KIT | KIT-Bibliothek | Impressum | Datenschutz

Tau Lepton Identification With Graph Neural Networks at Future Electron–Positron Colliders

Giagu, Stefano ; Torresi, Luca 1; Di Filippo, Matteo
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Efficient and accurate reconstruction and identification of tau lepton decays plays a crucial role in the program of measurements and searches under the study for the future high-energy particle colliders. Leveraging recent advances in machine learning algorithms, which have dramatically improved the state of the art in visual object recognition, we have developed novel tau identification methods that are able to classify tau decays in leptons and hadrons and to discriminate them against QCD jets. We present the methodology and the results of the application at the interesting use case of the IDEA dual-readout calorimeter detector concept proposed for the future FCC-ee electron–positron collider.


Verlagsausgabe §
DOI: 10.5445/IR/1000149793
Veröffentlicht am 15.08.2022
Originalveröffentlichung
DOI: 10.3389/fphy.2022.909205
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2296-424X
KITopen-ID: 1000149793
Erschienen in Frontiers in Physics
Verlag Frontiers Media SA
Band 10
Seiten Art.-Nr.: 909205
Vorab online veröffentlicht am 19.07.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page