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1 Introduction

Semileptonic B-meson decays mediated by the b — cfy, transition are sensitive to the
absolute value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V. In the
last years, measurements from BABAR, Belle and LHCb showed a puzzling discrepancy of
about 3 standard deviations between the determinations of |V| from exclusive and inclusive
decays [1]. A simultaneous resolution of the |V | (and |V,3|) discrepancy is hardly possible
in term of new physics [2]. Thus, further scrutiny of theoretical and experimental analyses
are needed in order to shed light on the puzzle.

In this paper we focus on higher order QCD corrections to the kinematic moments
of inclusive semileptonic B — X fiy decays. The theory underlying inclusive decays is
based on a local operator product expansion, the Heavy Quark Expansion (HQE) [3-6],
which allows to predict sufficiently inclusive decay observables, as the total semileptonic
rate or moments of kinematic spectra, as an expansion in inverse powers of the bottom
quark mass. In a first approximation, the process can be described as free quark decay.
Bound-state effects are incorporated in a set of physical HQE parameters which appear
starting at order 1/m2.



Inclusive kinematic distributions represent a portal to a precise determination of the
HQE parameters and |V,|. Lepton energy moments and moments of hadronic invariant
mass have been extensively measured at B factories and their prediction is know up to next-
to-next-to leading order (NNLO) for free quarks [7-10], and next-to-leading order (NLO) at
order 1/m? [11-13]. Moments of the leptonic invariant mass have also received attention in
the recent years due to their dependence on a smaller set of HQE parameters [14]. Results
for the NLO corrections up to 1/mj have been presented in [15].

It is the aim of this paper to compute the next-to-next-to-next-to-leading order (N3LO)
corrections of kinematic moments and assess their relevance for the global fits of V).
Recently, we presented the N3LO corrections to the semileptonic width [16] and the relation
between the on-shell and kinetic mass of the bottom quark [17, 18]. In these works we took
advantage of the heavy daughter expansion [19] to determine finite charm mass effects
via an asymptotic expansion in the parameter 6 = 1 — m./my, where m,. and my, are the
charm and bottom masses, respectively. A similar strategy can be applied to compute
moments in case no experimental cuts are applied, i.e. moments of kinematic distributions
integrated over the whole phase space. We present in this work the first four moments
of the charged-lepton energy Ej, the total leptonic invariant mass ¢? and the hadronic
invariant mass M%. We study the behaviour of the perturbative series in the so-called
kinetic scheme, in which the moments are expressed in terms of the kinetic mass of the
bottom quark mass [17, 18, 20, 21]. Furthermore we estimate the theory uncertainty due
to the finite expansion depth in 4.

We aim at validating the theoretical uncertainty estimates entering the |V| extraction
and at identifying the precision level below which N3LO corrections need to be taken into
account. Usually, kinematic moments are measured with various kind of lower cuts on Fy
or ¢>. On the one hand these cuts suppress background from low-energy electrons. On the
other hand measurements with different cut values provide extra information on the HQE
parameters. For a prediction of such kind of observables it is necessary to compute the
differential rate to third order.

The paper is organized as follows. In section 2 we introduce the notation and present
technical details of the calculation of the moments and also of the total rate presented in
ref. [16]. We discuss in section 3 the numerical results in the on-shell scheme and discuss the
theoretical uncertainties due to the finite expansion in the parameter §. Numerical results
in the kinetic scheme are given in section 4. NLO corrections to the power-suppressed terms
of the ¢?> moments are considered in section 5 and in section 6 we draw our conclusions.
In the appendix we collect convenient formulae for one-loop integrals with arbitrary tensor
rank and analytic expressions for the power-suppressed ¢? moments including perturbative
one-loop corrections.

2 Details of the calculation

2.1 Moment definitions

We consider in perturbative QCD the inclusive decay of a bottom quark

b(p) — Xc(px)g(pﬁ)ﬁf(pu)v (2'1)



where X, generically denotes a state containing a charm quark, plus additional gluons
and/or quarks. In the rest frame of the bottom quark we have p = (my, 6) Leptons are
considered to be massless. We denote the momentum of the lepton pair by ¢ = py + p,
and the total momentum of the hadronic system by p, = p — ¢. In the following we
study moments of the invariant mass ¢2, the hadronic invariant mass M)Q( and the charged-

“*7 refer to dimensionless quantities,

lepton energy E,. Moreover, quantities denoted by
normalized to the b quark mass, e.g. 2 = ¢?/m3, Ey = Ey/my.

We compute moments of the differential rate where no restriction is applied on the final
state particles. For their calculation we use the optical theorem in analogy to ref. [16] where
the semileptonic width was presented. As building blocks it is convenient to introduce in
the bottom quark rest frame the moments of the leptonic energy qo = p - g/myp and the

leptonic invariant mass ¢2,

1 . dr

i =— [ dE;dqo d¢® (¢*)(q0) —=——— 2.2
Quy =g [ dErdagde? () ) (2:2)

and moments of the charged-lepton energy E; = py - p/my

1 . AT
Li=— [ dE;dqodq® (Ep)' 2.3
with the normalization factor o )
G%|V,

o= M. (2.4)
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Note that Qoo = Lo corresponds to the total semileptonic rate computed in [16] (divided
by I'g). Moments are written as a series expansion in the strong coupling constant a(us),

Q=Y Q" (O‘S(’“))n, L=Y 1 (0‘8(’“‘8)>n. (2.5)

750 T n>0 T

Normalized moments are defined by

— Qn,O
Qoo

with n > 1 and central moments are given by
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where n > 2. Predictions for the central moments can be obtained by inserting the per-
turbative expansions (2.5) into (2.6) or (2.7) and re-expanding in «s.
The hadronic invariant mass is related to parton level quantities by

M% = (pp — q)° = Mj — 2Mpgo + ¢*, (2.8)

where pp and Mp are the momentum and the mass of the B meson, respectively. We
assume that the bottom quark and the B meson have the same velocity, i.e. ply = MpvH
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Figure 1. Sample Feynman diagrams which contribute to the forward scattering amplitude of a
bottom quark at LO (a), NLO (b), NNLO (c) and N3LO (d)—(f). Straight, curly and dashed lines
represent quarks, gluons and leptons, respectively. The weak interaction mediated by the W boson
is shown as a black dot.

and p = myv*. The moments of Mx are given by linear combinations of the (); ; moments:

