
DOUBLE BUBBLES WITH HIGH CONSTANT MEAN CURVATURES IN

RIEMANNIAN MANIFOLDS

GIANMICHELE DI MATTEO, ANDREA MALCHIODI

Abstract. We obtain existence of double bubbles of large and constant mean curvatures in Riemannian

manifolds. These arise as perturbations of geodesic standard double bubbles centered at critical points
of the ambient scalar curvature and aligned along eigen-vectors of the ambient Ricci tensor. We also

obtain general multiplicity results via Lusternik-Schnirelman theory, and extra ones in case of double

bubbles whose opposite boundaries have the same mean curvature.
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1. Introduction

The study of isoperimetric problems in different contexts has always been of great relevance both from
the theoretical point of view, as well as from that of applications. On one hand, it has been one of the driv-
ing forces for the existence and regularity theory of minimal and constant mean curvature hypersurfaces,
see e.g. [2]. On the other, together with some variants, such problems are significant in different models
involving interfaces, see e.g. [11]. In this paper we will consider closed smooth Riemannian manifolds
(Mm+1, g), that is compact without boundary, both when recalling contributions from the literature and
when stating our results, even though some of them could extend to other settings, such as the complete
case or that of Euclidean domains: we will spend some extra words on these aspects later on.

Existence of isoperimetric regions in compact manifolds, within the class of sets with finite perimeter,
is rather standard to achieve. Their regularity is a deeper question, in parallel with that of minimal
surfaces, and it is well-known to generally hold only in dimension m < 7, see e.g. [24]. There are though
special situations in which regularity is guaranteed in all dimensions, as for example for isoperimetric
sets with a small volume constraint - which might model droplets in a non-homogeneous environment
- as shown in [26] using Heintze-Karcher’s inequality and Allard’s regularity theorem. In such a case,
isoperimetric sets are known to be smooth graphs over some geodesic balls of small radii in the manifold:
in [9] and [27] the scalar curvature of (M, g) is shown to play a role both in terms of the isoperimetric
constant, as well as for the localization of extremal sets (see also [10] for the case of manifolds with
boundary).

In the latter examples, critical domains have boundaries with large and constant mean curvature.
A complementary aspect of the problem is to construct sets with such properties since, apart from
isoperimetric sets, they might include local minima or unstable critical points of the area functional under
a small volume constraint. Their existence has been proved in e.g. [39] and [28] using the characterization
of Jacobi’s operator on spheres and a finite-dimensional reduction of the problem (see also [13], [14] for
Willmore-type surfaces of small area). One might indeed look for candidate solutions as pseudo-bubbles -
using the terminology from [27] - that solve the problem up to some Lagrange multiplier. In a final step,
one then adjusts their center so that the Lagrange multipliers vanish as well: this is possible for example
near non-degenerate critical points of the scalar curvature of (M, g).

In this paper we are concerned with counterparts of the latter results for double-bubbles in manifolds.
These are among the simplest cases of clusters, namely partitions of the domain under interest into sets
with prescribed volumes and so that the total measure of the boundaries is minimal or extremal in some
sense. Such models are important in applications, as they describe for example foams, liquid crystals,
magnetic domains and biological cells. We refer the reader to the two books [25] and [15] for a more
detailed introduction and for some relevant existence and regularity results.
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Double bubbles (also referred to as standard double bubbles) in the Euclidean space Rm+1 consist of
two attached chambers with three boundary components that are caps of m-dimensional spheres, one of
which is common to both chambers. In [16], [29] and [30], as it was conjectured for some time, it was
shown that these are solutions of the isoperimetric problem for two-chambers clusters. As it happened for
isoperimetric sets of small volumes in manifolds, it is then natural to look for bubble clusters of large and
constant (in each boundary component) mean curvature. However, differently from the single-chamber
case, their characterization should be given by their orientation other than their location in the manifold
(see also [18], [19] for related issues concerning non-spherical Willmore surfaces of small area). Our first
result answers precisely this question under generic local assumptions on the metric. Some parts of the
statement are not completely precise, but the meaning will be clear from the arguments of the proof.

Theorem 1.1. Given a closed Riemannian manifold (Mm+1, G) and three numbers H0 ≥ 0, H1, H2 > 0
such that H1 = H0 + H2, let p ∈ M be a non-degenerate critical point of the scalar curvature, and let
µ be an eigenvalue of Ricp. Then there exists a constant ρ0 > 0 such that the following holds: for any
scale ρ ∈ (0, ρ0) there exists a smooth double bubble, whose sheets have constant mean curvatures ρ−1H0,
ρ−1H1 and ρ−1H2 and meet pairwise at 120◦-degrees. Such a double-bubble is contained in a geodesic
ball with radius of order ρ centered at p, and it is aligned along a direction in the eigenspace of Ricp
corresponding to the eigenvalue µ.

Remark 1.2. We decided to work in a Riemannian setting, but a completely similar result would hold
for Euclidean domains in presence of inhomogeneous and/or non-isotropic conditions, as it might result
in applications, see the above-mentioned references. Also, instead of prescribing large values of the mean
curvatures of the boundary components, we could have chosen to fix small boundary areas or volumes
enclosed by the chambers.

Remark 1.3. If the eigenvalue µ in Theorem 1.1 is simple, then there are exactly two solutions as in
the statement if H0 6= 0 and exacly one if H0 = 0, see the final comments in the proof of the theorem.

The abstract strategy to prove the above result follows conceptually the approach for the construction
of small CMC spheres, relying on a finite-dimensional reduction. On the other hand, we face several
crucial differences. First of all, expansions of geometric quantities like volumes and perimeters for the
perturbed surfaces are technically more involved due to the presence of tangential components in the
perturbation: these are needed to deal with the structure of piecewise-smooth hypersurfaces, and more
precisely to patch together the three smooth components, which should all satisfy a given PDE under
suitable coupled boundary conditions.

We begin by constructing approximate solutions to our problem, consisting in mapping small standard
double bubbles in Euclidean space into the manifold via the exponential map from a given point. This
process will of course affect the CMC condition on each component, but yet an asymptotic expansion
in terms of the ambient curvature and their orientation can be worked out. The next step consists
in deforming the approximate solutions into the so-called pseudo-double bubbles. By this we mean a
family of solutions to the given problem up to some Lagrange multipliers. These appear by the fact
that standard double-bubbles are degenerate minima of the two-chambers isoperimetric problem, since
they can be arbitrarily translated or rotated. As it was recently proved in [8] though, such a degeneracy
is the minimal possible, which implies that one can solve the problem when, roughly, one restricts to
the orthogonal complement of Euclidean isometries within the space of variations. In working out this
procedure, which relies on the contraction mapping theorem, we need to couple normal variations to
tangential ones, in order to keep the structure of the triple points at the common boundary. For this
step in particular, a careful choice of the tangential components is needed in order to achieve given
boundary conditions and norm estimates at the same time. We opt for imposing additional fictitious
conditions on the tangential components, by prescribing their divergence, so that we are led to consider
an overdetermined non-elliptic problem; this is shown to admit a unique solution employing methods
from Hodge theory, originated earlier in the study of problems from fluid dynamics, see [1, 12,33].

The last crucial step in the proof consists in adjusting the parameters - centering and orientation
- when choosing approximate solutions in order to fully solve the problem, including the degenerate
directions. For this goal we exploit the variational character of the problem, as in [4], showing the
existence of a reduced energy functional Φρ, defined on the unit tangent bundle of M , whose critical
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points yield solutions to our problem. An accurate expansion of this quantity, that depends on the fixed
point argument in the previous step and is defined for (p,S) ∈ UTM , the unit tangent bundle of M ,
yields the following result for ρ sufficiently small

(1.1) ‖Φρ(p,S)− Sc(p)A(m,H0, H1, H2)− Ric(S,S)B(m,H0, H1, H2)‖Ck(UTM) ≤ ckρ,
where A(m,H0, H1, H2), B(m,H0, H1, H2) are positive constants and ck > 0 depends on the given order
of regularity k. By extremizing the above quantity with respect to the parameters p and S, we finally
obtain Theorem 1.1.

The above expansion (1.1) allows to obtain multiplicity results as well, both assuming the existence of
a non-degenerate critical point of the scalar curvature, or with no assumptions at all. Our next result is
stated as follows, where cat stands for the Lusternik-Schnirelman category, see e.g. Chapter 9 in [5].

Theorem 1.4. Given a compact Riemannian manifold (Mm+1, G) and three numbers H0, H1, H2 > 0
such that H1 = H0 + H2, there exists a constant ρ0 > 0 such that the following holds. For any scale
ρ ∈ (0, ρ0), there exist at least cat(UTM) m-dimensional smooth double bubbles, whose sheets have
constant mean curvatures ρ−1H0, ρ−1H1, ρ−1H2 and mutually meet at 120◦-degrees with each other.

Moreover, if p and µ are as in Theorem 1.1 and if H1 6= H2, there are at least two CMC double-bubbles
as above oriented along a direction in the eigenspace of Ricp corresponding to the eigenvalue µ.

Remark 1.5. In the papers [31] and [32] the existence of configurations in the form of double bubbles
minimizing a free energy in a ternary system was proved in two-dimensional domains, even though
a precise characterization of minimizers is not given in terms of their location and orientation. Our
expansions, which hold in general dimension, also can determine such properties in generic cases.

Other multiplicity results can be found when the equalities H0 = 0 and H1 = H2 are imposed. Under
these conditions, we obtain

(1.2) Φρ(p,S) = Φρ(p,−S) for all p ∈M and S ∈ UTpM,

which means that Φρ is well-defined on the projective tangent bundle of M , denoted by PTM , where
opposite points in UTM with the same base are identified. Moreover, the following expansion holds

(1.3) ‖Φρ(p,S)− Sc(p)Asym(m)− Ric(S,S)Bsym(m)‖Ck(PTM) ≤ ckρ2,

for some positive constants Asym(m), Bsym(m) and ck. Altogether, by some general variational principles,
see e.g. Chapter 10 in [5], symmetries lead to the existence of further critical points.

Theorem 1.6. Given a compact Riemannian manifold (Mm+1, G) and a positive number H > 0, there
exists a constant ρ1 > 0 such that the following holds. For any scale ρ ∈ (0, ρ1), there exist at least
cat(PTM) symmetric double bubbles, whose sheets have constant mean curvatures 0 and ρ−1H, and
whose sheets meet pairwise at 120◦-degrees.

If p and µ are as in Theorem 1.1, with µ of multiplicity j > 1, there are at least j CMC double-bubbles
as above oriented along a direction in the eigenspace of Ricp corresponding to the eigenvalue µ.

We remark that since UTM , PTM are fiber bundles with topologically non-trivial fibers, they might
have a greater Lusternik-Schnirelman category than M , and in any case not smaller than that of M .

Remark 1.7. For parallelizable manifolds M , which is always the case in three dimensions by Stiefel’s
theorem (see [21]), the tangent bundle is trivial and therefore UTM 'M × Sm and PTM 'M × RPm.
For such manifolds Ganea’s conjecture from 1971 stated that products of the type M ×Sm have category
larger than that of M . While this fact is true when the dimension of M is no more than five (see [37]),
it was in general disproved in [20], with a minimum-dimensional example in [35].

In any case it is easy to see that cat(PTM) ≥ cat(UTM) ≥ cat(M).

The plan of the paper is the following. In Section 2 we collect some known properties of Euclidean
standard double bubbles, while in Section 3 we perform asymptotic expansions of areas and volumes
of their exponential maps over the manifold M . Section 4 is devoted to the perturbation, via normal
and tangential variations, of the above surfaces and to their effects on the variations of first and second
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fundamental forms, as well as of their mean curvature. In Section 5 we construct pseudo-bubbles via a
fixed point argument, while finally in Section 6 we work out the variational strategy to find existence and
multiplicity of critical points, relying also on the expansion of the reduced functional Φρ.
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2. Preliminary Results and Notation

In this section we recall a few ingredients from the theory of double bubbles, with particular emphasis
on the Euclidean space case, which will be extensively used throughout the paper.

Following [16], we define a double bubble in an ambient Riemannian manifold (Mm+1, G) as the union
of the topological boundaries of two disjoint regions B1 and B2 with respective volumes V1 and V2.
We will always assume V1 ≤ V2, and call a double bubble symmetric if V1 = V2 and asymmetric if
V1 < V2. A piecewise smooth hypersurface Σ ⊂ M is a smooth double bubble if it consists of three
compact, m−dimensional, smooth and orientable pieces Σ0, Σ1 and Σ2, meeting along a common (m−
1)−dimensional boundary Γ, and such that Σ1 ∪Σ0 = ∂B1 and Σ2 ∪Σ0 = ∂B2. The unit normal vector
field along Σ, denoted by N , is chosen so that it points into B1 along ∂B1, and into B2 along Σ2. The
associated second fundamental form and mean curvature, with our convention the trace of the second
fundamental form, are denoted respectively by h and H. At points in Γ these objects are not uniquely
defined, but their value depends on the sheet used to compute them instead; we will therefore denote
Nσ, hσ and Hσ their restrictions to the sheet Σσ, where σ = 0, 1, 2.

Let us now focus on the case in which the ambient manifold is the Euclidean space Rm+1. We call a
smooth double bubble Σ a standard double bubble if Σσ is a spherical cap for σ = 1, or 2, and Σ0 is a
spherical cap or a flat ball in the asymmetric and symmetric case respectively, and the sheets Σσ meet
in an equi-angular way (that is at 120◦-degrees) along an (m − 1)−dimensional sphere Γ. According to
our convention on the unitary normal vectors Nσ, we must have N1 = N0 + N2. For any point p ∈ Γ,
we can decompose the tangent space TpΣ

σ orthogonally as TpΣ
σ = TpΓ

⊕
Span(νσ) where νσ ∈ TpΣσ

is the unitary normal vector to Γ at p pointing inward Σσ. The condition on the sheets meeting in an
equi-angular way can now be written as ν0 + ν1 + ν2 = 0.

We will call a standard double bubble Σ centered if Γ is centered at the origin 0 ∈ Rm+1. We will
denote by S the unitary normal vector to the hyper-plane containing Γ and pointing towards B1, and
say that Σ is aligned along S. When calling S the symmetry axis of Σ, we are identifying S with its
linear span; clearly, Σ is rotationally symmetric along its symmetry axis S. A centered standard double
bubble is uniquely determined by its alignment vector S and the two volumes V1 and V2, or the radii Rσ
for σ = 0, 1, 2.

Consider now a centered asymmetric standard double bubble Σ with symmetry axis S. Let φσ be the
angle between the pole of the cap of sphere Σσ and Γ, and Rσ be its radius Σσ ⊂ S(Cσ, Rσ). Then, as it
can be easily seen from volume-constrained variations, the (constant mean) curvatures Hσ = m(Rσ)−1

of the different pieces verify the balance equation H1 = H0 + H2. We adopt the convention that the
mean curvature of a hyper-surface is given by the trace of its second fundamental form. Moreover, we
can write the centers Cσ as Cσ = −Rσ cos(φσ)S, and we have the geometric equations

(2.1) R0 sin(φ0) = R1 sin(φ1) = R2 sin(φ2), φ0 + φ1 = 2
3π, φ1 + φ2 = 4

3π, φ2 + φ0 = 2
3π.

For a symmetric standard double bubble the situation becomes even easier. Define φσ and Rσ as above
for σ = 1, 2, whereas define R0 to be the radius of the m−dimensional ball Σ0. Then R1 = R2 =: R,

R0 =
√

3
2 R, the mean curvatures satisfy the balance equations H1 = H2 = mR−1 and H0 = 0, the centers

can be written as C1 = −C2 = R
2 S and finally we obtain the geometric equation φ1 = φ2 = 2

3π.
Finally, we denote by gσ and hσ respectively the metric and the second fundamental form on Σσ

induced by the embedding. Note that h is either null or the constant multiple of the identity R−1 · Id.
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Figure 1. A standard double bubble enclosing the regions B1 (orange) and B2 (violet)
and a symmetric one

3. Normal Coordinates and Geodesic Double Bubbles

In this section we introduce the concept of geodesic double bubble in a Riemannian manifold, inspired
by the standard definition of geodesic ball, and then derive some expansions for its area and enclosed
volumes. In order to do so, we fix a point p in an (m + 1)−dimensional Riemannian manifold (M,G),
and introduce normal coordinates on a neighbourhood U of p: we consider an orthonormal basis {Eµ},
µ = 1, ...,m+1, of TpM , and set F : Rm+1 −→M by F (x) := Expp(xµEµ), where Expp is the exponential
map of (M,G) at p and summation on repeated indices is understood. This choice induces coordinate
vector fields Xµ = F∗(∂xµ). Notice that Gµ,ν := G(Xµ, Xν) = δµ,ν at p, thus we will always endow TpM
with the Euclidean scalar product, denoted by 〈·, ·〉. The importance of these coordinates relies in the
following classical result (see [38]).

Proposition 3.1. At the point q = F (x), the metric the following expansion holds for µ, ν = 1, ...,m+ 1

(3.1) G(Xµ, Xν) = δµ,ν + 1
3 〈Rp(Ξ, Eµ)Ξ, Eν〉+ 1

6 〈∇ΞRp(Ξ, Eµ)Ξ, Eν〉+O(|x|4),

where Rp is the Riemann curvature tensor at the point p, and Ξ = xµEµ ∈ TpM .

We adopt the following convention on O(·): for a real variable t ∈ [0, 1) and a natural number N ∈ N,
O(tN ) denotes a smooth function on M× (0, 1), depending only on the geometry of the ambient manifold
M , such that for every j, k ∈ N we have the following bound on the function and its derivatives

(3.2)

∣∣∣∣ ddtj∇(k)O(tN )

∣∣∣∣ (t, ·) ≤ CtN−j on M ,

for some constant C > 0. In the following, we will always absorb O(tM ) in O(tN ) if M ≥ N , which is
coherent to our notation since t < 1.

We identify the tangent space TpM with Rm+1 through the linear isometry ι : Rm+1 −→ TpM which
sends ∂xµ to Eµ; this expansion for the metric allows one to compute expansions for several geometric
quantities of objects inside the normal neighbourhood U , and will therefore play a crucial role throughout
the paper. In the following, we will regularly identify points Q in the unitary tangent bundle UTM with
their natural projections (q,S ′) := (πM (Q), πTπM (Q)M (Q)), so that Q = (q,S ′) ∈ M × TM . Moreover,

given a centered standard double bubble Σ ⊂ Rm+1 aligned along a vector S, we identify it with its image
Σ ⊂ TpM through the map ι, so that S is identified with a vector S ∈ TpM .

Definition 3.2 (Geodesic Double Bubbles). For any point (p,S) ∈ UTM , volumes V1 ≤ V2 and a small
enough scale ρ > 0, we define the geodesic double bubble centered at p, aligned along S and at scale ρ, as
the smooth double bubble Σ(p,S),ρ := Expp(ρΣ), where Σ ⊂ Rm+1 is the unique centered standard double
bubble aligned along S, enclosing volumes V1 and V2, identified as above with its image through the map
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ι. We call a geodesic double bubble symmetric or asymmetric accordingly to whether Σ is symmetric or
asymmetric.

It is clear from Definition 3.2 that if a geodesic double bubble Σ(p,S),ρ is symmetric, then we must
have Σ(p,S),ρ = Σ(p,−S),ρ, and hence the set of symmetric geodesic double bubbles at a fixed scale ρ can
be parametrized by points in the projective unitary tangent bundle PTM , compare with Theorem 1.6 in
the introduction. We remark that we could have fixed the mean curvatures Hσ’s of the sheets instead of
the two enclosed volumes V1 and V2. Hence, from now on, we will assume that ρ < ρ1(M,H0, H1, H2) is
small enough so that ρΣ is contained in a normal neighbourhood.

3.1. Volumes of Geodesic Double Bubbles. Using the expansion (3.1) of the metric G in normal
coordinates, we can compute the volumes (V1)(p,S),ρ and (V2)(p,S),ρ enclosed by a geodesic double bubble
Σ(p,S),ρ as functions of the volumes V1 and V2 enclosed by Σ ⊂ TpM as in Definition 3.2, the point
(p,S) ∈ UTM and the scale ρ. Let us denote by Pσ the volume enclosed by the spherical cap Σσ and the
m-dimensional ball D := co(Γ) ⊂ TpM , that is the convex hull of Γ; analogously, Pσ(p,S),ρ is the region

enclosed by Σσ(p,S),ρ and the image of the disk ρ · Expp(D) through the exponential map. Therefore, the

enclosed volumes V1 and V2 (respectively (V1)(p,S),ρ and (V2)(p,S),ρ) verify

V1 = |P 1|+ |P 0|, V2 = |P 2| − |P 0|,(3.3)

(V1)(p,S),ρ = Volm+1(P 1
(p,S),ρ) + Volm+1(P 0

(p,S),ρ), (V2)(p,S),ρ = Volm+1(P 2
(p,S),ρ)−Volm+1(P 0

(p,S),ρ).

