KIT | KIT-Bibliothek | Impressum | Datenschutz

Derivation of a Qualitative Model for the Spatial Characteristic Wavelength of Extrusion Flow Instabilities: Investigation of a Polybutadiene Rubber through Capillary, Slit and Complex Geometry Extrusion Dies

Georgantopoulos, Christos K. 1; Esfahani, Masood K. 1; Pollard, Michael A. 1; Naue, Ingo F. C. 1; Causa, Andrea; Kádár, Roland; Wilhelm, Manfred 1
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

The extrusion flow instabilities of commercial polybutadiene (PBD) are investigated as a function of the different extrusion die geometries, such as round capillary, slit, and complex cross-section profile slit dies via capillary rheology. Qualitative models are used to fit the experimental data for the spatial characteristic wavelength (λ) of the appearing extrusion flow instabilities. A new qualitative model for the slit die geometry, rectangular cross-section, is derived based on the theoretical concept of the “two layers” extrudate and the force balance at the die exit region. The proposed qualitative model for the slit die geometry is used to predict the spatial characteristic wavelength (λ) for extrudates obtained by complex cross-section profile slit die geometries similar to industrial manufacturing. Correlation between the ratio of the extensional (Y$_s$) and shear (σ$_x$) stress at the die exit area and the characteristic dimension, height H for slit dies and diameter D for round capillary dies, is presented. Moreover, a geometry-dependent model is used to predict the spatial characteristic wavelength (λ) of the extrusion flow instabilities from a round capillary die to a slit die and vice versa.


Verlagsausgabe §
DOI: 10.5445/IR/1000149809
Veröffentlicht am 15.08.2022
Originalveröffentlichung
DOI: 10.1002/mame.202200313
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1438-7492, 0003-3146, 1439-2054, 1522-9505
KITopen-ID: 1000149809
Erschienen in Macromolecular Materials and Engineering
Verlag John Wiley and Sons
Band 307
Heft 10
Seiten Art.-Nr.: 2200313
Vorab online veröffentlicht am 31.07.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page