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Abstract: In order to join efforts to develop high-fidelity multi-physics tools for research reactor
analysis, the KIT is conducting studies to modify the coupled multi-physics codes developed for
power reactors. The coupled system uses the Monte Carlo Serpent 2 code for neutron analysis and
the Subchanflow code for thermo-hydraulic analysis. Serpent treats temperature dependence using
the target motion sampling method and Subchanflow was previously extended and validated with
experimental data for plate-type reactor analysis. This work present for the first time the steady-state
and transient neutron and thermo-hydraulic analysis of an MTR core defined in the IAEA 10 MW
benchmark using Serpent2/Subchanflow. Important global and local parameters for nominal steady-
state conditions were obtained, e.g., the lowest and highest core plate/channel power/temperature,
the radial and axial core power profile at the plate level, and the core coolant temperature distribution
at the subchannel level. The capabilities of Serpent2/Subchanflow to perform transient analysis with
on-the-fly motion of the control plates were tested, namely with fast and slow reactivity insertion.
Based on the unique results obtained for the first time at the subchannel and plate level, it can be
stated that the coupled Serpent2/Subchanflow code is a very promising tool for research reactor
safety-related investigations.

Keywords: high-fidelity; Serpent2/Subchanflow; MTR; plate-fuel; subchannel; RIA

1. Introduction

A large number of research reactors, among others of TRIGA and MTR design, are be-
ing operated all over the world for different purposes, such as training, medical application,
the irradiation of different specimens, etc. For licensing and safety assessments of these
reactors, mainly diffusion-based neutron and one-dimensional thermal-hydraulic simula-
tion tools are used. In recent decades, several thermohydraulic studies for research reactors
have been based on autonomous system/subchannel codes, which were adapted for this
purpose in different ways, e.g., the use of equivalent plates and heuristic methods [1–3].
No research has focused on the high-fidelity simulation of the MTR core using Monte Carlo
codes coupled with thermohydraulic subchannel codes.

It is worth mentioning that MTR reactors present some particular characteristics,
such as: small cores of complicated geometry, downward and upward mass flow, specific
correlations for rectangular channels, low operating pressure, high-density power, and
low fuel and cladding temperature. As a result, the standardization of safety parameters
to ensure proper operation and analysis is limited [4]. In general MTR cores are small
compared with power reactor cores, in which each square fuel assembly consists of thin
fuel plates assembled in parallel that construct narrow square sub-channels for coolant
flow. The cores are surrounded by a radial reflector and the core and reflector region can
have different irradiation devices.
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Efforts have been made towards safety analysis in research reactors, such as the use of
Technique for systems with limited data [5], the description of small cores with thermohy-
draulic codes of systems/subchannels coupled with neutron diffusion codes [6], and more
recently, in 2016 and 2021, some authors started to study the application of Monte Carlo
codes coupled with thermohydraulic codes to investigate individual MTR fuel assemblies
or representative MTR channel geometries [4,7]. At KIT, investigations are underway to
modify the high-fidelity multi-physics coupled codes, e.g., Serpent2/Subchanflow, de-
veloped for power reactors within the European H2020 McSAFE project [8], for safety
evaluations of research reactors. It is worth mentioning that Subchanflow was previously
extended, adapted and validated to describe the conduction and heat transfer of plate-type
fuel assemblies, including downflow [9,10].

The updated coupled version Serpent2/Subchanflow, like its predecessor versions,
makes use of the simple fixed-point iteration known as the Picard method for the iteration
between the N-TH [8,11,12]. In addition, the relaxation of the exchanged TH fields is
usually applied to improve the stability of the convergence; as a result, it is capable of
static, depletion and transient simulations [13]. In this paper, we describe for the first
time the thermal–hydraulic and neutron physics analysis (static and transient) of an MTR
core defined in the framework of the IAEA 10 MW benchmark in [14] and [15] using the
extended dynamic version of Serpent2/Subchanflow.

This work is composed of five chapters. The Section 2 describes the benchmark
problem including all the geometrical specifications and initial operating conditions of
the IAEA-10 MW benchmark, including the core specifications for the static and transient
calculations. Section 3 deals with the computational tools used for thermo-hydraulic and
neutronic core analysis, presents the neutronic and thermo-hydraulic models developed at
the plate and subchannel level for the MTR core, and gives the specifications of the static
and transient simulations, including the convergence criteria and simulation environment.
Section 4 discusses selected results obtained for the steady-state simulations with the
coupled Serpent2/Subchanflow code at the nominal core, as well as the main results of the
fast and slow reactivity insertion scenarios.

