arXiv:2205.03410v1 [hep-ph] 6 May 2022

P3H-22-048, TTP22-028

A first glance to the kinematic moments
of B —» X v at third order

Matteo Fael, Kay Schonwald and Matthias Steinhauser

Institut fir Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),
76128 Karlsruhe, Germany

Abstract

We study the impact of third-order QCD corrections for several kinematic moments of
the inclusive semileptonic B decays, to first order in the 1/m; expansion. We consider the
first four moments of the charged-lepton energy E, spectrum, the total leptonic invariant
mass ¢°> and the hadronic invariant mass M%. No experimental cuts are applied. Our
analytic results are obtained via an asymptotic expansion around the limit m;, ~ m..
After converting the scheme for the bottom mass to the kinetic scheme we compare the
size of higher QCD corrections to the contributions from 1/m? and 1/mj power corrections
and to the relative uncertainties.



1 Introduction

Semileptonic B-meson decays mediated by the b — cfv, transition are sensitive to the
absolute value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V.. In the
last years, measurements from BABAR, Belle and LHCb showed a puzzling discrepancy
of about 3 standard deviations between the determinations of |V| from exclusive and
inclusive decays [I]. A simultaneous resolution of the |V| (and |V,|) discrepancy is
hardly possible in term of new physics [2]. Thus, further scrutiny of theoretical and
experimental analyses are needed in order to shed light on the puzzle.

In this paper we focus on higher order QCD corrections to the kinematic moments of
inclusive semileptonic B — X ¢, decays. The theory underlying inclusive decays is based
on a local operator product expansion, the Heavy Quark Expansion (HQE) [3H6], which
allows to predict sufficiently inclusive decay observables, as the total semileptonic rate or
moments of kinematic spectra, as an expansion in inverse powers of the bottom quark
mass. In a first approximation, the process can be described as free quark decay. Bound-
state and hadronization effects are incorporated in a set of physical HQE parameters
which appear starting at order 1/mg.

Inclusive kinematic distributions represent a portal to a precise determination of the HQE
parameters and |Vy|. Lepton energy moments and moments of hadronic invariant mass
have been extensively measured at B factories and their prediction is know up to next-to-
next-to leading order (NNLO) for free quarks [7H10], and next-to-leading order (NLO) at
order 1/m? [TTHI3]. Moments of the leptonic invariant mass have also received attention
in the recent years due to their dependence on a smaller set of HQE parameters [14].
Results for the NLO corrections up to 1/mj have been presented in [15].

It is the aim of this paper to compute the next-to-next-to-next-to-leading order (N3LO)
corrections of kinematic moments and assess their relevance for the global fits of |V|.
Recently, we presented the N3*LO corrections to the semileptonic width [16] and the rela-
tion between the on-shell and kinetic mass of the bottom quark [I7, [I§]. In these works
we took advantage of the heavy daughter expansion [19] to determine finite charm mass
effects via an asymptotic expansion in the parameter § = 1—m./my, where m, and my, are
the charm and bottom masses, respectively. A similar strategy can be applied to compute
moments in case no experimental cuts are applied, i.e. moments of kinematic distributions
integrated over the whole phase space. We present in this work the first four moments
of the charged-lepton energy Ej, the total leptonic invariant mass ¢ and the hadronic
invariant mass M%. We study the behaviour of the perturbative series in the so-called
kinetic scheme, in which the moments are expressed in terms of the kinetic mass of the
bottom quark mass [17, 18], 20, 21]. Furthermore we estimate the theory uncertainty due
to the finite expansion depth in §.

We aim at validating the theoretical uncertainty estimates entering the |V| extraction
and at identifying the precision level below which N3LO corrections need to be taken into
account. Usually, kinematic moments are measured with various kind of lower cuts on E,



or ¢°>. On the one hand these cuts suppress background from low-energy electrons. On
the other hand measurements with different cut values provide extra information on the
HQE parameters. For a prediction of such kind of observables it is necessary to compute
the differential rate to third order.

The paper is organized as follows. In Sec. [2] we introduce the notation and present
technical details of the calculation of the moments and also of the total rate presented in
Ref. [16]. We discuss in Sec. [3{the numerical results in the on-shell scheme and discuss the
theoretical uncertainties due to the finite expansion in the parameter §. Numerical results
in the kinetic scheme are given in Sec.[d] NLO corrections to the power-suppressed terms
of the ¢ moments are considered in Sec. [5 and in Sec. [6| we draw our conclusions. In
the Appendix we collect convenient formulae for one-loop integrals with arbitrary tensor
rank and analytic expressions for the power-suppressed ¢> moments including perturbative
one-loop corrections.

2 Details of the calculation

2.1 Moment definitions
We consider in perturbative QCD the inclusive decay of a bottom quark

b(p) — Xc(pz)g(pﬁ)ﬂé(pu)a (1)

where X, generically denotes a state containing a charm quark, plus additional gluons
and/or quarks. In the rest frame of the bottom quark we have p = (my, 6) Leptons are
considered to be massless. We denote the momentum of the lepton pair by ¢ = p, + p,
and the total momentum of the hadronic system by p, = p — ¢. In the following we study
moments of the invariant mass ¢?, the hadronic invariant mass M% and the charged-
lepton energy E,. Moreover, quantities denoted by “"” refer to dimensionless quantities,
normalized to the b quark mass, e.g. 2 = ¢2/m2, E, = Ey/my,.

