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ABSTRACT The energy consumption caused by battery thermal management of electric vehicles can
be reduced using predictive control. A predictive controller needs a prediction model of the battery
temperature, for example for different battery cooling and heating thresholds. In the proposed method,
cross-domain data from simulation, vehicle fleet and weather stations were analyzed and processed
as training data for a Convolutional Neural Network (CNN). The CNN took data from previous road
segments and predictions for following road segments as input and predicted the change in battery
temperature as quantile sequences over a prediction horizon. Properties of the collected cross-domain
data sets were analyzed and considered during preprocessing, before 150 models were trained, of which
the best performing model was further analyzed. Point-forecast metrics and quantile-related metrics were
used for model comparison and evaluation. For example, the median prediction achieved a mean absolute
error (MAE) of 0.27 ◦C and the true values were below the median prediction in 47% of the test data.
Possible improvements of the method such as increasing data size, using more complex architectures as
well as optimizing the horizon sizes were discussed. In conclusion, the method was able to well predict
battery temperatures for different battery cooling thresholds.

INDEX TERMS Battery temperature, convolutional neural network, cross-domain data, machine learning,
quantile forecasting.

NOMENCLATURE
LATIN SYMBOLS
A Surface
c Heat capacity
d Distance
F Force
h Heat transfer coefficient
I Current
k Horizon size
L Loss
m Mass
n Number (quantity)

The review of this article was arranged by Associate Editor
Prof. Chi-Hua Chen.

P Power
p Occurrence
Q̇ Heat transfer rate
R Inner resistance
s Drive distance
T Temperature
t Time
U Voltage
v Velocity
y True value
ŷ Predicted value.

GREEK SYMBOLS
α Weight
δ Partial derivative
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� Difference
η Efficiency
μ Quantile weight
ψ Sharpness
σ Standard deviation, also related to as smooth-

ness (of quantile)
θ Slope angle.

SUBSCRIPTS
0.5 Indication for 0.5 quantile also known as

median
a Ambient
avg Average
b Battery
c Coolant
cons Consumer
cool,start Start of cooling
cwq Constrained weighted quantiles
d,abs Absolute difference
em Electric machine
fit Fitting
gen Generated
i Index i, related to horizon step
j Index j, related to quantile
μ Quantile weight
max Maximum
MSE Mean Squared Error
ocv Open circuit voltage
p Specific value (of heat capacity)
pb Pinball
q Quantile
res Total drive resistance
s Surrounding
tm Thermal management
total Total
vehicle Vehicle
ws Weather station.

SUPERSCRIPTS
q Quantile.

ABBREVIATIONS AND ACRONYMS
ADAM Adaptive Moment Estimation
BEV Battery Electric Vehicles
BTMS Battery Thermal Management System
CNN Convolutional Neural Network
CORS Crossover Rate Score
DOE Design of Experiments
DPMA Driving-Profile-Map-Attributes
DWD Deutscher Wetterdienst (German weather

service)
FFT Fast Fourier Transformation
MAE Mean Absolute Error
MIMO Multiple Input Multiple Output
ML Machine Learning

MSE Mean Squared Error
NN Neural Network
QL Qualifier
R2 Coefficient of Determination
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RUS Random Undersampling
SOC State of Charge
SOH State of Health
WS Winkler Score.

I. INTRODUCTION

BATTERY thermal management has a significant impact
on energy consumption thus on the range of battery

electric vehicles (BEV) [1]. An efficient battery thermal
management system (BTMS) has to find the optimal bal-
ance between low energy consumption and low impact of
the battery temperature Tb on battery aging and power
derating [2], [3]. For instance, higher battery temperatures
result in accelerated aging [4], [5]. A battery temperature
threshold for battery cooling is commonly used to avoid
high battery temperatures [6], [7], [8].
Battery cooling might not be necessary if the battery tem-

perature increase for the following drive horizon is not high
thus does not significantly increase aging (e.g., due to a low
power request). A shift to a higher battery cooling threshold
avoids cooling and leads to less energy consumption. For
example, a dynamic uphill drive can lead to an increase of
Tb, such that the battery cooling threshold Tb,cool,start would
be reached before reaching the peak of the mountain. When
driving downhill, even without active battery cooling, the
increase in Tb is reduced due to the lower power request.
In this case, battery cooling may be avoided already before
reaching the mountain peak if Tb will not reach signifi-
cant higher values without cooling. This can be implemented
using a predictive controller instead of fixed thresholds. Such
a controller needs the prediction of Tb for the following drive
horizon for different Tb,cool,start to choose the optimal value
for Tb,cool,start.
The prediction of Tb for model predictive control can

be done using a physics-based model, often combined with
empirically determined parameters [3], [7], [9], [10], [11],
[12], [13], [14]. Knowledge about the uncertainty of the
prediction of Tb is important due to the non-linearity of
the underlying physical processes and the uncertainty of the
forecast of the route ahead. Including information about
the prediction uncertainty can improve model predictive
control [7]. Model predictive control of a BTMS can be
extended by Neural Networks (NN), e.g., for the prediction
of vehicle speed as input [2]. NNs can also be applied as
soft sensors for State of Charge (SOC), State of Health
(SOH) and power loss estimation, to take into account
the complex modeling of battery cells and related heat
transfers [15], [16], [17]. The trained NN performed better
than the compared regression models [15]. The application of
Deep Learning using Convolutional Neural Networks (CNN)
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provided good performance for SOH estimation in [18].
Predictions of the Nusselt number of a BTMS using NNs
with more than one hidden layer also result in better accuracy
than using a single-layer NN [19].
The nonlinear behavior of BTMS motivates the usage of