Finally, a summary and outlook are given in Section 5.

2. Benchmark Problem

The reactor data and the transient scenarios used for these investigations are provided
and defined in the IAEA-10 MW benchmark [14,15]. The IAEA-10 MW Highly Enriched
Uranium core consists of a 5 × 6 grid core containing 21 Standard Fuel Assemblies (SFAs)
and 4 Control Fuel Assemblies (CFAs). It is radially reflected by graphite on two opposite
sides and surrounded by light water, as shown in Figure 1. In addition, according to
recommendations [15] (p. 15), a 77 mm × 81 mm aluminum block containing a 50 mm
water-filled square hole on each side should be considered in the analysis.
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The SFA has 23 plates and the CFA has 17 plates. At the end of the CFA, there is a
special region of 5.73 mm where the absorber material (may be B4C, AgInCd, or Hf) is
housed. Each CFA contains two absorber blades, with a total of eight blades in the whole
core. In Figure 2, the AgInCd absorber blades are shown. To maintain the core symmetry,
each half fuel assembly (SFA/2) in the center of the core has 12 plates.
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The dimensions of the absorber blades are shown in Figure 3 and were taken from [15]
(p. 17) and [16]. The core configuration for Beginning of Life (BOL) is shown in Figure 4
and the atomic density of HEU is taken from [17].
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2.1. Steady-State Core Specifications

Table 1 contains all the information required for the creation of a thermo-hydraulic
Subchanflow model. The values shown there will be used for the steady-state simulation at
nominal power, i.e., 10 MW.

Table 1. Key thermal–hydraulic parameters of the e IAEA MTR benchmark.

Parameters HEU/BOL

Material fuel HEU Enrichment 93 wt.%235U
280g 235Uper fuel element 21 wt.% of uranium in the UAlx − Al

Total power 10 MW (steady-state)
Coolant temperature inlet 311 K
Pressure at top of the core 1.7 bar

Coolant mass flow rate (downward) 1000 m3/h

2.2. Transient Core Specifications

The benchmark problem presented in [15] consists of two different types of accidents:
reactivity-initiated accident (RIA) and loss-of-flow accident (LOFA). In this work, only the
two RIA scenarios are examined, namely the fast and slow reactivity insertion. Table 2
shows the main characteristics.

Table 2. Transient characteristics for IAEA MTR benchmark.

Parameters RIA HEU-BOL

Initial power 1.0 W for both scenarios

Rate of external reactivity insertion
- Fast RIA scenario: 1.5$/0.5 s (FRIA)
- Slow RIA scenario: 0.1$/1 S (SRIA)

Scram setpoint 12 MW (120% of nominal power)
Delay time before shutdown 0.025 s for both scenarios

Shutdown reactivity insertion −10$/0.5 s for both scenarios

3. Methodology

This section summarizes the calculation tools, methods, model and assumptions that
are utilized in this work. It includes a short description of the extended Subchanflow code
and Serpent Monte Carlo code.

3.1. The Neutronic Code Serpent 2

The Serpent 2 is a Monte Carlo code developed by VTT, Finland. It is a multi-purpose
3D continuous-energy Monte Carlo code that uses the standard ACE format Nuclear Data
Libraries (NDL) to perform static and dynamic 3D core calculations [18].

The multi-physics interface (IFC) is designed for the coupling of Serpent 2 to exter-
nal, e.g., thermal–hydraulic solvers [19,20]. The interface allows the exchange of thermo-
hydraulic parameters, e.g., density and/or temperature of the coolant and the temperature
of the fuel and cladding between the thermal–hydraulic solver (e.g., Subchanflow) and
Serpent 2. Therefore, a definition of a mesh that superimposes the thermo-hydraulic fields
with the geometrical Serpent 2 model is needed [21]. In the present work, the IFC type 22
was used. The effect of the coolant density and fuel temperature on the neutron multiplica-
tion are handled in Serpent 2 through the rejection sampling techniques combined with
target motion sampling (TMS) [22,23].

3.2. The Thermal–Hydraulic Code Subchanflow

Subchanflow was developed at the Karlsruhe Institute of Technology (KIT) for the
thermal–hydraulic analysis of BWR, PWR, VVER, LWR reactors [24]. The analysis of
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Material Testing Reactor (MTR) was first introduced in [10]. The validation of Subchanflow
for MTR cores was presented at the European Research Reactor Conference RRFM 2020 [9].

