehensive evaluation of the most es-

tablished deterministic and geostatistical interpolation techniques for groundwater con-
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tour mapping conducted in a study area with a complex interaction between karst and

an alluvial aquifer. The results led to the following key findings. Co-ordinary krig-

ing (CoOK), the multivariate variant of the ordinary kriging (OK), with the incorpora-

tion of additional correlated variables (e.g., topography, springs, river levels), provided

the most plausible results and the lowest CV errors for both aquifers. Especially in hilly

terrain where observation wells are primarily located in valley regions, digital elevation

data led to significantly improved prediction accuracy since the GWL is often a subdued

replica of the topography. In contrast, other techniques overestimated the GWL in the

valley and underestimated the GWL below ridges due to the lack of terrain information.

Although cross-validation is often the only way to assess interpolation quality, its results

should never be based on only a single error metric. Thus, the CV error metrics differ in

their ability to reflect the variations in interpolation results with additional validation

methods. For example, a R2 > of 0.9 indicates good interpolation accuracy for almost

all scenarios. At the same time, calculated aquifer exchange rates based on worst-case

results vary up to a factor of 10 and even lead to hydraulic gradient reversals. This

illustrates that the choice of an inappropriate interpolation technique can lead to se-

vere misconceptions that propagate and increase in the course of further analyses. In

summary, the following conclusions can be drawn from the study. An inadequate GMN

cannot be replaced by an efficient interpolation method. When observational data are

too sparse, the underlying assumptions about variation between samples can vary widely,

and results can differ significantly depending on the interpolation method chosen. At

the same time, the predictive accuracy of the various techniques converges as the den-

sity of observations increases. The spacing between monitoring wells must be consistent

with groundwater variability. Otherwise, observations may be too sparsely distributed

to identify autocorrelation. In this case, correlated secondary variables incorporated in

co-kriging can benefit greatly.

The study presented in Chapter 3 is a simulation experiment to investigate the prerequi-

sites of a capable GMN for spatial prediction of GWLs. For this purpose, state-of-the-art

and recently developed network design approaches with varying monitoring densities are

compared on groundwater surfaces computed by numerical models with variable spatial

dynamics, hydraulic properties, and scaling. The numerical surfaces provide a realistic

“a priori” reference that allows evaluating the spatial prediction error in addition to

the CV error and thus assessing the suitability of the commonly used cross-validation

error statistics (MAE, RMSE, RMSSE, ASE, and NSE). The study’s findings revealed

that adequate spatial coverage of the network of observation wells beyond the regions

of water management importance is the most critical factor for an enhanced spatial un-

derstanding of the groundwater system and, thus, has a significant positive effect on the
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estimation of groundwater quantity and consequently on all derived parameters such as

flow direction, hydraulic gradients, flow velocities, and flow rates. The results show that

the number of monitoring wells is significantly more critical for prediction accuracy than

their optimal spatial distribution, mainly when the scale level of monitoring density is

larger than that of spatial groundwater variability. All designs investigated showed sig-

nificantly lower prediction errors than the randomly placed wells (SRS) design, which is

closest to existing, historically grown GMNs. However, the quality improvement of the

design approaches compared to SRS primarily depends on the monitoring density and

spatial groundwater variability and increases with increasing monitoring density. The

grid designs enabled slightly lower prediction errors than the other designs. However,

this is not commensurate with the disadvantages they bring. They are not extensible

and may not be feasible to implement in reality without violating the grid structure. In

addition, wide spatial coverage can lead to aliasing effects if the spatial dynamics are

higher than the grid spacing or unevenly distributed. In this study, the densify sampling

network (DSN) method, which uses the maximum prediction standard error as a selec-

tion criterion for placing additional wells, provided the best prediction accuracy of the

progressive designs across all model surfaces and monitoring densities. However, this

approach is more appropriate for incremental extension with a single monitoring well

at a time and subsequent re-calculation of the prediction standard error. Otherwise,

the resulting network will perform worse. The spatial coverage sampling methods with

low discrepancy sequences are appropriate for designing entirely new groundwater mon-