Here and elsewhere we denote by | · |k and Volk the k-dimensional Hausdorff measure of a set in Rm+1

and (M,G) respectively. These formulas remain true in the symmetric case V1 = V2, where D = Σ0,
once noticed that |P 0|m+1 = Volm+1(P 0

(p,S),ρ) = 0. From (3.1), one deduces the following expansion of

the volume form in normal coordinates

(3.4) dµG =
√
Gdx =

(
1− 1

6 Ricµν x
µxν +O(|x|3)

)
dx.

Here Ric denotes the Ricci tensor of the ambient metric G, and
√
G the square root of the determinant of

the matrix Gµ,ν . We will use this expansion to compute the volumes defined above through the formula

(3.5) Volm+1(Pσ(p,S),ρ) =

ˆ
ρPσ

√
Gdx.

Let us focus on the case σ = 1, since the other cases are similar. Extend S to an orthonormal basis, so
that the matrix A with columns A := (v1|v2|...|vm|S) ∈ SO(m + 1). Next we set B̄1 := A−1(B1 − C1),
so that P̄ 1 is the region enclosed by a spherical cap centered at the origin, with radius R1, opening
angle φ1, symmetry axis em+1 = (0, 0, ..., 0, 1) and pole R1em+1 ∈ P̄ 1. Using the change of variables
y := A−1(xρ − C

1) we get

ρ−(m+1) Volm+1(P 1
(p,S),ρ) =

ˆ
P̄ 1

1− ρ2

6 Ric(Ay + C1, Ay + C1)dy +O(ρ3)

=
(

1− ρ2

6 Ric(C1, C1)
)
|P̄ 1| − ρ2

6

ˆ
P̄ 1

Tµνy
µyνdy − ρ2

3

ˆ
P̄ 1

Wµy
µdy +O(ρ3),(3.6)

where T = AT RicA and Wµ = (AT Ric)µν(C1)ν = (RicA)µν(C1)ν . Using the symmetry of P̄ 1, and
integrating over the level sets of the map x 7→ xm+1, we have

(3.7)

ˆ
P̄ 1

yµdy = 0 ∀µ = 1, ...,m;

ˆ
P̄ 1

ym+1dy =

ˆ φ1

0

ωm(R1 sin(φ))m+1R1 cos(φ)dφ = ωmR
m+2
1

sinm+2(φ1)
m+2 .

Hence, we deduce

(3.8) −ρ
2

3

´
P̄ 1 Wµy

µdy = −ρ
2

3 ωmR
m+2
1

sinm+2(φ1)
m+2 Ric(C1,S) = ρ2

3 ωmR
m+3
1

sinm+2(φ1)
m+2 cos(φ1) Ric(S,S).
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In the last step we used the fact that the double bubble Σ is centered to get C1 = −R1 cos(φ1)S. In
order to make the quadratic term explicit, it is convenient to define Im(x) :=

´ x
0

sinm(t)dt. Using again

the symmetry of P̄ 1, we obtain

(3.9)

ˆ
P̄ 1

yµyνdy = 0 ∀µ 6= ν

ˆ
P̄ 1

(yµ)2dy = 1
m

m∑
µ=1

ˆ
P̄ 1

(yµ)2dy = 1
m

ˆ φ1

0

R1 sin(φ)

(
|Sm−1|

ˆ R1 sin(φ)

0

r2 · rm−1dr

)
dφ

= |Sm−1|
m

ˆ φ1

0

Rm+3
1 sinm+3(φ)

m+2 dφ = ωmR
m+3
1

Im+3(φ1)
m+2 ∀µ = 1, ...,m

ˆ
P̄ 1

(ym+1)2dy =

ˆ φ1

0

ωm(R1 sin(φ))m+1(R1 cos(φ))2dφ = ωmR
m+3
1 (Im+1(φ1)− Im+3(φ1)).

Before substituting this in the above expression, we notice that an integration by parts easily implies

(3.10) Im+1(x) =
(
1 + 1

m+2

)
Im+3(x) + 1

m+2 sinm+2(x) cos(x),

and that we have tr(T ) = tr(Ric(p)) = Sc(p) and Tm+1,m+1 = Ric(S,S). Therefore we obtain

−ρ
2

6

ˆ
P̄ 1

Tµνy
µyνdy = −ρ

2

6

[ m∑
µ=1

ωmR
m+3
1

Im+3(φ1)
m+2 Tµµ + ωmR

m+3
1 (Im+1(φ1)− Im+3(φ1))Tm+1,m+1

]
= −ρ

2

6 ωmR
m+3
1

[
Im+3(φ1)
m+2 Sc(p) + 1

m+2 sinm+2(φ1) cos(φ1) Ric(S,S)

]
.(3.11)

Substituting (3.8) and (3.11) in (3.6), using again that Σ is centered and (3.10), and plugging in the value
|P̄ 1| = ωmR

m+1
1 Im+1(φ1), we arrive at

(3.12) ρ−(m+1) Volm+1(P 1
(p,S),ρ) = |P 1|m+1 − ρ2

6 ωmR
m+3
1

[
Im+3(φ1)
m+2 Sc(p) +

(
m+3
m+2Im+3(φ1)− Im+1(φ1) sin2(φ1)

)
Ric(S,S)

]
+O(ρ3)

Analogous expansions for the volumes Volm+1(Pσ(p,S),ρ) for σ = 0, 2 can be obtained plugging in Rσ and

φσ instead of R1 and φ1. Let us remark that for σ = 0, 2 we need to reverse the orientation, which
corresponds to the choice A := (v1|...|vm| − S). In the symmetric case we put Volm+1(B0

(p,S),ρ) = 0, and

recall that φ1 = φ2 = 2
3π as well as C1 = R 1

2S = −C2. Accordingly to (3.3), we now need to sum these
expansions up to get

ρ−(m+1)(V1)(p,S),ρ = V1 +O(ρ3)− ωm
ρ2

6

[
(Rm+3

1
Im+3(φ1)
m+2 +Rm+3

0
Im+3(φ0)
m+2 ) Sc(p)(3.13)

+ Ric(S,S)
(
Rm+3

1

(
m+3
m+2Im+3(φ1)− Im+1(φ1) sin2(φ1)

)
+Rm+3

0

(
m+3
m+2Im+3(φ0)− Im+1(φ0) sin2(φ0)

))]
,

ρ−(m+1)(V2)(p,S),ρ = V2 − ωm
ρ2

6

[
(Rm+3

2
Im+3(φ2)
m+2 −Rm+3

0
Im+3(φ0)
m+2 ) Sc(p)(3.14)

+ Ric(S,S)
(
Rm+3

2

(
m+3
m+2Im+3(φ2)− Im+1(φ2) sin2(φ2)

)
−Rm+3

0

(
m+3
m+2Im+3(φ0)− Im+1(φ0) sin2(φ0)

))]
.

In the symmetric case, we obtain the formulas (V := V1 = V2)

(3.15) ρ−(m+1)(V1)(p,S),ρ = ρ−(m+1)(V2)(p,S),ρ = V − ρ2

6 ωm

[
Rm+3 Im+3(

2π
3 )

m+2 Sc(p) +Rm+3
(
m+3
m+2Im+3( 2

3π)− 3
2Im+1( 2

3π)
)

Ric(S,S)

]
+O(ρ3),

Remark 3.3. As a matter of fact, in the symmetric case one can see that the term of order ρ3 in the
expansion of ρ−(m+1)((V1)(p,S),ρ + (V2)(p,S),ρ) is zero, since we are integrating an odd function of Θ (i.e.
Θ 7→ ∇Θ Ric(Θ,Θ)) over the double bubble Σ, which is invariant under the transformation Θ 7→ −Θ.

3.2. Areas of Geodesic Double Bubbles. In this subsection we carry out some of the computations
which lead to an expansion for the surface area of a geodesic double bubble. The plan is to exploit a
good parametrization of a sheet Σσ(p,S),ρ, whose volume element is both explicit and easy to integrate

over the hypersurface. To this aim, let us consider a fixed sheet Σσ(p,S),ρ = Expp(ρΣσ). We will consider

the case σ = 1, as before. Set A := (v1|v2|...|vm|S) ∈ SO(m + 1) exactly as we did in the previous
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subsection. Define a parametrization Θ : Sm−1 × [0, φ1] −→ Σ̂, by Θ := A ◦ Θ̄(θ, φ) + C1 and Θ̄(θ, φ) :=
R1(sin(φ)θ, cos(φ)).

Restricting the expansion (3.1) to the point Expp(ρΘ(θ, φ)) we get

(3.16) Gµ,ν = δµ,ν + ρ2

3 〈Rp(Θ, Eµ)Θ, Eν〉+O(ρ3).

Therefore, calling Θi the tangent vectors of Σ induced by Θ, the first fundamental form g(p,S),ρ of Σ1
(p,S),ρ

is given by (i, j = 1, ...,m)

(3.17) (g(p,S),ρ)i,j = ρ2(〈Θi,Θj〉+ ρ2

3 〈Rp(Θ,Θi)Θ,Θj〉+O(ρ3)).

We can rewrite the above expansion introducing the roto-translated Riemann (0, 4)−tensor U defined by
U(u1, u2, u3, u4) := 〈Rp(Au1 + C1, Au2)(Au3 + C1), Au4〉, as

(3.18) (g(p,S),ρ)i,j = ρ2(〈Θ̄i, Θ̄j〉+ ρ2

3 U(Θ̄, Θ̄i, Θ̄, Θ̄j) +O(ρ3)).

The volume element expression follows easily from the Taylor expansion of the determinant, as well as
exploiting our explicit parametrization

(3.19) (
√
g)(p,S),ρ = ρmRm1 sinm−1(φ)

√
gSm−1

(
1 + ρ2

6 tr(U)(Θ̄, Θ̄) +O(ρ3)
)
.

By the definition of U we deduce

(3.20) tr(U)(Θ̄, Θ̄) = Ric(AΘ̄ + C1, AΘ̄ + C1) = T (Θ̄, Θ̄) + 2Wµ(Θ̄) + Ric(C1, C1),

where, as before, T = AT RicA and Wµ = (AT Ric)µ,ν(C1)ν .
We can integrate the expansion for (

√
g)(p,S),ρ over Sm−1 × [0, φ1] similarly to what we have done in

the previous section; after a lengthy calculation, we finally arrive to

(3.21)
Volm(Σ1

(p,S),ρ) =

ˆ φ1

0

ˆ
Sm−1

ρmRm1 sinm−1(φ)

√
gSm−1

(
1 + ρ2

6
(T (Θ̄, Θ̄) + 2Wµ(Θ̄) + Ric(C1, C1)) +O(ρ3)

)
= ρm|Σ1|m + ρm+2

6
Rm+2

1 ωm
[
Im+1(φ1) Sc(p) + (m cos2(φ1)Im−1(φ1)− sinm(φ1) cos(φ1)) Ric(S,S)

]
+O(ρm+3).

To get the expansions for the m−dimensional volumes of Σ0
(p,S),ρ (in the asymmetric case) and Σ2

(p,S),ρ

(always), one has to substitute R1 and φ1 with Rσ and φσ with σ = 0, 2 respectively.

In the symmetric case, we choose a radial parametrization Θ : Sm−1 × [0,
√

3
2 R] −→ Σ0 for the sheet

Σ0
(p,S),ρ, where Θ(θ, r) = A◦(rθ) and A is as above; we remark that since the double bubble Σ is centered,

the term of order ρ2 will be purely homogeneous of degree 2, simplifying a bit the calculation. Arguing
as above, we obtain

(3.22) Volm(Σ0
(p,S),ρ) = ρm|Σ0|m + ρm+2

6(m+2) (
√

3
2 R)m+2ωm

(
Sc(p)− 2 Ric(S,S)

)
+O(ρm+3).

Finally, we write the expansion for the area of the entire geodesic double bubble in the asymmetric case

(3.23)

Volm(Σ(p,S),ρ) = ρm|Σ|m + ρm+2

6
ωm
(
Rm+2

0 Im+1(φ0) +Rm+2
1 Im+1(φ1) +Rm+2

2 Im+1(φ2)
)

Sc(p)

+ ρm+2

6
ωm
(
Rm+2

0 (m cos2(φ0)Im−1(φ0)− sinm(φ0) cos(φ0)) +Rm+2
1 (m cos2(φ1)Im−1(φ1)− sinm(φ1) cos(φ1))

+Rm+2
2 (m cos2(φ2)Im−1(φ2)− sinm(φ2) cos(φ2))

)
Ric(S,S) +O(ρm+3),

and in the symmetric case

(3.24) Volm(Σ(p,S),ρ) = ρm|Σ|m + ρm+2

6 ωmR
m+2

((
1

m+2 (
√

3
2 )m+2 + 2Im+1( 2

3π)
)

Sc(p) +
(
m
2 Im−1( 2

3π) + 2m+1
2m+4 (

√
3

2 )m
)

Ric(S,S)
)

+O(ρm+3).

Remark 3.4. The same argument based on symmetry of Remark 3.3 allows us to substitute O(ρm+3)
with O(ρm+4).
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3.3. Approximate Equi-angularity of Geodesic Double Bubbles. Concluding the section on ge-
odesic double bubbles, we show that their sheets meet at 120◦-degrees up to a second order error in
the scale ρ. Let νσp,S be the inner conormal vector field defined on Γ(p,S),ρ and pointing towards

Σσ(p,S),ρ. Introducing the vectors ν̃σp,S := Expp(ρ · νσ), we can use the expansion (3.1) to show that

νσp,S = ν̃σp,S/‖ν̃σp,S‖G +O(ρ2). Consider any point q ∈ Γ(p,S),ρ and an arbitrary unitary vector r ∈ UTqM
and put r̂ := Expq(r). Gauss’ Lemma guarantees that

G(ν̃0
p,S + ν̃1

p,S + ν̃2
p,S , r̂) = 0.

By the arbitrarity of r we must have ν̃0
p,S + ν̃1

p,S + ν̃2
p,S = 0 at q. Appealing again to the expansion for

the metric G given in (3.1), it is not hard to see that ‖ν̃σp,S‖G = 1 +O(ρ2), so we deduce

(3.25) ν0
p,S + ν1

p,S + ν2
p,S(q) =: ep,S(q) = O(ρ2).

One can show that ep,S is a purely geometric function on Γ(p,S),ρ depending smoothly on the metric G,
the scale ρ and on the point (p,S) ∈ UTM . However, we will always consider ep,S as a generic term of
order O(ρ2) in the sequel.

4. Perturbed Double Bubbles

In this section we will study the geometry of perturbations of geodesic double bubbles, with the scope
of computing expansions for the mean curvatures of their sheets; these formulas will play a crucial role in
the proof of Theorems 1.4 and 1.6. Due to the presence of a singular set, we will need to combine normal
and tangent variations.

4.1. The Class of Perturbations. Consider a standard double bubble Σ in Rm+1 with the sheets
meeting along a common boundary Γ. We will use the same conventions as in Section 2. Let us define a
perturbation φw,Y : Σ −→ Rm+1 by

(4.1) φw,Y : x 7−→ x+ w(x)N(x) + Y (x),

where in each sheet Σσ, w = wσ ∈ C2,α(Σσ), N = Nσ and Y = Yσ ∈ C1,α(Σσ;TΣσ). For this function

Figure 2. Non-admissible and admissible perturbations

to be well-defined, we have to impose that the images of the points of Γ through φw,Y do not depend on
the sheet used to compute them, that is we need

(4.2) x+ w0(x)N0(x) + Y0(x) = x+ w1(x)N1(x) + Y1(x) = x+ w2(x)N2(x) + Y2(x),

whenever x ∈ Γ. Clearly, this equation is equivalent to the following

(4.3) w0(x)N0(x) + Y0(x) = w1(x)N1(x) + Y1(x) = w2(x)N2(x) + Y2(x).
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Let us split Yσ(x) as Yσ(x) = (Yσ(x))Γ + uσ(x)νσ(x), where ·Γ stands for the orthogonal projection of a
vector onto the space TxΓ and νσ(x) ∈ TxΣσ is the inward pointing unit vector normal to TxΓ. Projecting
equation (4.3) onto TxΓ we get

(4.4) (Y0(x))Γ = (Y1(x))Γ = (Y2(x))Γ.

Substituting in (4.3), we obtain

(4.5) w0(x)N0(x) + u0(x)ν0(x) = w1(x)N1(x) + u1(x)ν1(x) = w2(x)N2(x) + u2(x)ν2(x).

Taking the scalar products of the latter with ν1 and N1, and using the fact that the sheets of Σ meet in
an equi-angular way, we deduce (dropping the x-dependence){

w1 = 1
2w2 −

√
3

2 u2 = 1
2w0 +

√
3

2 u0

u1 = −
√

3
2 w2 − 1

2u2 =
√

3
2 w0 − 1

2u0.

This system is equivalent to the following, where we are writing everything in terms of w0 and w2:

w1 = w0 + w2(4.6)

u0 = 1√
3
w0 + 2√

3
w2; u1 = 1√

3
w0 − 1√

3
w2; u2 = − 2√

3
w0 − 1√

3
w2,(4.7)

which in turn is equivalent to (4.5). Furthermore, (4.5) and (4.4) imply (4.3), so we will use (4.4), (4.6)
and (4.7) because these are more suitable conditions for the Dirichlet problem we will consider in Section
5.

Definition 4.1. We define the class of admissible pairs as

Camm := {(w, Y ) ∈
(
C2,α(Σ) ∩ C0,α(Σ)

)
×
(
C1,α(Σ;Rm+1) ∩ C0,α(Σ;Rm+1) ∩ TΣ

)
| (w, Y ) verifies

(4.4), (4.6), (4.7), and ‖w‖C2,α , ‖Y ‖C1,α ≤ δ},

for some δ small enough. Moreover, define the class of admissible perturbations as {φw,Y | (w, Y ) ∈ Camm}.

Here δ is chosen small enough so that the image φw,Y (Σ) is homeomorphic to Σ. When imposing a
perturbed double bubble to have sheets with (almost) constant mean curvature, we will need to solve
a Dirichlet problem, whose leading term is given by a second-order elliptic operator involving only the
normal components wσ’s of the perturbation considered, the so-called Jacobi operator. It is then clear
that such a problem is under-determined (after having fixed a tangential component Y ), when solving for
a general normal component w of an admissible pair (w, Y ), and we need to impose other two conditions
on the wσ’s. A good choice for these two conditions (in Euclidean ambient) is inspired by the analysis
in [8], and consists in imposing the perturbation φw,Y to preserve the condition on the sheets to meet in
an equi-angular way, so the inner conormal vectors νσw,Y should verify

(4.8) ν0
w,Y + ν1

w,Y + ν2
w,Y = 0.

It can be shown that this equation is non-linear and involves only w, Y and their first derivatives with
respect to the reference inner normal vectors νσ’s. This subtlety reveals crucial in solving the boundary
value problem we will deal with, as well as in gaining the regularity of the solution. However, it will be
more convenient for us to impose an equi-angularity condition directly for the perturbed surface in the
manifold, see equation (4.44); indeed, this choice will allow us to get rid of a troublesome boundary term
appearing in the proof of one of the key steps in the proof of the main Theorem 1.1, namely Proposition
6.1 we refer the reader to Section 6 for more details. Appealing to the results in [8], we are able to
produce a unique solution to the associated problem with linearized equi-angularity condition, and then
see our original problem, under the condition (4.44), as a perturbation of this linearized version. In order
to introduce this linearization, we set

(4.9) q0 := 1√
3
(H1 +H2), q1 := 1√

3
(H0 −H2), q2 := − 1√

3
(H1 +H0).

