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Abstract: Various energy management systems (driving strategies) have been developed to improve
the efficiency of electrified vehicle drives. These include strategies from the field of offline optimiza-
tion to determine the theoretical optimum for a given system, as well as online strategies designed for
an on-board application in the vehicle. In this paper, investigations are performed on an SUV electri-
fied by a 48 V hybrid system in P14 topology regarding both offline and online strategies. To calculate
the global optimum, the performance of Dynamic Programming (DP) compared to an Equivalent
Consumption Minimization Strategy (ECMS) with an iteratively determined equivalence factor is
shown. Furthermore, with regard to online energy management strategies (EMS), it is presented how
a predictive Online ECMS achieves additional fuel savings compared to a robust, non-predictive
implementation. The simulation-based vehicle development allows detailed investigations regarding
interactions between battery requirements and EMS. In this context, it is shown how various battery
capacities are exploited by the discussed EMS.

Keywords: electrified powertrains; 48 V system; model predictive control; dynamic programming;
equivalent consumption minimization strategy; real driving cycles; Li-ion battery

1. Introduction

Increasingly stringent emission limits and the overall rise in environmental awareness
have led to the development of a wide range of alternative drive systems. In addition to
purely electric vehicles, these also include 48 V hybrid electric vehicles (HEVs), which offer
the major advantage of significantly reducing the CO2 emissions with comparably low
system expenditure, especially for inner-city driving.

The hybrid drive is characterized through component dimensioning, topology, and an
energy management strategy (EMS) [1]. In the development phase for a 48 V hybrid system,
besides the design of the electric motor with the associated power electronics, especially the
sizing of the Li-ion battery is challenging. The aim here is to achieve the greatest reachable
energy saving potential with the lowest possible battery capacity. On the one hand, this
results from the fundamental economic interest in a battery that is as cost-effective as
possible, since the battery is one of the main cost drivers of a 48 V system [2,3]. On the other
hand, the increasing number of other electric energy consumers, including preheating of
the exhaust after treatment [4], an electrical compressor [5], or chassis systems [6], means
that less energy is available for the optimal EMS.

The EMS itself must ensure the optimal operation of the system functions in various
driving scenarios. EMS have been the subject of intensive research for many years, with a
wide variety of approaches being the subject of associated work.

In this article, a comprehensive analysis of both online and offline EMS is performed
on a 48 V system using real driving cycles. Therefore, in a first step, two offline EMS are
presented to find the theoretical optimum for a given system configuration. In contrast
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to offline EMS, there exist online strategies for on-board use in the vehicle. Accordingly,
a comparison of both a robust non-predictive and a predictive Equivalent Consumption
Minimization Strategy (ECMS) is elaborated. During investigations, a special focus is
placed on the interactions between the EMS and the reduction of the capacity of a 48 V
Li-ion battery.

2. Related Work

EMS for HEVs have been widely investigated during the last few years. An overview
of the most common methods is provided by [1,7–13]. There are different approaches to sub-
dividing the strategies. One possible distinction is made between rule-based, optimization-
based, and learning-based strategies, whereby mixed forms also exist. Furthermore, a dis-
tinction can be made between offline and online strategies: offline strategies are charac-
terized by the requirement that the entire driving profile has to be known in advance.
With the help of the respective optimizer, a specific hybrid architecture is characterized for a
specific cycle—for example, regarding potentials of reduction in fuel consumption. In other
words, for a given driving cycle, the global optimum is identified, which is calculated for
benchmark analysis. In online optimization, however, only restricted a priori knowledge
about the future within a driving cycle is necessary. This is why online strategies aim to be
utilized on-board the vehicle [14].

The focus of this work is on the comparison of optimization-based concepts, both for
the online and offline field. For determination of the global optimum (offline strategies),
Dynamic Programming (DP) is considered to be unrivaled, since, apart from the errors
resulting from the necessary discretisation of the state and control variable space, it always
determines the global optimum. On the other hand, it requires very high computational
effort. For the application of DP to HEVs, special reference should be made to [15–17] and
the corresponding further development [18].

In addition to the DP, Pontryagin’s minimum principle (PMP) can be utilized to
determine the global optimum. Comparisons between DP and PMP can be found in
particular in [19,20]. The ECMS, which was first published by Paganelli et al. [21], can in
turn be derived from the PMP.