NNs to directly predict the battery temperature Tb as part of
a predictive controller, as done by Liu and Zhang [20], [21].
They designed an air-based BTMS with different modes of
coolant flow (U-, Z- and J-type) and used simulations as
training data. Park and Kim [22] implemented NNs for sub-
systems of BTMS which are connected according to the
physical topology of the BTMS. Their NNs can be used for
different BTMS modes, which is important for predictive
control. Besides environmental quantities (e.g., speed), phys-
ical quantities of the BTMS components are used as inputs,
such as mass flow rate and compressor power. Park and
Kim [22] used measurements of driving profiles based on
two drive cycles as training data. The prediction of Tb using
NNs showed to be accurate and robust to external noise
in [23], [24], [25]. Predictive control using NNs is also
applied in other fields, such as power control of vehicles with
combustion engine [26], motion planning for autonomous
vehicles [27] and thermal or energy management of build-
ings [28], [29], [30], also using weather forecast data as
input for Reinforcement Learning [31]. An integration of
predictive BTMS (e.g., using NN for its predictions) into a
cloud-based system [32] may be advantageous.
The development of Machine Learning (ML) mod-

els can be improved using Big Data [33], [34]. More
(non-redundant) training data enable the development of
more complex data-driven NN architectures (e.g., Deep
Neural Networks) which can represent complex rela-
tions and lead to better performance [35], [36], [37].
Noise and redundancy in data require several steps
of data analysis and preprocessing, e.g., data clean-
ing and feature engineering [33], [38], [39]. According to
L’Heureux et al. [38] and Zheng [40], the value of a ML
model can be improved using heterogeneous data from dif-
ferent domains (also called cross-domain data by Zheng),
which requires suitable preprocessing and fusion.
An application of cross-domain data is the enrichment

of ML by simulations [41], [42]. Simulation data can be
used as training data to represent the causality of a par-
ticular behavior of the system. For instance, it can enrich
measurement-based training data of a vehicle fleet that lack
the desired system behavior, such as a novel variation of
battery cooling and heating thresholds, unless additional,
resource-expensive experiments are conducted. On the con-
trary, vehicle fleet data can provide a large amount of data
in the domain of model application with energy demand
under real driving conditions, instead of simulations based
on artificial drive profiles [43]. Furthermore, vehicle fleet
data can be joined by data from weather stations to improve
the predictive control of a BTMS [44], which takes into
account the impact of humidity and solar radiation on heat
transfer and thermal loads [45], [46].

Predicting a quantity for a following sequence can be
done by different types of NNs. Time-series properties and
forecasting methods using NNs are described in [47], [48],
[49], [50], [51]. Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN, e.g., Long-Short-Term-
Memory) and Transformer models are stated as suitable
for time-series prediction. CNNs can learn representations
of locally invariant patterns with features in different hier-
archical levels, which is important when dealing with
non-linear dependencies within a large amount of multivari-
ate, sequenced data [48], [52]. This cannot be achieved by
classic (regression) ML models. CNNs can be designed as
Multiple Input Multiple Output (MIMO) models, such that
they are able to model multi-step multi-horizon forecasts,
which provide better performance than comparable fore-
cast methods (e.g., single-step and recursive strategies) [53].
CNNs can be improved by multivariate or multi-scale
architectures [54], [55].
The practical value of a ML model (e.g., for predictive

control) can be extended by predicting uncertainties, for
example using probability distributions [50], [56]. In case
of uncertainties that do not follow a Gaussian distribution,
Quantile Regression NNs can be used to predict quan-
tiles [57]. Quantile Regression can be applied on time-series
forecasting with different types of NNs (including CNNs and
RNNs), and can be improved using a custom quantile loss
with trainable and constrained quantile weights (Lcwq) [58].
A combination of RNN with quantile regression for multi-
horizon forecasting is given in [59] and provides better
prediction intervals than the prediction of a Log-Gaussian
distribution. Replacing the RNN by a CNN further improved
the accuracy.
In this work, a method of developing CNNs with quantile

predictions of the battery temperature for different battery
cooling and heating thresholds is proposed. CNNs are used
instead of classic regression models because of their ability
to model non-linear physical behavior with locally invariant
patterns as multi-step multi-horizon prediction of quantiles,
which provide the prediction uncertainty for later usage in
a predictive control of BTMS. The loss function includes
Lcwq from [58] and the architecture provides two input chan-
nels, one for data from previous drive segments of the same
drive (history channel) and one for predictions of route and
weather (foresight channel). Training, validation and test data
are composed of cross-domain data. A simulation data set
provides the effect of different battery cooling and heating
thresholds. A vehicle fleet data set provides drives under
real road conditions and non-artificial profiles. It is joined
by public data from a weather database to take into account
the effect of humidity and radiation which are originally
not included in the vehicle fleet data. All data sets are ana-
lyzed and processed before model training and evaluation.
They consist of data points sampled by driven distance as
segments of 250 m. Models with different hyperparameters
are trained and compared using point-forecast and quantile-
related metrics. Predictions of the best performing model
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FIGURE 1. Machine Learning pipeline with cross-domain data as input.

on test data are further analyzed and discussed. Potentials
and limitations of the method are presented and an outlook
on improvements is given, such that the method can be fur-
ther optimized in future works to provide accurate prediction
models for a predictive control of BTMS.