1 d3T
M, = — [ dE,dqo dq® (M?% — 2M yn___ -~
n Po/ vdqo dq” (Mg B0 +q°) B, dao A2

= i XZ: (?) (;) (M) (—2Mp)" Qi - (2.9)

i=0 j=0

Central moments are defined as
(MF)") = T hi = (M%), ho = ((M% = (M3))"). (2.10)

2.2 Asymptotic expansion

Let us now describe the calculation of Q); ; and L;. With the help of the optical theorem
we can express the b — X fUy matrix element integrated over the whole phase space in
egs. (2.2) and (2.3) in terms of the discontinuity of the b — b forward scattering amplitude
(for sample Feynman diagrams see figure 1). Moments without cuts are simply obtained
by multiplying the integrand of the forward scattering amplitude by the weight function
(¢®)i(q - v)7 or (pg-v)® for the Q;; and L;, respectively. The leading order prediction is
obtained from the two-loop diagram in figure 1(a) where the internal lines correspond to
the neutrino, the charged lepton and the charm quark. The weak interaction is shown as
an effective vertex. To compute QCD corrections up to O(a?3) we have to add up to three
more loops (see figure 1(b) to 1(f)).

An exact computation of five-loop diagrams with two mass scales (m; and m,) is out
of range using current methods. We obtain finite charm mass effects by performing an
asymptotic expansion in the parameter § = 1 —m./my < 1, i.e. we expand the Feynman
diagrams around the equal mass limit m, =~ my, which we realize with the method of
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Figure 2. Our convention for the loop momentum routing. Charged lepton and neutrino momenta
are pp and q — pyg, respectively. The external bottom quark momentum is p. Additional loops of
gluons and quarks are denoted generically with the gray blob. The arrows on the fermion lines
indicate the fermion direction whereas the arrows next to the lines denote the momentum flow.

regions [22, 23]. We call this approach the §-expansion. The opposite limit p = m./mp < 1
(the p-expansion) was adopted in [7] for the evaluation of the width to O(a?2).

It has been shown that the d-expansion converges quite fast for the physical values of
quark masses § ~ 0.7 [16, 19, 24]. Moreover compared to an expansion around the opposite
limit (p ~ 0.3), the J-expansion offers two crucial advantages:

1. The number of regions to be calculated is considerably smaller.

2. The J-expansion yields a factorization of the multi-loop integrals which allows us
to integrate at least two loop momenta without applying integration-by-part (IBP)
relations. A computation up to O(al) becomes a n-loop problem, even if we start
with (n + 2)-loop Feynman diagrams.

In the following we elaborate on these two points. It is convenient to route the bottom
quark momentum p along the external fermion line and we chose the momentum routing
in the lepton-neutrino loop as shown in figure 2. Then the loop integrals w.r.t. p, take

the form
LN

d’py Py .p
11N (d, g% ma, g :/ : ‘ ,
T )= ] @t (o — g

where n; and no are integers and d = 4 — 2¢ is the space-time dimension. For such integrals

(2.11)

one can derive a closed formula for arbitrary tensor rank N (see e.g. [23] and eq. (A.1)
in appendix A). After performing the py integration, we obtain integrals with an effective
propagator 1/¢? raised to an e-dependent power.

Next we apply the method of regions to construct the d-expansion. There are only two
possible scalings for each loop momentum k& [23]:

o hard (h): |kF| ~ my,
o ultra-soft (u): |k*| ~ 0 - mp = mp — me.

We choose the notion “ultra-soft” for the second scaling in analogy to the calculation of
the relation between the pole and the kinetic mass of a heavy quark, see [17, 18]. For all



diagrams, we checked with the program asy.m [25] that a naive scaling assignment to the
individual loop momenta correctly identifies all relevant regions.

Since there is only one scale in the problem, the parameter § (we set mp = 1), an
imaginary part arises only through the appearance of log(—¢), i.e. only if § appears in the
denominator of one of the charm propagators. This implies that the combination k& — ¢,
where k is a loop momentum running through a charm quark line and ¢ = py + p,, must be
ultra-soft for at least one of the charm propagators. Otherwise no imaginary part arises.
Furthermore, the momentum g of the lepton pair always has to scale ultra-soft which means
that all regions where ¢ scales hard are discarded. To clarify this point, let us consider for
instance the following propagator:

1 1
= 2.12
(p—q+k)*=mZ 2p-(k—q)+(k—q)?>+20 -5 (2.12)

where k denotes some generic linear combination of loop momenta other than ¢. If k — ¢
scales hard (p is considered always hard), we expand the charm propagators as follows
1 h 1
(p—q+k)P-—m2 2p-(k—q)+(k—q)?

+0(6). (2.13)

Thus, no 9§ is left in the denominator and no imaginary part appears. If k — ¢ is ultra-soft

we have 1 1
u 0
= 0O(8Y). 2.14
(p—q+Fk)?> —m2 219-(7~€—q)+25Jr @) (214)

After integration the ¢ in the denominator yields a log(—d) term and thus an imagi-

nary part.

At this point we exploit the fact that ¢ is always ultra-soft which allows us to perform
a further integration. Integrals where the loop momenta are hard factorize from the inte-
gration w.r.t. q. The crucial observation is that also in case ¢ and k are both ultra-soft
the integrations factorize. In fact, having chosen the momentum routing as in figure 2, the
dependence in the charm propagators on ¢ and § is always of the form (—2p - g + 26) as
can be seen from eq. (2.14). Taking advantage of the linearity of the charm propagators in
the ultra-soft region, we can pull out the global factor (—2p- ¢+ 2J) from each propagator
by rescaling the loop momenta. For instance, for the following two-loop integral we have'

/ d%q d?k k—+k(—2p-q+26)
(¢®) (k)2 (2p - k —2p - q +26)"s -

/ g ></ Ak (2.15)

Thus the q integration also factorizes for ultra-soft loop momentum k and therefore we can
always evaluate the g¢-integration independently on the other loop momenta. The tensor
integrals

ddq gt ... gMN
(2m)® (=q*)™ (=2p - q + 20)"2

I (A6 ma) = [ (216)

'Note that we set mp = 1.



order regions

Qg u, h
a? uu, hh, hu
ozi’ uuu, hhh, huu, uhh

Table 1. Relevant regions for the loop momenta ki, k2, k3 up to O(a2): hard (h) and ultra-soft
(u). Regions written in black factorize, leaving at most two- or three-loop integrals (in red) to be
reduce by means of IBP relations.

can be directly evaluated using eq. (A.3) in appendix A. In conclusion, we are able to
analytically carry out the integration w.r.t. py and g without the need of an IBP reduction
and we remain with » momentum integrations at order o). Each of these momenta can
either be hard or ultra-soft.

