
1.  Introduction
Syntaxial crack-seal veins (Ramsay, 1980) are first order structures in deep, hydrothermal and reactive envi-
ronments where fluids create and moderate permeability and reactions interact with deformation. The coupled 
processes in crack-seal veins are far from being understood, whereas the recent review of Laubach et al. (2019) 
points out some of the knowledge gaps.

Understanding of these environments is important in basic geoscience and applied studies: examples are the seismic 
cycle (Micklethwaite & Cox, 2006; Sibson et al., 1988), evolution of ore deposits (Cox, 2005), the production and 
injection of fluids from and into the subsurface (Almansour et al., 2020; Dockrill & Shipton, 2010; Knipe, 1993), 
and the evolution (and interaction) of permeability in fractured geothermal reservoirs (Berkowitz, 2002; Davison 
et  al.,  2013; Pyrak-Nolte et  al.,  1988; Pyrak-Nolte & Morris,  2000; Rutqvist,  2015; Watanabe et  al.,  2009; 
Yasuhara et al., 2006).

The vast majority of mineral veins grow epitaxially from both sides of the fracture (syntaxial veins, Passchier 
and Trouw (2005); Hilgers et al. (2001)) where the vein minerals are usually the same as those of the wall rocks 
(Becker et al., 2010; Bons et al., 2012). They record the history of effective stress (Bons et al., 2012), while 
chemical and isotopic analysis of vein cement and fluid inclusions allow inferences on the environmental condi-
tions, fluid flow and (advective or diffusive) mass transfer during vein formation (Becker et al., 2010; Boullier & 
Robert, 1992; Cox, 2007; Fisher & Brantley, 1992). Individual crack apertures are of the order of micrometers, 
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and sealing these forms hairline veins, while multi-crack-seal veins can be up to decimeter thick (Cox et al., 1987; 
Cox & Etheridge, 1983; Renard et al., 2005) and tens of meters long (Hilgers et al., 2004). A cracking event 
followed by widening creates local porosity and can increase matrix and fracture permeability, while during the 
sealing event the growing crystals (partly or fully) fill the crack and restore rock strength over time (Beutner & 
Diegel, 1985; Cox et al., 1987; Fisher et al., 1995; Labaume et al., 1991; Lee et al., 2015).

In natural systems (Figure 1) thick multi-crack-seal veins (Renard et al., 2005) are frequently found side by side 
with many thin hairline veins which suggest only one crack-seal cycle: these are named crack-seal and crack-jump 
veins respectively (Caputo & Hancock, 1998).

Besides the analysis of natural outcrops, core samples and laboratory experiments, numerical simulations have 
emerged in the last decades to provide a better understanding of vein formation processes (Laubach et al., 2019). 
Different numerical approaches were used for modelling the formation of syntaxial and antitaxial veins 
(Bons, 2001; Lander & Laubach, 2015) and fracture formation in subsurface environments (Paluszny et al., 2020; 
Virgo et al., 2014). However, including both processes of fracturing and sealing at the grain scale has been proven 
to be difficult. The phase-field method with its diffuse interface approach has been utilized in recent years for 
modelling fracture formation and crystal growth incorporating crystallographic anisotropies in open fractures in 
2D and 3D (Ankit et al., 2015; Wendler et al., 2016). We build on these achievements and computational studies 
to develop an integrated simulation procedure to depict both, cracking as well as sealing in a consecutive and 
recurring process.

Even though it is clear from previous studies (Holland & Urai, 2010; Virgo et al., 2014) that if a vein is stronger 
than the host rock, a new fracture will form in the host (crack-jump) and weak veins lead to localized crack-seal, 
this transition behavior at the grain scale has not been quantified so far.

Here we show that an incomplete sealing makes a vein weaker than the host rock and leads to localized fracturing, 
whereas complete sealing causes delocalized fracturing.

2.  Results
We present a novel application of the phase-field method, where both the fracture propagation and fracture seal-
ing are computed sequentially on grain scale. We incorporate variable apertures and sealing times and show that 
the two classes of crack-seal and crack-jump naturally emerge from our simulations. Details of our models with 
the numerical setup, the simulation procedure of fracture propagation, widening, and sealing with assumptions 
and supporting figures are given in the Supporting Information S1.

We first generate a microporous host rock comprised of quartz grains (Figure S1 in Supporting Information S1) 
to simulate extension fracturing which is common in deeply buried sandstones in sedimentary basins (Laubach 
et al., 2019). Here we compute the fracture propagation in an anisotropic rock structure. After the crack fully prop-
agates through the numerical rock (Figure 2a), the model is manually opened to a fracture aperture a, followed 
by epitaxial crystal growth on the quartz grains. The aperture a is chosen to be similar to the grain size and scale 
a by the host rock grain diameter Dm. Therefore, the length scales of our model is defined by Dm and for the time 
scale we have taken literature from Wendler et al., 2016. Crystal growth velocity of the rough (irrational) surfaces 
is initially fast (Figure 2a), and drops once facets have formed (Hartman and Perdok (1955)).