II. METHOD
This chapter introduces the proposed method of developing
prediction models for the battery temperature of electric vehi-
cles. The steps of the method are structured in a pipeline
as shown in Fig. 1. The collection of data from different
domains is followed by the step of data understanding, in
which plausibility, redundancies and limitations of the col-
lected data are analyzed. Possible errors, implausibilities or
gaps in the collected data need to be identified and then
processed in the following step called data preprocessing.
This step includes the preparation of data, such as fea-
ture engineering and data balancing, for the next step of
model building and training. Trained models are tested and
evaluated, which can lead to several optimization iterations
to obtain a model that meets certain performance require-
ments necessary for its application. Each step will be further
explained in the remain of this chapter. Examples provide a
detailed view on the variation of cooling thresholds but can
be similarly related to heating thresholds.

A. CROSS-DOMAIN DATA COLLECTION
The need for using cross-domain data is given by individual
limitations of each data source. On the one hand, simulation
data can provide the effects of a novel variation of bat-
tery cooling and heating thresholds, which are not present
in vehicle fleet data. On the other hand, the available sim-
ulation model is simplified and therefore does not cover
all physical dependencies. In contrast to that, vehicle fleet
data provide customer-related drive profiles rather than arti-
ficial drive cycles, under real driving conditions and with all
external influences present in the data.

In preparation of data collection, the required physical
quantities need to be specified. For a change in battery
temperature Tb over distance s, the physical dependencies
are described by (1). They include the transfer rate of heat
generated by the battery Q̇b,gen, heat transferred to the sur-
roundings Q̇s and heat transferred from or to the thermal
management system Q̇tm. The change in Tb over s is also
dependent on time t, velocity v, battery mass mb and specific
heat capacity of the battery cp,b.

∂Tb(s)

∂s
≈ ∂Tb(t)

v · ∂t = Q̇b,gen + Q̇s + Q̇tm
v · mb · cp,b (1)

The set of physical quantities that describe the thermal
behavior of the battery can be obtained with the underlying
equations for each of the three heat generation and transfer
quantities Q̇ (see Appendix A). The quantities are recorded
on a distance base, both for simulation and vehicle fleet data.
Simulation data are obtained according to a Design of

Experiments (DOE). It varies in cooling and heating thresh-
olds, velocity and slope profile (e.g., from cycles), ambient
temperature and initial battery temperature. Instead of obtain-
ing a homogeneous variation, the focus of the DOE is on
combinations that lead to differences in system behavior
caused by battery cooling and heating thresholds.
Vehicle fleet data are collected and aggregated to distance-

based segments, before they are sent to the backend database.
There, the data set is joined by data from weather stations
such as humidity and radiation. It is a one-on-one join using
position, date and time between the vehicle and the closest
active weather station with a location below 1000 m above
sea level (to neglect weather stations located on mountains).

B. DATA UNDERSTANDING
Before using data sets for the training of ML models,
their suitability, added value and limitations need to be
understood. Average battery temperature and overall energy
consumption are compared between simulations with dif-
ferent cooling and heating thresholds. The shift of start
and end segment of battery cooling and heating is ana-
lyzed by cross-correlation of the battery temperature between
simulations. Redundancies between physical quantities are
identified using Pearson correlation. Inaccuracies due to
distance-based segmentation are analyzed.
Vehicle fleet data may contain data gaps or implausible

data due to sensor inaccuracies, sensor malfunctions or errors
in the data collection process. This can be identified by data
plausibility checks, for example considering value ranges or
value monotony. For prototype vehicles, an identification of
drives on a test track or test rig is done by position and
velocity profile to filter them because of their artificial pro-
files. A drive on a test rig is identified if the position does
not change or the velocity profile shows periodic behav-
ior, which is analyzed using Fast Fourier Transformation
(FFT). Occurrence distributions of values and rates of the
collected data, especially of the battery temperature, can be
used to understand the covered range available for the ML
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model. The analysis of Pearson correlation between signals
is also possible for vehicle data to identify dependencies and
possible redundancies.

C. DATA PREPROCESSING
Faulty and implausible data, which have been detected in
the step of data understanding, need to be addressed during
data preprocessing. Dependent on the physical quantity and
the number of faulty data points, available and correct values
are interpolated or placeholder values are used. Signals that
contain placeholder values are extended by a qualifier (QL)
to provide the information if a value is correct (QL = 1)
or a placeholder (QL = 0). Battery temperature, ambient
temperature and State of Charge (SOC) of the vehicle fleet
data are processed with a moving average of five segments
to smoothen the discrete value steps provided by the sensors.
The fusion of all collected data is conducted feature-based.

Vehicle fleet data and simulation data are appended, such
that the resulting table contains all segments of real and
simulated drives as rows. Its columns are non-redundant
physical quantities identified in the previous steps, including
variants from mathematical operations and energetic Driving-
Profile-Map-Attributes (DPMA) as defined and used in [60]
and [61]. Possible redundancies due to these variants are
checked using Pearson-correlation. The conducted feature
engineering directly provides physically relevant quantities
for ML training.
All segments are extended by following and previous val-

ues in a third dimension of the table, representing a history
and a foresight horizon. The foresight horizon contains both
foresight input data (e.g., estimated speed, slope, tempera-
ture) and the labels the model has to predict (i.e., the change
in battery temperature). Hence, in this work, the prediction
horizon equals the horizon of the foresight input data. An
additional qualifier provides the information if a horizon seg-
ment exceeds the start or end of the drive. Each feature is
centered and normalized into the range [−1, 1].
All drives are assigned group numbers for a split into

train, validation and test data. Data imbalance is addressed by
Random Undersampling (RUS) as in [62], but according to
an empirically defined occurrence curve. For training, every
second data row is disregarded since neighboring segments
contain a high overlap of history and forecast horizon data.
This undersampling reduces overfitting and training time.