Projecting the equation on the vectors N0 and N2, it can then be shown (see [16]) that the condition
described above is equivalent to the system

(4.10)

{
∂w0

∂ν0 + q0w0 + ∂w1

∂ν1 + q1w1 = 0 on Γ;
∂w1

∂ν1 + q1w1 + ∂w2

∂ν2 + q2w2 = 0 on Γ.
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We remark that these equations do not depend on the tangential component Y . System (4.10) furnishes

Figure 3. The linearized equi-angularity condition and the equi-angularity condition

two additional Robin-type conditions which makes our linearized problem for the normal components
wσ’s well-determined, i.e. we get existence and uniqueness of a solution to our elliptic problem, for any
fixed tangential component Y . Therefore, we will need to fix some suitable Y , verifying the boundary
conditions (4.4) and (4.7) and also the norm bound ‖Y ‖C1,α ≤ δ. We have great freedom of choice
for this Y but, as already mentioned in the introduction, we will be naturally led to impose additional
constraints. We refer the reader to Section 5 for further details.

Remark 4.2. It is worth mentioning that we are not assuming the perturbations just introduced to
preserve the volumes enclosed by the double bubble in consideration; as already remarked in [8], the
absence of this constraint reflects a stronger stability valid for standard double bubbles proved in [34],
on which the results in [8] and those presented here ultimately rely upon.

4.2. First Fundamental Form for Perturbed Geodesic Double Bubbles. Throughout the rest
of this section, we will consider a given point (p,S) ∈ UTM and a centered standard double bubble
Σ ⊆ TpM aligned along it. Recall the orthonormal basis of TpM given by the vectors Eµ’s from the
previous section. Let us denote by Θ = ΘµEµ : U ′ −→ Σ a parametrization of Σ, defined on an open set
U ′ ⊂ Rm, and let z = (zi)i=1,...,m ∈ U ′.

For a function f (or a vector field V ) defined on Σ, we write the first-order derivative fi(z) = ∂zif(z)
(resp. (Vi(z))

µ = ∂zi(V (z)µ)), and similarly for higher-order derivative. In particular, the parametriza-
tion Θ induces coordinate vector fields Θi := Θµ

i Eµ on Σ.
As in [28], it is useful to adopt the following convention: any expression of the form L(w, Y ) denotes

a linear combination of the functions w and Y , together with their derivatives up to order 2 for w and 1
for Y with respect to the vector fields Θi . The coefficients of L depend smoothly on ρ and (p,S) and,
for all k ∈ N, there exists a constant ck > 0 independent of ρ ∈ (0, 1) and (p,S) ∈ UTM such that

(4.11) ‖L(w, Y )‖Ck,α(Σ) ≤ ck‖(w, Y )‖Ck+2,α(Σ)×Ck+1,α(Σ;Rm+1).

Similarly, given a ∈ N, any expression of the form Q(a)(w, Y ) denotes a nonlinear operator in the func-
tions w and Y , together with their derivatives with respect to the vector fields Θi up to order 2 and
1 respectively. The coefficients of the Taylor expansion of Q(a)(w, Y ) in powers of w and Y and their
partial derivatives depend smoothly on ρ and (p,S) and, given k ∈ N, there exists a constant dk > 0
independent of ρ ∈ (0, 1), (p,S) ∈ UTM such that Q(a)(0, ·) = Q(a)(·, 0) = 0 and

(4.12)
‖Q(a)(w2, Y2)−Q(a)(w1, Y1)‖Ck,α(Σ) ≤ dk‖(w2 − w1, Y2 − Y1)‖Ck+2,α(Σ)×Ck+1,α(Σ;Rm+1)

· (‖(w1, Y1)‖Ck+2,α(Σ)×Ck+1,α(Σ;Rm+1) + ‖(w2, Y2)‖Ck+2,α(Σ)×Ck+1,α(Σ;Rm+1))
a−1,

provided that ‖(wi, Yi)‖Ck+2,α(Σ)×Ck+1,α(Σ;Rm+1) are small enough. For our purposes, we will consider

mostly nonlinearities of the type ρkQ(2) for k ≥ 0, so we will frequently absorb terms of the form ρjQ(a)
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in it when a ≥ 2 and j ≥ k (there is no mistake in doing it, because ρjQ(a) easily verify the inequality
defining ρkQ(2) in that case). Similarly, we will absorb terms of the form ρjL into ρkL whenever j ≥ k.
A typical example of Q(a) can be a homogeneous polynomial of degree a, in w, Y and their derivatives
up to order 2 and 1 respectively (e.g. wjRic(Y, Yi) = Q(3)(w, Y )).

Remark 4.3. We remark that the absorption convention on L(w, Y ) and Q(a)(w, Y ) just introduced,
guarantees that any term of the form O(ρk) is purely geometric, in the sense that it is independent of w
and Y . This is important for our fixed point argument in Section 5.

From now on, we fix an admissible pair (w, Y ) ∈ Camm and its induced perturbation φw,Y . Let us
focus on the interior part of one sheet Σσ, and drop the index σ; then Σ is either a spherical cap included
in a sphere S(C,R) or a disk. In the first case, we deduce that TΘΣ = Span(Θi) = (Θ − C)⊥ where
i = 1, ...,m and that the second fundamental form of it with respect to the inward normal is given by
1
RId. Since Y is tangent to Σ we must have 〈C −Θ, Y 〉 = 0. Moreover, we can decompose the derivatives

of the vector field Y as Yi = ∇Σ
i Y + 〈Y,Θi〉

R N .

In the second case, we have TΘΣ = Span(Θi) = S⊥, in particular the normal vector N = S does not
depend on Θ. The second fundamental form is trivial, and since Y is tangent we must have Yi = ∇Σ

i Y .

Let us recall the coordinate vector fields Xµ’s defined as in Section 3. Defining the vector fields
C := CµXµ, N := NµXµ, Υ := ΘµXµ, Υi := Θµ

i Xµ, Ω := Y µXµ, Ωi := Y µi Xµ, we will use their
coordinates with respect to the local frame Xµ together with the formula in Proposition 3.1 to deduce
the needed expansions.

We want to compute an expansion for the first fundamental form g̊ of the perturbed hypersurface
Σ(p,S),ρ(w, Y ) := Expp(ρ · φw,Y (Σ)) =: Mρ(Σ), in terms of the first fundamental form g of Σ. Notice
that Mρ(Θ(z)) = Expp(ρ(Θ+w(z)N(Θ(z))+Y (Θ(z)))); we will omit the z−dependence in what follows.
Firstly, consider the case in which Σ is a spherical cap; in order to find a basis of the tangent space of
Σ(p,S),ρ(w, Y ) at a point q, we take the push-forward of the basis (Θi)i=1,...,m of TM−1

ρ (q)Σ through Mρ:

Zi(q) = ρ(Υi(1− w
R ) + wi

R (C −Υ) + Ωi)(M
−1
ρ (q)).(4.13)

Using equation (3.1) with Ξ = Expp
−1(Mρ(Θ(z))) = ρ((1 − w

R )Θ + w
RC + Y ), we obtain the following

expansion for the ambient metric G at an arbitrary point q = Expp(Ξ) = Mρ(z) ∈ Σ(p,S),ρ(w, Y )

G(Xµ, Xν) =δµ,ν + 1
3 〈Rp(ρ((1− w

R )Θ + w
RC + Y ), Eµ)ρ((1− w

R )Θ + w
RC + Y ), Eν〉

+ 1
6 〈∇ΞRp(Ξ, Eµ)Ξ, Eν〉

∣∣
Ξ=ρ((1−wR )Θ+

w
RC+Y )

+ρ4L(w, Y ) + ρ4Q(2)(w, Y ) +O(ρ4).

For convenience of the reader, we separate the addenda by their order in ρ:

0th order: δµ,ν ; 1st order: 0;

2nd order: 1
3 〈Rp(ρ((1− w

R )Θ + w
RC + Y ), Eµ)ρ((1− w

R )Θ + w
RC + Y ), Eν〉

= 1
3ρ

2〈Rp((1− w
R )Θ + w

RC + Y ,Eµ)((1− w
R )Θ + w

RC + Y ), Eν〉

= 1
3ρ

2
[
(1− w

R )2〈Rp(Θ, Eµ)Θ, Eν〉+ w2

R2 〈Rp(C,Eµ)C,Eν〉+ 〈Rp(Y,Eµ)Y ,Eν〉

+ w
R (1− w

R )
[
〈Rp(Θ, Eµ)C,Eν〉+ 〈Rp(C,Eµ)Θ, Eν〉

]
+ (1− w

R )
[
〈Rp(Θ, Eµ)Y ,Eν〉

+ 〈Rp(Y,Eµ)Θ, Eν〉
]

+ w
R

[
〈Rp(C,Eµ)Y ,Eν〉+ 〈Rp(Y,Eµ)C,Eν〉

]]
.

For the third order, we have:

3rd order: 1
6 〈∇ΞRp(Ξ, Eµ)Ξ, Eν〉

∣∣
Ξ=ρ((1−wR )Θ+

w
RC+Y )

= 1
6ρ

3〈∇ΘRp(Θ, Eµ)Θ, Eν〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ).

The expansion for g̊ can now be easily deduced computing g̊i,j := G(Zi, Zj)

ρ−2g̊i,j = ρ−2G(Zi, Zj)

= G(Υi(1− w
R ) + wi

R (C −Υ) + Ωi,Υj(1− w
R ) +

wj
R (C −Υ) + Ωj)
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= (Θi(1− w
R ) + wi

R (C −Θ) + Yi)
µ(Θj(1− w

R ) +
wj
R (C −Θ) + Yj)

νG(Xµ, Xν).

As before, we separate the addenda by their order in ρ:

0th order: (Θi(1− w
R ) + wi

R (C −Θ) + Yi)
µ(Θj(1− w

R ) +
wj
R (C −Θ) + Yj)

νδµ,ν

=(1− w
R )2〈Θi,Θj〉+ wiwj + 〈Yi, Yj〉+ (1− w

R )〈Yi,Θj〉
+ (1− w

R )〈Θi, Yj〉+ wi〈N,Yj〉+ wj〈Yi, N〉
=(1− w

R )2gi,j + wiwj + g(∇Σ
i Y,∇Σ

j Y ) + 1
R2 g(Θi, Y )g(Y,Θj)

+ (1− w
R )g(∇Σ

i Y,Θj) + (1− w
R )g(Θi,∇Σ

j Y ) + wi
R g(Y,Θj) +

wj
R g(Θi, Y ).

Once again, the first order is null. For the second order, using the previous L − Q(a)’s formalism (and
absorbing Q(a) into the quadratic term Q(2)) we obtain

2nd order: = 1
3ρ

2(1− w
R )2

{
(1− w

R )2
[
〈(Rp(Θ,Θi)Θ,Θj〉+

wj
R 〈Rp(Θ,Θi)Θ, C〉

+ wi
R 〈Rp(Θ, C)Θ,Θj〉+ 〈Rp(Θ,Θi)Θ, Yj〉+ 〈Rp(Θ, Yi)Θ,Θj〉

]
+ w

R

[
〈Rp(Θ,Θi)C,Θj〉+ 〈Rp(C,Θi)Θ,Θj〉

]
+
[
〈Rp(Θ,Θi)Y ,Θj〉

+ 〈Rp(Y,Θi)Θ,Θj〉
]

+Q(2)(w, Y )

}
= 1

3ρ
2

{
(1− w

R )4〈Rp(Θ,Θi)Θ,Θj〉

+
[
wj
R 〈Rp(Θ,Θi)Θ, C〉+ wi

R 〈Rp(Θ, C)Θ,Θj〉
]

+
[
〈Rp(Θ,Θi)Θ, Yj〉

+ 〈Rp(Θ, Yi)Θ,Θj〉
]

+ w
R

[
〈Rp(Θ,Θi)C,Θj〉+ 〈Rp(C,Θi)Θ,Θj〉

]
+
[
〈Rp(Θ,Θi)Y ,Θj〉+ 〈Rp(Y,Θi)Θ,Θj〉

]
+Q(2)(w, Y )

}
.

The 3rd-order term is simpler than the previous one, because we seek for less information:

3rd order: = 1
6ρ

3〈∇ΘRp(Θ,Θi)Θ,Θj〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ).

Finally, we arrive at the following analogue to Lemma 2.1 in [28].

Proposition 4.4 (Perturbed First Fundamental Form - Spherical Case). The expansion for the first
fundamental form of the perturbed spherical cap is given by

ρ−2(1− w
R )−2g̊i,j = gi,j + g(∇Σ

i Y,Θj) + g(Θi,∇Σ
j Y ) +Q(w, Y ) + 1

3ρ
2

{
(1− w

R )4〈Rp(Θ,Θi)Θ,Θj〉

+
[
wj
R 〈Rp(Θ,Θi)Θ, C〉+ wi

R 〈Rp(Θ, C)Θ,Θj〉
]

+
[
〈Rp(Θ,Θi)Θ, Yj〉+ 〈Rp(Θ, Yi)Θ,Θj〉

]
(4.14)

+ w
R

[
〈Rp(Θ,Θi)C,Θj〉+ 〈Rp(C,Θi)Θ,Θj〉

]
+
[
〈Rp(Θ,Θi)Y ,Θj〉+ 〈Rp(Y,Θi)Θ,Θj〉

]}
+ 1

6ρ
3〈∇ΘRp(Θ,Θi)Θ,Θj〉+ ρ3L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ4),

where Q(w, Y ) = (1− w
R )−2

[
wiwj+g(∇Σ

i Y,∇Σ
j Y )+ 1

R2 g(Θi, Y )g(Y,Θj)+ w
Rg(∇Σ

i Y,Θj)+ w
Rg(Θi,∇Σ

j Y )+
wi
R g(Y,Θj) +

wj
R g(Θi, Y )

]
= Q(2)(w, Y ).

Let us remark that, in the case Y = 0 and C = 0, we recover the expansion in Lemma 2.1 of [28],
except for the rescaling w  w

R .

For later purposes, we give an explicit expansion for the inverse of the metric

g̊i,j =ρ−2(1− w
R )−2

{
gi,j + gi,k

[
− g(∇Σ

k Y,Θm)− g(Θk,∇Σ
mY ) +Q(2)(w, Y )− 1

3ρ
2〈Rp(Θ,Θk)Θ,Θm〉

+ ρ2L(w, Y ) +O(ρ3)
]
gm,j

}
= ρ−2(1− w

R )−2gi,j − ρ−2gi,k(g(∇Σ
k Y,Θm) + g(Θk,∇Σ

mY ))gm,j(4.15)

− 1
3g
i,k〈Rp(Θ,Θk)Θ,Θm〉gm,j + L(w, Y ) + ρ−2Q(2)(w, Y ) +O(ρ).
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In case we are perturbing a flat disk, the i−th coordinate tangent vector induced by a parametrization
Θ is Zi := ρ(Υi +wiN + Ωi), so analogous computations yield the expansion for the metric stated in the
following proposition.

Proposition 4.5 (Perturbed First Fundamental Form - Disk Case). The expansion for the first funda-
mental form of the perturbed disk is given by

ρ−2g̊i,j =δi,j + g(∇Σ
i Y,Θj) + g(Θi,∇Σ

j Y ) + wiwj + g(∇Σ
i Y,∇Σ

j Y ) + 1
3ρ

2

{
〈Rp(Θ,Θi)Θ,Θj〉

+ w[〈Rp(N,Θi)Θ,Θj〉+ 〈Rp(Θ,Θi)N,Θj〉] + [〈Rp(Θ,Θi)Y ,Θj〉+ 〈Rp(Y,Θi)Θ,Θj〉](4.16)

+ [wi〈Rp(Θ, N)Θ,Θj〉+ wj〈Rp(Θ,Θi)Θ, N〉] + [〈Rp(Θ,Θi)Θ,∇Σ
j Y 〉+ 〈Rp(Θ,∇Σ

i Y )Θ,Θj〉]
}

+ 1
6ρ

3〈∇ΘRp(Θ,Θi)Θ,Θj〉+ ρ3L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ4).

As already done above, we explicit an expansion for the metric’s inverse:

(4.17)
g̊i,j =ρ−2δi,j − ρ−2δi,k(g(∇Σ

k Y,Θm) + g(Θk,∇Σ
mY ))δm,j − 1

3δ
i,k〈Rp(Θ,Θk)Θ,Θm〉δm,j

+ L(w, Y ) + ρ−2Q(2)(w, Y ) +O(ρ).

4.3. Second Fundamental Form for Perturbed Geodesic Double Bubbles. In order to obtain
the mean curvature of the different sheets of the perturbed double bubble considered above, we first
of all need to compute expansions for their second fundamental forms, which we are about to present.
The calculation is quite lengthy and more involved compared to the analogous one in [28], due to both
the presence of the center C of the double bubble and the tangential component Y . If on one hand
the presence of the center cannot be neglected since there cannot be a common one for the three sheets
at once, on the other hand its location will contribute only by an amount of order ρ2 or higher; this
should not be surprising, as the second fundamental form of a hypersurface in Rm+1 is invariant under
translation. Moreover, we will see how the tangential component Y will appear in the expansion of the
second fundamental form as a Lie derivative (at its lowest order), and therefore how the mean curvature
will not depend (again, at the lowest orders) on it.

Let us begin with some expansions related to the unit normal vector field N̊ to the hypersurface
Σ(p,S),ρ(w, Y ). We firstly focus our attention to the spherical cap case, postponing the flat disk one.
Since this hypersurface is a small perturbation of a spherical cap, one expects the inner normal vector to
be close to the inner vector toward the center. This heuristic justifies the choice of searching a normal
vector of the form M̊ := C −Υ + ajZj and then renormalize it, with the (small) coefficients aj chosen so

that G(M̊, Zj) = 0 for all j = 1, ...,m. Let us explicit what condition the aj ’s have to verify at a point
q = Mρ(z) ∈ Σ(p,S),ρ(w, Y ):

0 =G(Zi,M̊) = G(Zi, C −Υ + ajZj) = G(Zi, C −Υ) + aj g̊i,j

=aj g̊i,j + ρG((1− w
R )Υi + wi

R (C −Υ) + Ωi, C −Υ)

=aj g̊i,j + ρ(1− w
R )
(
ρ2

3 〈Rp(Θ,Θi)Θ, C〉+ ρ2L(w, Y )+ρ2Q(2)(w, Y ) +O(ρ3)
)

+ ρwiR

(
R2+ρ2L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ2)

)
+ ρ
(
g(Θi, Y ) + ρ2L(w, Y )+ρ2Q(2)(w, Y ) +O(ρ3)

)
= aj g̊i,j + ρwiR+ ρg(Θi, Y ) + ρ3

3 〈Rp(Θ,Θi)Θ, C〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4),

(4.18)

where we have used Proposition 3.1. Appealing again to the same proposition, and to the orthogonality
just imposed, we evaluate the squared norm of M̊:

G(M̊,M̊) =G(C −Υ + aiZi,M̊) = G(C −Υ, C −Υ) +G(C −Υ, Zj)a
j

=R2 + ρ2

3 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y )+ρ2Q(2)(w, Y ) +O(ρ3) +
[
ρ(wjR+ g(Y,Θj))

+ ρ3

3 〈Rp(Θ, C)Θ,Θj〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4)
]
aj .
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Thanks to (4.15) and (4.18) we can approximate the coefficients aj as follows

(4.19)
aj = g̊i,j [ρL(w, Y )+ρ3Q(2)(w, Y ) +O(ρ3)] = [ρL(w, Y )+ρ3Q(2)(w, Y ) +O(ρ3)]·

· [O(ρ−2)+ρ−2L(w, Y ) + ρ−2Q(2)(w, Y )] = ρ−1L(w, Y )+ρ−1Q(2)(w, Y ) +O(ρ),

to get

G(M̊,M̊) =R2 + ρ2

3 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y )+ρ2Q(2)(w, Y ) +O(ρ3)

+
[
ρ(wjR+ g(Y,Θj)) + ρ3

3 〈Rp(Θ, C)Θ,Θj〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4)
]
·

(ρ−1L(w, Y )+ρ−1Q(2)(w, Y ) +O(ρ))(4.20)

=R2 + ρ2

3 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3).

We deduce the following expansion

(4.21) G(M̊,M̊)−
1
2 = R−1

[
1− ρ2

6R2 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)
]
.

Thus we define the unitary normal vector N̊ := G(M̊,M̊)−
1
2M̊. Similar computations yield, in the flat

disk case, the following equation for the coefficients aj , where M̊ = N + ajZj :

(4.22) 0 = aj g̊i,j + ρwi + ρ3

3 〈Rp(Θ,Θi)Θ, N〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4),

as well as the one for the inverse of the norm

(4.23) G(M̊,M̊)−
1
2 = 1− ρ2

6 〈Rp(Θ, N)Θ, N〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3).