With the same approach, it is possible to integrate all one-loop hard or ultra-soft
contributions which leaves purely hard or ultra-soft integrals at two and three loops. We
reduce them to master integrals via standard IBP reduction. We summarize all regions at
order g, a2 and o2 in table 1. Those labeled in red required an IBP reduction, while the
other regions factorize and are computed with the help of egs. (A.1) to (A.3).

After asymptotic expansion of the Feynman integrals one gets linearly dependent prop-
agators. It is thus necessary to perform a partial fraction decomposition in order to arrive
at proper input expressions for the IBP reduction. The methods employed for the partial
fraction decomposition and the mappings among different integral families closely follow
those described in ref. [18], in particular we used the program LIMIT [26] to automate
the partial fraction decomposition in case of linearly dependent denominators. For all
cases where at least one of the regions is ultra-soft we can take over the master integrals
from [17, 18]. For some of the (complicated) three-loop triple-ultra-soft master integrals,
higher order € terms are needed. The method used for their calculation and the results are
given ref. [18]. All triple-hard master integrals can be found in ref. [27].

For all moments we have computed the first 16, 11 and 8 terms in the J-expansion at
order ag,a? and a3, respectively. Note that the leading power of § is different for each

moment:

leading power of § for Q; j: §°T*H,

leading power of § for L; : 6T (2.17)

This means for example that the o correction to the width is computed up to order §'2,
while for the third lepton energy moment L3z the expansion extends to 6'°. Note that the
leading term for the latter is &°.

The chosen expansion depths are a compromise between precision of our prediction and
computational resources. To achieve sufficient precision, especially for the central moments
(see next section), we had to perform a deep expansion in § of the Feynman propagators,
up to 8th or 10th order which has led to intermediate expressions of the order of 100 GB for
each diagram. They must be handled carefully by FORM [28] in order to avoid an explosion
of the number of terms.



Furthermore for some of the integral families, individual propagators are raised to
positive and negative powers up to 12, which constitute a non-trivial task for the IBP
reduction programs. The latter could be handled thanks to a private version of FIRE [29]
combined with LiteRed [30]. For the subset of integrals which are needed for the expansion
up to §'0 we also use the stand-alone version of LiteRed as a cross-check.

There is an additional complication in the computation of the charged-lepton energy
moments. They are computed by introducing the factor (py - v)* in the integrand of the
electron-neutrino loop, which make them dependent on the parity-odd part of the ampli-
tude. As a consequence the traces which contain an odd number of 5 matrices does not
cancel anymore and we have to deal with traces involving 75 in d dimension. We adopt the
so-called Larin prescription [31] and substitute

l‘ chvpo (’YVPYPVJ - 707p'7y)
3! 2 ’

AHAS — (2.18)
in those cases where one instance of axial-vector current is present in a leptonic trace
and one in the bottom-charm fermion line. After evaluating the traces of v matrices, we
contract the two Levi-Civita tensors and interpret the result in d dimensions. In case two
5 matrices are present in a trace, we simply anti-commute ~°.

For the contributions where the Larin prescription have been used, an additional MS
renormalization constant has to be taken into account. An axial-vector current treated
with the Larin prescription must be renormalized with the factor [31, 32]

as\*1 (11 as\3 1 121 11
ZA:1+<7T> ( CyCp — CFTan>+<7r> L2< 4320ACF 4CACFTFTLf—|—

1 1789 77 26 1
— CpT? 2> ( 20p - Loy02 - 2 Tp+ ~C2T
270}7 FNf +€ 2592CACF 144CACF 81CACan F+90F PNy

—l—C’FT}%n?c)] : (2.19)

where Trp = 1/2 is the trace normalization and Cp = 4/3 and C'y = 3 are the Casimir
operators of the fundamental and the adjoint representation of SU(3), respectively, oy =
aﬁ”f )(us), ny is the number of active flavours and p, is the renormalization scale of the
coupling constant. Furthermore one has to introduce a finite renormalization constant in
order to restore the correct Ward identity:

2
Zs _1_7CF (Ozs) (—WCACF 1012;~+1CFTan)
m

144 8 36
a ) 2147 743) (2917 - 5@,) , (_185 3@,)
+ ( Tr) CACF( 1728 T 8 CaC 61 2 ) TP 79 T

C3> 2 ( 31 C3)
T Tpng (o = S3) 4 22
+CACFTpny (648 + 3 + CyTrny 1323 + 324CF

(2.20)

Finally, it is interesting to note that the natural expansion parameter arising from
the Feynman diagrams is actually ¢/ = 1 — m?/ mg as odd powers of m,. do not appear in
the differential rate because of the V-A weak interaction [33, 34]. Odd powers of m, can



appear in the lepton energy moments at intermediate steps when using the Larin scheme.

In particular, they are present in the higher e terms of the lower-order corrections. In this

2n+1 —

‘ me(1 — &')"m2" and treat m, as additional parameter. However,

case we rewrite m
after renormalization, we verify that all odd powers of m. vanish.

The use of ¢’ further reduces the size of intermediate expressions. Only at the very end,
after renormalization, we re-express our results in term of § = 1—m../mp = 1—+/1 — & since
the series in § converges faster. This fact can be understood by comparing, for instance,

the behaviour of the tree level decay rate which is proportional to the function

fp) =1—8p* +8p° — p* — 12p* log(p?), (2.21)

with p = m./my. If we substitute p = 1 — ¢, at higher orders in 0 the series is governed by
the expansion of p*log(p?) which is given by

o log(?) = ~2(1 — 8)*log(1 —8) = ~2(1—5)* 3. °
m=1
26 25 > 48
=25+ 76% — =8+ =t — 5n (2.22
T ;n(n—l)(n—2)(n—3)(n—4) (2:22)

Instead, if we substitute p? = 1 — ¢’ we obtain

ptlog(p?) = (1 — &) log(1 = ¢') = —(1 = ¢")” i (?Lm
m=1
/ 3 / = 2 n
= —0'+5( )L;n(n_l)(n_m(a) . (2.23)

If we adopt & as expansion parameter, the coefficients in the series are suppressed by 1/n%
for large n, while for § the coefficients are suppressed only by 1/n3. This fact suggest to
use 0 as expansion parameter also in the prediction at higher orders in ;.