D. MODEL BUILDING AND TRAINING
Model building and training incorporates the choice of
model architecture and training parameters. The considered
architecture is shown in Fig. 2. It comprises of two input
channels, one for each input horizon (history and foresight,
see Section II-C). Both input channels include hidden layers
prior to concatenation. After more hidden layers, one output
channel per quantile is added. Each quantile output chan-
nel predicts the change in battery temperature as multi-step
over a distance-based prediction horizon with respect to the
battery temperature at the position of the prediction. The

FIGURE 2. General architecture of the neural network. Repeating combinations of
layers are presented as blocks (shaded rectangles), with custom names and a
magnifier view for each block type. The layer names are given according to the used
TensorFlow/Keras package, with BatchNormalization and MaxPooling1D shortened to
BatchNorm and MaxPooling respectively. The number of Conv1D layers per
convolution block is given by N . Inputs and outputs are further discussed in
Section III-C, a complete list of input features is given in Appendix B.

choice and shape of inputs and outputs is further subject
of Section III-C. The model is built and trained using the
TensorFlow/Keras package in version 2.5.0 for Python.
To constrain the number of variants, the following archi-

tectural design choices are made: The choice of type and
number of hidden layers is fixed. The number of layers is
kept at a minimum considering the size of collected training
data (see Section III). It will be increased in future works
when more data is available. The number of nodes in the last
layer before the concatenate layer is kept low, since otherwise
the biggest share of trainable model parameters is located in
the concatenate layer. Batch normalization layers are placed
before dropout layers, as discussed in [63], [64], [65]. The
number of nodes of the hidden layers is chosen decreas-
ing from input to output channels. Hence, complex patterns
and correlations of input features can be captured by a high
number of nodes, whereas patterns of the predicted output
quantity (i.e., Tb) can be described with fewer nodes, which
results in a reduction of model parameters and training time
with comparable prediction performance [66]. The relation
of layer nodes is considered using a scaling factor, with a
varying base number of nodes for the model.
The loss function is added as part of a final, customized

layer. It is based on the work of Lopez-Martin et al. [58] who
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developed a quantile loss Lcwq (2) for time-series forecast-
ing with quantile regression. It uses the pinball loss Lpb (3)
between the predicted values ŷi for the quantiles qj and
the true values yi for a horizon size k and provides nμ
trainable quantile weights μj, including constraints which
minimize quantile-crossing and improve point- and probab-
lisitic forecasts. The constraints include softmax function and
symmetry around the 50 percent quantile q0.5 (median). A
fixed initialization and a fixed order, descending from median
to outer quantiles, are added in this work. This ensures that
outer quantiles do not get higher weights than inner quan-
tiles which can result in optimizing only part of the desired
quantile output as pointed out by [58] for the unconstrained
case. During training, the custom layer takes the true values
as an additional input.

Lcwq = 1

k
(
2nμ + 1

)
2nμ∑

j=0

k∑

i=1

μj · Lpb(i, j) (2)

Lpb(i, j) = max
[(
qj − 1

)(
yi − ŷi

qj
)
, qj

(
yi − ŷi

qj
)]

(3)

The loss function is extended in this work by the Mean
Squared Error (MSE) to enforce higher weight on the median
forecast, independent of the distribution of quantile weights.
The total loss Ltotal (4) contains an additional weight αMSE
as fixed hyperparameter.

Ltotal = (1 − αMSE) · Lcwq + αMSE

k
·

k∑

i=1

(
yi − ŷi

q0.5
)2 (4)

Training parameters are related to the choice of optimizer,
learning rate, mini-batch size and the patience value of early
stopping. Learning rate and mini-batch size are varied as
part of the model optimization as well. An overview of all
optimization parameters is given in Table 1. Properties of
input data, horizons and the general architecture are fixed
for this work. This includes the usage of the actual col-
lected data as forecast input data without noise which could
occur due to inaccuracies of forecasting e.g., velocity and
ambient temperature. The relation of nodes between layers is
also fixed, with a variable base number as described above.
A list of fixed parameters and their values is provided in
Appendix C.

E. MODEL TESTING AND EVALUATION
Any model resulting from the previous steps is tested and
evaluated. Test data used for this purpose consist of drives
of the vehicle fleet which have not been used as training
or validation data, and simulations of drive profiles dif-
ferent to the profiles used as training or validation data.
Evaluation is based on the following metrics: resulting total
loss (4), point-forecast metrics and quantile-related metrics.
Point-forecast metrics can be applied individually for each
quantile, and are most important for the evaluation of the
50 percent quantile (median) as point-forecast. They include
Mean Squared Error (MSE), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and the Coefficient of

TABLE 1. Design parameters for model building and training.

Determination (R2) between prediction and true values. A
prediction error distribution can be included for a detailed
analysis. The standard deviation σ of the partial derivative
of the prediction of each quantile qj with respect to the dis-
tance per segment δs (250 m) is used as a metric to describe
the smoothness σqj of the predictions (5).

Smoothness
(
qj

) = σqj = σ

(
δŷqj

δs

)
(5)

Quantile-related metrics describe the consistency of quantile
predictions (e.g., quantile-crossing, quantile-related proba-
bilities). The relative occurrence of values within quantile
p(qj) and quantile interval p(qj, 1 − qj) is calculated and
the absolute differences are taken as evaluation metrics
(denoted by subscript d, abs). The metrics Winkler Score
(WS), Crossover Rate Score (CORS) and Sharpness (denoted
as ψ) are based on the definition in [58].
All metrics are calculated per quantile or quantile interval.