Once again we put N̊ := G(M̊,M̊)−
1
2M̊.

An expansion for the second fundamental form of the perturbed hyper-surface is presented in the
following theorem, for the case of a spherical cap contained in S(C,R).

Theorem 4.6 (Perturbed Second Fundamental Form - Spherical Case). The second fundamental form

h̊i,j of Σp,ρ(w, Y ) has the following expansion:

(4.24)
h̊i,j = ρ

R (1− w
R )gi,j + ρ

R (g(Θi,∇Σ
j Y ) + g(∇Σ

i Y,Θj)) + ρHessΣw + ρ3

6RSi,j(Θ, C)

+ ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4),

where Si,j is the symmetric (0, 2)−tensor given by

(4.25) Si,j(Θ, C) := 4〈Rp(Θ,Θi)Θ,Θj〉 − 2〈Rp(C,Θi)Θ,Θj〉 − 2〈Rp(Θ,Θi)C,Θj〉+R−2〈Rp(Θ, C)Θ, C〉gi,j .

Proof. Define k̊i,j := −G(∇ZiM̊, Zj) = G(∇Zi(Υ − C), Zj) − G(∇Zi(akZk), Zj). We treat the two
summands separately. For the second summand we recall (4.18):

akG(Zk, Zj) = akg̊k,j = −ρwjR− ρg(Y,Θj)− ρ3

3 〈Rp(Θ, C)Θ,Θj〉+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4);

applying to it ∂zi and using the compatibility of the metric:

G(∇Zi(akZk), Zj) + akG(Zk,∇ZiZj) = ∂zi
(
G(akZk, Zj)

)
= −ρwi,jR− ρg(∇Σ

i,jΘ, Y )− ρg(∇Σ
i Y,Θj)

− ρ3

3 Ti,j(Θ, C) + ρ3Lp(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4),

where Ti,j(Θ, C) := 〈Rp(Θi, C)Θ,Θj〉+ 〈Rp(Θ, C)Θi,Θj〉+ 〈Rp(Θ, C)Θ,Θi,j〉. This holds if and only if
(remark that the ambient connection extends the tangential one)

−G(∇Zi(akZk), Zj) = akG(Zk,∇ZiZj) + ρwi,jR+ ρg(∇Σ
i,jΘ, Y ) + ρg(∇Σ

i Y,Θj) + ρ3

3 Ti,j(Θ, C)

+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4) = akG(Zk, Γ̊
l
i,jZl) + ρwi,jR+ ρg(∇Σ

i,jΘ, Y ) + ρg(∇Σ
i Y,Θj)

+ ρ3

3 Ti,j(Θ, C) + ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4) = akg̊k,lΓ̊
l
i,j + ρwi,jR+ ρg(∇Σ

i,jΘ, Y ) + ρg(∇Σ
i Y,Θj)

+ ρ3

3 Ti,j(Θ, C) + ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4) =
(
− ρwlR− ρg(Θl, Y )− ρ3

3 〈Rp(Θ, C)Θ,Θl〉
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+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4)
)

Γ̊li,j + ρwi,jR+ ρg(∇Σ
i,jΘ, Y ) + ρg(∇Σ

i Y,Θj) + ρ3

3 Ti,j(Θ, C)

+ ρ3L(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4) = ρg(∇Σ
i Y,Θj) + ρR

(
wi,j − Γ̊li,jwl

)
+ ρ〈∇Σ

i,jΘ− Γ̊li,jΘl, Y 〉

+ ρ3

3 T ′i,j(Θ, C) + ρ3Lp(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4),

where T ′i,j(Θ, C) is given by

(4.26) 〈Rp(Θi, C)Θ,Θj〉+ 〈Rp(Θ, C)Θi,Θj〉+ 〈Rp(Θ, C)Θ,Θi,j〉 − 〈Rp(Θ, C)Θ,Θl〉̊Γli,j .
For the first summand, following the argument in [28], one can connect it to a “radial” derivative of the
metric. In their case ∂ρg̊i,j furnishes the desired result, since the sphere under interest is centered at
the origin. We instead choose to consider a direction radial with respect to the center C, since this will
substantially simplify the calculations: the approaches are equivalent. Let us define

G̃(s, z) := Expp

(
ρ
(
C + s

(
Θ(z)− C + w(z)N(Θ(z)) + Y (Θ(z))

)))
,

for s ∈ (0, 1], and notice that Σ(p,S),ρ(w, Y ) = G̃(1,Σ). The radial vector we consider is

Z0 := dG̃(s, z)[∂s] |s=1= d(Expp)[Θ− C + wN + Y ] = d(Expp)[ρ((1− w
R )(Θ− C) + Y )]

= ρ[(1− w
R )(Υ− C) + Ω].

Notice that

(4.27) [Z0, Zi] = G̃∗([∂s, ∂zi ]) = 0.

By the previous analysis:

k̊i,j =G(∇Zi(Υ− C), Zj) + ρg(∇Σ
i Y,Θj) + ρR

(
wi,j − Γ̊li,jwl

)
+ ρ〈∇Σ

i,jΘ− Γ̊li,jΘl, Y 〉+ ρ3

3 T ′i,j(Θ, C)

+ ρ3Lp(w, Y )+ρ3Q(2)(w, Y ) +O(ρ4).

It is easy to prove that k̊i,j = k̊j,i, since we need only the orthogonality of M̊ and TΣp,ρ(w, Y ); moreover,
the Christoffel symbols are symmetric (the induced connection is Levi-Civita), hence the first summand
on the right-hand side of the latter equation must compensate the presence of the asymmetric summands.
In order to see how, we compute (we use [Zi, Zj ] = 0 for every i, j = 0, ...,m):

G(∇ZiZ0, Zj)−G(Zi,∇ZjZ0) = ∂i(G(Z0, Zj))− ∂j(G(Zi, Z0))−G(Z0,∇ZiZj) +G(∇ZjZi, Z0)

= ρ∂i(G((1− w
R

)(Υ− C) + Ω, Zj))− ρ∂j(G(Zi, (1− w
R

)(Υ− C) + Ω)

= ρ2∂i[(1− w
R

)〈Θ− C, (1− w
R

)Θj +
wj
R

(C −Θ) + Yj〉+ g(Y, (1− w
R

)Θj) +Q(2)(w, Y )− ρ2

3
〈Rp(Θ, C)Θ,Θj〉]

− ρ2∂j [(1− w
R

)〈(1− w
R

)Θi + wi
R

(C −Θ) + Yi,Θ− C〉+ g((1− w
R

)Θi, Y ) +Q(2)(w, Y )− ρ3

3
〈Rp(Θ,Θi)Θ, C〉]

+ ρ4L(w, Y ) +O(ρ5) = ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5).

We now need to compute the derivative in s of the metric. In order to do so, we first need to explicit
the first fundamental form of G̃(s,Σ), and then differentiate at s = 1. With a calculation along the lines
to the one we developed in the previous subsection, we obtain

g̊i,j(s) =ρ2s2[(1− w
R

)2gi,j + g(∇Σ
i Y,Θj) + g(Θi,∇Σ

j Y ) + ρ2

3
(s2〈Rp(Θ,Θi)Θ,Θj〉+ s(1− s)〈Rp(Θ,Θi)C,Θj〉

+ s(1− s)〈Rp(C,Θi)Θ,Θj〉+ (1− s)2〈Rp(C,Θi)C,Θj〉)] + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5).

Taking the s−derivative and evaluating at s = 1 we get

∂sg̊i,j(s) |s=1=2ρ2[(1− w
R

)2gi,j + g(∇Σ
i Y,Θj) + g(Θi,∇Σ

j Y ) + ρ2

3
〈Rp(Θ,Θi)Θ,Θj〉] + ρ4L(w, Y ) + ρ2Q(2)(w, Y )

+O(ρ5) + ρ4

3
[2〈Rp(Θ,Θi)Θ,Θj〉 − 〈Rp(Θ,Θi)C,Θj〉 − 〈Rp(C,Θi)Θ,Θj〉].

We can now rewrite the derivative in s of the metric as follows

∂sg̊i,j(s) |s=1=∂s
(
G(Zi, Zj)

)
(s) |s=1= G(∇Z0Zi, Zj) +G(Zi,∇Z0Zj) = G(∇ZiZ0, Zj) +G(Zi,∇ZjZ0)

= 2G(∇ZiZ0, Zj)− ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5)

= 2∂i(G(Z0, Zj))− 2G(Z0,∇ZiZj)−
ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y )

+O(ρ5) = 2ρ(1− w
R

)G(∇Zi(Υ− C), Zj)− 2ρwi
R
G(Υ− C, Zj) + 2ρ∂i(G(Ω, Zj))
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− 2ρG(Ω,∇ZiZj)−
ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5)

= 2ρ(1− w
R

)G(∇Zi(Υ− C), Zj) + 2ρ2∂i(g(Y,Θj))− 2ρ2Γ̊li,jg(Y,Θl)− ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C))

+ ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5) = 2ρ(1− w
R

)G(∇Zi(Υ− C), Zj) + 2ρ2g(∇Σ
i Y,Θj)

+ 2ρ2〈Y,ΘΣ
i,j − Γ̊li,jΘl〉 − ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5).

We can now rearrange this identity and use the expansion we got before for the derivative of the metric
to obtain

G(∇Zi(Υ− C), Zj) = 1
2
ρ−1(1− w

R
)−1

{
∂sg̊i,j(s) |s=1 −[2ρ2g(∇Σ

i Y,Θj) + 2ρ2〈Y,ΘΣ
i,j − Γ̊li,jΘl〉

− ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5)]

}
= 1

2
ρ−1(1− w

R
)−1

{
2ρ2(1− w

R
)2gi,j + 2ρ2g(Θi,∇Σ

j Y ) + ρ4

3
(4〈Rp(Θ,Θi)Θ,Θj〉 − 〈Rp(Θ,Θi)C,Θj〉

− 〈Rp(C,Θi)Θ,Θj〉)− 2ρ2〈Y,ΘΣ
i,j − Γ̊li,jΘl〉+ ρ4

3
(Tj,i(Θ, C)− Ti,j(Θ, C)) + ρ4L(w, Y ) + ρ2Q(2)(w, Y ) +O(ρ5)

}
= ρ(1− w

R
)gi,j + ρg(Θi,∇Σ

j Y )− ρ〈Y,ΘΣ
i,j − Γ̊li,jΘl〉+ ρ3

6
[4〈Rp(Θ,Θi)Θ,Θj〉 − 〈Rp(Θ,Θi)C,Θj〉

− 〈Rp(C,Θi)Θ,Θj〉+ Tj,i(Θ, C)− Ti,j(Θ, C)] + ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4).

Resuming, we get

k̊i,j = G(∇Zi(Υ− C), Zj)−G(∇Zi(akZk), Zj) = ρ(1− w
R )gi,j + ρg(Θi,∇Σ

j Y )− ρ〈Y,ΘΣ
i,j − Γ̊li,jΘl〉

+ ρ3

6 [4〈Rp(Θ,Θi)Θ,Θj〉 − 〈Rp(Θ,Θi)C,Θj〉 − 〈Rp(C,Θi)Θ,Θj〉+ Tj,i(Θ, C)−Ti,j(Θ, C)]

+ ρg(∇Σ
i Y,Θj) + ρR

(
wi,j − Γ̊li,jwl

)
+ ρ〈∇Σ

i,jΘ− Γ̊li,jΘl, Y 〉+ ρ3

3 [Ti,j(Θ, C)− 〈Rp(Θ, C)Θ,Θl〉̊Γli,j ]

+ ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4) = ρ(1− w
R )gi,j + ρg(Θi,∇Σ

j Y ) + ρg(∇Σ
i Y,Θj) + ρR

(
wi,j − Γ̊li,jwl

)
+ ρ3

6 [4〈Rp(Θ,Θi)Θ,Θj〉 − 〈Rp(Θ,Θi)C,Θj〉 − 〈Rp(C,Θi)Θ,Θj〉+ Ti,j(Θ, C) + Tj,i(Θ, C)

− 2〈Rp(Θ, C)Θ,Θl〉̊Γli,j ] + ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4).

Employing the definition of Ti,j(Θ, C) and the basic symmetries of the Riemann tensor, we get that the

term in front of ρ3

6 is given by

T
′′

i,j(Θ, C) := 4〈Rp(Θ,Θi)Θ,Θj〉−2〈Rp(C,Θi)Θ,Θj〉−2〈Rp(Θ,Θi)C,Θj〉+2〈Rp(Θ, C)Θ,ΘΣ
i,j −ΘlΓ̊

l
i,j〉.

We now have to connect the Christoffel’s symbols. We get:

Γ̊ki,j = 1
2
g̊k,m

(
∂g̊m,i
∂zj

+
∂g̊m,j
∂zi

− ∂g̊i,j
∂zm

)
= 1

2
g̊k,mρ2

(
∂
∂zj

(
(1− w

R
)2
[
g(Θm,Θi) + L(w, Y )+Q(2)(w, Y )

]
+O(ρ2)

)
+ ∂

∂zi

(
(1− w

R
)2
[
g(Θm,Θj) + L(w, Y )+Q(2)(w, Y )

]
+O(ρ2)

)
− ∂

∂zm

(
(1− w

R
)2
[
g(Θi,Θj) + L(w, Y )+Q(2)(w, Y )

]
+O(ρ2)

))
= 1

2
g̊k,mρ2(1− w

R
)2
[(

∂
∂zj

(g(Θm,Θi)) + ∂
∂zi

(g(Θm,Θj))− ∂
∂zm

(g(Θi,Θj))
)

+ L(w, Y )+Q(2)(w, Y ) +O(ρ2)
]
.

Observe that g̊k,m = (1 − w
R )−2ρ−2gk,m + ρ−2Lp(w, Y )+ρ−2Q(2)(w, Y ) + O(1) by (4.15), so we easily

deduce

Γ̊ki,j = 1
2
[(1− w

R
)−2ρ−2gk,m + ρ−2Lp(w, Y )+ρ−2Q(2)(w, Y ) +O(1)]ρ2(1− w

R
)2
[(

∂
∂zj

(g(Θm,Θi)) + ∂
∂zi

(g(Θm,Θj))

− ∂
∂zm

(g(Θi,Θj))
)

+ L(w, Y )+Q(2)(w, Y ) +O(ρ2)
]

= Γki,j + L(w, Y )+Q(2)(w, Y ) +O(ρ2).

Inserting in the above expression we get

k̊i,j =G(∇Zi(Υ− C), Zj)−G(∇Zi(akZk), Zj) = ρ(1− w
R )gi,j + ρg(Θi,∇Σ

j Y ) + ρg(∇Σ
i Y,Θj)

+ ρR(HessΣw)i,j + ρ3

6 T
′′′

i,j (Θ, C) + ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4),
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where, using Weingarten’s relation and since the second fundamental form of Σ with respect to the normal
vector N = 1

R (C −Θ) is 1
Rg, we have set

T
′′′
i,j (Θ, C) := 4〈Rp(Θ,Θi)Θ,Θj〉 − 2〈Rp(C,Θi)Θ,Θj〉 − 2〈Rp(Θ,Θi)C,Θj〉+ 2〈Rp(Θ, C)Θ, (HessΣΘ)i,j〉

= 4〈Rp(Θ,Θi)Θ,Θj〉 − 2〈Rp(C,Θi)Θ,Θj〉 − 2〈Rp(Θ,Θi)C,Θj〉+ 2R−2〈Rp(Θ, C)Θ, C〉gi,j .

To conclude the proof, we recall that

G(M̊,M̊)−
1
2 = 1

R −
ρ2

6R3 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3);

remark that the expansion of k̊i,j remains unchanged when multiplying by the last three terms of the
latter quantity, and changes a little with the first. Moreover, for the multiplication by the second term,

we can see that k̊i,j = ρg(Θi,Θj) + ρL(w, Y )+ρQ(2)(w, Y ) +O(ρ3), so we easily get

h̊i,j =G(M̊,M̊)−
1
2 k̊i,j = [ 1

R
− ρ2

6R3 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)] · [ρ(1− w
R

)gi,j

+ ρg(Θi,∇Σ
j Y ) + ρg(∇Σ

i Y,Θj) + ρR(HessΣw)i,j + ρ3

6
T
′′′
i,j (Θ, C) + ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4)]

= ρ
R

(1− w
R

)gi,j + ρ
R

(g(Θi,∇Σ
j Y ) + g(∇Σ

i Y,Θj)) + ρ(HessΣw)i,j + ρ3

6R
Si,j(Θ, C) + ρ3L(w, Y )

+ ρQ(2)(w, Y ) +O(ρ4),

where

Si,j(Θ, C) := 4〈Rp(Θ,Θi)Θ,Θj〉 − 2〈Rp(C,Θi)Θ,Θj〉 − 2〈Rp(Θ,Θi)C,Θj〉+R−2〈Rp(Θ, C)Θ, C〉gi,j ,

exactly as in (4.25), concluding the proof. �

As already noticed before, the tangential component of the perturbation appears at first order as a
Lie derivative in the expansion of the second fundamental form, exactly as expected. Moreover, we can
recover the expansion in Lemma 2.3 of [28] by setting C = 0, R = 1 and Y = 0.

Finally, the mean curvature of the perturbed manifold Σ(p,S),ρ(w, Y ) is obtained taking the trace of
its second fundamental form. We first recall our convention from Remark 4.3.

Theorem 4.7 (Perturbed Mean Curvature - Spherical Case). We have the following expansion for the

mean curvature H̊ of Σ(p,S),ρ(w, Y ):

(4.28)
ρRH̊ =m+ (R∆Σw + m

Rw) + ρ2

3 Ric(Θ,Θ)− 2ρ2

3 Ric(C,Θ) + ρ2m
6R2 〈Rp(Θ, C)Θ, C〉

+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3).

Proof. From (4.15) and (4.24) we deduce

ρRH̊ =ρ̊gi,jRh̊i,j =
[
ρ−1(1− w

R
)−2gi,j + ρ−1Q(2)(w, Y )− ρ−1gi,k(g(∇Σ

k Y,Θm) + g(Θk,∇Σ
mY ))gm,j

− ρ
3
gi,k〈Rp(Θ,Θk)Θ,Θm〉gm,j + ρL(w, Y ) +O(ρ2)

]
·
[
ρ(1− w

R
)gi,j + ρ(g(Θi,∇Σ

j Y ) + g(∇Σ
i Y,Θj))

+ ρR(HessΣw)i,j + ρ3

6
Si,j(Θ, C) + ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4)

]
= m+ (R∆Σw + m

R
w)

+ ρ2

3
Ric(Θ,Θ)− 2ρ2

3
Ric(C,Θ) + ρ2m

6R2 〈Rp(Θ, C)Θ, C〉+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3),

yielding the desired result. �

Notice that the tangential component Y contributes only at high order, as anticipated above. For
what concerns the flat disk case, we obtain the following expansions for the second fundamental form
and the mean curvature of the perturbed surface.

Theorem 4.8 (Perturbed Extrinsic Geometry - Disk Case). The second fundamental form h̊i,j of the
perturbed disk Σp,ρ(w, Y ) has the following expansion:

(4.29)
h̊i,j =ρ(HessΣw)i,j − ρ3

3

(
〈Rp(N,Θi)Θ,Θj〉+ 〈Rp(Θ,Θi)N,Θj〉

)
+ ρ3L(w, Y ) + ρQ(2)(w, Y ) +O(ρ4).

Moreover, its mean curvature H̊ verifies

(4.30) ρH̊ = ∆Σw − 2ρ2

3 Ric(Θ, N) + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3).
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4.4. Volumes Enclosed by Perturbed Geodesic Double Bubbles. In this subsection we aim to
find expansions for the two volumes enclosed by the perturbed geodesic double bubble Σp,ρ(w, Y ). We
will consider the symmetric difference between the perturbed spherical sector and the non-perturbed one,
and then add the expansions obtained in Section 3 for geodesic double bubbles. The main advantage
of this method is to solve a non-uniqueness problem. Indeed, we cannot a-priori know how the bottom
of the region Pσ enclosed by each spherical cap is deformed since the perturbation is defined only on
the spherical surface (see Figure 4.4 below), unless we are in the symmetric case; therefore we cannot
compute the volumes of the three perturbed regions separately in an unique way. On the other hand, these
contributions will clearly balance each other when computing the volumes (V1)p,ρ(w, Y ) and (V2)p,ρ(w, Y ),
since the exponential map cannot create empty chambers. Recall we are assuming that the perturbation
is admissible in the terminology from in Subsection 4.1.