itoring networks from the ground up. In particular, the novel 2-dimensional additive

recurrence sequences (R2), a recursion method based on irrational numbers, leads to

nearly comparable results to DSN. The method was applied for the first time in this

study to monitoring design optimization. Since site selection is based solely on quasi-

random mathematical sequences, these methods have the advantages that they (i) can be

applied without prior knowledge through observations to establish an effective and uni-

formly distributed monitoring network, and they (ii) provide reproducible design results

regardless of the number of additional wells (single or multiple). The study demonstrates

further that global CV statistics are not suitable for assessing the results and comparing

the different GMNs design approaches. CV exhibits a significant pessimistic bias in the

designs studied depending on the degree of randomness in site selection. This bias leads

to a negative relationship between the results based on the CV and the actual error.

The study presented in Chapter 4 investigates the prerequisites of an efficient GMN for

temporal and spatial prediction of GWLs on a well-developed GLMN with long-term hy-

drograph data (Upper Rhine Graben, Germany). In this study, a data-driven greedy QR

algorithm is applied for the first time to optimize groundwater monitoring networks. The
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approach uses unsupervised dimensionality reduction techniques to identify existing co-

herent structures to find wells with maximum variance in the training data and thus rank

wells according to their information content to reconstruct the overall signal. Depending

on the dimension of the input data, either monitored well data or regionalized variables,

such as groundwater levels, the approach can be used as a tool for identifying monitoring

wells with redundant information content, designation of representative sub-networks,

and planning sites for additional monitoring wells providing maximum information con-

tent. The results show that identifying a drastically reduced subset of key monitoring

wells capable of capturing the overall dynamics of the groundwater system is sufficient

to enable low-loss predictions of the temporal dynamics of the residual monitoring wells

with redundant or low information content. This frees up sensors in redundant wells

to be used in previously unmonitored or newly drilled wells. This approach could be a

valuable tool in planning and combining multiple local GMNs into regional, national,

or international GMNs by identifying meaningful and representative wells from these

subnetworks that provide nearly all temporal dynamic information content.

For a conclusive summary of the findings of this thesis, the following section provides

brief answers to the research questions posed in Chapter 1.5:

Study Chapter 2:

RQ 1: Which interpolation technique provides the best results for the studied alluvial

and karst aquifer?

• Co-ordinary kriging with the additional use of secondary parameters (e.g., topogra-

phy, springs, river levels) produced the lowest cross-validation errors and the most

plausible results for both aquifers studied. Empirical Bayesian kriging (EBK) also

delivered good results for both aquifers.

• If the spatial autocorrelation is not very low, the kriging methods are generally

more effective than deterministic methods.

RQ 2: How do the different methods deal with the:

i: spatially inhomogeneous distribution/patterns of the existing groundwater monitoring

network?

• In contrast to deterministic methods, kriging considers the spatial correlation of

the measurements, e.g., well clusters are weighted more diminutive, and the bias

reduces.

ii: different surface types change from a pronounced hilly topography to a flat riverine

landscape?
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• In hilly terrain, methods that can exceed the minimum and maximum measured

values showed more plausible results (kriging). Especially in hilly terrain, incor-

porating digital elevation data (co-kriging) provided the most benefits.

• Also, in a riverine landscape, correlated data such as terrain information, wetland,

or river levels increase the prediction accuracy.

ii: different hydraulic pressure conditions within the aquifer which fluctuate from un-

confined to artesian?

• Ordinary kriging and co-ordinary kriging results best met hydrogeologic expecta-

tions in this region.

RQ 3: What are the possible influences of the chosen methods on further computations,

namely the calculation of the estimated vertical groundwater exchange between different

aquifer systems?

• They can be drastic! The standard deviation of the calculated exchanges based on

the methods is abaout 750 million m³/year, the range between about 270 million

m³/year and -2,770 million m³/year.

RQ 4: Which are the most suitable error statistics to compare the performance of the

methods?

• In principle, an error metric should never be considered isolated, as they all have

advantages and disadvantages (representation of bias, outliers, etc.). It is recom-

mended to use at least MAE and RMSE and a metric that provides information

about bias (e.g., ME, Bias). MAE is intuitive and measures the average magnitude

of the error. Comparison with RMSE shows the variation in errors. The greater

the RMSE compared to the MAE, the greater the variation.