During crack sealing, favorably oriented crystal fragments (c-axis perpendicular to crack) bridge shortly after the 
sealing starts before euhedral termination of c-axis (Lander & Laubach, 2015) (Figure 2a). Crystals with a tilted 
c-axis reach their euhedral shape and reconnect with a growth velocity that depends on axial tilt and their grain 
size (Lander & Laubach, 2015). In regions where prism facets appear, sealing is slowest (Figure S2 in Supporting 
Information S1). After a user-defined sealing time increment ts a new crack is initiated by extending the model, 
and the crack-seal cycle is repeated 5 times with constant aperture a, allowing us to capture all essential elements 
of the process.

The models show that both thin, single-seal and thick, multi-crack seal veins (Figures 1, 2b and 2c) form, depend-
ing on the sealing time ts.

When ts is sufficiently large, the veins fully seal and the models produce delocalized single-seal vein bundles. 
Here (Figure 2c) the vein is stronger than the porous host rock because of the absence of pores so that the next 
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crack initiates in the host rock: crack-jump. When ts is shorter, multi-crack-seal veins form, because pores in 
the incompletely sealed vein form asperities (Figure  2b): the vein is weaker than the surroundings. In these 
multi-crack-seal veins the new crack event enlarges the remaining pore space in the vein. This process increases 
the time required to fully seal the crack and initiates the next crack in the host rock. As long as the local condi-
tions do not change, a re-fractured vein will have the tendency to remain in multi-crack-seal mode (Figure S3 

Figure 1.  (a) Micrograph under plane polarizers of thick and thin veins in quartz microstructure from Portugal near 
Carrapateria (Reber et al., 2010; Zulauf et al., 2011). (b) Outcrop from (a) under cross-polarized filter showing small crystals 
in thin veins and stretched crystals with radiator(-fin) structures and flat grain boundaries in thick veins.

Figure 2.  Formation of different vein types in representative out-crops: (a) First crack-seal event with cracking (left) and crystal growth in opened fracture. Crystals 
reconnect during sealing with their fractured fragment. The aperture is 0.8 Dm. (b) Multi-crack-seal and (c) single-seal veins form due to different sealing times. The 
numerical rock fractures either at host rock pores (when previous vein is sealed) or in partially open vein. Initial host rock is marked in light gray, the fluid in the vein in 
yellow. Intermediate growth stages are highlighted with black isolines. On right: Comparison of final numerical veins to natural veins from Figure 1.
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in Supporting Information S1). (In more detail, the remaining porosity in the vein does not need to be zero for 
delocalized cracking, this transition occurs at a critical remaining pore size p*).

The new microstructure models do not only reproduce the crack-seal and crack-jump processes, but also many 
other microstructures observed in syntaxial quartz veins. If the sealing time is even shorter than in the case 
of multi-crack-seal veins, a new fracturing event starts when only isolated crystal bridges are present (e.g., 
Lander & Laubach  (2015)), these have a high volumetric crystal growth rate, tending to stabilize the crystal 
bridges. In the multi-crack-seal vein models serrated grain boundaries form which are well known in nature as 
radiator(-fin) structures (in Cox et al. (1987); Bons et al. (2012); Ankit et al. (2015); Lander & Laubach (2015); 
Späth et  al.  (2022b)). These are formed by the different relative orientation of a crystal and its neighbors in 
relation to the location of the fracture (Figures 2b and 2c). The fractured crystal fragments are in growth compe-
tition with their neighboring crystals and each new crack-seal event produces a new radiator-fin or extends an 
already existing one. In multi-crack-seal veins the models produce wider quartz crystals by growth competition, 
while grains in delocalized crack-jump veins, have a grainsize similar to the host rock (Figure S3 in Supporting 
Information S1).

A simulation series with a smaller fracture aperture (half aperture used in Figure 2) shows the same vein types 
(thick veins vs. thin vein bundles) as before. As expected, the sealing time ts of multi-crack-sealing veins decreases 
for smaller apertures. In these simulations, the radiator(-fin) structures are less pronounced and growth competi-
tion is less strong for small apertures (Figure S5 in Supporting Information S1).

The next level of complexity in our models considers the variability of ts and a in natural systems. Because of 
the high computational cost, the consideration of theses quantities requires the following simplification. We run 
simulations of single-seal veins with different apertures a in a model which is sufficiently large to contain all 
grain orientations and which captures the variability in local sealing rates discussed above. In all these models we 
compute the remaining aperture as a function of time until complete sealing (Figure 3). This is used in probabil-
istic crack-seal vein simulations with the criterion found in our initial models: A new fracture will reactivate an 
existing vein when p > p*, otherwise the new fracture will form in the host rock (for details see Supporting Infor-
mation S1). This allows probabilistic simulations with a few thousand crack-seal events for selected distributions 
of ts and a. We assumed normal distributions for both parameters, with a cutoff at zero.