Figure 4. Three different ways of closing the perturbed cap

For the remainder of this subsection it is convenient to set Σσ(w, Y ) := φw,Y (Σσ). Define the (per-
turbed) spherical sector Sec(Σσ) (respectively Sec(Σσ(w, Y ))) to be the set {x = Cσ + s(Θ − Cσ) ∈
TpM | Θ ∈ Σσ, s ∈ [0, 1]} (resp. {x = Cσ + s(Θ − Cσ) ∈ TpM | Θ ∈ Σσ(w, Y ), s ∈ [0, 1]}).
Let us denote its image through the exponential map by Sec(Σσ(p,S),ρ) := Expp(ρ · Sec(Σσ)) (resp.

Sec(Σσ(p,S),ρ(w, Y )) := Expp(ρ · Sec(Σσ(w, Y )))). Notice that the presence of a possibly non-trivial tan-

gential component Y of the perturbation at the boundary Γ might change the volume of the perturbed
sector. Let us start with the asymmetric case: from the above discussion we obtain the following equations{

(V1)(p,S),ρ(w, Y ) = (V1)(p,S),ρ + (Volm+1(Sec(Σ1
(p,S),ρ(w, Y )))−Volm+1(Sec(Σ1

(p,S),ρ))) + (Volm+1(Sec(Σ0
(p,S),ρ(w, Y )))−Volm+1(Sec(Σ0

(p,S),ρ))),

(V2)(p,S),ρ(w, Y ) = (V2)(p,S),ρ + (Volm+1(Sec(Σ2
(p,S),ρ(w, Y )))−Volm+1(Sec(Σ2

(p,S),ρ)))− (Volm+1(Sec(Σ0
(p,S),ρ(w, Y )))−Volm+1(Sec(Σ0

(p,S),ρ))).

Therefore, we reduced the problem to the computation of an expansion for Volm+1(Sec(Σσ(p,S),ρ(w, Y )))−
Volm+1(Sec(Σσ(p,S),ρ)). We focus our attention to the case σ = 1, since the other ones are analogous, and

we drop the index σ in order to keep the notation short. The volume of the perturbed sector is computed
as follows

Volm+1(Sec(Σ(p,S),ρ(w, Y ))) =

ˆ
Sec(Σ(p,S),ρ(w,Y ))

1 = ρm+1

ˆ
Sec(Σ(w,Y ))

(
1− ρ2

6 Ric(x, x) +O(ρ3)
)
dx

=ρm+1

{(
R

m+1Area(Σ)−
ˆ

Σ

w −R divΣ(Y )
m+1 +Q(2)(w, Y )dµΣ

)
− ρ2

6

ˆ
Σ

[(ˆ 1

0

Ric(C + s(Θ− C + wN + Y ), C + s(Θ− C + wN + Y ))smds
)
·
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· |Θ− C + wN + Y |
(
1− w

R

)m
(1 + divΣ(Y ) +Q(2))

]
dµΣ +O(ρ3)+ρ3L(w, Y )+ρ3Q(2)(w, Y )

}
= Volm+1(Sec(Σ(p,S),ρ)) + ρm+1

(
−
ˆ

Σ

w −R divΣ(Y )
m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ

)
.

Therefore, we easily get

(4.31) Volm+1(Sec(Σ(p,S),ρ(w, Y )))−Volm+1(Sec(Σ(p,S),ρ)) = −ρm+1
´

Σ
w −R divΣ(Y )

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ,

or more generally, restoring the index σ = 0, 1, 2:

(4.32) Volm+1(Sec(Σσ(p,S),ρ(w, Y )))−Volm+1(Sec(Σσ(p,S),ρ)) = −ρm+1
´

Σσ
wσ −R divΣσ (Yσ)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣσ .

From the above equations we deduce

ρ−(m+1)(V1)(p,S),ρ(w, Y ) =ρ−(m+1)(V1)(p,S),ρ −
ˆ

Σ1

w1 −R1
divΣ1 (Y1)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ1

−
ˆ

Σ0

w0 −R0
divΣ0 (Y0)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ0 +O(ρ3),(4.33)

and

ρ−(m+1)(V2)(p,S),ρ(w, Y ) =ρ−(m+1)(V2)(p,S),ρ −
ˆ

Σ2

w2 −R2
divΣ2 (Y2)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ2

+

ˆ
Σ0

w0 −R0
divΣ0 (Y0)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ0 +O(ρ3).(4.34)

In the symmetric case, instead of computing the difference between the sectors, we can directly inte-
grate over the regions (B1)(p,S),ρ(w, Y ) and (B2)(p,S),ρ(w, Y ) enclosed by the double bubble considered.
Analogous calculations to the ones above yield (we set (V )(p,S),ρ := (V1)(p,S),ρ = (V2)(p,S),ρ)

ρ−(m+1)(V1)(p,S),ρ(w, Y ) =ρ−(m+1)(V )(p,S),ρ −
ˆ

Σ1

w1 −R
divΣ1 (Y1)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ1

−
ˆ

Σ0

w0 −R
divΣ0 (Y0)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ0 +O(ρ3),(4.35)

and

ρ−(m+1)(V2)(p,S),ρ(w, Y ) =ρ−(m+1)(V )(p,S),ρ −
ˆ

Σ2

w2 −R
divΣ2 (Y2)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ2

+

ˆ
Σ0

w0 −R
divΣ0 (Y0)

m+1 +Q(2)(w, Y ) + ρ2L(w, Y )dµΣ0 +O(ρ3).(4.36)

4.5. Areas of Perturbed Geodesic Double Bubbles. In this subsection we expand them−dimensional
volumes of the perturbed sheets Σσ(p,S),ρ(w, Y ). As already done before, we focus our attention to the case

σ = 1 and we drop this index. Using the expansion for the metric g̊i,j in (4.14) and Taylor’s expansion
of the square root of the determinant

(4.37)
√
det(Id+H) = 1 + 1

2 tr(H) +O(|H|2).

we deduce that the volume element
√
g̊ satisfies

ρ−m
√
g̊ =(1− w

R )m[
√
g + divΣ(Y ) + ρ2

6 Ric(Θ,Θ) + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)].

Therefore, we can integrate this expression over Σ to get

Volm(Σ(p,S),ρ(w, Y )) = ρm
ˆ

Σ

1−mw
R

+ divΣ(Y ) + ρ2

6
Ric(Θ,Θ) + ρ2L(w, Y ) +Q(2)(w, Y )dµΣ +O(ρm+3)

= Volm(Σ(p,S),ρ)− ρm
ˆ

Σ

mw
R
− divΣ(Y ) + ρ2L(w, Y ) +Q(2)(w, Y )dµΣ +O(ρm+3),

Restoring the index for the boundary component, we get for every σ = 0, 1, 2 in the asymmetric case, or
for any σ = 1, 2 in the symmetric case

(4.38) Volm(Σσ(p,S),ρ(w, Y )) = Volm(Σσ(p,S),ρ)− ρ
m
´

Σσ
mwσ
Rσ
− divΣσ (Yσ) + ρ2L(w, Y ) +Q(2)(w, Y )dµΣσ +O(ρm+3).
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In the symmetric case, equation (4.16), together with Taylor’s expansion for the square root of the
determinant, ensure that the m−dimensional measure of the perturbed geodesic disk satisfies

(4.39) Volm(Σ0
(p,S),ρ(w, Y )) = Volm(Σ0

(p,S),ρ) + ρm
´

Σ0 divΣ0(Y0) + ρ2L(w, Y ) +Q(2)(w, Y )dµΣ0 +O(ρm+3).

4.6. Approximate Equi-angularity of Perturbed Geodesic Double Bubbles. Concluding this
section, we present a brief calculation for the sum of the inner conormal vector fields ν̊σ’ s of the surfaces
Σ(p,S),ρ(w, Y )’s at points in Γ(p,S),ρ(w, Y ), which will play a crucial role in annihilating a boundary
term in the proof of the main Proposition 6.1. Similarly to what we did in Subsection 3.3, we introduce
auxiliary vectors ν̃(p,S)(w, Y )σ := Expp(ρνσw,Y ), where νσw,Y denotes the inner conormal vector field of the

Euclidean perturbed surface Σσ(w, Y ). Refining the argument at the beginning of Subsection 4.3, one can
show that for every σ we have ν̊σ = ν̃(p,S)(w, Y )σ/‖ν̃(p,S)(w, Y )σ‖G +O(ρ2) + ρ2L(w, Y ) + ρ2Q(2)(w, Y ).

Here L and Q(2) denote a L-term and a Q(2)-term respectively, depending only on w, Y and their first
derivatives with respect to the vectors νσ’s, see the notation in Subsection 4.1. Moreover, from (3.1) we
can deduce
(4.40)

ν̃(p,S)(w, Y )0 + ν̃(p,S)(w, Y )1 + ν̃(p,S)(w, Y )2 = ν0
w,Y + ν1

w,Y + ν2
w,Y +O(ρ2) + ρ2L(w, Y ) + ρ2Q(2)(w, Y ),

so we arrive at

(4.41) ν̊0 + ν̊1 + ν̊2 = ν0
w,Y + ν1

w,Y + ν2
w,Y +O(ρ2) + ρ2L(w, Y ) + ρ2Q(2)(w, Y ).

From [16], we know that for perturbations of Euclidean double bubbles

(4.42) ν0
w,Y + ν1

w,Y + ν2
w,Y =

(
∂w0

∂ν0 + q0w0

)
N0 +

(
∂w1

∂ν1 + q1w1

)
N1 +

(
∂w2

∂ν2 + q2w2

)
N2 + Q(2)(w, Y ),

Here the 0th-order term is ν0 + ν1 + ν2 = 0 by the geometric balance equations satisfied by the standard
double bubble. Combining the above expressions, we obtain an expansion for the sum of the inner
conormal vectors ν̊σ’ s

(4.43)
ν̊0 + ν̊1 + ν̊2 =

(
∂w0

∂ν0 + q0w0

)
N0 +

(
∂w1

∂ν1 + q1w1

)
N1 +

(
∂w2

∂ν2 + q2w2

)
N2

+O(ρ2) + ρ2L(w, Y ) + Q(2)(w, Y ).

We are finally ready to state the equi-angularity we will impose, namely ν̊0 + ν̊1 + ν̊2 = 0. From the
equi-angularity of the standard double bubble Σ, we know that N1 = N0 +N2, therefore after projecting
the expansion in (4.43) on N0 and N2, we obtain the equivalent system

(4.44)

{
∂w0

∂ν0 + q0w0 + ∂w1

∂ν1 + q1w1 = O(ρ2) + ρ2L(w, Y ) + Q(2)(w, Y ) =: (e0)(p,S),ρ(w, Y ) on Γ;
∂w1

∂ν1 + q1w1 + ∂w2

∂ν2 + q2w2 = O(ρ2) + ρ2L(w, Y ) + Q(2)(w, Y ) =: (e2)(p,S),ρ(w, Y ) on Γ.

The particular structure of L and Q(2) guarantees that the boundary data we are imposing in the system
(4.44) belongs to C0,α(Γ)× C0,α(Γ).

5. Fixed Point Argument and Pseudo-Double Bubbles

Throughout this section, we will discuss how one can choose the perturbation φw,Y as in (4.1) in order

to get the mean curvature vector (H̊0, H̊1, H̊2) of the perturbed geodesic double bubble Σσ(p,S),ρ(w, Y ) as

close as possible to a constant three-vector (H0, H1, H2). As we already pointed out in the introduction,
one cannot expect to find at every point (p,S) ∈ UTM a perturbation for which this vector of mean
curvatures is constant, because the linearization of this condition is induced by an elliptic operator with
non-trivial kernel. This issue will give rise to the concept of pseudo-double bubbles, see Definition 5.2
below, inspired by the analogous concept considered by Nardulli (Definition 1.2 in [27]).

From an analytic perspective, we will need to find a (unique) solution (w(p,S),ρ, Y(p,S),ρ) ∈ Camm to
a coupled system of PDE’s under mixed boundary conditions. In particular, we will have to deal with
three quasi-linear second-order elliptic equations for the wσ’s, in presence of a non-trivial kernel, and three
quasi-linear non-elliptic first-order equations for the Yσ’s, under nine Dirichlet- and Robin-type boundary
conditions. To solve these, we will apply a Lyapunov-Schmidt reduction, and impose some compatibility
conditions to tackle respectively the non-trivial kernel and this excess of boundary conditions.
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To begin, let us consider for data (e0, e2) ∈ Ck,α(Γ) × Ck,α(Γ) of small norm the generalized equi-
angularity conditions (we are projecting on N0 and N2)

(5.1)

{
∂w0

∂ν0 + q0w0 + ∂w1

∂ν1 + q1w1 = e0 on Γ;
∂w1

∂ν1 + q1w1 + ∂w2

∂ν2 + q2w2 = e2 on Γ.

Notice that the Euclidean condition (4.10) is equivalent to the above with (e0, e2) = (0, 0), whereas
the perturbed condition (4.44) is recovered by choosing (e0, e2) = ((e0)(p,S),ρ(w, Y ), (e2)(p,S),ρ(w, Y )) =

(O(ρ2) + ρ2L(w, Y ) + Q(2)(w, Y ),O(ρ2) + ρ2L(w, Y ) + Q(2)(w, Y )), so the introduction of a non-zero
right-hand side in (5.1) will allow to pass from a linearized equiangularity condition to a genuine one.
In what follows, we will show how to produce a unique solution to an augmented problem depending
Lipschitz-continuously on the data (e0, e1) in (5.1) and then obtain a solution of the problem under the
desired condition (4.44). As we have done in the previous section, we consider a fixed pair (p,S) ∈ UTM
along which a geodesic double bubble Σ(p,S),ρ is centered and a fixed scale ρ ∈ (0, ρ0). We adopt the
same conventions and notation of the previous sections. Suppose first that we are in the asymmetric
case, so each sheet Σσ is a cap inside a sphere S(Cσ, Rσ). In view of Theorem 4.7, we would like to find
a solution (w, Y ) to an equation of the form

m+ (R∆Σw + m
Rw) + ρ2

3 Ric(Θ,Θ)− 2ρ2

3 Ric(C,Θ) + ρ2m
6R2 〈Rp(Θ, C)Θ, C〉

+ ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3) = ρRH̊ = ρRH(Σ(p,S),ρ(w, Y )) = m,

under the boundary conditions (4.4), (4.6), (4.7) and (5.1), where it is understood that w = (w0, w1, w2),
Y = (Y0, Y1, Y2) and every quantity depends on the index σ = 0, 1, 2 considered. It turns out that one
cannot always solve this boundary value problem, since its linearization is induced by the operator

(R0∆Σ0 + m
R0
, R1∆Σ1 + m

R1
, R2∆Σ2 + m

R2
) : C2,α(Σ) −→ C0,α(Σ)

which has non-trivial kernel under the linearized boundary conditions (4.6) and (4.10) imposed on w.
For this reason, we choose to perform a Lyapunov-Schmidt Reduction, which will simplify the problem
to a finite dimensional one. In the following, set for all σ = 0, 1, 2

(5.2) bσ := ρ2

3 Ric(Θ,Θ)− 2ρ2

3 Ric(Cσ,Θ) + ρ2m
6R2 〈Rp(Θ, Cσ)Θ, Cσ〉 |Σσ .

5.1. Lyapunov-Schmidt Reduction. Decompose the space L2(Σ) in an orthogonal sum V ⊕ V ⊥,
where V := Ker(R0∆Σ0 + m

R0
)×Ker(R1∆Σ1 + m

R1
)×Ker(R2∆Σ2 + m

R2
) under the linearized boundary

conditions (4.6) and (4.10), and notice that C2,α(Σ) inherits the decomposition as an affine subspace
of L2(Σ). Therefore, when performing the reduction, we will impose (5.1) only on V ⊥. The space
V ∩ C2,α(Σ) was studied, under the assumed boundary conditions (4.6) and (4.10), by the first-named
author in [8], where it was shown that this space is generated by infinitesimal translations and rotations
of the standard double bubble, and has dimension 2m+1. Moreover, by Fredholm’s alternative, we know
that the following operator is invertible

(5.3) (R0∆Σ0 + m
R0
, R1∆Σ1 + m

R1
, R2∆Σ2 + m

R2
) : V ⊥ ∩ Ck+2,α(Σ) −→ V ⊥ ∩ Ck,α(Σ),

and the inverse operator (R0∆Σ0 + m
R0
, R1∆Σ1 + m

R1
, R2∆Σ2 + m

R2
)−1 induces a continuous linear endo-

morphism on Ck,α(Σ) if (e0, e2) ∈ Ck,α(Γ) × Ck,α(Γ). For later use, we remark that this operator is
Lipschitz-continuous with respect to the data (e0, e2) ∈ Ck,α(Γ) × Ck,α(Γ). Using this information, we
decompose w := ω + v, and we would like to find (ω, v) ∈ V ⊥ × V , satisfying the weaker system

(5.4) (Rσ∆Σσωσ + m
Rσ
ωσ) + ρ2bσ + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3) + vσ = 0, σ = 0, 1, 2

under the boundary conditions described above. In order to obtain a solution, we project the system
(5.4) on V and V ⊥ through projectors ΠV and ΠV ⊥ respectively:

(5.5)

vσ = −ΠV

(
ρ2bσ + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)

)
,

(Rσ∆Σσωσ + m
Rσ
ωσ) = −ΠV ⊥

(
ρ2bσ + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)

)
,

σ = 0, 1, 2.
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For later purposes, it is convenient to rewrite the second equation of (5.5) in the following form

(5.6)

ωσ = Fσ(ωσ, vσ, Yσ) := (Rσ∆Σσ + m
Rσ

)−1ΠV ⊥

(
ρ2L(w, Y ) +Q(2)(w, Y )− ρ2bσ +O(ρ3)

)
,

vσ = Gσ(ωσ, vσ, Yσ) := −ΠV

(
ρ2bσ + ρ2L(w, Y ) +Q(2)(w, Y ) +O(ρ3)

)
.

Notice that (5.5) clearly depends also on Y (through L(w, Y ) and Q(2)(w, Y )), so we need to make a
suitable choice of it. In principle, we could extend the boundary data uσν

σ + (Yσ)Γ’s arbitrarily inside
the hypersurface Σσ, but we encounter two major problems. First of all, most of the extension theorems
we are aware of (see [7, 22, 36]), allow to preserve the regularity so, since by (4.7) and w |Γ∈ C0,α(Γ)
we deduce u |Γ∈ C0,α(Γ), we expect to get Y ∈ C0,α(Σ); however, these results do not improve the
regularity and hence we cannot get anything better than Y ∈ C0,α(Σ), which is not enough to have
(w, Y ) admissible. Secondly, we would like the choice Y to depend smoothly on the point (p,S) ∈ UTM
along which we are setting up our analysis, and this is difficult to achieve without a selection principle
for these possible extensions. We therefore choose to impose additional equations on the tangential
component Y which will solve both problems at once; more precisely, we will prescribe its divergence
under the assumed boundary conditions. It is worth mentioning that this problem is overdetermined and
non-elliptic (in an analytical sense), but it still has well-posedness and regularity theory by the results
in [33], under proper compatibility conditions between the prescribed data, which can be met in our case
since we have freedom in choosing the prescribing functions. Finally, we remark that one cannot find Y
in the form Y := ∇y where y satisfies an elliptic equation: indeed, under the conditions (4.7) and (4.4),
such a problem is overdetermined.

5.2. A Fluid Dynamics Approach. The method we are about to adopt is inspired by analogous
problems in fluid dynamics, where one prescribes the so-called compressibility of the flow, that is the
divergence of its velocity. For a mathematical point of view see [1, 12] and the exhaustive book [33],
where Schwartz gives a beautiful treatment of the regularity theory for the more general case of Hodge
decomposition. Before introducing new equations on Y , let us give a brief summary of some results
from [33] we intend to use. Given a smooth Riemannian manifold with boundary (X, ∂X, gX), let us
consider the following boundary value problem: for any data f ∈ Ck,α(X) and V ∈ Ck,α(∂X;TX) we
look for a solution Y ∈ Ck+1,α(X;TX) of

(5.7)

{
divX(Y ) = f on X;

Y = V on ∂X.