3 Results in the on-shell scheme

Our main results are analytic expressions for the moments @); ; and L;, with ¢ + j < 4,
which can be downloaded from [35]. In this section we first assess the uncertainty of the
central moments related to the d-expansion. In the next section we convert our results to
the kinetic scheme and compare the size of the O(a?) terms to experimental results and to
the size of higher power corrections.

Let us fix for the numerical evaluation m9® = 4.6 GeV and m®® = 1.15 GeV which leads
to 6 = 0.75. We use Mp = 5.279 GeV for the M% moments and set the renormalization

scale us = ml?s. The é-expansion provides precise approximations for @; ; and L;. To give

3

an idea of the convergence, we show the size of the different terms in the series at order o



for three selected moments:

W) = —44.9615(145 — 052753246 + 4.3837257 — 2.5459345 + 0.102771g0
+0.0168158510 + 0.00263043511 + 0.00216016512),

Q) = —0.703488(1515 — 0.527532414 + 279417515 — 1488516 — 0.077824517+
— 0.0329351 515 — 0.0139737510 — 0.0058596520),

L) = —16.8605(15 — 0.992521 5 + 5.566955 — 4.1403250 + 0.754176510+
— 0.0251885511 — 0.0103673512 — 0.00171797513), (3.1)

where the subscripts are introduced to flag the different terms in the J-expansion. The
first equation corresponds to the expansion of the rate in [16]. We observe that at O(a?)
the precision reached with eight terms is well below the relative 1% level.

However, the accuracy on the central moments reduces. To compute central moments,

(n)
Z7.]
to third order. The re-expansion in oy of numerator and denominator is subject to strong

we insert the analytic results of LZ(-n) or ;7 in eqgs. (2.7) and (2.10) and re-expand in «y

cancellations. We do not re-expand in J. The correction to central moments at order o
involves non-trivial combinations of the moments Lz(m) or QE?),
to n. A simple re-expansion in ¢, let us say up to the eighth term at order «

where m ranges from 0
3

S

spoils the
delicate cancellations happening among different moments with m < n, which are actually
computed to higher precision in §. Therefore we suggest not to re-expand in J quantities
derived from LZ(-m) or QE?) since they represent the best possible approximation.

We estimate the final accuracy in the following way. We consider the moments with
the highest computed term in ¢ and insert numerical values for the masses. Then we re-
evaluate each moment removing the last term in the J-expansion at each order in ag. The
difference between these two numerical predictions is quoted as uncertainty.

For the central ¢> moments normalized to m; and expressed in the on-shell scheme we
obtain

g1 = 0.218482
us us

2 3
1+ 0.127423%% 4 0.4369(30) (O‘) — 5.34(30) (O‘> ] :
T

Qs

2 3
G2 = 0.0203994 ll +0.138093%2 4 0.91584(89) < ) +3.52(33) <O‘) ] ,
T T T

Qs Qg 2 s 3
45 = 0.00110423 |1 — 0.226532— + 1.137(14) (W) +53.37(59) (W) ,

37

2
G = 0.000889517 |1 + 0.16767722 + 1.5921(11) (“S) +15.24(35) (O‘) . (3.2
T ™ T

For the Ey, moments we find

. a, s\ 2 s\ 3
¢; =0.307202 |1 — 0.0169117— — 0.6637(30) (> —15.01(15) <) ,
m m

™

A Qg as\? as\?
lo = 0.00862693 |1 — 0.164901? — 2.0568(59) <) — 35.4(2.9) <7r> ,

s

~10 -



N

Qg as\? as\?
l3 = —0.00041875 |1 — 0.00580025— — 1.4848(68) <> —25(17) () ,
s

m s

A g g 2 Qs 3
7, = 0.000189369 |1 — 0.245899"% — 3.534(28) <) — 76(481) () . (33)
s 7T s

For M)% moments it is more convenient to normalize the results w.r.t. the first order
in ag since the partonic X, invariant mass differs from m, only starting at O(as) due to
real radiation. Our results read

Qs

2 3
h1 = 0.0993848 [2.10166 + 1% + 14.567(25) ( - ) +249.0(2.4) (f:) ] ,

Qs

2 3
hy = 0.0150817 [0.029471 +125 4 11.008(59) ( ) +152(40) (O‘> ] ,
T T T

™

N g ag\ 2 as)?
hs = 0.00342142 | ~0.00103783 + 1 +9.27(21) <W) +201(24) () :

A~

2 3
hu = 0.001168 [0.000361694 +12 4 9.1(1.4) (a> +0(19) x 10° (O‘) ] L (34)
T ™ T

We notice that the central ¢; moments are well approximated by the d-expansion. The
uncertainties of the a? coefficients are at most of about 10%. For the first three E, and
Mx central moments, we find that our approximation is able to determine the size of the
third order correction. However for the moments 54 and fz4 we observe that our expansion
depth is not deep enough and the large uncertainty is a consequence of severe numerical
cancellations.

We noticed also that an uncertainty estimate based on standard error propagation
in general overestimates the uncertainty. If we assigned to each moment Lgm) and QE?)
an error equal to the last known term in § and then combine the uncertainties in an
uncorrelated way, we would find for §; and /; uncertainties much larger than those quoted
above. For hadronic moments we would observe errors of similar size. This fact is likely
connected to stronger correlations among the different expansion terms in § for the ¢? and
E; moments.

We compared our results at O(a?) with the values for the My and E, moments of
refs. [9, 10] and find good agreement.