Depending on the specific implementation, the ECMS is assigned to the offline or
online strategies. Due to the equivalence of the ECMS compared to the PMP, it can be
used to find the global optimum for time-invariant systems. In this case, the so-called
equivalence factor is determined iteratively [22,23]. Especially due to the low computational
effort, this so-called Offline ECMS is widely used to determine the global optimum in
offline application [24]. For an investigation of topologies with several traction motors,
the 2D-ECMS has been developed [25].

For an online-capable implementation of the ECMS, the concept of an SOC-dependent
regulation of the equivalence factor is deployed successfully [14,26–35]. Other Online ECMS
approaches are based on driving recognition [36] or neural networks to determine the
equivalence factor [37,38]. Such data-driven ECMS methods also include those considering
reinforcement learning in the ECMS approach [39], as well as approaches using a fuzzy
controller [40–43].

Regarding the use of predictive information, it was shown that a non-predictive Online
ECMS concept for online application can be improved considering predictive informa-
tion [44]. Apart from this, there also exist predictive Online ECMS approaches, where
predictions are mandatory for the basic functionality of the ECMS [28,45]. Such control
systems, in which the optimal control is determined taking into account the corresponding
prediction horizon, are generally referred to as model predictive control (MPC). For an
MPC, also several alternative optimizers other than ECMS can be applied, as presented
in [46–48]. Here, for example, also approximated approaches of the DP (ADP) are used,
whereby, due to the significantly reduced computational effort, an online capability of the
DP can be realized [49,50]. In recent years, however, a variety of other approaches have
been developed in which the strategy is based purely on Artificial Intelligence [51–53].
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It should be clearly noted that there are countless other studies on EMS for HEVs.
The authors would like to limit themselves here to the approaches most relevant to
this work.

The analysis of the state of the art reveals that a comprehensive investigation of both
online and offline EMS focusing on dimensioning of Li-ion batteries in 48 V HEVs using
real driving cycles has not been undertaken yet. In particular, the proposed comparison
of a robust non-predictive in contrast to an intuitive predictive Online ECMS should be
emphasized here, whereby the main idea is based on the papers [35,44]. The basic procedure
of the investigations proposed in this paper is shown in Figure 1. The variables will be
explained in more detail in the following sections.
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Figure 1. Applied methodology to determine optimal control in offline and online application.

3. Modeling

In the field of vehicle simulation, a distinction is made between forward and backward
simulation. Forward simulation models represent the physical causality of the system:
with the help of a driver model (e.g., a PID controller), the desired speed is compared with
the actual vehicle speed. Based on the acceleration resulting from the control input of the
driver model, a speed can then be determined in each time step. In contrast, a backward
simulation model assumes that the vehicle follows a predefined speed and acceleration
profile. Thus, no driver model is required. The individual advantages and disadvantages
can be found in [9]. In this paper, the validated backward calculation model of a 48 V
HEV including an Offline ECMS with an iteratively determined λ from the work by [24]
is applied. The 48 V battery is represented by a simple inner resistance model. Hereby,
Equations (1) and (2) are used both to compute the battery voltage under load Ubat and
the corresponding battery current Ibat. Therefore, the battery power Pem, the battery losses
Pem,loss, and the power from auxiliary consumers Paux are considered. Moreover, the open-
circuit voltage UOCV and the inner resistance Ri are required. In addition, as a measure of
energy deviation from the starting conditions, an energy deviation dE from reference SOC
is calculated (Equation (3)). It is used as a criterion for a neutral energy balance.

Ibat =
Pem + Pem,loss + Paux

Ubat
(1)

Ubat = UOCV(SOC)− Ri(SOC) · Ibat (2)

dE =
∫

Ubat Ibatdt (3)

The battery is of a nickel–mangan–cobalt/graphite cell type, whereby Ri and UOCV
are calculated using SOC-specific component data. However, to ensure time-invariant
properties, a constant absolute state of charge (SOC = 70%) is used for the calculation of
battery parameters. Other effects, such as degradation of the battery and its impact on CO2
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emissions, are neglected [24]. The model is coupled with the dpm function provided by
ETH Zurich [15–17]. The studies are performed on an SUV hybridized in a P14 topology
including two electric motors on positions P1 and P4. Figure 2 shows common topologies
of HEVs in parallel configuration. The most important parameters for the analyzed HEV
are summarized in Table 1.

DTGBK1K0ICE

P0 P1 P2 P3 P4

Figure 2. Topologies of HEVs in parallel configuration.

Table 1. Parameters of investigated SUV .