Subchanflow solves three mixture conservation equations for upward and downward
flow of water/steam mixtures in subchannels. The needed steam/water properties are
calculated based on the IAPWS-97 formulation. The exchange of mass and momentum
between the neighbor subchannels is described by an addition conservation equation for
cross-flow. The heat conduction in rod and plates is solved with the standard finite volume
method. The relevant heat transfer coefficient between fuel and coolant is determined
by empirical correlations for power reactors and narrow square channels of MTR fuel.
Additional constitutive equations are also implemented in the code to mathematically close
conservation equations, e.g., to predict the void fraction, wall friction, turbulent mixing, etc.
The code is validated for LWR and MTR cores using relevant experimental data.

3.3. Coupled Neutronic/Thermal–Hydraulic Calculation Scheme Based on Serprnt 2/Subchanflow

The master–slave internal coupling of Serpent v2.1.3.1 (Master) and Subchanflow v3.7
(Slave) has been used for the neutronic and thermal–hydraulic analysis of the IAEA-10
MW core. The version of Subchanflow used by [8] was extended with models relevant for
MTR cores as described in [9,10]. The updated coupled Serpent2/Subchanflow version
makes use of the simple fixed-point iteration known as the Picard method for the iteration
between the N-TH [8,11,12]. Pure neutron transport simulations are considered in this
work. Constant energy deposition per fission mode Serpent default is used and to handle
the fuel temperature, a Doppler-weighted average is selected [25]. In addition, relaxation
of the exchanged TH fields is usually applied to improve the stability of the convergence;
as a result it is capable of static, depletion and transient simulations [13]. The coolant
and structures such as fuel plate claddings are not heated directly. To handle material
temperatures, Serpent includes on-the-fly temperature processing, called the TMS (target
motion sampling) routine, which addresses Doppler resonance broadening by considering
the thermal motion of the target cores explicitly.

The transient calculations scheme using Serpent2/Subchanflow is based on a two-step
approach, as shown in Figure 5. First, a coupled static criticality calculation must be carried
out to obtain two external sources: one with neutrons travelling with position, direction
and energy identified as live neutrons, and another one with the precursor population that
will generate the delayed neutrons [26].
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During the first step, the distributions of live and precursor neutrons are recorded in
specific files (Serpent 2 dump files).

After step one, the transient external source calculations start using the initial live
neutron and delayed neutron precursor distributions previously stored in the dump files.
According to the coupling approach, an initial SCF run is performed using the converged
power profiles predicted by Serpent 2 during the static coupled calculation of step 1.

The IFC is updated for each time interval, Serpent 2 internally stores the temperatures
and densities predicted, and finally a linear interpolation between the beginning of the
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time interval and the end of the time interval is performed to obtain the actual values, e.g.,
temperature and density at the interaction moment [27].

3.4. Serpent Models and Assumptions

A very detailed Serpent core model is developed, as shown in Figure 6. There, the
radial (left) and axial core discretization is shown, where each plate is represented sepa-
rately according to the MTR core specifications [14,15]. For the neutronic calculations, the
following aspects are considered for the static coupled N/TH simulation:

• Nuclear data library: ENDF/B-VII.0.
• Interface type 22 is used for the data transfer between Serpent 2 and Subchanflow.
• Axially, each plate is subdivided by 20 axial zones.
• The absorber material is made of AgInCd.
• Criticality calculation is performed with 20 inactive cycles followed by 200 active

cycles, each consisting of 150,000 histories.
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The dynamic external source Serpent 2 calculation is performed for two RIA scenarios
with the following parameters:

• Fast Reactivity Insertion Accident (FRIA): neutron population of 8.0 × 105 particles
with 200 batches.

• Slow Reactivity Insertion Accident (SRIA): neutron population of 1.6 × 106 particles
with 200 batches.

This detailed core model allows for a plate/subchannel level simulation of the core
with Serpent2/Subchanflow.