4 Transition to the kinetic scheme

In this section we discuss the impact of higher order QCD corrections once a short-distance
mass scheme is adopted. Moreover we will compare them to the power corrections at order
1/m2 and 1/mj to understand the importance of the a3 corrections in the fits for |Vy|.
In this work we concentrate on the so called kinetic scheme employed in the fits of
refs. [6, 36, 37]. In this scheme we adopt the kinetic mass [17, 18, 20, 21] for the bottom
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quark using

2
kin OS r [k (1) Jpert 1
my™ (p) = — [A()]pert — ey O g | (4.1)
’ b 2y (1) (mg™)?
while the charm quark mass is converted to the MS scheme. At the same time, in the

kinetic scheme one redefines the heavy-quark-expansion parameters p2 and p?]j in the fol-
lowing way:

112(0) = p (1) — (2 (1)l pert pH(0) = pib (1) — [P (1)]pert. (4.2)

where the analytic expressions for [X(,u)]pert, (112 (11)]pert and [,o?l’)(,u)]pert can be found in
the appendix of ref. [18]. The Wilsonian cutoff u plays the role of scale separation between
the short- and long-distance regimes. We adopt the standard HQE parameter definitions
employed in refs. [4, 36, 37]:

2 = = gar- (BIBGD* b, ).

b = sai (BIBGDE) D) (0™ )b, |B).

b = 51 (BIBiDE)(iv - DYID)b, |B).
phs = gap- (BIBD) 0 D)GDE) (i )b | B) (13)

where D, = 0, — igsA,, le = (G — vuvy)(1D"), by(z) = exp(—impv - 2)b(z). The B
meson velocity and mass are denoted by v# = ply/mp and mp, respectively.
We consider two different approaches for the construction of the central moments:

(A) As a first step, expressions for central moments are obtained in the on-shell scheme.
To this end, the ratios in egs. (2.7) and (2.10) are expanded up to O(a?) (to leading
order in 1/m;) and up to 1/mj for the power corrections. We discard higher a
corrections in the sub-leading power in 1/my,. Afterwards one applies the transition
to the kinetic scheme.

(B) We convert the expressions for @); ; and L; to the kinetic scheme. In a second step
the ratios in eqs. (2.7) and (2.10) are expanded up to a3 (to leading order in 1/my)
and up to O(1/m3) for the power corrections.

Note that the two approaches do not yield the same analytic expressions because of the
redefinition of the HQE parameters, see eq. (4.2). In approach (A) the perturbative versions
of ur and pp appear after expanding the central moments in a, and 1/my. In case (B)
they are introduced before expansion, and therefore treated as « corrections in the later
re-expansion of the ratios. Approach (A) and (B) start to differ at order o2 since the shift
of the power-suppressed terms according to eq. (4.2) induces perturbative ag corrections

from 1/my, terms. In both approaches, we retain all powers of the Wilsonian cutoff u/mi™.
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Only those terms involving one of the genuine non-perturbative parameters are expanded
in 1/my. For a further discussion of the differences between the two approaches and their
interpretation we refer to section 5 where O(ay) corrections to power-suppressed terms are

considered for the ¢?> moments.
We set the renormalization scale of the strong coupling constant pugs = mlgin and use
ag4) (mgi“) as expansion parameter, i.e. we decouple the bottom quark from the running of

(4)

ag, and we re-expand in s’ up to third order. We use the input values

min (1 GeV) = 4.526 GeV, (3 GeV) = 0.993 GeV,
1 =1GeV, o (mfin) = 0.2186. (4.4)
For the HQE parameters, we use the most updated values and their correlations from [37]:
12 = 0.477(56) GeV?, p3 = 0.185(31) GeV?,
p2 = 0.306(50) GeV?, Pt g = —0.130(92) GeV?3, (4.5)

where all parameters are defined at = 1 GeV.

In the following we report the numerical prediction for the various moments in the
kinetic scheme, employing approaches (A) and (B). For each moment we factorize out the
tree-level prediction, and show the size of the o, a? and a? corrections (denoted by Xan ).
The quoted uncertainties come from the 0 expansion as explained in the previous section.
We denote the sum of all 1/mZ and 1/mj corrections by the subscript “pw”.

For comparison, we quote also an uncertainty for the contribution of higher 1/m,
corrections. It arises from the uncertainties in the HQE parameters given in eq. (4.5) with
correlations taken into account. We will use this uncertainty as reference value to compare
the relevance of the a2 corrections in the fits for |Vy|.

4.1 g% moments

We first show results for the ¢> moments with approach (A)
g1 = 0.232947 [1 —0.0106345,,, — 0.008736(15)0{3 — 0.00505(13)a§ — 0.0875(97)pw} )

G2 = 0.0235256 [1 —~ 0.0359374, — 0.0217035(20) 42 — 0.01118(17) 3 — 0.237(27)pw] :

a3

g3 = 0.0014511 [1 —0.07003814, — 0.035693(73)42 — 0.01909(12) 48 — 0.726(94)pw} ,

G = 0.00120161 [1 — 0.0585199,, — 0.042276(11)az — 0.02411(20)3 — 0.631(77)puc| -

(4.6)

With approach (B) we obtain:

G = 0.232947 [1 - 0.0106332q, — 0.007100(16)42 — 0.00326(13) o3 — 0.0875(97)pu ] ,

4o = 0.0235256 |1 — 00359328, — 0.0175591(28) 2 — 0.00677(17)qz — 0.237(27)pue|

g3 = 0.00145109 [1 —0.07002564, — 0.030529(71),2 — 0.01282(12) 43 — 0.726(94)pw] ,

G = 0.0012016 |1 — 00585099, — 0.0342994(88) 2 — 0.01597(20)3 — 0.631(77)puc| -
(4.7)
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For the ¢> moments we observe a good behaviour of the perturbative series, with

coefficients precisely determined via the d-expansion. Note that for the ¢> moments, even

2

Qg

corrections are not yet available in the literature as the results presented in refs. [9, 10]
are only for electron energy and hadronic invariant mass moments.

The size of the a? corrections are of few percent while third order corrections are about
a factor of two smaller and in the range of 0.5-2%. We observe that higher power corrections
are sizable and as large as 70% of the leading order contribution. The estimated uncertainty
of the power corrections are a factor two to three larger compared to the a2 term. At O(a?)
the difference between the two approaches yields a difference of 0.3%,0.9%,1.1% and 1.6%
for the four moments which is of the same order of magnitude as the a2 terms.