Frontal Area A f /(m2) 2.56
Air Drag Coefficient cw/(−) 0.31
Rolling Coefficient cr/(−) 0.01

Vehicle Mass m/(kg) 1915
Wheel Radius rdyn/(m) 0.36
Power ICE PICE/(kW) 150
Power EM PEM/(kW) 25

The investigations are based on 12 real driving cycles from [54], which represent the
statistical totality of 1,000,000 km. With regard to the design of an online-capable ECMS,
a particularly promising approach from [35] is being further developed. Ideas from [44] are
further considered also. The goal of the investigations is to minimize fuel consumption,
whereby there is a proportional relationship between fuel consumption and CO2 emissions.
The CO2 values representing fuel consumption in this work are calculated with the relation
1 l/100 km = 23.2 g CO2/km. The main features of the two approaches considered in this
work, DP and ECMS, are described below.

3.1. Dynamic Programming (DP)

DP is based on Bellman’s principle of optimality, which states that the optimal trajec-
tory for a discrete decision problem is also optimal for the corresponding subproblem [55].
Based on this principle, the DP is a numerical method with which the global optimal
solution is found by operating backwards in time. For the application of DP, the state of
charge x as well as the torque distribution u must be discretized, leading to uk ∈ Uk and
xk ∈ Ωk; see Figure 3 (left). When considering u = {u0, u1, . . . , uN−1} as the torque split
strategy and defining the initial state as x(0) = x0, then the cost function J is defined as
follows [9,16].

J(x0) = gN(xN) +
N−1

∑
k=0

gk(xk, uk) (4)

gN(xN) stands for the final costs. These are zero, in the case that SOC(N) = SOC(0), to
guarantee charge-sustaining (CS) operation, and infinite otherwise. The cost function gk is
the fuel consumption of the combustion engine. The optimal solution J∗ is written as:

J∗(x0) = min
u

J(x0, u) (5)
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As in offline optimization, the entire driving cycle is known in advance, the algorithm
can proceed backward, to find the sequence of controls which generates the optimal control
starting from the final step N. For more detailed information, the reader is referred to [9].

3.2. Equivalent Consumption Minimization Strategy (ECMS)

For an ECMS, as well as with the DP algorithm, the control input u has to be discretized.
A discretization of x, however, is not needed. The optimal solution is found by calculating
the equivalent fuel consumption considering the lower heating value of the fuel Qlhv and
an equivalence factor λ, which transforms the battery power into fuel power at each time
step. Using the resulting fuel equivalent, a cost function J is defined, which is minimized at
each time step to obtain the optimal torque split. The corresponding optimization problem
P is written as [24]:

P : min
u

∫
J(u, x)dt (6)

J(u, x) = ṁ f uel + λ
Pbat
Qlhv

(7)

The determination of λ depends on the individual implementation of the ECMS.
For determination of the global optimum, λ has to be chosen constant for a time-invariant
system according to the PMP. This constant λ is usually determined iteratively, as visualized
in Figure 3 (right).
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Figure 3. Principle DP (left) and ECMS with iteratively determined λ0 (right) regarding SOC, based
on [9,56]. For DP, the entire state space must be discretized to calculate the costs of any control and
state combination. When applying an ECMS, no state space discretization is needed. The iteratively
determined λ0 finally leads to an optimal control ensuring CS operation.

4. Results
4.1. Global Optimum-Dynamic Programming vs. Offline ECMS

Unlimited Battery Capacity
Since the system has time-invariant properties, a constant equivalence factor λ0 is

sufficient according to PMP to determine the theoretical optimum (Equation (8)).

λ = λ0 (8)

λ0 is iteratively calculated using the shooting method to ensure CS operation of the
vehicle. Hereby, in a first step, an initial value is determined, which is based on engineering
experience. After the simulation run, the actual final SOC value is compared with the
desired final SOC value. Depending on whether the SOC of the battery is too high or too
low, λ0 is adjusted accordingly and the cycle is run again, until a suitable λ0 is found [9,56].
Table 2 lists the minimum CO2 emissions for the 12 real driving cycles for both the DP and
the Offline ECMS including λ0. λ0 enables the Offline ECMS to calculate the optimum
trajectory for the respective cycle, while at the same time ensuring CS operation.

The presented CO2 emissions result for the respective fuel-optimal trajectory. The devi-
ations are <1%, which is why the results are considered equivalent at this point. The remain-
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ing deviations result from numerical errors and the fundamentally different functionality
of the two EMS; see Section 3.

Table 2. Comparison of CO2 emissions in Offline ECMS vs. DP (unlimited battery capacity).