3.5. Subchanflow Model and Assumptions

A detailed Subchanflow model was developed where each rectangular flow channel is
represented separately, as shown in Figure 7. The following assumptions were made:

• A plate-centered model resolving each channel as a subchannel.
• For the heat conduction, each plate is subdivided radially into 3 and 2 cells for fuel

and cladding, respectively.
• The Blasius and Colburn correlations are used for the friction factor and the heat

transfer coefficient, respectively, based on previous validation work [10].
• In total, 552 plates and channels are considered in the core model.
• Axial discretization of each channel in 20 nodes.
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Figure 7. Numbering of the plates and coolant channels for the radial mapping between SSS and SCF.

3.6. Convergence Criteria and Computer Environment

The coupled code Serpent2/Subchanflow was compiled in the Debian 4.9.88-1+deb9u1
LINUX machine consisting of 48 logical cores. The main characteristics of the machine are:
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Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz. When performing coupled Serpent2/Subchanflow
simulations, the coupled system will stop the iterative process when pre-defined conver-
gence criteria for selected thermal–hydraulic parameter are fulfilled. The convergence
parameters, e.g., for the fuel temperature, are fixed based on the L2 norm according to
Equation (1)

∈L2
fuel=

√
∑i, j, k

(
Tt

fuel[i, j, k]−Tt−1
fuel[i, j, k]

)2

√
i ∗ j ∗ k

(1)

where t identifies the iteration step, i, j, k defines the positions and ∈ is the convergence
criteria. To obtain a good convergent solution with minimal statistical noise, the following
values were recommended by [28]. In this work, the following convergence criteria are used:
∈∼t

Tfuel
= 5 [◦C], ∈∼t

Tcool
= 1 [◦C] and ∈∼t

ρcool
= 0.01 [g /cm3]. Additionally, the conservative

relaxation factor of ω = 0.5 is used to relax the thermal–hydraulic fields, as is shown in
Equation (2). There, t stands for the iteration step, i, j, k for the positions and T[i, j, k] for
the thermal–hydraulic fields, which may be Tfuel, Tcool or ρcool.

T́t
[i, j, k]= Tt−1[i, j, k]∗ω+(1−ω)∗Tt [i, j, k] (2)

4. Results
4.1. Selected Parameters of the Steady-State Simulation

In the frame of the investigations performed here, a steady-state coupled calculation
with Serpent2/Subchanflow is required for the following reasons:

• To find the critical position of the control rods (plates of AgInCd) of the MTR core for
full power operation, i.e., to achieve a multiplication equal factor to one (Keff∼ 1);

• To evaluate the key thermal–hydraulic and neutron physical parameters of the core
that correspond to the initial conditions before transient analysis is performed;

• To obtain the precursor and live neutrons sources for the following transient external
source simulation.

Figure 8 shows the variation of the effective multiplication factor (Keff) for different
positions (0 cm: full inserted, 60 cm: full withdraw) of the eight control plates for the
MTR core loaded with HEU at BOL conditions, as predicted by Serpent2/Subchanflow. In
Table 3 the critical control rod position determined by a linear interpolation between two
points at 30 cm and 40.2 cm from the bottom position of the active region is exhibited, with
the error bar and the statistical uncertainty of the multiplication factor.
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Table 3. Control rod position.

CR Position (cm) Keff Theoretical Keff Calculated SSS–SCF

37.54± 0.1 1 1.00012± 0.00015

For the thermal–hydraulic parameters shown in Table 1, Serpent2/Subchanflow pre-
dicted a core heat-up of 47.64 K compared with a value of 46.70 K predicted by the code
MERSAT (AECS) [29].

The novel capabilities of the Serpent2/Subchanflow simulations at the plate/subchannel
level make it possible to evaluate the behavior of each fuel plate and subchannel consid-
ering the local feedbacks between neutronics and thermal–hydraulics. The plate-by-plate
power distribution of the MTR core is shown in Figure 9, where the location of the plates
with minimum and maximum power can be easily identified. Additionally, Figure 10
shows the coolant heat-up of each channel of the core, where again the location of the
subchannel with the hottest and coldest coolant temperature can be identified.
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Figure 10. Coolant heat-up for each subchannel predicted by Serpent2/Subchanflow: the channels
with minimum and maximum heat-up are identified.

According to Figure 7 the hottest plate/channel (# 150) is in a standard fuel assembly
located at coordinate (B, 2) and the coldest plate/channel (# 230) is located at coordinate
(C, 4) (see Figure 4).