Central moments of the ¢ spectrum have been measured recently by Belle [38] sep-
arately for electrons and muons in the final state. The quoted results for a cut on the

leptonic invariant mass of g2 > 3 GeV?, averaged between muon and electron, read?

q1(¢* > 3GeV?) = 6.23 (8) GeV?,
(

( )
(g > 3GeV?) = 4.44 (15) GeV?,
a3(q? > 3GeV?) = 4.13 (68) GeV,
qa(q? > 3GeV?) = 46.6 (5.6) GeV® . (4.8)

Due to the cut of ¢?> we refrain from a direct comparison to our predictions. However,
it is interesting to compare the uncertainties. The moments in eq. (4.8) have a relative
uncertainty of 1.3%, 3.1%, 16% and 12%. The experimental error of ¢; and g3 is only about
a factor two larger compared to the magnitude of the o term. Furthermore, note that the
measurements in [38] with a higher cut on ¢? have even smaller uncertainties reaching a
precision of 0.5% which makes the a? corrections even more relevant.

4.2 Charged-lepton energy moments
For the electron energy moments our result in the approach (A) read
/y = 0.315615 [1 —0.01010644, — 0.005082(17)42 — 0.00227(13)43 — 0.0192(31)1)“,} ,
Iy = 0.00900585 [1 — 0.019924, — 0.006152(41) 42 + 0.0002(21) 43 + 0.017 (1) |,
I3 = —0.000464269 [1 — 0.0639319, — 0.035673(10) 42 — 0.0142(46) g3 — 0.175(22) ] ,
4 = 0.00020743 [1 — 0.0288544, — 0.00717(23)42 — 0.00(25) 43 + 0.000(21)pw} , (4.9)
while for (B) we find
{y = 0.315615 [1 —0.0101064, — 0.004838(17),2 — 0.00200(13) 43 — 0.0192(31)pw} ,
I = 0.00900585 [ 1 — 0.0199202,, — 0.006303(42),2 — 0.0001(21)o3 + 0.017(11)pu | ,
I3 = —0.000464268 [1 — 0.0639261a, — 0.0358480(91) g2 — 0.0142(46) g3 — 0.175(22)pw | ,
4 = 0.00020743 [1 — 0.02885344, — 0.00611(23),2 + 0.00(25)43 + 0.000(21)pw} . (4.10)

2We thank F. Bernlochner and R. van Tonder for providing us with the values of the central moments
constructed from the data of ref. [38].
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For these moments we observe in general a good convergence of the perturbative series
in the kinetic scheme. It is interesting to note that the relative size of the a2 corrections are
smaller compared to those found for ¢ moments. For /1 and 25 we have 0.2% and 0.02%
and for @3 about 1.4%. For @4, the a:;’ correction is not determined in a reliable way due to
the uncertainty of the finite expansion in . On the other hand, also the impact of the power
corrections is much smaller compared to ¢ moments. For /1 and 0 the power correction
uncertainty is of the order of 0.1-0.3% and comparable with the size of ag’ corrections.
The ag coefficient of 22 is small which is likely due to numerical cancellation. In case of 23
the uncertainty coming from higher 1/mj terms of about 2.2% is comparable with the a2
correction.

The difference between our predictions obtained with the approaches (A) and (B) are
small, and overall they never exceed the 0.1% of the leading order contribution.

We can examine the precision of experimental measurements for instance by quoting
the values of the electron energy moments, with a cut Ey > 0.4 GeV, as measure by Belle [39]

(1(Ey > 0.4GeV) = 1393.92(6.73)(3.02) MeV,

lo(Ey > 0.4GeV) = 168.77(3.68)(1.53) x 1072 GeV?,

(3(Ep > 0.4GeV) = —21.04(1.93)(0.66) x 1073 GeV?,

(4(E; > 0.4GeV) = 64.153(1.813)(0.935) x 1073 GeV4. (4.11)

The relative accuracies of these measurements are 0.5%, 2.3%, 9.6% and 3.2%, respectively.
Due to the applied cut, the central values cannot directly be compared to our prediction.
However, we note that for ¢, the a? corrections are only a factor of two smaller than the
experimental error. Also for the moments of the charged lepton energy, the experimental
measurements are in general more precise at higher values of the cut. Therefore for some
of the moments, third order QCD corrections are already comparable to the experimental
error and the uncertainties associated to power corrections.

4.3 Hadronic invariant mass moments

Finally let us analyze the predictions for the hadronic invariant mass moments. For ap-
proach (A) we have

hy = 0.00899843 [+23.4975 +1+0.4223(15) 42 + 0.147(11),48 + 0.04(20)pw] :

hy = 0.000745468 [+0.87352 + 1+ 0.4505(74) 2 + 0.34(43) 43 + 3.33(59)pw} :

hs = 0.0000915954 [—0.0729568 +1+0.165(62) 42 + 2.29(55) 43 + 7.3(1.1)pw} ,

hs = 0.000091207 [+o.0100938 +1+0.51(17) 42 + 1(145),4 + 0.380(52)pw} . (412)

while for (B) we find

h1 = 0.00899836 [+23.4976 + 14 0.4114(15) 2 + 0.134(11) 3 + 0.04(20)pw} ,
hy = 0.000745462 [+0.873533 +1+0.3971(73) 42 + 0.25(43) 3 + 3.33(59)pw} :
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hs = 0.0000915935 [—0.0729428 +1— 0.088(61) 42 + 2.00(55) 43 + 7.3(1.1)pw] :
hs = 0.0000912064 [+0.0100992 +1+0.56(16) 42 + 0(145),5 + 0.380(52)pw} . (4.13)

As before, we normalize the various higher order terms w.r.t. the O(ay) corrections, since
the partonic tree-level invariant mass vanishes.

Our approximation does not determine hy at O(a?) and also for hy we can only provide
the order of magnitude. While for hi and hy the perturbative series still displays a good
convergence, the prediction for hs shows an enhanced O(a3) term which is more than a
factor of two larger than the O(as) contribution. For iLg also the power-suppressed terms
are quite large and the corresponding uncertainty is as large as the O(as) term. This calls
for a careful assessment of the theoretical uncertainties for this specific moment, or as a
conservative approach, for the elimination of hs from the set of observables considered in
the fits. For hy the relative difference between approaches (A) and (B) is about 0.1% while
for hy and hg it is of 2.3% and 5%, respectively.