Road
Type

Driving
Style

CO2DP
g/km

CO2OfflineECMS
g/km

λ0
(ECMS Only)

urban low aggressive 147.9 147.5 2.92
urban low average 136.2 136.7 3.00
urban low mild 123.9 124.3 3.14
urban high aggressive 120.6 121.6 3.14
urban high average 107.4 108.2 3.17
urban high mild 106.4 106.5 3.19
extra-urban aggressive 169.7 169.7 3.06
extra-urban average 136.4 135.6 2.97
extra-urban mild 131.1 131.3 2.99

highway aggressive 246.4 245.2 3.20
highway average 220.5 221.4 3.18
highway mild 204.3 205.7 3.21

Limited Battery Capacity
As mentioned in the Introduction, this work pays special attention to the interactions

between the selected EMS and the sizing of the battery. Therefore, in Figure 4, Offline ECMS
and DP are compared regarding the calculation of the global optimum for different battery
capacities. As can be seen, the Offline ECMS cannot ensure optimal operation of the HEV
when reducing the energy content of the battery. As a result of the reduced energy content
of the battery, time-variant effects occur due to the frequent reaching of the respective SOC
limits. With a battery capacity of 100 Wh, the calculated trajectory of the ECMS can deviate
by 30% from the optimum; for 25 Wh, the deviation rises up to 45%. It can be concluded
that the optimum battery size should be determined with the DP approach, since an Offline
ECMS with iteratively determined λ is less accurate.
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Figure 4. Comparing Offline ECMS and DP to calculate the global optimum (fuel consumption) for
different battery capacities: extra fuel consumption of an Offline ECMS when limiting battery
capacity to 25 Wh, 100 Wh, and 1000 Wh.

When applying DP, as in in Figure 5, the fundamental usefulness of considering
batteries with low energy content is proven. It becomes clear that partly similar savings
effects (extra fuel consumption < 2%) are achieved for a 25 Wh battery compared to the
large battery—for example, for highway aggressive and urban low mild cycles.
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As presented in Figure 5, it should also be mentioned that there is a small increase
in fuel consumption at 1000 Wh compared to the 100 Wh variant (negative values). This
results from the coarser discretization due to the constant amount of interpolation points in
combination with the increased battery capacity; see principles of the DP demonstrated in
Figure 3.
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Figure 5. Using DP to analyze the global optimum (fuel consumption) for different battery capacities:
extra fuel consumption when reducing the battery capacity to 25 Wh and 100 Wh compared to 1000 Wh.

To sum up, for powertrain design, DP is preferable to Offline ECMS, especially in
terms of battery sizing. It is shown that even smaller batteries of 25 Wh or 100 Wh show
savings potentials similar to those of a 1000 Wh battery for certain driving cycles and
should therefore be considered in powertrain design. Since the previous studies focused
on purely offline investigations, the following will examine how the different battery sizes
behave in an on-board implementation.

4.2. Online ECMS (Non-Predictive)

In the following, the parameterization of a robust, non-predictive Online ECMS is
presented. This also includes discussions of the chosen battery size and the parametrization
of the robust non-predictive Online ECMS.

Unlimited Battery Capacity
As shown in Table 2, the suitable equivalence factors for the 12 real driving cycles

considered range between λ0 = 2.92 and λ0 = 3.21. Based on the determined equivalence
factors for the different driving cycles, an average equivalence factor is determined, which
can serve as an initial value for a non-predictive Online ECMS. Assuming that real-world
operation is represented by equal weighting of all cycles, the arithmetic mean of all cy-
cles is determined for a first calculation of a non-predictive Online ECMS (λ0,avg = 3.01).
Without further measures, this does not ensure CS behavior in online operation. The SOC
trajectories lead to excessive charging or discharging of the battery depending on the cycle
(see principles of the ECMS demonstrated in Figure 3). The simplest measure here is the
introduction of an additional penalty term in the calculation of λ (Equation (8)). Hereby,
the value of the energy (=λ) is either increased or decreased depending on the deviation
dSOC of the actual SOC from the reference SOC. According to [35,56], the penalty via
a trigonometric function is preferable to a proportional one: it permits small deviations
from the reference SOC but large deviations are severely penalized. Therefore, the penalty
term consists of the penalty factor kpSOC multiplied by the cubic derivation of SOC dSOC3

(Equation (9)).
λ = λ0 − kpSOC · dSOC3 (9)
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As already mentioned, it is assumed that real-world operation is represented by an
equal weighting of all given cycles. Furthermore, expert discussions define the requirement
for the EMS that the final deviation of the energy content of the battery at the end of cycle is
restricted to ±100 Wh regarding CS operation. Based on these assumptions, an appropriate
kpSOC for the non-predictive Online ECMS is determined. Table 3 reveals that kpSOC has
to be raised to up to 191.92, to keep the energy deviation dEend from the reference SOC
within the allowed range of ±100 Wh for the extra-urban average cycle (λ0 = 3.01). The extra
consumption is up to 2.90% higher compared to the global optimum determined from
the DP.