From Lemma 3.5.5 in [33], we know that this problem has a solution if and only if the following compat-
ibility condition is met

(5.8)

ˆ
X

fdµX = −
ˆ
∂X

gX(νX , V )dµ∂X ,

where νX is the unit vector normal to ∂X and pointing inwards. Clearly, this condition is necessary by
the divergence theorem, but the sufficiency is far from being trivial, in fact, we repeat, this problem is not
elliptic and over-determined. Furthermore, by Corollary 3.3.4 in [33] one can always choose a solution to
(5.7) verifying, for some constants Dk,

(5.9) ‖Y ‖Ck+1,α(X;TX) ≤ Dk

(
‖f‖Ck,α(X) + ‖V ‖Ck,α(∂X;TX)

)
.

Here we have used Morrey’s embedding theorem in order to substitute the Sobolev norms considered
in [33] with the above Hölder norms. For what it regards the uniqueness, the solution is unique up to
what the author calls Dirichlet and Neumann fields (Theorem 3.2.5 and Corollary 3.2.6 in [33]); however,
when the manifold (X, ∂X) is contractible, both these classes collapse on the trivial one, so we get that the
solution to (5.7) is unique, see the Remark after Theorem 2.2.2 in [33]. Therefore in this case, we have
a well-defined and continuous operator div−1 : Ck,α(X;TX) → Ck+1,α(X;TX), inducing continuous
endomorphisms of Ck,α(X;TX) for every k. Altogether, since in our case (Σσ,Γ) is contractible, we have
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existence, uniqueness and C1,α-norm bounds (i.e. well-posedness) for the following problem

(5.10)


divΣσ (Yσ) = fσ on Σ;

g(Yσ, ν
σ) = uσ on Γ,

(Yσ)Γ = 0 on Γ,

as long as the fσ’s are chosen so that

(5.11)

ˆ
Σσ
fσdµΣσ = −

ˆ
Γ

uσdµΓ.

Remark that the conditions imposed on the fields (Yσ)Γ’s imply the condition (4.4), and from now on we
will consider this more strict condition:

(5.12) (Y0)Γ = (Y1)Γ = (Y2)Γ = 0.

We now proceed to construct suitable data fσ. In order to shorten our notation, we will drop the volume
elements in the integrals below, since they are already implicitly defined from the domains of integration
considered. Using equations (4.7) we obtain

(5.13)

ˆ
Γ

u0 = 1√
3

ˆ
Γ

w0 + 2w2,

ˆ
Γ

u1 = 1√
3

ˆ
Γ

w0 − w2,

ˆ
Γ

u2 = 1√
3

ˆ
Γ

−2w0 − w2.

Therefore we are naturally led to consider
´

Γ
wσ; applying the system (5.1) and the divergence theorem

we get
ˆ

Γ

w0 = 1
q0

ˆ
Γ

−∂w0

∂ν0 − ∂w1

∂ν1 − q1w1 + e0 = 1
q0

( ˆ
Σ0

∆w0 +

ˆ
Σ1

∆w1

)
− q1

q0

ˆ
Γ

w1 + 1
q0

ˆ
Γ

e0;

ˆ
Γ

w2 = 1
q2

ˆ
Γ

−∂w2

∂ν2 − ∂w1

∂ν1 − q1w1 + e2 = 1
q2

( ˆ
Σ2

∆w2 +

ˆ
Σ1

∆w1

)
− q1

q2

ˆ
Γ

w1 + 1
q2

ˆ
Γ

e2.

Summing these two equations and using (4.6) we also find

´
Γ
w1 =

´
Γ
w0 + w2 = 1

q0

( ´
Σ0 ∆w0 +

´
Σ1 ∆w1

)
+ 1

q2

( ´
Σ2 ∆w2 +

´
Σ1 ∆w1

)
−
(
q1
q0

+ q1
q2

) ´
Γ
w1 + 1

q0

´
Γ
e0 + 1

q2

´
Γ
e2.

Firstly, let us consider the easier case (e0, e2) = (0, 0). Solving for
´

Γ
w1 and substituting back in the

previous identities we arrive at

(5.14)

ˆ
Γ

w0 =P
[
q2

( ˆ
Σ0

∆w0 +

ˆ
Σ1

∆w1

)
+ q1

(ˆ
Σ0

∆w0 −
ˆ

Σ2

∆w2

)]
,

ˆ
Γ

w1 =P
[
q2

( ˆ
Σ0

∆w0 +

ˆ
Σ1

∆w1

)
+ q0

(ˆ
Σ1

∆w1 +

ˆ
Σ2

∆w2

)]
,

ˆ
Γ

w2 =P
[
q1

(
−
ˆ

Σ0

∆w0 +

ˆ
Σ2

∆w2

)
+ q0

(ˆ
Σ1

∆w1 +

ˆ
Σ2

∆w2

)]
.

Here we have set P := (q0q1 + q1q2 + q0q2)−1. Together with (4.9) and (5.13), the identities (5.14) imply

(5.15)

ˆ
Γ

u0 =PH1H2

[
− H0

H1H2

ˆ
Σ0

∆w0 +

ˆ
Σ1

R1∆w1 +

ˆ
Σ2

R2∆w2

]
,

ˆ
Γ

u1 =PH0H2

[
−
ˆ

Σ0

R0∆w0 − H1

H0H2

ˆ
Σ1

∆w1 +

ˆ
Σ2

R2∆w2

]
,

ˆ
Γ

u2 =PH0H1

[ ˆ
Σ0

R0∆w0 +

ˆ
Σ1

R1∆w1 − H2

H0H1

ˆ
Σ2

∆w2

]
.

Let us focus on the case σ = 1. Since we will need to bootstrap the regularity of the solution, we need to
get rid of the Laplace operators appearing in the formula above. Thus we appeal to the equations (5.4)
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solved by the functions wσ’s, and obtain

(5.16)

ˆ
Γ

u1 =PH0H2

[ ˆ
Σ0

(
v0 + m

R0
w0 + ρ2b0 + ρ2L(w0, Y0) +Q(2)(w0, Y0) +O(ρ3)

)
+

H2
1

H0H2

ˆ
Σ1

(
v1 + m

R1
w1 + ρ2b1 + ρ2L(w1, Y1) +Q(2)(w1, Y1) +O(ρ3)

)
−
ˆ

Σ2

(
v2 + m

R2
w2 + ρ2b2 + ρ2L(w2, Y2) +Q(2)(w2, Y2) +O(ρ3)

)]
.

As by (5.11), we would like to express the right-hand side of (5.16) as the integral of a function −f1 :
Σ1 → R. In principle, we may consider the right-hand side as a constant function, so the function −f1 is
given by an average; however, this would create an extremely troublesome non-local term in the system
(5.10) we are planning to solve. We therefore use the following trick, based on the change of variables
in the integrals. Let RS ∈ O(m + 1) be the reflection along the hyperplane S⊥, and define for every
σ, τ = 0, 1, 2, σ 6= τ , functions hτσ : Σσ → Στ by

(5.17)
h1

0(x) := R1

R0
(RS(x− C0)) + C1, h2

0(x) := R2

R0
(x− C0) + C2, h1

2(x) := R1

R2
(RS(x− C2)) + C1,

h0
1 := (h1

0)−1, h0
2 := (h2

0)−1, h2
1 := (h1

2)−1.

Notice that the Ck-norms (and the Jacobians) of the functions hτσ’s can be bounded in terms of the radii
Rσ, Rτ and the dimension m. We can now change variables in the above formula (5.16) to obtain a more
suitable expressionˆ

Σ1

f1 = −
ˆ

Γ

u1 =− PH0H2

[(
R0

R1

)m ˆ
Σ1

(
v0 + m

R0
w0 + ρ2b0 + ρ2L(w0, Y0) +Q(2)(w0, Y0) +O(ρ3)

)
◦ h0

1

+
H2

1

H0H2

ˆ
Σ1

(
v1 + m

R1
w1 + ρ2b1 + ρ2L(w1, Y1) +Q(2)(w1, Y1) +O(ρ3)

)
−
(
R2

R1

)m ˆ
Σ1

(
v2 + m

R2
w2 + ρ2b2 + ρ2L(w2, Y2) +Q(2)(w2, Y2) +O(ρ3)

)
◦ h2

1

]
,

from which we deduce a local expression for the data f1

(5.18)

f1 :=− PH0H2

[(
R0

R1

)m(
v0 + m

R0
w0 + ρ2b0 + ρ2L(w0, Y0) +Q(2)(w0, Y0) +O(ρ3)

)
◦ h0

1

+
H2

1

H0H2

(
v1 + m

R1
w1 + ρ2b1 + ρ2L(w1, Y1) +Q(2)(w1, Y1) +O(ρ3)

)
−
(
R2

R1

)m(
v2 + m

R2
w2 + ρ2b2 + ρ2L(w2, Y2) +Q(2)(w2, Y2) +O(ρ3)

)
◦ h2

1

]
.

Similarly, from (5.15) and (5.4) we are naturally led to set

(5.19)

f0 :=− PH1H2

[
H2

0

H1H2

(
v0 + m

R0
w0 + ρ2b0 + ρ2L(w0, Y0) +Q(2)(w0, Y0) +O(ρ3)

)
−
(
R1

R0

)m(
v1 + m

R1
w1 + ρ2b1 + ρ2L(w1, Y1) +Q(2)(w1, Y1) +O(ρ3)

)
◦ h1

0

−
(
R2

R0

)m(
v2 + m

R2
w2 + ρ2b2 + ρ2L(w2, Y2) +Q(2)(w2, Y2) +O(ρ3)

)
◦ h2

0

]
,

and

(5.20)

f2 :=− PH0H1

[
−
(
R0

R2

)m(
v0 + m

R0
w0 + ρ2b0 + ρ2L(w0, Y0) +Q(2)(w0, Y0) +O(ρ3)

)
◦ h0

2

−
(
R1

R2

)m(
v1 + m

R1
w1 + ρ2b1 + ρ2L(w1, Y1) +Q(2)(w1, Y1) +O(ρ3)

)
◦ h1

2

+
H2

2

H0H1

(
v2 + m

R2
w2 + ρ2b2 + ρ2L(w2, Y2) +Q(2)(w2, Y2) +O(ρ3)

)
◦ h2

1

]
.

Restoring now the dependence on the data (e0, e2), and arguing as above, one arrives to equations of
the form

(5.21)

ˆ
Σσ
fσ =

ˆ
Σσ
fσ |(e0,e2)=(0,0) +

ˆ
Γ

P ′0e0 + P ′2e2,
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for some constants P ′0 and P ′2 depending only on the dimension m and the radii Rσ’s. For each σ = 0, 1, 2
we solve uniquely the system

(5.22)

{
∆Eσ − Eσ = 0 on Γ,

∂νσEσ = −P ′0e0 − P ′2e2 on Γ,

so that we obtain

(5.23)

ˆ
Σσ
fσ =

ˆ
Σσ
fσ |(e0,e2)=(0,0) +Eσ,

and we can finally set fσ = fσ |(e0,e2)=(0,0) +Eσ. Notice that this choice of fσ depends Lipschitz-
continuously on the data (e0, e2). In fact, for every k ∈ N there exist a constant Dk such that the solution
to (5.22) satisfies ‖E‖Ck+1,α(Σ) ≤ Dk‖(e0, e2)‖Ck,α(Γ)×Ck,α(Γ) and, given two pairs of data (e0, e2) and
(e′0, e

′
2), then ‖E − E′‖Ck+1,α(Σ) ≤ Dk‖(e0 − e′0, e2 − e′2)‖Ck,α(Γ)×Ck,α(Γ), where we denoted by E and E′

the solutions relatives to the respective data (e0, e2) and (e′0, e
′
2). With the scope of approaching the

problem through a fixed point argument, we rewrite the first equation in (5.10) as

(5.24) Yσ = Hσ(ωσ, vσ, Yσ) := div−1(fσ), σ = 0, 1, 2.

We stress that this is a system of equations coupling the (wσ, Yσ)’s with each other, in contrast to (5.6),
which could in principle be solved in each sheet separately.

5.3. Fixed Point Argument. We are finally ready to set up the fixed point argument in order to solve
our problem. Slightly abusing notation, we will drop the index σ and consider all the quantities involved
as three-vectors. We will always implicitly assume the boundary conditions (5.12), (4.6), (4.7) and (5.1).
Consider the operator

(F,G,H) :
(
C0,α(Σ) ∩ V ⊥

)
×
(
C0,α(Σ) ∩ V

)
× C0,α(Σ;TΣ) −→

(
C0,α(Σ) ∩ V ⊥

)
×
(
C0,α(Σ) ∩ V

)
× C0,α(Σ;TΣ)

induced by the functions Fσ’s, Gσ’s and Hσ’s previously introduced in (5.6) and (5.24). Using the
properties of L(w, Y ) and Q(2)(w, Y ), we are going to show that the operator (F,G,H) has a unique fixed
point in a ball around the origin, of C0,α−radius ρ2 for any ρ < ρ3 and (e0, e2) ∈ C0,α(Γ)×C0,α(Γ) small
enough. Here the threshold ρ3 depends on (p,S) and hence, by compactness, ultimately only on UTM .
Furthermore, this fixed point will depend Lipschitz-continuously on the data (e0, e2); this property will
reveal crucial in solving the original problem, where (e0, e2) = ((e0)(p,S),ρ(w, Y ), (e2)(p,S),ρ(w, Y )). It

is equivalent to consider the direct product of three balls U := B(0, c1ρ
2) × B(0, c2ρ

2) × B(0, c3ρ
2) ⊆(

C0,α(Σ)∩V ⊥
)
×
(
C0,α(Σ)∩V

)
×C0,α(Σ;TΣ) for some constants c1, c2, c3 > 0 instead of an actual ball

in the product space. Also, let us consider data (e0, e2) ∈ B(0, c4ρ
2) × B(0, c5ρ

2) ⊂ C0,α(Γ) × C0,α(Γ).
A natural approach would be to show that (F,G,H) is a contraction in U ; unfortunately, the operator
H is not a contraction, if seen as a function of the triple (ω, v, Y ), see Remark 5.1 below. Therefore we
outline the following plan:

• we first show that H(ω, v, ·) is a contraction in a small enough ball B(0, c3ρ
2) ⊆ C0,α(Σ;TΣ) as

above for any fixed (ω, v) ∈ B(0, c1ρ
2)×B(0, c2ρ

2) ⊆
(
C0,α(Σ) ∩ V ⊥

)
×
(
C0,α(Σ) ∩ V

)
and any

fixed data (e0, e2) ∈ B(0, c4ρ
2)×B(0, c5ρ

2) ⊂ C0,α(Γ)× C0,α(Γ);
• we show the Lipschitz-continuity of the unique solution Y = Y (ω, v) found as fixed point of the

previous contraction as a function of (ω, v);
• we show the Lipschitz-continuity of the unique solution Y = Y (e0, e2) found above as a function

of the data (e0, e2);
• we prove that (F(·, ·, Y (·, ·)),G(·, ·, Y (·, ·))) is a contraction of the set B(0, c1ρ

2)× B(0, c2ρ
2) for

any fixed data (e0, e2) ∈ B(0, c4ρ
2)×B(0, c5ρ

2) ⊂ C0,α(Γ)× C0,α(Γ);
• finally, combining the results obtained in the previous points, we find a unique solution (ω, v)

associated to the data (e0, e2) = ((e0)(p,S),ρ(w, Y ), (e2)(p,S),ρ(w, Y )).

When carrying out this plan, we will produce several estimates depending on constants c, c1, c2, c3, c4
and c5 > 0, whose values may change from line to line, but remain always finite and depend only on
the dimension m, and the geometries of Σ ⊂ Rm+1 and UTM . It is important to keep in mind that the
normal component w is given by the sum of the kernel component v and the orthogonal component ω.
Let us start with the proof of the first point above.
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• First of all, we show that H sends B(0, c3ρ
2) in itself , if we fix data (e0, e2) ∈ B(0, c4ρ

2)×B(0, c5ρ
2)

and normal components (ω, v) ∈ B(0, c1ρ
2) × B(0, c2ρ

2) for suitable constants c1, c2, c3, c4 and c5 > 0.
Here the values of these constants depend only on the radii Rσ’s, the dimension m and on UTM .
Equations (5.24), (5.18), (5.19) and (5.20), together with the convention on the L-Q(2)-O-terms, yield

‖H(ω, v, Y )‖C0,α(Σ) ≤ ‖H(ω, v, Y )‖C1,α(Σ)

≤ c‖f‖C0,α(Σ) ≤ c
(
‖(ω, v)‖C0,α(Σ) + ρ2‖b‖C0,α(Σ) + ‖ρ2L(ω + v, Y )‖C0,α(Σ)

+ ‖Q(2)(ω + v, Y )‖C0,α(Σ) + ‖O(ρ3)‖C0,α(Σ)

)
+ ‖E‖C0,α(Σ) ≤ cρ2 + c‖(e0, e2)‖C0,α(Γ)×C0,α(Γ) ≤ cρ2.

We now prove the contraction property for H(ω, v, ·). Consider a fixed pair (ω, v) ∈ B(0, c1ρ
2)×B(0, c2ρ

2),
two points Y1, Y2 ∈ B(0, c3ρ

2), and fixed data (e0, e2) ∈ B(0, c4ρ
2)×B(0, c5ρ

2), and compute (recall that
by Remark 4.3 there is cancellation of the O(ρ3) terms, whereas the terms involving E cancel since the
data (e0, e2) is fixed)

‖H(ω, v, Y1)− H(ω, v, Y2)‖C0,α(Σ) ≤ ‖H(ω, v, Y1)− H(ω, v, Y2)‖C1,α(Σ) ≤ c‖f(ω, v, Y1)− f(ω, v, Y2)‖C0,α(Σ)

≤cρ2‖L((ω + v, Y1)− (ω + v, Y2))‖C0,α(Σ) + c‖Q(2)(ω + v, Y1)−Q(2)(ω + v, Y2)‖C0,α(Σ)

≤cρ2‖(ω + v, Y1)− (ω + v, Y2)‖C0,α(Σ) + c
(
‖(ω + v, Y1)‖C0,α(Σ) + ‖(ω + v, Y2)‖C0,α(Σ)

)
· ‖(ω + v, Y1)− (ω + v, Y2)‖C0,α(Σ) ≤ cρ2‖Y1 − Y2‖C0,α(Σ).

Thus, we can always chose ρ3 small enough so that cρ2 < 1, ensuring that H is a contraction of B(0, c3ρ
2).

Therefore, for (ω, v) ∈ B(0, c1ρ
2)×B(0, c2ρ

2) and (e0, e2) ∈ B(0, c4ρ
2)×B(0, c5ρ

2) there exists a unique
element Y = Y (ω, v) ∈ B(0, c3ρ

2) which is a fixed point for H.
• We now show that this solution Y (ω, v) depends Lipschitz continuosly on (ω, v); this will play a

crucial role in establishing the fourth point. Fix data (e0, e2) ∈ B(0, c4ρ
2) × B(0, c5ρ

2). Take two pairs
(ω1, v1), (ω2, v2) ∈ B(0, c1ρ

2)×B(0, c2ρ
2) and denote their associated fixed points by Y1 := Y (ω1, v1) and

Y2 := Y (ω2, v2). Exploting once again the properties of the L-Q(2)-O-terms as above, and recalling the
expansions (5.18), (5.19) and (5.20), we obtain

‖Y (ω1, v1)− Y (ω2, v2)‖C0,α(Σ) = ‖H(ω1, v1, Y1)− H(ω2, v2, Y2)‖C0,α(Σ) ≤ c‖v1 − v2‖C0,α(Σ) + c‖ω1 − ω2‖C0,α(Σ)

+ cρ2‖L((ω1 + v1, Y1)− (ω2 + v2, Y2))‖C0,α(Σ) + C‖Q(2)(ω1 + v1, Y1)−Q(2)(ω2 + v2, Y2)‖C0,α(Σ)

≤ (c+ cρ2)‖(ω1, v1)− (ω2, v2)‖C0,α(Σ) + cρ2‖Y1 − Y2‖C0,α(Σ).

For ρ3 small enough, we can always absorb the last summand to the left-hand-side, and get the claimed
Lipschitz continuity.

Remark 5.1. From the calculation above, it is clear that the operator H is not a contraction in (ω, v, Y )
due of the presence of the linear summands vσ + wσ

Rσ
at the 0th-order in ρ in the expansions (5.18),(5.19)

and (5.20), exactly as anticipated. This indeed produce the constant c not multiplied by any ρ2 factor in
the formula above.