The average metric values over all quantiles are taken for
a comparison of models. Better performance is expected
with lower values for each metric. For R2, only the median
prediction is taken for model comparison and higher values
are better, with 1.0 being the upper limit. Based on the total
loss and the evaluation metrics for predictions on the test
data set, models with variation in hyperparameters can be
compared and ranked. Dependent on the target application,
the best suitable model can be selected according to the rank-
ing. An exemplary analysis of predictions on test data can
be used to explore the possibilities and limitations of using
the model in target applications. The impact of different
thresholds on quantile predictions of the battery tempera-
ture needs to be examined for the model’s suitability for
predictive control.

416 VOLUME 3, 2022



FIGURE 3. Effect of battery cooling thresholds on overall energy consumption (a)
and on average battery temperature (b) in reference to a threshold of 25 ◦C.

III. RESULTS
This section provides the results of applying the proposed
method for a variation of battery cooling thresholds. It
is structured according to the steps given in the previous
section.

A. CROSS DOMAIN DATA COLLECTION
The simulation data set used as training and validation data
in this work consists of 844 simulations of drive profiles
with one hour drive duration for five different cooling thresh-
olds. Additional 16 simulations are used as test data. Vehicle
fleet data are collected from a prototype fleet of 16 vehicles
between March 2021 and October 2021. Drives that do not
contain battery temperature data (e.g., due to malfunctions of
the data collector script), with implausible mileage or with a
drive distance of less than 5 km are neglected. This results
in 1504 drives remaining for further analysis and processing
in the next steps. They are joined by publicly accessible data
from 147 weather stations of the German Weather Service
(DWD) [67].

B. DATA UNDERSTANDING
The simulation data set is obtained to cover the effect of dif-
ferent cooling thresholds for the battery on its temperature
and the overall energy consumption. This effect is shown
in Fig. 3. An increase of the cooling threshold in steps of
5 ◦C results in a higher, average battery temperature and a
lower energy consumption. Fig. 4 depicts cross-correlations
of the battery temperature between each threshold and the
reference threshold. It shows the tendency of the cooling
start shifting to later segments for higher cooling thresh-
olds. Both diagrams reveal that the simulation data cover
the effect of cooling thresholds on energy consumption and
battery temperature as required. A Pearson correlation of the
battery current Ib is given in Table 2 as an example. The
results show high correlations with other quantities, such
that the battery current is not considered as a feature. From
the listed quantities, only total driving torque and accelera-
tion pedal are kept as features. Inaccuracies in energy and

FIGURE 4. Effect of battery cooling thresholds on start of cooling represented by
cross-correlation (a) with segment lag (b) of Tb in reference to a threshold of 25 ◦C. A
negative lag means a later cooling start.

TABLE 2. Pearson-correlation of the battery current to other quantities (filtered for
correlations greater than 0.9).

FIGURE 5. Inaccuracies of overall energy consumption (a) and average battery
temperature (b) over battery cooling thresholds due to distance-based sampling.

battery temperature due to distance-based sampling of sim-
ulation data (from 0.2 Hz to 250 m segments) are shown in
Fig. 5. The observed inaccuracies are in acceptable ranges
and there are no significant differences between the different
cooling thresholds.
Data sets from the vehicle fleet are analyzed with a focus

on possible sensor signal inaccuracies and the occurrence
of changes in battery temperature over different distance
horizons. In the collected data, the battery temperature Tb is
available in discrete steps of 1 K. Fig. 6 shows a distribution
of the differences in Tb of segments with varying distance
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FIGURE 6. Envelope curves of the occurrence of differences in Tb between
segments with different distance in between, obtained from the collected vehicle fleet
data.

FIGURE 7. Distance between vehicle and closest weather station dws versus
difference in measured ambient temperature �Ta (6). Data with dws ≥ 74 km are
excluded in this diagram.

in between. An increasing distance results in a flatter and
wider distribution which means a higher occurrence of higher
absolute differences in Tb. An increase in battery temperature
occurs more often than a decrease, which is most notable
for distances of 10 km or 20 km.
The weather data set is analyzed on a subset of 1000

randomly selected data points (i.e., segments). The first and
last six segments of each drive are excluded from the random
draw since they could be located in parking garages where
different ambient temperatures might be measured. Since the
available weather stations are spread over the country and
not necessarily close to the moving vehicle, the distance
between the vehicle and the closest weather station dws is
taken into account. Segments with dws larger than 74 km are
located outside of Germany and excluded from the analysis,
because the closest German weather station is too far away.
A heat map of dws versus the difference in measured

ambient temperature �Ta (6) between vehicle (Ta,vehicle) and
weather station (Ta,ws) is given in Fig. 7. �Ta is in a range
of −2.1 ◦C to 3.5 ◦C in 95% of the segments. Higher differ-
ences can be related to height differences since most weather
stations are located on top of hills or smaller mountains
(below the previously defined threshold of 1000 m above
sea level). That is also the cause for Ta,vehicle on average

FIGURE 8. Occurrence of maximum absolute differences in Tb (7) over the forecast
horizon of the collected training data points (segments) and fitting curve as defined
in (8) with (9). High occurrence of discrete values (at 0 ◦C, 1 ◦C , 2 ◦C) is a result of
sensor discretization.

being larger than Ta,ws.

�Ta = Ta,vehicle − Ta,ws (6)

The step of understanding vehicle fleet data in combina-
tion with data from weather stations increases the awareness
of limitations and potential for the usage as training data. Its
results show a suitability of the collected data for a usage
in the following steps.