Table 3. Results of the non-predictive Online ECMS for λ0 = 3.01, kpSOC = 191.92, and
|dEend| < 100 Wh for an unlimited battery.

Road Type Driving Style dEend Wh
CO2Online EMCS

g/km

Extra Fuel Consumption
Global Optimum
(DP Solution) %

urban low aggressive 53.48 150.82 1.96
urban low average 37.63 138.05 1.38
urban low mild −7.52 124.14 0.27
urban high aggressive 36.96 122.32 1.33
urban high average −27.65 108.62 1.07
urban high mild 2.47 107.89 1.34
extra-urban aggressive 58.33 172.23 1.36
extra-urban average 99.34 139.63 2.32
extra-urban mild 73.53 135.00 2.90

highway aggressive 68.14 250.74 1.76
highway average 65.94 222.88 1.02
highway mild 43.5 206.10 0.85

With the aid of these preliminary investigations using an unlimited battery capacity,
basic knowledge regarding a suitable choice of λ0 and kpSOC was gained. In the following,
an optimal battery-specific parametrization of λ0 and kpSOC should be found. This also
takes into account factor interactions of both parameters.

Limited Battery Capacity
Figure 6 reveals the CO2 emissions for a 25 Wh battery for different parametrizations

of the Online ECMS over the selected lambda and the selected kpSOC. It is shown that
the CO2 emissions over all cycles depend almost exclusively on the selected λ0, which
is noticeable by the strip-like structure. The influence of kpSOC, on the other hand, is
almost negligible.

In contrast to the results of a 25 Wh battery (Figure 6), for the 100 Wh battery, a high
dependence of fuel consumption on both kpSOC and λ0 can be observed (Figure 7). It
can be seen that a higher kpSOC reduces the influence of λ0 on the achievable low fuel
consumption (dark blue region). On the other hand, kpSOC should not be chosen to be
too high, since this restricts hybrid operation. Nevertheless, for both analyzed battery
capacities, the lowest CO2 emissions are achieved with an equivalence factor of λ0 ≈ 3.

Moreover, as seen in Figure 8, for the 1000 Wh battery, the lowest consumptions are
also found around λ0 ≈ 3. Parametrizations in which CS cannot be observed are clearly indi-
cated by corresponding white areas. For these parameterizations, kpSOC is chosen to be too
low, so the boundary condition of ±100 Wh final SOC cannot be guaranteed. Consequently,
λ0 must be selected perfectly for each cycle in order to guarantee CS operation.
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Figure 6. Parameter studies for both kpSOC and λ0 for Online ECMS (25 Wh battery).
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Figure 8. Parameter studies for both kpSOC and λ0 for Online ECMS (1000 Wh battery).

Next, the battery-specific ideal parametrization of the Online ECMS is selected. This
parametrization is characterized by the smallest mean deviation from the global optimum
over all 12 cycles. Final parameters are listed in Table 4. Along the lines of the Offline
ECMS in Section 4.1, the increase in fuel consumption compared to the global optimum
(DP solution) decreases with a larger battery (3.41%–>0.88%).

Table 4. Final parameters appropriate selection of kpSOC and λ0 for the Online ECMS.

Battery Size Wh λ0 kpSOC

∅ Extra Fuel Consumption
Global Optimum
(DP Solution) %

25 2.90 161 3.41
100 2.90 121 1.23
1000 2.85 41 0.88

The cycle-specific results are presented in Figure 9. For the variant with 1000 Wh and
100 Wh battery, the deviation of the non-predictive Online ECMS from the DP solution
is max. 2%. For the 25 Wh battery, the fuel consumption is raised and shows a clear
downward trend over the cycles. An analysis of the SOC trajectories clearly indicates that
for cycle urban low-mild (+6.6%), the selected λ0 tends to be lower compared to the iteravely
determined one (λ0,Online = 2.90 vs. λ0,O f f line = 3.14). As a result, the SOC is permanently
at the lower SOC limit, which in turn significantly restricts the hybrid functionalities.
For the extra-urban aggressive cycle, on the other hand, the lambda value from the online
implementation is closer to that from the Offline ECMS (λ0,Online = 2.90 vs. λ0,O f f line = 3.06;
see Table 2). The small difference of λ0 = 3.06 and λ0 = 3.14 underlines the high sensitivity
of the ECMS with regard to the selected λ0.