RQ 5: How can the results be validated with additional eco-hydrogeological data?

• Geographical locations of karst springs, wetlands, and surface waters with ground-

water interaction are suitable to verify the results locally. The calculated ground-

water depth indicates accuracy, and the comparison of locations with springs or

receiving waters with the calculated streamlines gives plausibility indications.

Study Chapter 3:

RQ 6: Is there an extensible and transferable GLMN design that allows reliable spatial

estimates of GWL with a minimum number of monitoring wells?
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• The best prediction accuracies with extensible designs were obtained using the

geostatistical DSN method (maximum prediction standard error) and the low-

discrepancy R2 method. The latter offers the advantage of being independent of

the actual monitoring data and hence reproducible. It is also more versatile, as it

allows for any number of additional wells at once.

RQ 7: What are the quality differences resulting from the use of various GLMN design

approaches?

• They depend on the monitoring density and spatial groundwater variability. The

quality differences increase with increasing monitoring density. The best design

(hexagonal grid) prediction error was 31.2%, DSN 24.7%, and R2 23.8% below

the simple random sampling design for the maximum number of monitoring wells

investigated.

RQ 8: At what observation well density does a reasonable information/cost ratio result?

• This depends on the scaling and groundwater variability. A reasonable ratio was

achieved on average when about 0.51% (with a range of 0.37-0.64%) of all possi-

ble sampling options (imaginary pixels of a grid reflecting assumed groundwater

variability) were monitored.

RQ 9: Which is the most suitable CV error statistic (MAE, RMSE, RMSSE, ASE, or

NSE) to evaluate the quality of interpolated groundwater surfaces?

• According to our results, the CV error statistics, especially MAE and RMSE, can

be helpful as a rough quantitative estimate for the actual error. From the results,

we conclude that one should avoid comparing different design approaches based on

the error estimate of the global average CV.

Study Chapter 4:

RQ 10: What is the ranking of monitoring wells in an existing network in terms of their

information content/reconstruction performance, i.e., in which order should the wells be

removed if a network reduction is desired?

• The algorithm employed ranks monitoring wells based on the reconstruction error.

If the other wells can accurately predict the temporal variability at this point, the

respective well has no unique information content. In our case, these were mainly

wells with a pronounced seasonal cycle and without short-term fluctuations and

trends.
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RQ 11: How does a reconstruction/interpolation error develop when a given number

of monitoring wells are reduced? How does the error of reducing wells according to

information content compare to a random reduction?

• The results show that even with a drastic reduction, the hydrographs of the re-

moved wells can be reliably reconstructed (average absolute reconstruction accu-

racy of 0.1 m is achieved with a subset of 6% of the wells, 0.05 m with 31%, and

0.01m with 82% of the wells). Compared to randomly selected wells, removal based

on ranking results in an average 39% reduction in reconstruction error.

RQ 12: When the goal is network extension, where should new wells be placed for

maximum information gain? How significant is the increase in information, i.e., how

significant will the spatial reconstruction error be reduced?

• The algorithm places additional monitoring wells mainly in areas with low mon-

itoring density and higher expected groundwater dynamics (e.g., high seasonal

fluctuations, high flash floods). A network extension by 10% reduced the spatial

reconstruction error to less than two-thirds, while an extension by 20% further

reduced it to one-tenth. However, since the data basis is based on interpolated

values, this statement has certain limitations.

RQ 13: How well does a combined reduction/extension (i.e., replacement) of a certain

number of wells perform compared to a straightforward extension?

• Surprisingly, the reconstruction error of the combined reduction/expansion scenar-

ios (by 10% in each case), i.e., an unchanged total number of wells, is slightly lower

than that of the straightforward expansion by 10%.