C. DATA PREPROCESSING
The step of data processing leads to three data sets (training,
validation and test) that are filtered and shaped such that
they can be directly used for model building, training and
evaluation. As a result, there are 1630 drives in the training
data set, 359 drives in the validation data set and 245 drives
in the test data set. The data sets are balanced according to a
fitting curve derived by the segment distribution of occurring
maximum differences �Tb,max (7) of the training data before
fitting. It takes into account that there is a high share of drives
with few or no change in battery temperature. The obtained
distribution and occurrence fitting curve are shown in Fig. 8.
The equation of the occurrence fitting curve pfit is based on
an exponential decay and defined by (8) and (9).

�Tb,max = max(Tb)− min(Tb) (7)

pfit
(
�Tb,max

) = 0.015 · exp(−0.25 ·�Tb,max
)

(8)

�Tb,max ≤ 5 ◦C (9)

For different horizon sizes, the fitting curve might need to
be adapted because of the dependence on the horizon size
(see Section III-B). After fitting the distribution by randomly
removing segments, the number of segments in training data
is reduced by 55.2% and the number of drives by 3.1%. This
means that the number of considered drives is not signifi-
cantly reduced, but the number of segments of these drives.
The test data contains 237 drives (with 9395 data points)
after balancing.
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Feature engineering and selection is based on physical
dependencies and redundancies identified by Pearson corre-
lation. As a result, all data sets include 43 history features
(17 foresight features) which are based on 19 (6) physical
quantities, 8 (4) features added by mathematical operations,
14 (5) qualifier signals and, both for history and foresight,
an upper battery cooling threshold Tb,cool,start and a lower
threshold (2 ◦C below Tb,cool,start, triggers end of cooling).
A list of all features is provided in Appendix B. The history
horizon size is determined to 5 km and the sizes of the fore-
sight input horizon and the prediction horizon are 20 km.
As a result, the history input shape is (20, 43) and the fore-
sight input shape is (80, 17). Dependent on the number of
quantiles nq (in this work 7), the output shape is (80, nq).

D. MODEL BUILDING AND TRAINING
The architecture described in Section II-D is built and trained
for varying hyperparameters. A list of fixed parameters is
included in Appendix C. In this work, the variation space is
defined as follows:

• Base number of layer nodes = [128, 192, 256]
• Dropout rate = [0.2, 0.3, 0.4]
• Loss weight αMSE = [0.01, 0.03, 0.1]
• Learning rate = [0.001, 0.0001, 0.00001]
• Mini-batch size = [32, 64, 128]

Due to training time, not all 243 possible combinations are
considered in this work. Instead, models are built and trained
for randomly chosen sets of these parameters. For each ran-
dom choice, building and training are repeated three times
which results in three different models with the same set.
This takes the randomization of the training process into
account. In total, 150 models are trained with 50 different
sets of hyperparameters, which covers 20.58% of all pos-
sible combinations. All resulting models are evaluated and
compared in the next step.

E. MODEL TESTING AND EVALUATION
After training, all models are tested with the collected test
data set. Results of the evaluation metrics are shown in
Appendix D. The worst performance is related to model
training stuck in a local minimum with a high mini-batch
size, small learning rate and a stop of training at an early
epoch (due to early stop callback). These models also have
a high sharpness value ψ , which reduces the practical value
of their predictions due to the large range between upper
and lower quantiles.
The set of hyperparameters and the resulting metrics of

the model with best performance (model number 149) is
included in Table 5 in Appendix D. It has a total loss on the
test data of 4.09 × 10−4. The performance plot of model
number 149 is given in Fig. 9. Training is stopped after 57
epochs when the early stop callback identifies no further
improvement of the validation error. The second best model
(model number 148) consists of the same hyperparameters,
which confirms their suitability. The third model trained with

FIGURE 9. Training and validation error during training of best performing model
149. The error of the model on test data after training is finished is included as a
dotted line.

TABLE 3. Metrics per quantile of the best performing model with units if applicable.
The first group relates to point-forecast metrics, the second group to quantile-related
metrics.

the same set of hyperparameters is on seventh place, with a
total loss of 4.34 × 10−4. Hence, it does not exhibit the best
possible performance of this set (compared to models 149
and 148), which shows the importance of repeating building
and training of models.
Besides the total loss, a comparison of other metrics

provides a deeper understanding of the performance. For
instance, model 9 (fourth place) shows a high CORS value
of 51.44 × 10−3, compared to 2.68 × 10−3 for model
149. Thus, its predictions exhibit unfavorable high quantile-
crossing despite the low total loss. Model 121 (third place)
shows better quantile-related metrics, but point-forecast met-
rics and sharpness are worse than for the other four models.
Choosing a model for application therefore requires an
evaluation based on all given metrics.
The best performing model 149 is further analyzed con-

cerning its point and quantile forecasts. Table 3 shows the
metrics for each quantile. The point-forecast results (MSE,
MAE and RMSE) are higher for outer quantiles (due to Lpb
and different weights in Lcwq). Upper quantiles (0.75, 0.90,
0.99) show better point-forecast results than their lower coun-
terparts. The table includes the achieved shares of true values
below the according quantile p(qj) or within a quantile
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FIGURE 10. Regression plot with the logarithmic number of median (0.50-quantile)
predictions of the best performing model, in comparison with the true change in
battery temperature for all test data and over all segments of the prediction horizon.
Outliers are marked with a rectangle and the identity line (dashed) indicates where
predictions equal the true value.