Deviations λ0,Online to λ0,O f f line in the highway cycles are even significantly greater
with up to λ0,O f f line = 3.21. However, since the 48 V system can only achieve a very limited
reduction in consumption on the motorway due to the high power levels [24], even a not
ideally set Online ECMS only leads merely to a slight increase in fuel consumption.
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Figure 9. Extra fuel consumption of proposed non-predictive Online ECMS compared to the global
optimum (DP solution) regarding fuel consumption.

To sum up, with regard to online implementation on-board, a non-predictive imple-
mentation of an Online ECMS already approaches the global optimum when choosing a
large battery within powertrain design. However, if smaller batteries in the order of 25 Wh
or 100 Wh are considered, the fuel consumptions deviate significantly from the global
optimum. Thus, a high potential for improvement by incorporating predictive information
is expected. Therefore, it is demonstrated in the following, by the example of a 25 Wh
battery, how an additional reduction in consumption is possible by taking into account
predictive information.

4.3. Online ECMS (Predictive)

In the context of this work, the objective is to fulfill the premise of a predictive On-
line ECMS that is understood intuitively. While the optimizer from energy management
basically determines the best possible operation from a number of potential operating
modes [56], there are a few operating modes that are not further determined by the opti-
mizer and are therefore not part of the optimization problem. One of these is the recupera-
tion mode. As long as the component limits are not exceeded and there is residual capacity
in the battery, recuperation is carried out when possible. The exact amount of energy
that is recuperated can vary depending on the specific application. Further influences on
recuperation are neglected within the presented studies. This also includes the influence of
dynamic wheel load changes.

The developed approach of a predictive Online ECMS is based on the following idea:
using a simple longitudinal dynamics model, the resulting recuperation potential at the
wheel is determined from the predicted torque demand within the prediction horizon.
Neglecting the efficiency of the drivetrain, this results in a measure of the guaranteed
SOC increase within the prediction horizon. According to this predicted energy increase,
the value of the electrical energy (=the value of the equivalence factor λ) is preventively
lowered by the introduction of an additional term kppred · precu (Equation (10)). precu repre-
sents the recuperation potential in the prediction horizon in Wh; kppred is a proportionality
factor to be parameterized.

λ = λ0 − kpSOC · dSOC3 − kppred · precu (10)

As described, a lower λ means a reduction in the value of the electrical energy in the
ECMS. In consequence, the battery is rather discharged in advance. Especially in the case
of small batteries, the benefit of recuperation potential from the driving cycle is raised by
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less reaching the SOC limits in recuperation phases. Hereby, consequently, additional fuel
saving potentials can be achieved.

In the case of large batteries, the predictive Online ECMS has a similar effect. However,
for large batteries, individual recuperation phases rarely lead to reaching the limits. To
achieve savings potential, a reduction in the penalty of the SOC deviation kpSOC can
be realized without violating the defined boundary conditions for a robust CS operation
(|dEend|< 100 Wh). A reduction in the penalty of the SOC deviation kpSOC in turn results in
more degrees of freedom in the EMCS. Since the effects of a reduction in battery capacity are
the focus in this work, merely an additional term is added to the existing parametrization.
Further adjustments of the robust non-predictive implementation from the section above
are not carried out.

In the following, the influence of the prediction horizon is presented. Moreover,
an additional parameter is introduced, which specifies the minimum amount of energy
from which the recuperated energy is considered.

Prediction Horizon thorizon
Figure 10 shows the influences of a small (10 s) and a large (50 s) prediction horizon

illustrated on two sequences from a real driving cycle. In both cases, the SOC curve and
speed were plotted. Additionally, in the case on the left, the wheel torque was plotted.
In the case on the right, the torque of the combustion engine is shown.

As presented in Sequence 1 , a consideration of the recuperation potential with a time
horizon of 10 s at t = 770 s is limited. The battery is not discharged properly; in consequence,
SOCMax is already reached at an early point in time of the recuperation phase (red line).
In order to take into account a higher amount of recuperation potential from deceleration,
a larger prediction horizon of 50 s should be considered (blue dotted line in SOC). On the
other hand, regarding Sequence 2 , a prediction horizon of 50 s can also lead to recuperation
potentials being taken into account too early in the predictive Online ECMS. At t = 280 s,
for example, due to an insufficient state of charge resulting from the future recuperation
potential, the ICE is activated. In consequence, this leads to an increase in fuel consumption.