Energies 2022, 15, 1554 10 of 20

Finally, Figures 11 and 12 show the axial temperature distribution profiles of the
coolant, cladding and fuel of the hottest and coldest plate. The maximum coolant temper-
ature value of 326.13 K is located at the core outlet (lowest part of the active region) and
the coldest is 318.81 K. On the other hand, the maximum cladding and fuel temperatures
for the hottest plate are at 40 cm measured from the top of the active region: 351.13 K and
349.81 K, respectively. The value of the coldest plate amounts to 332.6 K, while the one of
the cladding amounts to 331.7 K.
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Figure 12. Axial temperature distribution for the coldest plate/channel.

In Figure 13, the axial power distribution of the 150 (hottest) and 230 (coolest) plates is
exhibited with a statistical error of ±2σ. The maximum power values are in the range of
37 cm to 40 cm measured from the top of the active region. The curves are not symmetrical
due to the fact that the eight control plates of AgInCd are partly inserted and due to the
coolant downward flow.
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Figure 13. Axial power distribution of the plate # 150 (highest) and # 230 (lowest): identification of
the plate with minimum and maximum power possible.

Critical source: A critical steady-state full 3D model of the IAEA-1 W benchmark is
obtained as a first step to generate the required sources of live and precursor neutrons for
the transient calculation. The convergence of thermal–hydraulic parameters is the same as
that handled in Section 3.6. The stationary core conditions are characterized by a control rod
position of 37.54 ± 0.1 cm measured from the bottom of the active region and a Keff value
of ∼ 1.00021 ± 0.00024, respectively.

4.2. Simulation of the RIA Transients

An RIA is classified as a design basis accident for a research reactor, and hence it
must be analyzed in any safety study. Due to its relevance for safety, the RIA scenarios are
defined at cold zero power (CZP) conditions where the coolant and the fuel have the same
low temperature. Here, the fast and slow reactivity insertion defined in the IAEA 10 MW
benchmark will be analyzed with Serpent2/Subchanflow [15].

4.2.1. Control Rod Movement Scenarios

Figure 14 shows the movements of the control plates at each time interval for the fast
RIA scenario (FRIA). In the time interval (∆t1 = 0.5 s), the control plates are extracted at
a constant speed of 0.61 ± 0.1 cm/s. As consequence, it is observed that the reactivity
increases linearly from 0$ to 1.5063$ ± 0.007485. After 0.5 s the control plates remain at rest
for ∆t2∼0.09 s, the reactivity continues increasing up to a maximum of 1.6037$ ± 0.007485.
Then, it starts to decrease due to the Doppler Effect and control plate insertion. This starts
at 0.59 s with a velocity of −41 ± 0.1 cm/s, up to a value of −5.998$ ±7.49 × 10−3.

The control plate movements for the slow RIA (SRIA) event are presented in Figure 15.
For ∆t1 = 10 s, the control plates are extracted with a constant velocity of 0.16 ± 0.1 cm/s
leading to a reactivity increase of 1.0051$ ± 6.86 × 10−1. After the 10 s, the control plates
are inserted with a constant velocity of −41 ± 0.1 cm/s during ∆t2 = 0.5 s, causing a
reactivity decrease to −9.0027$ ± 0.007485. Finally, after the 10.5 s, the control plates
remain at rest.
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4.2.2. Power and Reactivity Evolution for the Fast Reactivity Insertion (FRIA 1.5$/0.5 s)

The large reactivity insertion in the case of the FRIA scenario leads to prompt super-
critical reactor condition. The scenario is characterized as follows:

• Steady-state conditions at cold zero power conditions, i.e., 1 W.
• From the stationary reactor condition, a positive reactivity insertion of 1.5$ during 0.5 s.
• The reactor is shutdown when the trip set point is achieved, i.e., 1.2 × 107 W with a

delay time of 25 ms (10$, 0.5 s insertion time).

Global results: Figure 16 shows the evolution of the power of the core in a time interval of 1 s.
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It is observed that the power increases from 1 W to a maximum value of 6.75E07 W
in 0.63 s due to the positive reactivity insertion. After 0.63 s, the power starts to decrease,
reaching 1.57 × 105 W at 1 s. The evolution of the reactivity shows that as long as it
is positive, the power increases, and when the reactivity becomes negative, the power
decreases. It can be observed that the power increase is stopped partly by the Doppler and
moderator reactivity coefficients and partly by the re-insertion of the control plates that
starts at 0.5 s.

It is worth noting that the statistical error of the power evolution increases until the
power peaks, and it remains larger than that of the initial time, while the statistical error of
the reactivity is similar during the whole transient time.