interval p(qj, 1 − qj). Good performance is achieved for
values close to the quantile definition, for example 47%
of all true values are lower than the predicted quantile 0.50
and 89% of all true values are in the quantile interval 0.98
(between quantile 0.99 and 0.01). Metrics related to quan-
tile intervals (p(qj, 1 − qj), Winkler Score and Sharpness ψ)
cannot be calculated for quantile 0.50 (median). They are
symmetric around the median, since they describe properties
of quantile intervals. Sharpness is lower for inner quantile
pairs according to their definition (range between upper and
lower quantile).
A heatmap of the differences between median (point)

predictions of model 149 and true values is shown in Fig. 10
as a regression plot. It shows a general fit between the
predictions and true values for any observed change in
battery temperature. Outliers of predictions occur in the area
marked with a rectangle, where a temperature change is over-
estimated to higher values. This is more acceptable than an
underestimation, because it leads to a more conservative con-
trol (i.e., lower cooling thresholds), considering higher aging
at high battery temperatures. A histogram of the differences
between median (point) predictions and true values is shown
in Fig. 11. In more than 90% of the segments the absolute
difference between median and true value is smaller than
1.1 ◦C, in more than 95% smaller than 1.5 ◦C. The detailed
analysis shows a general capability of the model to predict
the change in battery temperature.
In a further investigation, predictions of simulations with

different battery cooling thresholds are compared. Fig. 12
(a) and (b) depict an example of two predictions with the
same drive profile and boundary conditions but a shifted
cooling threshold. It shows the difference in Tb in relation
to Tb(0 km) at the position of the vehicle. The effect of the
cooling threshold is represented both in the actual results
and the predictions: In Fig. 12 (a) the activation of cooling
by the thermal management system after 9 km leads to a
decrease in Tb. In Fig. 12 (b) a higher cooling threshold
prevents battery cooling and Tb continues to increase instead.

FIGURE 11. Histogram and cumulated histogram of the occurrence of differences
between the quantile 0.5 (median) predictions and true values of Tb of the test data.

FIGURE 12. Prediction result of model 149 for a simulated profile with cooling
threshold 35 ◦C (a) and 40 ◦C (b), both with a battery temperature of 30 ◦C at the
current segment (0 km). A prediction after 7.5 km of the same profile with threshold
35 ◦C is shown in (c), where the end of drive is reached at 15 km. An examplary
prediction on vehicle fleet data is given by (d), with a battery temperature of 12 ◦C at
the current segment (0 km). The predictions are shown as shaded areas for quantile
intervals (0.01/0.99, 0.1/0.9 and 0.25/0.75 from outer to inner), with quantiles as their
boundaries from bottom (0.01) to top (0.99). The median is shown as a (black) thin line,
the correct value as a (red) thick line. Battery cooling is active between the (blue)
dashed lines.

This difference in prediction is an important ability in the
context of predictive thermal management, since it needs to
evaluate if Tb reaches unwanted values with different cooling
thresholds.
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The prediction in Fig. 12 (a) shows a greater discrepancy
after 6 km of the prediction horizon but follows the general
trend. Another prediction 7.5 km later is closer to the true
values, as shown in Fig. 12(c). Fig. 12(d) depicts a prediction
of a vehicle drive. In contrast to the discrete behavior of
the true, sensor-measured values, the predicted quantiles are
smoother but show the same trend.
The results in this section indicate the capability of the

method to develop models that can be used in a predictive
controller of the thermal management of the battery. Despite
that and considering the observed limitations, a further
optimization of the model needs to be investigated to achieve
better performance. Examples for further optimization are
given in the following section.

IV. DISCUSSION
The best performing model shows the method’s suitabil-
ity to develop a prediction model for a predictive BTMS.
The performance is achieved based on rather small data sets
from different domains, that are analyzed for a better under-
standing of limitations and preprocessed for the usage of
building, training and evaluating a prediction model. Besides
the potential of the method, there are several aspects related
to each method step that can be optimized.
The sizes of the collected data sets allow fast prototyp-

ing, but limit data balancing and the usage of more complex
model architectures. For example, deeper neural networks
require more training data [37]. This can be achieved by con-
ducting more simulations, collecting more vehicle fleet data
or by data augmentation. In this work, the effect of differ-
ent battery cooling thresholds is solely present in simulation
data. Therefore, predictions with the considered variation
of thresholds cannot be evaluated using vehicle fleet data.
Furthermore, when using more vehicle fleet data in future
work, more simulation data are needed to preserve the share
of training data with different thresholds.
The steps data understanding and preprocessing provided

insights in the suitability of the collected data as input data
for model training and testing. The impact of additional fea-
tures, such as joined weather data or engineered features,
needs to be further investigated. In deeper architectures, fea-
ture engineering might become less important [38], [68]. In
this work, foresight input data consist of actual, measured
values, such that the results shown represent a best case. In
an application, the model needs to handle inaccuracies intro-
duced by deviations from foresight input data. The sizes of
history horizon, input foresight horizon and prediction hori-
zon need to be analyzed according to the application. For
example, a shorter prediction horizon might lead to a higher
accuracy but a smaller scope for the usage in a predictive
control.
In future work, the model can be trained on larger data sets

and extended by multivariate convolutions, recurrent layers
and a deeper network. Optimizers can be used for a more
thorough optimization of hyperparameters, not only based
on a random choice of given sets. Continuous training in

the car after deployment can adapt the prediction model to
individual drivers and driving profiles.
Evaluation and ranking of the trained models was

addressed by metrics for different performance criteria.
Absolute differences between median predictions of the best
performing model and the true values smaller than 1.1 ◦C in
90% of the predictions are acceptable due to sensor discrete-
ness (1 ◦C resolution). Differences between prediction and
true values can be caused by simplifications of the simula-
tion model and by sensor inaccuracy of vehicle fleet data. In
future work, an optimized model needs to be compared with
alternative methods of time-series forecasting and tested in
a predictive control of a BTMS.