The wheel torque is not shown in Sequence 2. The decrease in speed at t = 290 s can be
seen on the lines of a negative wheel torque. It can be concluded that the selected prediction
horizon majorly influences the EMS.

Threshold Emin
In the following, the introduction of a threshold is discussed. Therefore, in Figure 11,

λ and SOC are plotted over time. On the left, only λ is plotted for both a predictive Online
ECMS and a non-predictive Online ECMS without a threshold. On the right, the same plot
is presented with a threshold. Additionally, for the case with the threshold, the SOC is
introduced on the right.

The consideration of the recuperation potential by introducing the term kppred · precu
(Equation (10)) leads to a continuous reduction in λ compared to the non-predictive Online
ECMS without further measures in Figure 11 (left). This is problematic, as explained in
the following: according to [49,56], in the case of time-invariant properties of the battery,
a constant λ leads to a global optimal control, when it is determined as described in
Section 3.2. The proposed non-predictive Online ECMS includes an average value for λ0
over the 12 real driving cycles. The resulting λ is further adjusted via kpSOC in the non-
predictive implementation to ensure CS operation in the Online ECMS. Although global
optimal operation cannot be reached using this non-predictive Online ECMS, the best
possible alignment to the λ0 values that lead to an optimal solution for the individual
cycles is achieved. In the case of a continuous reduction, λ deviates significantly from
the iteratively determined values. Due to the resulting always lower λ (=low value of
the electrical energy), the battery is always discharged sooner, which leads to an overall
significantly lower SOC trajectory. This results in an increase in fuel consumption due to
the restricted hybrid functionality. To avoid such continuous reduction in λ, a threshold is
introduced. A minimum amount of recuperable energy Emin is necessary for an intervention
in the lambda calculation (see Figure 11, middle plot). An intervention to λ should be only
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allowed if as much recuperation potential is expected that the additional deviation from
the averaged λ0 value is overcompensated by the fuel savings potential resulting from
kppred · precu. Overall, the resulting SOC trajectories remain quite similar; see Figure 11,
right. However, the influence of the predictive Online ECMS is clearly visible in the SOC
plot at t = 1600 s (see Figure 11, zoom view right plot).
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Finally, in the context of the procedure for the non-predictive Online ECMS, parameter
studies are performed. The boundaries of the three parameters to be examined are listed in
Table 5.

Table 5. Range of parameter studies of the predictive Online ECMS.

kppred/(-) thorizon/(s) Emin/(Wh)

0.001. . .0.029 10. . .100 5. . .100
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From these parameter studies, the ideal parameterization for the predictive Online
ECMS is specified. Results show a significant reduction potential compared to the non-
predictive Online ECMS; see Table 6. A robust parametrization results in up to 1.65%
saving potentials in the urban-low aggressive cycle. In individual cycles, a slight increase in
fuel consumption is observed for the robust parametrization. An average saving potential
of 0.4% can be expected when all saving potentials are equally weighted. In the case of
cycle-specific parametrization, the saving potentials rise up to 2.32% compared to the purely
non-predictive Online ECMS. On average, a savings potential of 0.7% can be expected here.
An individual parametrization of the ECMS must not be completely ruled out, but further
algorithms are necessary in order to be able to adapt the parametrization of the predictive
Online ECMS to on-board use.

A closer look at the columns on the right in Table 6 (–> individual parametrization)
indicates that λ0 = 2.90 of the Online ECMS for cycles urban low mild, urban high average,
urban high mild tends to be lower compared to the iteratively determined values (Table 2).
Since the battery SOC hardly reaches the upper SOC limit, the predictive Online ECMS
in the form described offers only very limited saving potentials, since only a reduction
in λ is possible. In other cycles, significantly greater savings effects are observed, as the
non-predictive Online ECMS often reaches SOCMax. The analyses reveal that cycles must
be checked individually to understand the resulting fuel saving potentials and take appro-
priate measures. It must be considered when recuperation potentials occur while the SOC
trajectory is at SOCmin and how to handle this. Many recuperation potentials can only be
taken into account to a limited extent. In other cycles, the non-existent savings potentials
simply result from relatively low recuperation potentials in the cycle overall. Moreover,
in the context of the non-predictive variant, in the case of high power requirements, there
is a limited influence of the hybrid functionality through the 48 V system overall (e.g., on
highway cycles). In this case, a predictive control will not lead to any measurable additional
fuel savings.