In Figure 17, the evolution of the core averaged temperature of the fuel and coolant
during the transient time of 1 s is presented. It is observed that the temperature peaks are
at different times. The peak of the fuel temperature occurs at 0.67 s with a maximum value
of 362.012 K. The coolant temperature peak is at 0.72 s with a maximum value of 320.012 K.
The time difference of 0.05 s is expected, since the heat deposited in the fuel needs some
time to achieve in the coolant.

Local results: The benefit of using the new Serpent2/Subchanflow version is the ability
to predict local parameters such as plate and channel power and temperature. Figure 18
gives the plate power predicted by the coupled code at 0.63 s transient time. There, the value
and location of the plates with maximum and minimum power can easily be identified.
The plate with the maximum power is # 403, located in the lower right corner of the core
(see Figure 7).

Figure 19 presents the plate-by-plate 2D radial power distribution at 0.63 s. The power
peaks are at the center and at the edges of the core, close to the wider water channels,
since the moderation is higher than in the normal subchannels. The maximum power
value is found in plate # 403. These results show for the first time a plate-by-plate power
distribution using Serpent2/Subchanflow, unlike previous analyses using point kinetics or
nodal diffusion codes, which usually assumed a uniform power distribution.

Figures 20a and 21a present the radial and axial temperature distribution of the fuel
and coolant at 0.67 s and 0.72 s transient time of the core. Figure 20b shows the coolant,
cladding and fuel temperature profiles for the plate/channel # 403. The maximum values
are at 0.35 cm measured from the top with a value of 408.44 K and 405.44 K for the fuel
and cladding, respectively. Figure 21b shows the temperature profiles at 0.73 s. There it
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is observed that in comparison to Figure 20b, the maximum temperature values of the
cladding and fuel decrease from 408.44 K and 405.44 K to 367.24 K and 368.23 K, respectively
and that the temperature profile of the coolant increases from 326.01 K to 334.0 K at the
core outlet.

The computational time was approximately 18 h using a LINUX cluster with 48 cores.
The parallel simulation was carried out using OpenMP in a machine with the following
characteristics: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz.
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4.2.3. Power and Reactivity Evolution of the Slow Reactivity Insertion (SRIA 1$/10 s) Scenario

The initial conditions for the SRIA scenario are the following:

• Steady-state conditions at cold zero power conditions with 1 W power.
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• From the stationary reactor condition, a positive reactivity ramp with the insertion of
1$ during 10 s.

• The reactor is shutdown when the set point of 12E6 W is achieved by inserting all
control elements (10$, insertion time 0.5 s) with a delay of 25 ms.

Energies 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 18. Identification of the power of each plate (1.5 $/0.5 s). 

Figure 19 presents the plate-by-plate 2D radial power distribution at 0.63 s. The 

power peaks are at the center and at the edges of the core, close to the wider water chan-

nels, since the moderation is higher than in the normal subchannels. The maximum power 

value is found in plate # 403. These results show for the first time a plate-by-plate power 

distribution using Serpent2/Subchanflow, unlike previous analyses using point kinetics 

or nodal diffusion codes, which usually assumed a uniform power distribution. 

 

Figure 19. Radial power distribution, plate by plate, predicted for the FRIA scenario. 

Figures 20a and 21a present the radial and axial temperature distribution of the fuel 

and coolant at 0.67 s and 0.72 s transient time of the core. Figure 20b shows the coolant, 

cladding and fuel temperature profiles for the plate/channel # 403. The maximum values 

are at 0.35 cm measured from the top with a value of 408.44 K and 405.44 K for the fuel 

and cladding, respectively. Figure 21b shows the temperature profiles at 0.73 s. There it is 

Figure 19. Radial power distribution, plate by plate, predicted for the FRIA scenario.

Energies 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

observed that in comparison to Figure 20b, the maximum temperature values of the clad-

ding and fuel decrease from 408.44 K and 405.44 K to 367.24 K and 368.23 K, respectively 

and that the temperature profile of the coolant increases from 326.01 K to 334.0 K at the 

core outlet. 

 
(a) (b) 

Figure 20. Serpent2/Subchanflow prediction at 0.67 s of: (a) full core 3D fuel temperature; (b) axial 

temperature distribution of plate/channel # 403. 

The computational time was approximately 18 h using a LINUX cluster with 48 cores. 