V. CONCLUSION
This work proposed a method for developing a prediction
model of the battery temperature for the later usage in
predictive control of battery thermal management systems
(BTMS). Its output was a convolutional neural network
(CNN) that predicted quantiles of the change in battery
temperature for different cooling thresholds as sequences
over a prediction horizon. The contribution of this work’s
method included an understanding and preprocessing of
cross-domain data from simulation and vehicle fleet for
the development of CNN. The CNN architecture took into
account both data from previous segments and data from
predictions for following segments (using route and weather
forecast) of the same drive. The practical value of the model
was increased by the prediction of quantiles which add the
model’s uncertainty as input for predictive control.
The best performing model out of 150 trained models

showed promising results. A mean absolute error (MAE) of
the median prediction of 0.27 ◦C and an absolute differ-
ence between prediction and true value smaller than 1.1 ◦C
in more than 90% of the segments showed the ability of
the model to produce acceptable point-forecasts. The differ-
ence between the theoretical probabilities of quantiles and
the achieved occurrence of true values within the quantiles
showed the capability of predictions including the model’s
uncertainty, with potential for improvement. For example,
47% of the true values were below the predicted 0.5 quan-
tile (median), and 93% of the true values were below the
0.99 quantile. A plausible effect of different cooling thresh-
olds on predictions pointed out the general suitability of
the model for a predictive BTMS, for instance to reduce
the energy consumption by avoiding battery cooling when a
lower power demand is expected.
The contributions of this work could be translated to the

development of models for other applications in which cross-
domain data for both a history and foresight channel would
be available. Examples could be a predictive thermal or
energy management of the battery of other vehicle types,
of other vehicle components (e.g., electric machines), of
buildings or for vehicle motion planning.
In future work, further optimization could target the size of

training data by collecting more fleet data and by conducting
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data augmentation. Based on the increased size of train-
ing data, the architecture could become more complex and
consist of more layers, including recurrent layers. The hori-
zon sizes of prediction and both input channels could be
optimized with regards to the application of predictive con-
trol. An optimized model with better performance should
be applied in predictive control of BTMS and compared to
other methods.

APPENDIX A
The following equations describe heat generation and heat
transfer quantities used in (1). Heat generation of the bat-
tery (10) includes its inner resistance Rb, current Ib, voltage
Ub and open circuit voltage Uocv [69]. Heat transfer from
or to the surroundings depends on the ambient temperature
Ta and a factor of combined heat transfer coefficient hs
and surface As (11). The heat transfer coefficient combines
convection and radiation which depends on further quanti-
ties [70, pp. 25–29]. Heat transfer caused by the thermal
management system depends on the coolant temperature Tc,
heat transfer coefficient htm and surface Atm (12). The coolant
temperature is controlled by cooling or heating demand from
the battery and cooling or heating power supply from the
thermal management system.

Q̇b,gen = RbI
2
b + Ib(Ub − Uocv)+ IbTb

∂Ub
∂Tb

(10)

Q̇s = hsAs(Tb − Ta) (11)

Q̇tm = htmAtm(Tb − Tc) (12)

The battery current Ib can be described by

Ib = Pb
Ub

= Pem + Pcons
Ub

, (13)

with the battery power Pb, the electric power of the electric
machine Pem (14) and subsidiary consumer power con-
sumption Pcons. Pem depends on driving resistance Fres and
efficiency ηem of the electric machine. The driving resistance
depends on velocity v, slope angle θ (or road height profile)
and further quantities [61].

Pem ≈ Fres(v2, v̇, θ, . . . , ) · v
ηem

. (14)

APPENDIX B
All input features that result from the step of understand-
ing and preprocessing are shown in Table 4, including their
qualifier QL if needed. It is marked with 1 if the feature is
used in the history or foresight channel and 0 otherwise.

APPENDIX C
Additional settings of parameters of the neural network in
this work:

• Optimizer: Adaptive Moment Estimation (ADAM)
• Maximum number of epochs: 200
• Early stopping patience: 20
• Quantiles: [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99]

TABLE 4. Input features of history and foresight channel.

• Initial quantile weights (after constrains and softmax):
[0.024, 0.064, 0.175, 0.475, 0.175, 0.064, 0.024]

• Horizon lengths: 20 (history), 80 (foresight and
prediction)

• Kernel and bias constraint: maxnorm with weight 2
• Activation function: “relu” (“linear” in final dense
layers)

• Conv1D kernel size: 3 (history), 15 (foresight), 25 and
15 (combined)

• MaxPooling poolsize: 2 (history), 3 (foresight and
combined)

• Scaling factor for number of nodes: 2 (Conv1D) and
0.5 (Dense) for history and foresight, 1.75 (Dense in

422 VOLUME 3, 2022



TABLE 5. Hyperparameters and quantile-averaged metrics of the best five models
with units if applicable. The best (lowest) value of each metric is marked in bold.

TABLE 6. Hyperparameters and quantile-averaged metrics of the worst five models
with units if applicable. The worst (highest) value of each metric is marked in bold.

Concatenate) and 0.25 (Dense in ChannelOut) for com-
bined. The number of nodes of the quantile output layers
equals the fixed horizon length of 80. All other layers
have a scaling factor of 1.

APPENDIX D
All models resulting from the loop with random choice of
hyperparameters are evaluated using the metrics described
in Section II-E and sorted by the total loss on the test data.
The set of hyperparameters and metrics of the best five
and worst five models are presented in Tables 5 and 6.
All metrics are calculated as the average of the metrics per
quantile.
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