• For what regards the third point, consider fixed normal components (ω, v) ∈ B(0, c1ρ
2)×B(0, c2ρ

2)
and two pairs of boundary data (e0, e2), (e′0, e

′
2) ∈ C0,α(Γ)×C0,α(Γ) for (5.1). Denoting by Y := Y (e0, e2)

and Y ′ := Y (e′0, e
′
2) their associated fixed points, we compute

‖Y (e0, e2)− Y (e′0, e
′
2)‖C0,α(Σ) = ‖H(Y (e0, e2))− H(Y (e′0, e

′
2))‖C0,α(Σ) ≤ cρ

2‖L((ω + v, Y )− (ω + v, Y ′))‖C0,α(Σ)

+ c‖Q(2)(ω + v, Y )−Q(2)(ω + v, Y ′)‖C0,α(Σ) + c‖E − E′‖C0,α(Σ) ≤ cρ
2‖Y − Y ′‖C0,α(Σ) + c‖E − E′‖C1,α(Σ)

≤ cρ2‖Y (e0, e2)− Y (e′0, e
′
2)‖C0,α(Σ) + c‖(e0, e2)− (e′0, e

′
2)‖C0,α(Γ)×C0,α(Γ).

Here we have used the continuity of the solutions Eσ’s of (5.22) from the boundary data (e0, e2). Once
again, for ρ3 > 0 small enough we can absorb the first summand on the right-hand-side, and obtain the
claimed Lipschitz continuity.
• Let us prove that (F(·, ·, Y (·, ·)),G(·, ·, Y (·, ·))) is a contraction of the set B(0, c1ρ

2) × B(0, c2ρ
2)

for any fixed data (e0, e2) ∈ B(0, c4ρ
2) × B(0, c5ρ

2) ⊂ C0,α(Γ) × C0,α(Γ). Firsly, we show the stronger
statement that (F,G) sends B(0, c1ρ

2) × B(0, c2ρ
2) into itself for any Y ∈ B(0, c3ρ

2), so in particular
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the same property is verified when restricted to the solutions Y (ω, v) constructed above. Recalling the
system (5.6), we can argue as above to get

‖F(ω, v, Y )‖C0,α(Σ) ≤ ‖F(ω, v, Y )‖C2,α(Σ)

≤ c‖ΠV ⊥

(
ρ2L(ω + v, Y ) +Q(2)(ω + v, Y )− ρ2bσ +O(ρ3)

)
‖C0,α(Σ) + c‖(e0, e2)‖C0,α(Γ)×C0,α(Γ)

≤ c‖ρ2L(ω + v, Y ) +Q(2)(ω + v, Y )− ρ2b+O(ρ3)‖C0,α(Σ) + c‖(e0, e2)‖C0,α(Γ)×C0,α(Γ)

≤ cρ2‖(ω, v, Y )‖C0,α(Σ) + c(‖(ω, v, Y )‖C0,α(Σ))
2 + ρ2‖b‖C0,α(Σ) + ‖O(ρ3)‖C0,α(Σ)

+ c‖(e0, e2)‖C0,α(Γ)×C0,α(Γ) ≤ cρ2;

‖G(ω, v, Y )‖C0,α ≤ ‖ρ2L(ω + v, Y ) +Q(2)(ω + v, Y ) + ρ2b+O(ρ3)‖C0,α ≤ cρ2.

We are now ready to prove that (F(·, ·, Y (·, ·)),G(·, ·, Y (·, ·))) is a contraction of B(0, c1ρ
2)× B(0, c2ρ

2).
Recall once again our convention from Remark 4.3 on purely geometric terms O. Consider two triplets
(ω1, v1, Y1), (ω2, v2, Y2) ∈ Ω, where we have set Y1 := Y (ω1, v1) and Y2 = Y (ω2, v2), and compute

‖F(ω1, v1, Y1)− F(ω2, v2, Y2)‖C0,α(Σ) ≤ ‖F(ω1, v1, Y1)− F(ω2, v2, Y2)‖C2,α(Σ)

≤ cρ2‖L((ω1 + v1, Y1)− (ω2 + v2, Y2))‖C0,α(Σ)

+ c‖Q(2)(ω1 + v1, Y1)−Q(2)(ω2 + v2, Y2)‖C0,α(Σ)

≤ cρ2‖(ω1, v1, Y1)− (ω2, v2, Y2)‖C0,α(Σ) ≤ cρ2‖(ω1, v1)− (ω2, v2)‖C0,α(Σ).

In the last inequality we have used the Lipschitz continuity from the second point proved above. For the
functional G the situation is similar

‖G(ω1, v1, Y1)−G(ω2, v2, Y2)‖C0,α(Σ) ≤ cρ2‖L((ω1 + v1, Y1)− (ω2 + v2, Y2))‖C0,α(Σ)

+ c‖Q(2)(ω1 + v1, Y1)−Q(2)(ω2 + v2, Y2)‖C0,α(Σ)

≤ cρ2‖(ω1, v1, Y1)− (ω2, v2, Y2)‖C0,α(Σ) ≤ cρ2‖(ω1, v1)− (ω2, v2)‖C0,α(Σ).

Therefore, for ρ3 small enough, the operator (F(·, ·, Y (·, ·)),G(·, ·, Y (·, ·))) is a contraction as required,
and hence there exists a unique fixed point (ω(e0,e2), v(e0,e2), Y(e0,e2)) ∈ U of the operator (F,G,H) for

any boundary data (e0, e2) ∈ B(0, c4ρ
2)×B(0, c5ρ

2).
• Finally, we combine the results obtained in the previous points to find a unique fixed solution

(ω, v) associated to the data (e0, e2) = ((e0)(p,S),ρ(ω+ v, Y ), (e2)(p,S),ρ(ω+ v, Y )), coming from the equi-
angularity condition (4.44). Choosing suitably the constants c1, c2 and c3, we see that for (ω, v, Y ) ∈
B(0, c1ρ

2) × B(0, c2ρ
2) × B(0, c3ρ

2), the data ((e0)(p,S),ρ(ω + v, Y ), (e2)(p,S),ρ(ω + v, Y )) belongs to

B(0, c4ρ
2)×B(0, c5ρ

2).
A completely analogouos argument to the one described above allows us to prove that the data

((e0)(p,S),ρ(w, Y ), (e2)(p,S),ρ(w, Y )) depends Lipschitz continuously on (ω, v, Y ) with Lispchitz constant
as small as we wish after possibly reducing the threshold ρ3 > 0, see (4.44). Using this fact, and the result
in the third point (continuity from the boundary data (e0, e2)), we can carry out the same calculations
done in point one to obtain a unique fixed point Y = Y (ω, v) satisfying the equi-angularity condition
(4.44). The dependence of the solution Y from (ω, v) remains Lipschitz continuous, and in particular
we can repeat the argument of point four to obtain that the operator (F(·, ·, Y (·, ·)),G(·, ·, Y (·, ·))) is a
contraction, and hence the existence and uniqueness of a fixed point (ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ) ∈ U of the
operator (F,G,H) under the boundary conditions (4.44), as required.

From elliptic regularity theory and the bounds in (5.9), and since it is constructed as a fixed point,
we can bootstrap the regularity of (ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ) ∈ U , and get its smoothness; indeed, the

boundary data are still of class C0,α, since they depend only of (w, Y ) and their first derivatives. Notice
that the smoothness of v(p,S),ρ could have been deduced a-priori since the space V is classified in [8].
Moreover, for every k there are constants ck with

(5.25) ‖(ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ)‖Ck,α(Σ) ≤ ckρ2.
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In the symmetric case, we set V := Ker(∆Σ0) ×Ker(R1∆Σ1 + m
R1

) ×Ker(R2∆Σ2 + m
R2

), and argue

similarly as above to obtain once again a unique smooth solution (ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ) with Ck,α(Σ)-

norms of order O(ρ2) to the system

(5.26)


ρRH̊σ −m+ vσ = 0, σ = 1, 2;

ρ
√

3
2 RH̊0 + v0 = 0;

divΣσ (Yσ) = fσ, σ = 0, 1, 2,

under boundary conditions (4.4), (4.7), (4.7) and (4.44). We leave the details to the reader.
In both the asymmetric and symmetric cases, the dependence of the solution (ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ)

with respect to (p,S) ∈ UTM is clearly smooth, as the operators involved depend smoothly on (p,S),
and one can even show that

(5.27) ‖∇kp,Sω(p,S),ρ‖C2,α + ‖∇kp,Sv(p,S),ρ‖C2,α + ‖∇kp,SY(p,S),ρ‖C1,α ≤ dkρ2,

for some constant dk > 0. Inspired by the analogous concept in the case of hypersurfaces enclosing a
single volume, studied in [27], we give the following definition, corresponding to Definition 1.2 in [27].

Definition 5.2 (Pseudo-Double Bubbles). For any ρ > 0 and (p,S) ∈ UTM , we call the double bubble
Σ[(p,S),ρ := Σ(p,S),ρ(ω(p,S),ρ + v(p,S),ρ, Y(p,S),ρ) the pseudo-double bubble at the point (p,S) and scale ρ,

where ω(p,S),ρ, v(p,S),ρ and Y(p,S),ρ are constructed above.

For the convenience of the reader we recall the equations satisfied by pseudo-double bubbles in the
following proposition.

Proposition 5.3. For fixed ρ > 0 and (p,S) ∈ UTM , the pseudo-bubble Σ[(p,S),ρ and the functions

(ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ) defining it satisfy:

• The perturbation is admissible, i.e. (ω(p,S),ρ + v(p,S),ρ, Y(p,S),ρ) ∈ Camm;

• The perturbation satisfies the strong equi-angularity condition ν̊0 + ν̊1 + ν̊2 = 0;
• In the asymmetric case, the mean curvatures H̊σ’s of the pseudo-double bubble Σ[(p,S),ρ satisfy

(5.28)

{
ρRσH̊σ −m+ vσ(p,S),ρ = 0, σ = 0, 1, 2;

divΣσ ((Y(p,S),ρ)σ) = fσ, σ = 0, 1, 2.

In the symmetric case they verify

(5.29)


ρRH̊σ −m+ vσ(p,S),ρ = 0, σ = 1, 2;

ρ
√

3
2 RH̊0 + v0

(p,S),ρ = 0;

divΣσ ((Y(p,S),ρ)σ) = fσ, σ = 0, 1, 2.

6. Existence of Constant Mean Curvature Double Bubbles

In this section we aim to prove Theorems 1.4 and 1.6, that is the existence of a constant mean
curvature double bubble at any critical point of a suitable auxiliary function. We start generalising an
idea of Kapouleas (for single enclosed volume) to smooth Euclidean double bubbles, see [17]. Consider

an arbitrary smooth double bubble Σ̂ ⊂ Rm+1 as in Section 2; in particular, we keep the same notation
for the several associated geometric objects, with a hat ·̂, and the same convention on the normal vector
fields. Given any two constants H1 > H2 > 0, we define for such a double bubble a function E given by

(6.1) E(Σ̂) := |Σ̂0|m + |Σ̂1|m + |Σ̂2|m −H1|B̂1|m+1 −H2|B̂2|m+1.

For any vector field Z in Rm+1, we can consider the family of double bubbles Σ̂t generated by the flow of
Z, and consider the first variation of E along this family which, once set H0 := H1−H2, has the following
expression (we drop the volume elements since already implicit in the domains of integration considered)

(6.2) ∂tE(Σ̂t) |t=0=
´

Σ̂0(H0 − Ĥ)〈Z, N̂0〉+
´

Σ̂1(H1 − Ĥ)〈Z, N̂1〉+
´

Σ̂2(H2 − Ĥ)〈Z, N̂2〉 −
´

Γ̂
〈Z, ν̂0 + ν̂1 + ν̂2〉.
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In case the vector field Z is a Killing vector field, the flow generated by Z acts by isometries on Rm+1,
and in particular E(Σ̂t) is constant in t, so we deduce

(6.3)

ˆ
Σ̂0

(H0 − Ĥ)〈Z, N̂0〉+

ˆ
Σ̂1

(H1 − Ĥ)〈Z, N̂1〉+

ˆ
Σ̂2

(H2 − Ĥ)〈Z, N̂2〉 −
ˆ

Γ̂

〈Z, ν̂0 + ν̂1 + ν̂2〉 = 0.

Let us now assume that the smooth double bubble Σ̂ has mean curvature functions of the form Ĥσ =
Hσ + 〈Ẑ, N̂σ〉 for some constants Hσ > 0 verifying H1 = H0 +H2 and a Killing vector field Ẑ, and also

that the sheets Σ̂σ meet in an equi-angular way ν̂0 + ν̂1 + ν̂2 = 0. Notice that these conditions are verified
by a pseudo-double bubble in Rm+1. Then choosing Z = Ẑ we obtain

(6.4)

ˆ
Σ̂0

(〈Ẑ, N̂0〉)2 +

ˆ
Σ̂1

(〈Ẑ, N̂1〉)2 +

ˆ
Σ̂2

(〈Ẑ, N̂2〉)2 = 0,

hence Ẑ ≡ 0 and the three sheets must have constant mean curvatures Ĥσ = Hσ.
We would like to transpose this property from the Euclidean space to a Riemannian context thanks

to the use of normal coordinates, similarly to what Pacard and Xu did in the case of a single enclosed
volume, see [28]. Given a standard double bubble Σ whose mean curvature vector is (H0, H1, H2),
with H1 = H0 + H2, there exists a threshold ρ3 such that for any ρ < ρ3 and (p,S) ∈ UTM we can
construct an associated pseudo-double bubble Σ[(p,S),ρ as in Section 5. We define the following function

Ψ : UTM −→ R

(6.5) Ψρ(p,S) := E(Σ[(p,S),ρ) = Volm((Σ[(p,S),ρ)
0) + Volm((Σ[(p,S),ρ)

1) + Volm((Σ[(p,S),ρ)
2)− H1

ρ Volm+1((B[(p,S),ρ)
1)− H2

ρ Volm+1((B[(p,S),ρ)
2).

Coherently to the model flat case just described, we expect the pseudo-double bubble Σ[(p,S),ρ to have

constant mean curvature vector ( 1
ρH0,

1
ρH1,

1
ρH2) at any critical point (p,S) of the function Ψρ. This

heuristic is confirmed by the following Proposition.

Proposition 6.1. For any ρ ∈ (0, ρ3) and any critical point (p,S) of Ψρ, the pseudo-double bubble Σ[(p,S),ρ

has constant mean curvatures (H̊0, H̊1, H̊2) = ( 1
ρH0,

1
ρH1,

1
ρH2), with H̊1 = H̊0 + H̊2, and satisfies the

equi-angularity condition ν̊0 + ν̊1 + ν̊2 = 0.

Before proceeding with the proof of this result, we need to recall a deep technical result from [7],
presented here in a weaker version. Roughly speaking, this result says that given one reference hyper-
surface with boundary and its image through a diffeomorphism, one can bound effectively the size of
the tangential displacement in terms of the Hausdorff distance dH between the two hypersurfaces. We
will use this lemma to compare two pseudo-bubbles when close enough, and write one as a perturbation
of the other, while controlling quantitatively the tangential component of this perturbation. Given a
hypersurface S ⊂ Rm+1 with boundary, and a value θ > 0, set [S]θ := {x ∈ S | dRm+1(x, ∂S) > θ}.

Theorem 6.2 (Theorem 3.1, Remark 3.4 in [7]). For any natural number m ≥ 2, real numbers α ∈ (0, 1]
and L > 0, there exist µ0 ∈ (0, 1) and C0 > 0 depending only on m, α and L with the following property.
Let S0 be a compact connected m−dimensional C2,1−manifold with boundary in Rm+1 such that its
normal vector field NS0 is of class C1,1. Let S be a compact connected m−dimensional C1,α−manifold
with boundary such that its normal vector field NS satisfies for every x, y ∈ S

(6.6) |NS(x)−NS(y)| ≤ L|x− y|α, and |〈NS(x), (y − x)〉| ≤ L|y − x|1+α,

and for some θ ∈ (0, µ2
0) we have dH(S, S0) ≤ θ. Assume in addition that there exists a C1,α−diffeomorphism

f between ∂S0 and ∂S with

(6.7)

‖f‖C1,α(∂S0) ≤ L,
‖f − Id‖C1(∂S0) ≤ θ,

‖NS(f)−NS0
‖C0(∂S0) ≤ θ,

‖νS(f)− νS0‖C0(∂S0) ≤ θ.

Finally, suppose there exists ψ ∈ C1,α([S0]θ) such that

(6.8) [S]3θ ⊂ (Id+ ψNS0
)([S0]θ) ⊂ S, ‖ψNS0

‖C1,α([S0]θ) ≤ L, ‖ψNS0
‖C1([S0]θ) ≤ θ.
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Then there exists a C1,α−diffeomorphism F between S0 and S such that

F = f on ∂S0,(6.9)

F = Id+ ψNS0
on [S0]√θ,(6.10)

‖F‖C1,α(S0) ≤ C0,(6.11)

‖F − Id‖C0(S0) ≤ C0(dH(S, S0) + ‖f − Id‖C1(∂S0) + ‖ψNS0‖C0([S0]θ)).(6.12)

Let us remark that Theorem 3.1 in [7] gives a stronger result under more general assumptions, but we
preferred to state here this weakened version for the reader’s convenience.

The idea of the proof of Proposition 6.1 is to apply this theorem using the pseudo double bubble Σ[(p,S),ρ

as the reference hypersurface S0, and another pseudo double bubble Σ[(p′,S′),ρ as S, for (p′,S ′) ∈ UTM
arbitrarily close to (p,S). However, we will first need to reduce everything to an analysis in a fixed ambient
Euclidean space, the tangent space TpM ; subsequently, this theorem will allow us to patch together the
diffeomorphism f of the boundary with the normal perturbation ψ, ensuring uniform bounds on the
tangential component of the diffeomorphism F . The price to pay for this gluing, is to get farther from
the boundary by a factor θ−

1
2 ; this is due to the annihilation of the tangential component expressed in

equation (6.10). These uniform bounds will be linear in the distance between (p,S) and (p′,S ′), so that
we will deduce C0-bounds on the vector field generated when (p′,S ′) approaches (p,S), thanks to (6.12).
Without this theorem, we could have degeneration of the tangential component as (p′,S ′) tends to (p,S)
when writing Σ[(p′,S′),ρ as a perturbation of Σ[(p,S),ρ, as in Figure 6 below.

Figure 5. Possible wild behaviour of the perturbation

We notice that the double bubbles considered are smooth, as remarked in the previous section, so we
can find a parameter L as in the statement above, which moreover can be chosen independently of the
parameter ρ < ρ3 and the point (p,S) ∈ UTM by compactness of the ambient manifold M .

Proof of Proposition 6.1. Without loss of generality we will focus our attention on the asymmetric case,
since the proof in the symmetric case follows the exact same lines. We drop the index σ = 0, 1, 2 and
treat every quantity as a three-vector. In the course of the proof a constant c > 0 will appear, whose
value may change from line to line, but still remains finite. Consider a fixed critical point (p,S) ∈ UTM
of Ψρ; since Σ[(p,S),ρ is a pseudo-double bubble, by Proposition 5.3 it has mean curvature vector verifying

ρRH̊ = m− v(p,S),ρ, so it is enough to show that the kernel component v(p,S),ρ ∈ V vanishes. Following
the argument in [28], we will reconnect the differential of Ψρ at (p,S) to the first variation of the
functional E defined above. In order to do that, consider an arbitrary curve γ : (−ε, ε) −→ UTM ,

which we write as γ(t) = (p(t),S(t)), such that γ(0) = (p,S) and set Ξ̃ := γ′(0) ∈ T(p,S)UTM . It is

convenient to identify Ξ̃ with a vector field Ξ ∈ TpM = Rm+1, so that it induces a family Kt of isometries
of TpM ; more precisely, we can pick (Kt)t∈(−ε,ε) to be a convex combination of the identity map of
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TpM and a composition of a fixed translation and a fixed rotation. Notice that we have Kt(x) =

x + tΞ + O(t2). Set S0 := Expp
−1(Σ[(p,S),ρ) and consider for t small enough the family of double

bubbles St := K−1
t (Expp

−1(Σ[(p(t),S(t)),ρ)). The composition with the roto-translation K−1
t is due to

the annihilation effect described above, see Remark 6.4 after the proof for more details on this choice.
We claim that for every θ > 0, the conditions in Theorem 6.2 above are satisfied for all t small enough.