The parallel simulation was carried out using OpenMP in a machine with the following 

characteristics: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz. 

 
(a) (b) 

Figure 21. Serpent2/Subchanflow prediction at 0.72 s of: (a) full core 3D fuel temperature; (b) axial 

temperature distribution of plate/channel # 403. 

4.2.3. Power and Reactivity Evolution of the Slow Reactivity Insertion (SRIA 1$/10 s) Sce-

nario 

The initial conditions for the SRIA scenario are the following: 

• Steady-state conditions at cold zero power conditions with 1 W power. 

Figure 20. Serpent2/Subchanflow prediction at 0.67 s of: (a) full core 3D fuel temperature; (b) axial
temperature distribution of plate/channel # 403.

Global results: Figure 22 shows the evolution of the reactor core power during the
first 10 s of the transient, together with the reactivity insertion. It can be observed that the
power increases slowly due to the extraction of the control plates until 10.2 s. At 10 s, a
maximum power of 1.47E7 W is reached. Afterwards, the control plates are inserted into
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the core, providing a negative reactivity of around −9.0027$/0.5 s. As consequence, the
power decreases, reaching a value of 2.10 × 104 W at 15 s.
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Figure 22. Power and reactivity evolution predicted by Serpent2/Subchanflow for the slow RIA
scenario (SRIA, 1$/10 s).

Here, again, it can be observed that the statistical error of the power increases with
increasing power and is larger after the core is shutdown, since the number of neutrons
reduces dramatically.

In this case, the power increase is stopped partly by the Doppler and moderator
reactivity coefficient, and partly by the start of the control plate’s insertion into the core, as
shown in Figure 23.
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Figure 23. Evolution of the fuel and core-averaged coolant temperature during the first 17 s. (1$/10 s).

As shown in Figure 23, the core-averaged peak temperatures of the fuel and coolant
are 334.68 K and 316.28 K, respectively. Both are found at the same time, 10.2 s. After 11 s
there is no significant difference between the initial and final temperatures.

Local results: As discussed before, Figures 24 and 25 are unique in the sense that they
allow the identification of local hot spots in the core. In the case of Figure 24, it is observed
that the plates with maximum power are in the center of the core and in its surroundings,
close to the wider coolant channels. If Figures 18 and 25 are compared, it is observed that
the ways in which the power evolves for each plate are quite similar. Hence, the plate with
the maximum power is the one with the number # 403.
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Finally, Figure 26a shows the radial and axial representation of the temperature of each
of the plates at 10.2 s. In addition, Figure 26b presents the axial temperature distribution of
the coolant cladding and fuel of plate # 403 at 10.2 s.
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Figure 26. Serpent2/Subchanflow prediction at 10.2 s of: (a) full core 3D fuel temperature; (b) axial
temperature distribution of plate/channel #403.

The maximum temperature values correspond to the cladding with 336.33 K and fuel
with 336.73 K at 42 cm measured from the top. The maximum coolant temperature is at the
exit of the core and it amounts to 323.68 K.

The computational time was approximately 86 h using a LINUX cluster with 48 cores.
The parallel simulation was carried out using OpenMP in a machine with the following
characteristics: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz.

5. Summary and Outlook

This paper presents the state of the art in the development of a three-dimensional code
for the N-TH analysis of research reactors based on Serpent2/Subchanflow. The peculiarity
of these investigations is the degree of detail: each fuel plate and rectangular subchannel is
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individually described by the coupled system considering the local thermohydraulic feed-
backs between the Monte Carlo and the thermohydraulic solver of the subchannel. These
high-fidelity multi-physics tools pave the way for the direct prediction of safety parameters
without the need to use hot channel factors when assessing research reactor cores.

The one-of-a-kind results obtained from the simulation of the MTR core at full power
in steady state and two transient scenarios (FRIA, SRIA) defined by the IAEA-10 MW
reactor reference are presented. The maximum and minimum values of steady-state and
transient plate/channel temperature and power; the extraction and injection velocities of
the control plates for transients (slow and fast); and the reactivity provided in this work
can be used as a reference for lower order solutions in the framework of safety analysis.

The version of the code developed for the LWR power reactors has already been
validated using the SPERT-III E REA test series. For the validation of the new capabili-
ties of the Serpent2/Subchanflow tool, for licensing applications to the new MTR cores,
SPERT-IV tests are being analyzed and will be published soon. The results will provide a
comprehensive validation database for this novel simulation tool.
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