Results show three different domains. As in the full phase-field simulations we obtain bundles of single-seal veins 
when the sealing times are long (higher median value) and one thick multi-crack-seal vein when the sealing time 
is short (low median value; Figure 4). In the transition between these two domains, more complex combined grain 
structures can be observed. We (somewhat loosely) define a non-dimensional number R as the ratio between aver-
age opening velocity and average sealing velocity in a crack-seal system (Hilgers et al., 2001). When R » 1, the 
veins will be dominated by euhedral crystals growing in a free fluid, and for R > 1 multi-crack-seal veins form, 
(Figure 4). When R < 1 bundles of single-seal veins will be dominant. For values of R close to 1, both single-seal 
crack-jump veins and multi-crack seal veins will develop, producing the structures shown in Figure 4. The ratio 
between opened volume to the precipitated volume of one crack-seal event is denoted by χ and defines another 
non-dimensional microstructural quantity which provides a measure for classifying vein types. If χ = 1 the pore 

Figure 3.  Single-seal veins in larger setup: (a) Opened fracture. (b) Partially sealed vein. Inset shows remaining aperture, which is used for probabilistic simulations. 
Black lines indicate intermediate growth stages, host rock is highlighted in light gray. (c) Plots of remaining aperture in veins with different apertures.
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space in the open vein between two crack-seal events does not change, whereas for χ < 1 or χ > 1 the vein pore 
volume closes or increases respectively. For the thin vein bundles the average χ (and in each iteration) always 
equals one, for pure multi-crack-seal veins the average χ > 1 (Figure 4).

Additional simulations with an increasing background extension rate over time (Poissonian process like) show 
also the occurrence of both single-seal vein bundles and a thick multi-crack-seal vein (Figure 5).

3.  Discussion
Natural veins in sandstone show a wide range of aperture size distribution (Hooker et al., 2014) and can contain 
purer quartz (no pores, no other weak minerals) with bigger crystals than the host rock. Our results suggest that 
if sealing is complete in nature (R < 1) the stronger veins would result in ubiquitous crack-jump veins. When the 
sealing is incomplete the veins are weaker and get reactivated to form multi-crack-seal veins or crystal bridges. 
Moreover, the simulations indicate that common multi-crack-sealing creates a porous and permeable polycrystal-
line vein structure during the formation.

Even though we simplified the mechanics of fracture formation (Mode I loading) and opening (prescribed aper-
ture) and only performed simulations with a specific porous host rock composition and comparatively large 

Figure 4.  Probabilistic simulations: Three cases with normal distributed values for opening and sealing time increment. The median value of sealing time increment 
(red dotted line in top row) increases from left to right. On Left: Short sealing time results in thick vein (always reactivated). Vein stays porous (bottom row) and the 
average χ is greater than one. On Right: Long sealing time results in full vein sealing and new fractures form delocalized (χ = 1). Middle Column: Sealing time is in 
between and results in thick and thin veins. When χ > 1 vein opens. When χ < 1 vein closes.
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apertures (Hooker et al., 2014), we expect the same archetypes of veins (crack-seal vs. crack-jump) would still 
form in rocks with different porosities (e.g., less compacted sandstones) or smaller apertures, because the detected 
and quantified growth characteristics are the result of fundamental evolution mechanisms (localized vs. delocal-
ized cracking). Based on the findings, the computations allow the prediction that a more porous host rock tends to 
show more delocalized cracking for the same sealing time. Furthermore, additional parameters as temperatures, 
rock types, and fracture opening rates impact the evolution of these archetypes (Laubach et al., 2019).

In natural veins the crack-seal structure and the location of a new microfracture (Hooker et al., 2014, 2018) can 
depend on the host rock composition (Laubach et al., 2016). New fractures can initiate at inhomogeneities in the 
rock structure such as micropores, second phases or weak grain boundaries, especially in rocks with low porosity 
and many mechanical heterogeneities. We expect that a host rock with more inhomogeneities (e.g., more porous 
or more accessory minerals) shows an earlier tendency for delocalized fracturing, whereas in strong monominer-
alic sandstones with low porosity multi-crack-seal veins are more common.