We will then get rid of the parameter θ considering bounds of infinitesimal nature. Since the distance
between (p,S) and (p(t),S(t)) is approximately |t|‖Ξ‖, by the norm bounds on the covariant derivatives
∇(p,S)ω(p,S),ρ, ∇(p,S)v(p,S),ρ and ∇(p,S)Y(p,S),ρ in equation (5.27), the Hausdorff distance dH(St, S0) can

easily be bounded by Cρ2t+O(t2). In fact, the exponential map distorts the distance by an order ρ2, the
distance in the Euclidean space would clearly be of order t, and the C0-distance between the components
ω(p,S),ρ, v(p,S),ρ and Y(p,S),ρ and their (p′,S ′) analogues is bounded by

(6.13)

‖ω(p′,S′),ρ − ω(p,S),ρ‖C0 ≤ C|t|‖Ξ‖max
t
‖∇(p,S)ω(p(t),S(t)),ρ‖C0 ≤ C|t|‖Ξ‖ρ2

‖v(p′,S′),ρ − v(p,S),ρ‖C0 ≤ C|t|‖Ξ‖max
t
‖∇(p,S)v(p(t),S(t)),ρ‖C0 ≤ C|t|‖Ξ‖ρ2,

‖Y(p′,S′),ρ − Y(p,S),ρ‖C0 ≤ C|t|‖Ξ‖max
t
‖∇(p,S)Y(p(t),S(t)),ρ‖C0 ≤ C|t|‖Ξ‖ρ2.

Since ∂S0 and ∂St are two smooth Sm−1, exactly as in [28], we deduce the existence of normal diffeomor-
phisms ft : ∂S0 −→ ∂St; here the word ”normal” means that the image ft(x) ∈ ∂St of any point x ∈ ∂S0

lies in the normal space Nx∂S0 seen as a subset of TpM . Moreover, arguing as above, the inequalities in
(6.13) implies that ‖ft − Id‖C1(∂S0) ≤ C|t|‖Ξ‖ρ2 + O(t2), ‖NSt(ft)−NS0‖C0(∂S0) ≤ C|t|‖Ξ‖ρ2 + O(t2)

and ‖νSt(ft)− νS0‖C0(∂S0) ≤ C|t|‖Ξ‖ρ2 +O(t2), so that (6.7) holds whenever C|t|‖Ξ‖ρ2 +O(t2) ≤ θ. We

can use the same argument to show (6.8), again under the condition C|t|‖Ξ‖ρ2 +O(t2) ≤ θ.
Therefore, we can appeal to Theorem 6.2 and obtain for |t| small enough the existence of a family of

C1,α-diffeomorphisms Ft between S0 and St satisfying all the conditions (6.9), (6.10), (6.11) and (6.12).
In particular, from (6.12) we deduce after applying a t-derivative and setting Z := d

dt |t=0 Ft ∈ TpM

(6.14) ‖Ft − Id‖C0(S0) ≤ C|t|‖Ξ‖ρ2 +O(t2)⇒ ‖Z‖C0(S0) ≤ C‖Ξ‖ρ2.

Compose the diffeomorphism Ft with Kt and Expp to construct a family of diffeomorphisms (Ft)|t|∈(−ε,ε)
between the two pseudo-double bubbles Σ[p,S and Σ[(p(t),S(t)),ρ, defined by Ft := Expp ◦Kt ◦ Ft ◦Expp

−1.

Once set Z := d
dt |t=0 Ft the vector field induced by the family on Σ[p,S , and X the parallel transport

of the vector Ξ̃ along geodesic in UTM emanating from (p,S) (to be precise, its identification in TM),
equation (6.14) implies the bound (the composition with Kt gives a summand −Ξ)

(6.15) ‖Z −X‖G ≤ Cρ2‖Ξ‖.

We can finally rewrite the differential of Ψρ as a first variation of E and obtain
(6.16)

0 =dΨp,S(Ξ̃) = ∂E(Σ[(p(t),S(t)),ρ) |t=0= d
dt |t=0 E(Ft(Σ[p,S)) =

ˆ
(Σ[

(p,S),ρ
)0

( m
ρR0
− H̊0)G(Z, N̊0)

+

ˆ
(Σ[

(p,S),ρ
)1

( m
ρR1
− H̊1)G(Z, N̊1) +

ˆ
(Σ[

(p,S),ρ
)2

( m
ρR2
− H̊2)G(Z, N̊2)−

ˆ
Γ[

(p,S),ρ

G(Z, ν̊0 + ν̊1 + ν̊2).

First of all, we use (6.15) to get
(6.17)∑

σ=0,1,2

´
(Σ[

(p,S),ρ
)σ

( m
ρRσ
− H̊σ)G(X, N̊σ)−

´
Γ[

(p,S),ρ

G(Z, ν̊0 + ν̊1 + ν̊2) ≤
∑
σ=0,1,2

´
(Σ[

(p,S),ρ
)σ

( m
ρRσ
− H̊σ)G(X −Z, N̊σ).

We would like to rewrite the above identity in terms of integrals over the standard double bubble Σ :=
Expp

−1(Σ[(p,S),ρ) ⊂ TpM . To this aim, recall that from the expansions (4.14) and (4.38) obtained in the

previous section, as well as from Proposition 5.3, we can approximate the quantities involved as follows

G(X, N̊σ) = 〈Ξ, Nσ〉+O(ρ2)‖Ξ‖; ν̊0 + ν̊1 + ν̊2 = 0;

m
ρRσ
− H̊σ = 1

ρRσ
vσ(p,S),ρ; Volm((Σ[(p,S),ρ)

σ) = ρm|Σσ|m +O(ρm+2).
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Substituting in the expression above we arrive at

(6.18)
∑

σ=0,1,2

ρm
ˆ

Σσ

1
ρRσ

vσ(p,S),ρ〈Ξ, N
σ〉 ≤ cρ2‖Ξ‖

∑
σ=0,1,2

ρm
ˆ

Σσ

1
ρRσ
|vσ(p,S),ρ|.

Notice that we got rid of the troublesome boundary term in (6.17), see Remark 6.3. We have finally
reconducted the problem to a situation similar to the one in [28]. Inspired by [28], we will deduce the
triviality of the kernel component v(p,S),ρ by exploiting the multiplicative factor ‖Ξ‖ in (6.18).

This identity holds for a general Ξ̃, so for any vector field Ξ on TpM generated by translations and
rotations. Arguing by scaling and compactness, as in [28], we notice that for every such vector field we
must have

(6.19)

ˆ
Σσ

1
Rσ

(〈Ξ, Nσ〉)2 = c(φσ, Rσ,m)‖Ξ‖2,

unless Ξ = Ξσ is inducing a rotation around the center Cσ of Σσ, in which case the integral above
annihilates. On the other hand, in this case we must have

(6.20)

ˆ
Στ

1
Rτ

(〈Ξ, Nτ 〉)2 = c(φτ , Rτ ,m)‖Ξ‖2 ∀τ 6= σ.

In any case, we can deduce that for every vector field Ξ as above

(6.21)
∑

σ=0,1,2

ˆ
Σσ

1
Rσ

(〈Ξ, Nσ〉)2 = c(φ0, φ1, φ2, R0, R1, R2,m)‖Ξ‖2,

and hence, by the volume element expansion induced by (3.1), we the following inequality

(6.22)
∑

σ=0,1,2

ˆ
Σσ

1
Rσ

(〈Ξ, Nσ〉)2 ≥ c

2
‖Ξ‖2.

In particular, equation (6.18) becomes

(6.23)
∑

σ=0,1,2

ˆ
Σσ

1
ρRσ

vσ(p,S),ρ〈Ξ, N
σ〉 ≤ cρ2

( ∑
σ=0,1,2

ˆ
Σσ

1
Rσ

(〈Ξ, Nσ〉)2

) 1
2
( ∑
σ=0,1,2

ˆ
Σσ

1
ρRσ
|vσ(p,S),ρ|

)
.

However, recall that v(p,S),ρ must itself be obtained by infinitesimal translations and rotations by the main
result in [8], and therefore there exists such a vector field Ξ(p,S),ρ verifying the identity 〈Ξ(p,S),ρ, N

σ〉 =

vσ(p,S),ρ for every σ = 0, 1, 2. With this choice of Ξ (hence Ξ̃ chosen accordingly) in the equation above,

we obtain ( ∑
σ=0,1,2

ˆ
Σσ

1
Rσ

(〈Ξ(p,S),ρ, N
σ〉)2

) 1
2

≤ cρ2

( ∑
σ=0,1,2

ˆ
Σσ

1
Rσ
|〈Ξ(p,S),ρ, N

σ〉|
)

≤ cρ2

( ∑
σ=0,1,2

ˆ
Σσ

1
Rσ

(〈Ξ(p,S),ρ, N
σ〉)2

) 1
2

.(6.24)

For ρ small enough this implies that the integrals are zero. Since the integrands are non-negative, we
must have vσ(p,S),ρ = 〈Ξ(p,S),ρ, N

σ〉 ≡ 0 at any point of Σσ and for any σ = 0, 1, 2, proving the statement

about the CMC property.
To conclude the proof of Proposition, we notice that the condition H̊1 = H̊0 + H̊2 as well as the

equi-angularity condition ν̊0 + ν̊1 + ν̊2 = 0 here imposed, would be standard consequences of the formula
of first variation of the area under the volume-constraint of the 2-cluster. �

Remark 6.3. In the course of the proof, the strong equi-angularity (4.44) imposed had the crucial role
of deleting the problematic integral on the boundary Γ[(p,S),ρ, which cannot be proven to be proportional

to Ξ for the solution (ω(p,S),ρ, v(p,S),ρ, Y(p,S),ρ).

Remark 6.4. In the proof above, we have opted to consider the family of roto-translated double bubbles
St instead of the simpler ones S′t := Expp

−1(Σ[(p,S),ρ). The major reason for doing this is that, as

briefly mentioned after Theorem 6.2, the same theorem would produce an almost normal diffeomorphism
between the reference double bubble S0 and S′t; heuristically, the effect of the roto-translation would tend
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to concentrate more and more on the boundary of S0, making it much harder to show an estimate of the
form (6.15), with the crucial multiplicative term ‖Ξ‖ on the right hand side.

We are finally ready to prove the our main Theorems 1.1, 1.4 and 1.6.

Proof of Theorem 1.1. We begin by proving (1.1): in order to do this, we will exploit the expansions
obtained in Subsections 3.1, 3.2, 4.4 and 4.5.

Using (4.33) and (4.34), as well as the balance equation R−1
0 = R−1

1 −R
−1
2 we get

m
ρR1

Volm+1((B[(p,S),ρ)
1) + m

ρR2
Volm+1((B[(p,S),ρ)

2) = m
ρR1

Volm+1(B1
(p,S),ρ) + m

ρR2
Volm+1(B2

(p,S),ρ)

− ρm
∑

σ=0,1,2

ˆ
Σσ

mwσ
Rσ
− m

m+1divΣσ (Yσ) +Q(2)(w, Y ) + ρ2L(w, Y )dµΣσ .

Notice that from (4.38)

Volm(Σ[(p,S),ρ) =
∑

σ=0,1,2

Volm(Σσ(p,S),ρ)− ρm
ˆ

Σσ
mwσ
Rσ
− divΣσ (Yσ) + ρ2L(w, Y ) +Q(2)(w, Y )dµΣσ +O(ρm+3),

hence we deduce (recall that both w(p,S),ρ and Y(p,S),ρ are of order O(ρ2), so ρ2L(w, Y ) and Q(2)(w, Y )
can be absorbed)

(6.25)

Ψρ(Σ
[
(p,S),ρ) = Ψρ(Σ(p,S),ρ) + ρm

∑
σ=0,1,2

ˆ
Σσ

1
m+1divΣσ (Yσ) +O(ρm+3)

= Ψρ(Σ(p,S),ρ)− ρm 1
m+1

ˆ
Γ

∑
σ=0,1,2

uσ +O(ρm+3) = Ψρ(Σ(p,S),ρ) +O(ρm+3),

where we have used the divergence theorem and the boundary condition (4.7) to delete the sum of the
uσ’s. We now derive an expansion for Ψρ(Σ(p,S),ρ). Using (3.3) we see

(6.26) m
ρR1

(V1)(p,S),ρ + m
ρR2

(V2)(p,S),ρ =
∑

σ=0,1,2

m
ρRσ

Volm+1((P(p,S),ρ)
σ),

so that

(6.27) Ψρ(Σ(p,S),ρ) =
∑

σ=0,1,2

Volm(Σσ(p,S),ρ)− m
ρRσ

Volm+1((P(p,S),ρ)
σ).

Let us consider the case σ = 1, since the other cases can be treated nearly identically. Clearly, the critical
points remain fixed if we multiply Ψρ by ρ−m. From equations (3.12) and (3.21) we obtain

(6.28)

ρ−m
(

Volm(Σ1
(p,S),ρ)− m

ρR1
Volm+1(P 1

(p,S),ρ)
)

= (|Σ1| − m
ρR1
|P 1|) + ρ2

6 R
m+2
1 ωm

[
Im+1(φ1) Sc(p)

+ (m cos2(φ1)Im−1(φ1)− sinm(φ1) cos(φ1)) Ric(S,S)
]

+O(ρ3) + ρ2

6 ωmR
m+2
1

[
mIm+3(φ1)

m+2 Sc(p)

+m
(
m+3
m+2Im+3(φ1)− Im+1(φ1) sin2(φ1)

)
Ric(S,S)

]
+O(ρ3).

The first summand |Σ1| − m
ρR1
|P 1| does not depend on (p,S), so we can get rid of it and further divide

everything by ρ2

6 ωm to get the function Φρ given by (restore the sum over σ = 0, 1, 2)

(6.29) Φρ((p,S)) := 6
ωmρ2

(
ρ−mΨρ(p,S)−

∑
σ=0,1,2

(
|Σσ| − m

ρRσ
|Pσ|

))
,

which verifies

Φρ((p,S)) ∼
Ck(UTM)

∑
σ=0,1,2

Rm+2
σ

[(
Im+1(φσ) +

mIm+3(φσ)

m+2

)
Sc(p)

+
(

(m cos2(φσ)Im−1(φσ)− sinm(φσ) cos(φσ)) +m(m+3
m+2

Im+3(φσ)− Im+1(φσ) sin2(φσ))
)

Ric(S,S)
]

=
∑

σ=0,1,2

Rm+2
σ

[(
Im+1(φσ)+

mIm+3(φσ)

m+2

)
Sc(p) +

(
(2m+ 1)Im+1(φσ)− 2m+2

m+2
sinm+2(φσ) cos(φσ)

)
Ric(S,S)

]
=: Sc(p)A(m,H0, H1, H2)−Ric(S,S)B(m,H0, H1, H2)
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up to an order O(ρ), as required. The dependency of the constants A and B come from the fact that
the standard double bubble Σ is uniquely determined by the mean curvatures H ′σs, after a rigid motion.

We also notice that if a contraction depends smoothly on a set of parameters, also its fixed point does,
see e.g. Section 2.6 in [6]. This applies in particular to the construction of pseudo-bubbles in Section 5
depending on their location and orientation, allowing to extend the estimate (1.1) up to any number of
derivatives in p and S.

Let now p, µ be as in the statement of Theorem 1.1, and let n denote the multiplicity of µ as an
eigenvalue of Ricp. Let us assume first that n > 1. By continuity of the eigenvalues of Ric, we can find
a neighborhood V of p and numbers 0 < δ0 � δ1 such that every eigenvalue η of Ricq satisfies either
|η − µ| < δ0 or |η − µ| > δ1 for all q ∈ V. We call Hq the direct sum of the eigenspaces corresponding

to eigenvalues of the first kind, and H̃q the direct sum of the eigenspaces corresponding to those of the
second kind. Notice that these two subspaces are orthogonal, that Hq depends smoothly on q and that
Hq has dimension n for all q ∈ V.

For each q ∈ V we denote by UTMq the fiber of UTM over q, and by Sq the (n − 1)-dimensional
sphere given by Hq∩UTMq. By the expansion (1.1) (and its differential counterpart), Sq is a manifold of
approximate critical points for Φρ|UTMq , and Φρ|UTMq is orthogonally non-degenerate on Sq, and hence
near Sq one can control the normal component of the spherical gradient ∇(Φρ|UTMq ) using displacements
normal to Sq. Similarly, since p is non-degenerate for the scalar curvature, if Π denotes the natural
projection UTM →M , one can control Π∗∇Φρ by properly varying the base point q, see Figure 6.

Figure 6. The behaviour of ∇Φρ|UTMq
near Sp and ∇Φρ|UTMq

on ΛρSp

For these reasons, for ρ small one can find an embedding Λρ : Sp → UTM with the following properties

(6.30)

{
Π∗∇Φρ(Λρϑ) = 0 for every ϑ ∈ Sp;
∇Φρ(Λρϑ) is parallel to SΠΛρϑ for every ϑ ∈ Sp,

with the image of Λρ converging smoothly to the identity map of Sp as ρ → 0. Concerning the second
condition in (6.30), since Π∗∇Φρ(Λρϑ) = 0, ∇Φρ(Λρϑ) is tangent to the fiber over ΠΛρϑ, so we are
viewing the gradient as an element of TΠΛρϑM .

Reasoning as for the proof of Proposition 6.1 and using (6.30), one can show that a critical point of
the restriction Φρ|Λρ(Sp) is indeed a free critical point of Φρ. Applying then Proposition 6.1, the existence
of a CMC double-bubble aligned along Sp follows, proving the theorem.

The case of multiplicity n = 1 can be directly proved via the implicit function theorem on Φρ, which
also yields uniqueness once an orientation in the simple eigenspace is chosen, by the non-degeneracy of
critical point for the reduced functional. In case H0 = 0, the pseudo-bubbles stay invariant by revesing
their axis, as noticed in the next proof, which gives then uniqueness of critical configurations oriented in
the given eigenspace. �
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Proof of Theorem 1.4. The first result simply follows from Proposition 6.1, the fact that the domain of
Φρ is UTM , and from Lusternik-Schnirelman’s theory.

If p is a non-degenerate critical point of the scalar curvature and µ an eigenvalue of the Ricci tensor,
we apply the same final argument in the proof of Theorem 1.1, noticing that the category of ΛρSp is
equal to 2. The fact that H1 6= H2 avoids the possible geometric equivalence of multiple critical points
of Φρ|ΛρSp , as it might indeed happen for antipodal critical points in the symmetric case. �

Proof of Theorem 1.6. We begin by proving the bounds in equation (1.3). In the symmetric case, we still
define the function Φρ through equation (6.29). This time, we use equations (4.35), (4.36), (4.38), (4.39),
(3.15) and (3.24) to finally arrive to the expression

Rm+2Φsymρ ((p,S)) :=Φρ((p,S)) ∼
Ck(PTM)

Rm+2
(

1
m+2

(√
3

2

)m+2
+ 2Im+1( 2

3π) +
mIm+3(

2
3π)

m+2

)
Sc(p)

+Rm+2
(
m
2 Im−1( 2

3π) + 2m+1
2m+4

(√
3

2

)m − 3m
2 Im+1( 2

3π) + m(m+3)
m+2 Im+3( 2

3π)
)

Ric(S,S)

=:Rm+2
(

Sc(p)Asym(m)− Ric(S,S)Bsym(m)
)

up to an order O(ρ2), as required. This better approximation comes from Remarks 3.3 and 3.4, valid
for symmetric geodesic double bubbles, and the fact that ρ2L(w, Y ) and Q(2)(w, Y ) are of order O(ρ4),
leading together to a better approximation in (6.25). This yields (1.3).

We next discuss the validity of (1.2): this follows from the fact that, by uniqueness of the fixed point,
the perturbation produced in Section 5 for a couple (p,−S) is the antipodal of that for (p,S). The
equality in (1.2) then follows, and a straightforward application of Proposition 6.1 and critical point
theory gives the existence of at least cat(PTM) constant mean curvature double bubbles respectively in
the symmetric case.

When p is a non-degenerate critical point of the scalar curvature, if Λρ is as in the proof of Theorem
1.1, the latter reasoning yields also antipodal symmetry of Φρ|Λρ : one can then use Krasnoselski’s genus
to find the desired multiplicity result, see e.g. Chapter 10 in [5]. �

Concluding this paper, we recall that some of the double bubbles we constructed are candidates
solutions for the isoperimetric problem under two small volume constraints. It would be interesting to
characterize these minima as some of the configurations we constructed here. This has already been done
for ambient flat tori in [3] and in two-dimensional general ambient surfaces in [23]. The study of further
cases will be the scope of a forthcoming paper.
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