5.2 Perspective and Outlook

Developing an optimal groundwater monitoring network is a chicken-or-egg problem:

Its scale and spatial distribution must capture the temporal and spatial variability of

groundwater (including the complex nature of geologic, hydrologic, and other environ-

mental or human influences) for monitoring programs, often with multiple competing

objectives. In addition, the relationship between monitoring costs and system knowledge

should be Pareto optimal so that there is no spatial and temporal redundancy. Since

each groundwater system is individual in its spatial and temporal dynamics, there is

no universal planning answer regarding well placement and spacing. In general, higher

dynamics require higher monitoring density and frequency. However, all this leads to a

paradox since most of our knowledge about the dynamics is based on data we have gath-
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ered from existing GMNs. An inadequate monitoring network can lead to this dynamic

being underestimated. Therefore, sufficient observation wells are needed to determine

which are necessary and which are not. Nevertheless, new wells are often associated

with high initial investments, as they usually require extensive drilling. For this reason,

wells are not traditionally constructed without specific justification.

A pure hydrogeological approach best describes how new wells are usually planned in

practice. This approach is based on qualitative and quantitative hydrogeological in-

formation (e.g., pumping tests, modeling of flow and transport processes) and expert

knowledge and concepts. Expert knowledge is the most significant element in the plan-

ning of optimal GMNs. However, the isolated application of this approach often seems

to lead to the emergence of monitoring networks that are mainly concentrated in small

areas with water management significance and often characterized by an expectation

bias. For instance, a nitrate monitoring network where wells are located exclusively in

agricultural regions is suitable to demonstrate agricultural impact. However, the general

state of the aquifer is represented in a biased manner. Statistical approaches (including

simulation-, variance-, and probability-based approaches), such as those examined in the

chapters 2 and 3, have proven extremely useful in addressing these issues because they

account for conceptual uncertainties regarding the underlying hydrogeology and are free

of bias.

Besides the task of spatial optimization, there is also the challenge of temporal and

spatio-temporal GMN optimization. As a result of increasingly affordable data loggers,

there is a growing number of long-term groundwater hydrographs. In-situ groundwater

quality sensors are also becoming more affordable and are expected to increase in use.

More comprehensive recording of temporal variations in nitrate and other pollutants

will provide data in the future that will allow more profound insights into possible

sources, pathways, transport, and degradation processes. Currently, groundwater quality

(GWQ) data are not yet sufficient to apply data-driven models such as those described

in Chapter 4. Unfortunately, however, the trend that can be observed in Germany

is that the temporal resolution of monitoring is decreasing, despite more cost-effective

data loggers, and many long-term hydrographs are no longer measured continuously.

Moreover, it appears that decisions to reduce monitoring are based on random factors

rather than optimization strategies (e.g., broken data loggers are not replaced). Though

optimization can generally lead to more cost efficiency, it should be done wisely. It

should be kept in mind that only long-term hydrographs provide a better understanding

of long-term changes in groundwater recharge and storage, climatic variations, regional

impacts of groundwater development, changes in groundwater flow directions, and allow

for statistical analysis of water level trends. Therefore, the optimization results should
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not justify a drastic downsizing of the monitoring networks but rather increase the focus

on the especially relevant wells or the selection of meaningful monitoring sites from

local monitoring networks to create a representative regional, national or international

monitoring network. Especially concerning possible influences of climate change on

groundwater bodies and the associated changes in boundary conditions, a recurring

assessment of the quality of the monitoring network and sufficiently reliable data are

necessary.

For this purpose, it may be worthwhile to look outside the box to other fields to gain

insights. The goal of optimal placement of in-situ measurements or sensors to monitor

or control spatiotemporally dynamic systems under cost constraints arises in virtually

all scientific and engineering fields under terms such as optimal experimental design and

variable selection. Although the sensors and parameters differ, they all provide local

observational data from which global properties shall be inferred and are selected from

a more extensive set of possible locations. The overall objectives of each optimization

approach is dictated by data availability. In contrast to hydrogeology, where data avail-

ability is limited, many water-related sciences (e.g., monitoring precipitation, runoff, or

flow dynamics) and soil mapping extensively use data-driven methods (e.g., machine

learning and artificial intelligence) to sampling design optimization and parameters re-

gionalization. For instance, Wadoux et al. (2019) investigated optimal sampling designs