Consequently, in a follow-up work, a dependency of kppred on SOC is introduced.
Thus, if the battery state of charge at time tk is already at SOCmin, no additional reduction
in the value of the electrical energy (λ) is allowed. Furthermore, a dependence of kppred on
the occurrence of the recuperation potential in the predicted horizon can be implemented.
If the recuperation occurs early in the time horizon, a large influence is aimed at; if it occurs
late in the horizon, a small influence should be realized. Moreover, the predictive Online
ECMS algorithm is to be further developed by taking stationary phases or pure e-drive
phases into account. Here, the demand for the ICE is smaller than the minimum threshold
for activation of the ICE, which is why it is expected that the auxiliary consumers or traction
are supplied purely from the electrical energy storage.

In this section, additional findings are proposed with regard to an implementation
on-board. It is proven that in the case of choosing a small battery in powertrain design,
a predictive Online ECMS can achieve significant reduction potentials in fuel consumption
compared to a robust, non-predictive implementation. The suggested predictive Online
ECMS, which takes into consideration the future recuperation potential, offers savings
potentials of up to 2.32% when compared to the robust, non-predictive Online ECMS with
a 25 Wh battery.
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Table 6. Results of proposed Online ECMS with robust (left) as well as individual parametrization
(right) for a 25 Wh battery using λ0 = 2.90 and kpSOC = 161.

Robust Parametrization Individual Parametrization

kppred
thorizon

s
Emin
Wh %∗ kppred

thorizon
s

Emin
Wh %∗

Urban low aggressive 0.015 10 20 1.65 0.015 20 20 2.32
Urban low average 0.015 10 20 1.80 0.009 20 10 1.82
Urban low mild 0.015 10 20 −0.47 0.005 100 20 0.18
Urban high aggressive 0.015 10 20 0.54 0.015 10 20 0.54
Urban high average 0.015 10 20 −0.30 0.007 100 10 0.00
Urban high mild 0.015 10 20 −0.05 0.003 10 5 0.02
Extra-urban aggressive 0.015 10 20 0.14 0.029 10 20 0.24
Extra-urban average 0.015 10 20 0.38 0.025 10 5 0.90
Extra-urban mild 0.015 10 20 0.78 0.029 10 5 1.39
Highway aggressive 0.015 10 20 0.26 0.021 10 10 0.32
Highway average 0.015 10 20 0.18 0.019 10 5 0.31
Highway mild 0.015 10 20 0.06 0.019 20 5 0.18

* Reduction in fuel consumption compared to proposed robust Online ECMS.

5. Conclusions

A research study into both online and offline energy management strategies (EMS) con-
centrating on the dimensioning of Li-ion batteries in 48 V HEVs by using real driving cycles
is presented in this publication. This includes, in particular, a comparison of a robust non-
predictive Online ECMS to an intuitive predictive Online ECMS. Therefore, investigations
were performed on an SUV electrified by a 48 V hybrid system in P14 topology.

It is demonstrated how two widespread approaches from the field of offline strategies
perform for determining the global optimum as a function of battery size (capacity). It
can be seen that with the 100 Wh battery, there is up to +30% deviation from the global
optimum when applying an Offline ECMS compared to DP. For the battery of 25 Wh,
the deviation increases up to +50%. Thus, DP is identified as a suitable optimizer for
the proposed investigations. Using DP, it is presented that even a smaller battery of 25
or 100 Wh shows similar savings potentials in certain cycles as when using the 1000 Wh
battery. This motivates deeper investigations regarding reduced battery capacity.

Furthermore, in the field of online strategies , it is worked out how a predictive Online
ECMS can achieve additional savings compared to a purely robust, non-predictive imple-
mentation. Therefore, it is demonstrated in a first step that the proposed non-predictive
Online ECMS leads merely to an additional consumption of ≈1%, compared to the global
optimum in the case of a 1000 Wh battery. With a 25 Wh battery, the additional consumption
increases to ≈5%. It is concluded that with a large battery, the non-predictive variant of an
Online ECMS already closely approaches the global optimum. In other words, the potential
for improvement through predictive implementation is very limited for the 1000 Wh battery.
For a 25 Wh battery, however, it is revealed that the proposed predictive Online ECMS,
in which the future recuperation potential is taken into account, shows savings potentials
of up to 2.32% compared to the robust, non-predictive Online ECMS variant.

The predictive Online ECMS algorithm will be improved in the future by taking
into consideration stand phases or pure e-drive phases. It is also possible to make kppred
SOC-dependent or dependent on the exact appearance of the recuperation potential in the
predicted horizon.
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