KIT | KIT-Bibliothek | Impressum | Datenschutz

Path Guiding with Vertex Triplet Distributions

Schüßler, Vincent ORCID iD icon 1; Hanika, Johannes 1; Jung, Alisa 1; Dachsbacher, Carsten 1
1 Institut für Visualisierung und Datenanalyse (IVD), Karlsruher Institut für Technologie (KIT)

Abstract:

Good importance sampling strategies are decisive for the quality and robustness of photorealistic image synthesis with Monte Carlo integration. Path guiding approaches use transport paths sampled by an existing base sampler to build and refine a guiding distribution. This distribution then guides subsequent paths in regions that are otherwise hard to sample. We observe that all terms in the measurement contribution function sampled during path construction depend on at most three consecutive path vertices. We thus propose to build a 9D guiding distribution over vertex triplets that adapts to the full measurement contribution with a 9D Gaussian mixture model (GMM). For incremental path sampling, we query the model for the last two vertices of a path prefix, resulting in a 3D conditional distribution with which we sample the next vertex along the path. To make this approach scalable, we partition the scene with an octree and learn a local GMM for each leaf separately. In a learning phase, we sample paths using the current guiding distribution and collect triplets of path vertices. We resample these triplets online and keep only a fixed-size subset in reservoirs. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149799
Veröffentlicht am 21.02.2023
Originalveröffentlichung
DOI: 10.1111/cgf.14582
Scopus
Zitationen: 7
Web of Science
Zitationen: 8
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Visualisierung und Datenanalyse (IVD)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2022
Sprache Englisch
Identifikator ISSN: 0167-7055, 1467-8659
KITopen-ID: 1000149799
Erschienen in Computer Graphics Forum
Verlag John Wiley and Sons
Band 41
Heft 4
Seiten 1–15
Vorab online veröffentlicht am 30.07.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page