KIT | KIT-Bibliothek | Impressum | Datenschutz

A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling

Schaufelberger, Matthias 1; Kühle, Reinald; Wachter, Andreas ORCID iD icon 1; Weichel, Frederic; Hagen, Niclas; Ringwald, Friedemann; Eisenmann, Urs; Hoffmann, Jürgen; Engel, Michael; Freudlsperger, Christian; Nahm, Werner 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Background: Craniosynostosis is a condition caused by the premature fusion of skull sutures, leading to irregular growth patterns of the head. Three-dimensional photogrammetry is a radiation-free alternative to the diagnosis using computed tomography. While statistical shape models have been proposed to quantify head shape, no shape-model-based classification approach has been presented yet. Methods: We present a classification pipeline that enables an automated diagnosis of three types of craniosynostosis. The pipeline is based on a statistical shape model built from photogrammetric surface scans. We made the model and pathology-specific submodels publicly available, making it the first publicly available craniosynostosis-related head model, as well as the first focusing on infants younger than 1.5 years. To the best of our knowledge, we performed the largest classification study for craniosynostosis to date. Results: Our classification approach yields an accuracy of 97.8 %, comparable to other state-of-the-art methods using both computed tomography scans and stereophotogrammetry. Regarding the statistical shape model, we demonstrate that our model performs similar to other statistical shape models of the human head. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149923
Veröffentlicht am 12.08.2022
Originalveröffentlichung
DOI: 10.3390/diagnostics12071516
Scopus
Zitationen: 11
Web of Science
Zitationen: 10
Dimensions
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2075-4418
KITopen-ID: 1000149923
Erschienen in Diagnostics
Verlag MDPI
Band 12
Heft 7
Seiten Art.-Nr.: 1516
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 21.06.2022
Schlagwörter classification; craniosynostosis; statistical shape model; template morphing; machine learning; stereophotogrammetry; shape analys
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page