for soil mapping with random forest (RF) algorithms. Sagan et al. (2020) applied deep

learning (DL) techniques to make inferences from satellite data to measurements from in

situ water quality sensors used for inland water quality monitoring. Such a methodology

could be employed, for instance, in regions with extensive artificial agricultural irrigation

from groundwater and undersized monitoring to conclude storage changes from satellite

data (e.g., NDVI, normalized difference vegetation index). The data-driven QR algo-

rithm investigated in Chapter 4 proved to be highly effective for monitoring network op-

timization when sufficient data were available. A recent study by Williams et al. (2022)

effectively combines this approach with artificial neural networks. Optimal/essential

sensors are identified by QR decomposition, and reconstruction is subsequently per-

formed using nonlinear shallow decoder networks (SDN). The reconstruction accuracy

could thus be further increased in this way. Assuming that in the future, groundwater

quality parameters are collected by low-cost sensors with a frequency similar to GWL,

this methodology could be used to determine an optimal GMN for multiple monitoring

targets through multivariate analysis. The data-based identification from Chapter 4

based on two-dimensional input data (e.g., contour maps, model data) has also proved

very promising. It can identify essential monitoring wells in an existing network and

potential locations for new wells. Combined with numerical groundwater management
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models, synergies could emerge, and monitoring networks can be iteratively optimized.

In addition to the data-based identification of suitable sites, data constraints from model

calibration indicate at which locations a well can provide extensive information gain.

For the spatial estimation of GWL and GWQ parameters from point measurements,

machine learning methods have been considered inferior to geostatistical interpolation

methods such as kriging. Reasons for this, besides data limitations, are that they do not

take into account the spatial dependency structures in the data (Hengl et al., 2022). A

growing number of studies utilize machine learning that incorporates spatial dependence

structures with various geographic features (e.g., elevation, geographical proximity to

sampling locations, receiving water, and watersheds) as covariates (e.g., Behrens et al.,

2018; Hengl et al., 2018; Knoll et al., 2019). This leads to an increasing improvement

in predictive performance with results already similar to those obtained with kriging.

Therefore, it is likely that future methods will outperform kriging through optimized

techniques and suitable covariates. Limitations such as stationarity assumptions or

manual variogram fitting (including transformation or anisotropy parameters) would be

overcome, and automated predictions facilitated.

Effective groundwater monitoring networks are essential for making groundwater “visi-

ble”. In most cases, the knowledge we gain from them is the basis for many subsequent

calculations and conceptions. This work has shown that false knowledge due to in-

appropriate monitoring methods can propagate and be drastically amplified. Effective

monitoring networks are still rare, but modern cost-effective methods exist, including

technology for real-time data recording. The best way to overcome the above-mentioned

chicken-or-egg problem to optimal GMN is to combine site-specific expert hydrogeo-

logical knowledge with approved geostatistical and new data-driven machine learning

techniques, which are developing rapidly. Machine learning techniques, in particular,

benefit enormously from sufficient, adequate data, and therefore omissions in collec-

tion and survey should be made up now. Consequently, more collaboration between

research, practice, and policymakers along with easier access to collected data will likely

be needed in order to implement the knowledge gained into practice. Thus, according to

J. Cherry (2020), effective, modern groundwater monitoring with data freely available

data is one of the five essential actions governments can take to protect groundwater

from the impacts of a global climate crisis.

113



Acknowledgements

I could not have done this work without the inspiration and support of several notable

people. Here I would like to take the opportunity to express my gratitude to them.

First of all, I would like to thank my supervisor Nico Goldscheider for making this

work possible, especially since it was done mainly independently of funded projects. I

appreciate that I was given the freedom to work freely on this exciting topic and to

realize my ideas, but at the same time, I could always count on your wise advice.

My deepest gratitude goes to Tanja Liesch. Your consistent support, encouragement,

motivation, trust, and great ideas have made up a considerable part of this work. This

work would not have been possible without your patient guidance.
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Júnez-Ferreira, H. E., G. S. Herrera, L. González-Hita, A. Cardona, and J. Mora-
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