From the expressions in eq. (4.13) we obtain after multiplication with the proper power
of my, the results

hi = 4.628(36)(2) GeV? = 4.63(4) GeV?,
hy = 1.88(23)(31) GeV* = 1.88(40) GeV*,
hs = 8.41(0.97)(1.73) GeV® = 8.4(2.0) GeV®. (4.14)

We observe from eq. (4.12) and (4.13) that the theory prediction is dominated by the
power-suppressed terms for hs and hs. The first kind of uncertainties quoted in (4.14)
reflects only the parametric uncertainties on the values of the HQE parameters in eq. (4.5)
and those from the truncation of the expansion in d, which are added in quadrature. The
second kind of uncertainty is an estimate of the missing higher-order terms in the 1/m;
expansion, i.e. O(1/my) or higher, which are likely sizable for hy and hs. We estimated this
additional source of uncertainty as 30% of the power-suppressed contributions in eq. (4.12)
and (4.13). We refrain from listing h4 since there is a strong dependence on the higher
order power-suppressed corrections [40)].

The results in eq. (4.14) can be compared to the experimental measurements of the
Mx moments performed by DELPHI [41]:3

hi = 4.541 (101) GeV?,
hy = 1.56 (18) (16) GeV*,
hs = 4.05 (74) (32) GeVS. (4.15)

Note that no cuts have been applied. Their relative errors are 2%, 15% and 20%, respec-
tively. For h; one observes agreement within the uncertainties. Note, however, that the
experimental error is about a factor 2.5 larger than the one from the theory prediction.
Furthermore, from eq. (4.13) one observes that the contribution from the a2 term has

3We thank P. Gambino for clarification about the value of h;.
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about the same order of magnitude as the theory uncertainty. Also for hs we find agree-
ment between the theory prediction and the experimental result. For hs the agreement is
at the 20 level. In case we neglect the uncertainty from higher order 1/ mﬁ terms in the
theory prediction, we would observe a 3.5¢0 tension in h3. In the case of hg it is worth to
mention that the expansion in a, does not converge and therefore it becomes questionable
if the HQE is applicable at all in this case. Moreover, for ho and h3 we observe that the
a2 terms are larger than the quoted error by DELPHI.

5 Including NLO perturbative corrections to the power suppressed terms

In this section we study the origin in the numerical differences between approach (A)
and (B), and how it can be reduced by including NLO perturbative corrections to the power
suppressed terms, i.e. by taking into account O(a;) corrections in the Wilson coefficients
of the HQE parameters 2, ,uzG, p3 and p%s. We will refer to these correction as ag/mj
corrections (n = 2 or 3 in our case).

We focus on the ¢> moments. Analytic results for the ¢? spectrum including a; /my
corrections were recently computed in [15]. By performing an analytic integration of the
differential decay rate, we obtain expressions for the perturbative corrections to power
suppressed terms of the ¢ moments. Schematically they have the form (compare also

with eq. (2.5))

3 2 2 3
A Qs 3) _ M= (0) Ha _ PLs

Qo= 0%+ 0% + o (%) +al (%) (1 2m§>+Ql,O,ua<m3 mg>

3
Ln <« M @ PLS (0) PD
Qi,O,,LLG . QzOpLS . m% + QzOpD + Qz ,0,pD T ] 2 ’ (51)
where as; = a4(us). For convenience we provide analytic results for ng%)’ﬂG, leo),ug nd
Qg’l&pw in appendix B. The results for QZ(’OO)WD and Ql 0,pp Can be found in ref. [15].

Let us compare the predictions for the central moments ¢; obtained in egs. (33) and (34)
where no O(a,/my}) correction was taken into account. We obtain

Aqg1 = 0.3%,
Ags = 0.9%,
Agz = 1.1%,
Agy = 1.6%, (5.2)

where we define the relative difference between scheme (A) and (B) by

~(A ~(B
Agi = g — ™)

py (5.3)
qr°
Let us explain the origin of such difference. It is related to terms of the form
PD
Qg X ﬁ (54)

b
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In the kinetic scheme one has to redefine p3,(0) according to eq. (4.2) where the perturbative
expansion of [pp()]pert is given by

b ere =1 3 it (22)' (5.5)

n>1

(n)

bery are known up to O(a2) from [18]. Their explicit expressions are

The coefficients r
not relevant for our discussion. For ¢ moments we can ignore the role of 2 since its
dependence drops out due to reparametrization invariance [14].

In case we neglect terms of O(as/my), contributions scaling like as x p?,/m3 are
dropped in approach (A) after re-expansion of (2.7) in the on-shell scheme. In approach (B)
we first transform the building blocks entering eq. (2.7) to the kinetic scheme. In particular,
we redefine p}, according to eq. (4.2). After inserting the expressions in eq. (2.7) and
expanding in a; new terms of order a? are generated since the ratio p?/ mg’ is considered of
order one and not 1/mj. Thus, we observe that the difference between (A) and (B) scales

(1)

pert/’LS /m3 if O(as/m}) terms are neglected. In case a;/mj terms are included the

. . 1
difference is of order agrée)rt 18 /m§.

like a2r

We now compare the values of the ¢> moments obtained in approaches (A) and (B)
after the inclusion of terms of O(as/my). We recompute the prediction for the central
moments ¢; by re-expanding the final result up to O(a2) at the partonic level, while we
keep corrections of O(as/my) in the power suppressed terms. With approach (A) we obtain

1 = 0.232947 [1 — 001061374, — 0.00383463,2 — 0.00327(13),s — 0.097(11)pw} :

do = 0.0235256 [1 — 0.0359242,, — 0.00697531,2 — 0.00683(17) s — 0.240(27)pw] :

g3 = 0.0014511 [1 — 00701143, + 0.0145548,,2 — 0.00866(13),3 — 0.624(80)pw} :

44 = 0.00120161 [1 — 0.0585154, — 0.000100666,,2 — 0.01686(20) 3 — 0.545(65)pw} . (5.6)

and approach (B) leads to
g1 = 0.232947 [1 — 0.0106265,, — 0.00402646,2 — 0.00190(13),3 — 0.094(11)pw} ,
g2 = 0.0235256 [1 — 0.0359104,, — 0.00817945,2 — 0.00366(17),3 — 0.227(26)pw} ,

43 = 0.00145109 [1 — 0.0699819,,, + 0.00342844,,2 — 0.00822(12) 43 — 0.510(68)pw} :
41 = 0.0012016 [1 — 0.0584734, — 0.00681918,,2 — 0.01185(20) 43 — 0.477(58)pw} . (5.7)

Taking the difference from leading my contribution only, i.e., from the terms flagged by

“al” we obtain
Agq = 0.1%,
AQQ = 02%,
Aq?, = 1.1%,
Agq = 0.2%. (5.8)
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Comparing egs. (5.8) and (5.2) we observe that the predictions using (A) and (B) get
closer after the inclusion of the O(c/my) corrections. This happens because now both
approach (A) and (B) take into account contributions scaling as as x p3,/m3. After redef-
inition of pp, both (A) and (B) generate the same corrections of the form agr}()le)rtu?’ Jm3.
Therefore Ag; become smaller.