We compute moments of the differential rate where no restriction is applied on the final
state particles. For their calculation we use the optical theorem in analogy to Ref. [16]
where the semileptonic width was presented. As building blocks it is convenient to intro-
duce in the bottom quark rest frame the moments of the leptonic energy gy = p - q¢/my
and the leptonic invariant mass ¢2,

1 , - 4T
i = — [ dE;dgodq® (¢*)(q0) —=———— 2
Q= ¢ [ dBsdande® (@) a0 2)
and moments of the charged-lepton energy E;, = py - p/my,
1 . 4T
Li=— [ dEydqydq® (E))' ——— 3
FO v QO q ( Z) dE[ qu dq2 ( )



with the normalization factor 5o )
F — mb GF | ‘/:3b| (4)
0 19273

Note that Qoo = Lo corresponds to the total semileptonic rate computed in [16] (divided
by I'y). Moments are written as a series expansion in the strong coupling constant o (i),

ny Qs(ps)\" ny [ s(ps)\"
Q=3 QY (L) , L= 1" (L) | 5)
n>0 T n>0 T
Normalized moments are defined by

— Qn,O
Qoo’

with n > 1 and centralized moments are given by

((a*)") (Ef) =

&
©

q1 = <q2>7 Qn

(@ = (a)"),
61 = <Eg>, gn < —

(B —(E0)") (7)

where n > 2. Predictions for normalized and centralized moments can be obtained by
inserting the perturbative expansions into @ or and re-expanding in «.

The hadronic invariant mass is related to parton level quantities by
M} = (ps — q)* = M — 2Mpqo + ¢, (8)

where pg and Mp are the momentum and the mass of the B meson, respectively. We
assume that the bottom quark and the B meson have the same velocity, i.e. ply = Mpv*
and p = myv*. The moments of Mx are given by linear combinations of the (); ; moments:

1 4T
M, = — [ dE,dqydg* (M% — 2M Hn___——
0/ vdgodq” (Mp BQO+Q)dEqu0dq2
_ NOYE 2\n—i i—j
=33 (M) (5 By -2y iy (9)
i=0 j=0 J
Normalized and centralized moments are defined as
n Mn n
(M) = -+, hy = (M%), hn = (M3 = (M%))") . (10)
M,

2.2 Asymptotic expansion
Let us now describe the calculation of ); ; and L;. With the help of the optical theorem
we can express the b — X v, matrix element integrated over the whole phase space

in Eqgs. and in terms of the discontinuity of the b — b forward scattering amplitude
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Figure 1: Sample Feynman diagrams which contribute to the forward scattering ampli-
tude of a bottom quark at LO (a), NLO (b), NNLO (c) and N3LO (d-f). Straight, curly
and dashed lines represent quarks, gluons and leptons, respectively. The weak interaction
mediated by the W boson is shown as a black dot.

(for sample Feynman diagrams see Fig. . Moments without cuts are simply obtained
by multiplying the forward scattering amplitude by the weight function (¢?)'(¢q - v)’ or
(pe - v)* for the Q;; and L;, respectively. The leading order prediction is obtained from
the two-loop diagram in Fig. (a) where the internal lines correspond to the neutrino,
the charged lepton and the charm quark. The weak interaction is shown as an effective
vertex. To compute QCD corrections up to O(a?) we have to add up to three more loops
(see Fig. [I[b) to (£)).

An exact computation of five-loop diagrams with two mass scales (m;, and m.) is out
of range using current methods. We obtain finite charm mass effects by performing
an asymptotic expansion in the parameter 6 = 1 — m./m;, < 1, i.e. we expand the
Feynman diagrams around the equal mass limit m. ~ my, which we realize with the
method of regions [22 23]. We call this approach the §-expansion. The opposite limit
p = m./my < 1 (the p-expansion) was adopted in [7] for the evaluation of the width to
O(a?).

S

It has been shown that the d-expansion converges quite fast for the physical values of quark
masses 0 ~ 0.7 [16] 19, 24]. Moreover compared to an expansion around the opposite limit
(p ~ 0.3), the d-expansion offers two crucial advantages:

1. The number of regions to be calculated is considerably smaller.

2. The J-expansion yields a factorization of the multi-loop integrals which allows us
to integrate at least two loop momenta without applying integration-by-part (IBP)
relations. A computation up to O(aZ) becomes a n-loop problem, even if we start
with (n + 2)-loop Feynman diagrams.
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Figure 2: Our convention for the loop momentum routing. Charged lepton and neutrino
momenta are p, and g — py, respectively. The external bottom quark momentum is p.
Additional loops of gluons and quarks are denoted generically with the gray blob. The
arrows on the fermion lines indicate the fermion direction whereas the arrows next to the
lines denote the momentum flow.