In the present work we simplify a complex natural rock system to a microporous rock model and perform the 
simulations in 2D to reduce computational costs for the modelling of multiple crack-seal events in a polycrys-
talline rock system. A constant supersaturation over time during crystal growth and the same loading direction 
in all simulations are applied. With these assumptions, natural microstructures with serrated grain boundaries 
(radiators-fin structures) in thick veins and their transition to delocalized fracturing with thin vein bundles are 
recreated in the computations. However, an extension to 3D is necessary if information about permeability or 
fluid connectivity during the vein sealing is required (Kling et al., 2017; Spruženiece et al., 2021). Furthermore, 
the studies can be extended with complex loading conditions (e.g., shearing) or a time dependent varying super-
saturation once data from natural systems are available. We emphasize that the modelling methods as well as 

Figure 5.  Stress heterogeneities in the crust are modelled by applying a Poissonian-process like aperture (constant recurrence time with increasing background 
extension): Phase-field (top; 7 crack-seal events) and probabilistic approach (bottom, 100 events). (a and e) Opening increment follows Poisson process (constant 
sealing time increment). The sealing time is longer as in Figure 2 and chosen as 1.75xAverage time until full sealing (in a)-d)) and in (e–g) 2xTime for single-seal veins 
in Figure 4b) Delocalized cracking in first events. (c and d) Vein stays porous and fracturing remains localized. (f) Final vein distribution with single-seal veins and 
big multi-crack-seal vein. (g) Vein remains porous after the applied aperture (in d) is large enough. Continuously, the remaining aperture further increases due to the 
increasing applied aperture increment.
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the simulation framework Pace3D are directly capable to study 3D microstructure evolution and complex strain 
states. In contrast to natural systems we do not observe fragments of the host rock in our simulations. We suspect 
however they would occur with a more complex and time varying stress state and in models including more 
details of host rock microstructure.

Once a vein is mostly sealed the permeability and fluid connectivity reduces in the open fracture, if there is no 
matrix porosity to provide the supersaturated fluid. Therefore, the critical porosity in the vein for delocalized 
cracking should be reached more slowly in natural systems and would make the occurrence of thin vein bundles 
even more unfavorable.

We utilize a comparatively small polycrystalline rock system for simulating multiple crack-seal events in order 
to enable simulation studies at reasonable computing times. In these models the sealing time which is required 
for delocalized cracking is variable, since the grain structure may not contain slow growing regions and therefore 
results are different for the same ts and a (Figure S3 in Supporting Information S1). In larger, more representative 
domains, where slow growing grains are always present (responsible for localized cracking) we expect a sharper 
transition from localized to delocalized cracking as in the probabilistic simulations.

We generalize the model results for probabilistic simulations in the domain between the end members, and show 
how systems of many microveins with a few thick crack-seal veins emerge. The probabilistic simulations extend 
the work of Clark et al. (1995) and Hooker et al. (2012). In the work of Clark et al. (1995) veins are chosen to be 
reactivated randomly and not by a mechanistic reasoned criterion, whereas in the work of Hooker et al. (2012) 
veins are reactivated on diagenetic and mechanical considerations. Based on the observations of the presented 
full phase-field simulations we include a mechanical criterion for the reactivation of a vein (based on the poros-
ity) and obtain (similarly as Clark et al. (1995) and Hooker et al. (2012)) a power-law distribution between the 
number of veins and their thickness, when normally distributed values for aperture and sealing time increments 
are applied. Even though we chose a normal distribution for the two variables, we anticipate that when other 
probability distributions are chosen (e.g., power law) thick and thin vein bundles would still form.

The probabilistic vein simulations use a data set, generated from simulations with only one crack-seal event. When 
a vein fractures multiple times, unfavorably oriented grains can be overgrown and the growth competition leads to 
faster sealing. However, as a is small in our simulations, we infer that this does not significantly affect our results.

In this study we capture the elementary step of the crack-seal process at the grain scale. Our coupled models 
explain why a few thick crack-seal and many single-seal veins may form in the same rock in nature by quantifying 
the feedback between fracturing and sealing processes. The models reproduce many aspects of syntaxial veins, 
like radiator(-fin) structures and growth competition and propose that the ubiquitous multi-crack-seal veins in 
sandstones deformed in hydrothermal systems retain some porosity and permeability during their evolution. We 
expect that the conclusions are also applicable to vein development in many other rock types which show syntax-
ial vein development. The models can be extended to include second phase minerals and to simulate fluid flow 
in 3D, providing a platform for further study (e.g., mechanical, hydraulic, residual aperture (fracture collapse), 
fabric orientation (Jiang et al., 2020), mineralization-distribution (Lang et al., 2015, 2016) affecting permeability 
and stiffness (Pyrak-Nolte & Nolte, 2016)).

Data Availability Statement
The software package Pace3D version 2.5.1 was used for the generation of the simulation data sets. The soft-
ware license can be purchased at Steinbeis Network (www.steinbeis.de) in the management of Britta Nestler and 
Michael Selzer under the subject area “Material Simulation and Process Optimization.” The complete data set, on 
which this research article is based, can be accessed in the open-access repository at Späth et al. (2022a) (https://
doi.org/10.5281/zenodo.6337652).
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