However if we take into account also the power-suppressed terms, i.e., the parts flagged

by “pw”, we obtain

Aq = 0.4%,

Ags = 1.5%,

Agz = 10.3%,

Aqgs = 6.6%, (5.9)

which are even larger than without including O(ag/mj’) terms. Similarly to what we
observed before, the difference starts now at order 1/m? and 1/mj because of contributions
of the form

3 2 3 3
. x [PD]gert % LGZ or oy X [pD]gert o PD(él) (5.10)
my my, mp my,

which arise if one uses approach (B). However these terms are actually of O(1/mj) and
O(1/m$) and therefore they would not appear if [pp]pert/m; ~ pu3/m3 is considered as a
1/m3 suppressed term and the expressions for the moments re-expanded up to 1/m;.

In the end, we conclude that the ambiguity between approaches (A) and (B) can be
removed if the power corrections p1/m;, originating from the kinetic scheme are considered
as 1/my suppressed term in the HQE. Note that for the charged-lepton energy moments
the contribution from the power-suppressed terms are significantly smaller and thus the
different treatment of the p/my terms is numerically less important as can be seen from
the comparison of eqgs. (4.9) and (4.10).

6 Conclusions

In this work we compute several kinematic moments of inclusive B — X .lv, decays up
to O(a2). In particular we consider for the first time higher order QCD corrections to g2
moments. We use the optical theorem to obtain analytic expressions for the moments as
an expansion in the parameter 6 = 1 — m./mj. For most of the considered observables,
the series expansion in 0 is sufficient to obtain precise results for the coefficients of the
perturbative expansion. However, for some of the central moments, there are significant
cancellations and our finite expansion depth in § does not allow for a determination of the
a2 corrections in a reliable way. Note that also a calculation based on numerical methods
might have similar problems since also there in a first step the elementary moments are
computed with a finite numerical accuracy [10].

We describe in detail our computational methods. The quark masses are renormalized
in the on-shell scheme. Afterwards, we study the moments in the kinetic scheme and
investigate the importance of the higher order QCD corrections for the determination of
|Vep|. To this end, we present numerical results in the kinetic scheme together with the
contribution from higher 1/m;, power corrections and the related uncertainties.
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For the first two ¢ and electron energy moments, we find that the third order correc-
tions are of the same order as the uncertainties associated to 1/m? and 1/mj corrections.
Furthermore, they are comparable in size with experimental errors. Thus, the inclusion

of a? corrections in future analyses might be important. For the hadronic invariant mass

3

o corrections which are of the same order of magnitude

moments iLQ and ﬁg we observe o
or even larger than experimental uncertainties and thus might influence the |V;| fit. For
these moments also the power-suppressed terms are sizeable.

We discuss two approaches for the construction of the central moments in the kinetic
scheme. In approach (A) the scheme transformation rules are applied to the central mo-
ments in the on-shell scheme. On the other hand, in approach (B) the building blocks are
transformed to the kinetic scheme and the central moments are constructed afterwards.
The numerical results differ starting from order a2 which is due to the fact that u/my
counts as order one, where y is the Wilsonian cutoff of the kinetic scheme. For the ¢?
we show that the difference reduces in case higher order QCD corrections to the power-
suppressed terms are considered.

The analysis of the inclusive third order corrections of charged-lepton energy, leptonic
invariant mass and hadronic invariant mass moments performed in this paper suggests that
one should initiate a differential calculations at third order.
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A Tensor decomposition formulas

In this appendix we report the formulas employed to compute one-loop hard and ultra-soft
tensor integrals. We denote by {[g]"[p]¥ ~2"}#1~#~N the product of r metric tensors and
N — 2r vectors p, totally symmetric in its N Lorentz indices.

A.1 Massless two-point integral
The tensor integral of a massless one-loop two-point function is given by (see e.g. ref. [23])

/ dek N 1

(2m)d (—k2)m (—(k — q))"2 = (dm)2 (_q2)d/27n1*n2

X [%/:2} L(ni+ne —r—d/2)I'(d/24+ N —ni —r)I'(d/2 —na +7)

2TD(n)T(n2)T(d + N —ny —n2) (%) {lg]" (g —2rppm,

(A1)

r=0

where [N/2] is the greatest integer less than or equal to N/2.
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A.2 On-shell two-point integral with one mass

The tensor integral of a massive one-loop two-point function reads

/ ddk kML KHN _ 1 (m2)d/2—n1—n2
(2m)® (—k2)m (=K% +2p- k)2 (4m)d/2

NP, —r—d/2)T(d+ N —2n; —

Z 1+n9g—r / ) ( + nq ng)

(—2)T(n2)0(d+ N — ny — 1) (m?)"{[g]" [p]¥ 2Pt (A2)
r=0

where p? = m?. Such integrals appear in case the loop momentum is hard.
A.3 Ultra-soft integral

The tensor integral of a one-loop ultra-soft two-point function is given by

/ d’k I

_ ¢ yd72n17n2+N(p2)n17N7d/2
(2m)d (—k2)m(=2p-k+y)m2  (4m)d/2

Ui/?] (=)NtD(d/2 — ny —r + N)L(2n1 4 ng — N — d)

2 > T () (n3) (p*)"{[g]"[p)¥ 2 ypb,
(A.3)
B Inclusive g> moments to order o
The analytic results for the leading m; expansion terms read
Q) = CF{QS - 236% + 23?3 - 2554 +1n(p) (—10ﬁ— 4552 + 253 - 176’34
+645%2(1+p)In (14 ﬁ)) +1In(1—p) {—167 + ? - 323’33 + 176’74
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The analytic results for power-suppressed contributions QZ(?U)#G’ Qg}o)m and Qflo) L

are given by
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where p = m?/ mg. The results presented in this appendix are obtained from the differential
expressions of ref. [15] after integration over the dilepton pair invariant mass squared.
The analytic expressions shown in the appendix can also be obtained from [35].
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