In the following we elaborate on these two points. It is convenient to route the bottom
quark momentum p along the external fermion line and we chose the momentum routing
in the lepton-neutrino loop as shown in Fig. [2l Then the loop integrals w.r.t. p, take the
form

H1---bN 2, _ ddpf pgl c ‘pZN
1 i) = | T g -
where n; and ns are integers and d = 4—2¢ is the space-time dimension. For such integrals
one can derive a closed formula for arbitrary tensor rank N (see e.g. [23] and Eq. in
Appendix . After performing the p, integration, we obtain integrals with an effective
propagator 1/¢? raised to an e-dependent power.

Next we apply the method of regions to construct the J-expansion. There are only two
possible scalings for each loop momentum k& [23):

o hard (h): |kF|~ my,

o ultra-soft (u): |k*|~ & - mp = my — me.

We choose the notion “ultra-soft” for the second scaling in analogy to the calculation of
the relation between the pole and the kinetic mass of a heavy quark, see [17, [18]. For all
diagrams, we checked with the program asy.m [25] that a naive scaling assignment to the
individual loop momenta correctly identifies all relevant regions.

Since there is only one scale in the problem, the parameter 0 (we set m, = 1), an imag-
inary part arises only through the appearance of log(—d), i.e. only if § appears in the
denominator of one of the charm propagators. This implies that the combination k£ — ¢,
where k is a loop momentum running through a charm quark line and ¢ = p, + p,, must
be ultra-soft for at least one of the charm propagators. Otherwise no imaginary part
arises. Furthermore, the momentum ¢ of the lepton pair always has to scale ultra-soft



which means that all regions where ¢ scales hard are discarded. To clarify this point, let
us consider for instance the following propagator:

1 1
_ 12
(p—q+k)?—mZ 2p-(k—q)+(k—q)*+25—6> (12)

where k denotes some generic linear combination of loop momenta other than ¢. If k£ — ¢
scales hard (p is considered always hard), we expand the charm propagators as follows

1 h 1
(p—q+k)?2—m2 2p-(k—q)+ (k—q)?

+0(9). (13)

Thus, no 9 is left in the denominator and no imaginary part appears. If & — ¢ is ultra-soft

we have ) )
u 0
= O(6"). 14
(p—q+k)> —m? 2p-(’<f—q)+25jL ) (1)

After integration the ¢ in the denominator yields a log(—d) term and thus an imaginary
part.

At this point we exploit the fact that ¢ is always ultra-soft which allows us to perform
a further integration. Integrals where the loop momenta are hard factorize from the
integration w.r.t. ¢. The crucial observation is that also in case ¢ and k are both ultra-
soft the integrations factorize. In fact, having chosen the momentum routing as in Fig. 2]
the dependence in the charm propagators on ¢ and ¢ is always of the form (—2p-q+20) as
can be seen from Eq. . Taking advantage of the linearity of the charm propagators in
the ultra-soft region, we can pull out the global factor (—2p- g+ 26§) from each propagator
by rescaling the loop momenta. For instance, for the following two-loop integral we havel]

/ d?q d?k k—sk(—2p-q+25)
(g®)m (k2)"2(2p - k — 2p - g + 26)" B

/ diq . / dk (15)
(@)™ (—2p - q + 20)—FF2matns © | (@)m2(2p - + 1)

Thus the ¢ integration also factorizes for ultra-soft loop momentum k& and therefore we
can always evaluate the ¢-integration independently on the other loop momenta. The
tensor integrals

d’q ght ... gty
(2m)4 (—¢?)™ (=2p - q +26)""

1 .65 m) = (16)
can be directly evaluated using Eq. in Appendix . In conclusion, we are able to
analytically carry out the integration w.r.t. p. and ¢ without the need of an IBP reduction

and we remain with n» momentum integrations at order af. Each of these momenta can
either be hard or ultra-soft.

INote that we set mp = 1.



order regions

Qg u, h
a? uu, hh, hu
o« uuu, hhh, huu, uhh

Table 1: Relevant regions for the loop momenta ky, ks, k3 up to O(a?): hard (h) and ultra-
soft (u). Regions written in black factorize, leaving at most two- or three-loop integrals
(in red) to be reduce by means of IBP relations.

With the same approach, it is possible to integrate all one-loop hard or ultra-soft contri-
butions which leaves purely hard or ultra-soft integrals at two and three loops. We reduce
them to master integrals via standard IBP reduction. We summarize all regions at order
as, @ and o2 in Tab. (1l Those labeled in red required an IBP reduction, while the other
regions factorize and are computed with the help of Egs. (53] to (55)).

After asymptotic expansion of the Feynman integrals one gets linearly dependent propa-
gators. It is thus necessary to perform a partial fraction decomposition in order to arrive
at proper input expressions for the IBP reduction. The methods employed for the partial
fraction decomposition and the mappings among different integral families closely follow
those described in Ref. [I8], in particular we used the program LIMIT [26] to automate
the partial fraction decomposition in case of linearly dependent denominators. For all
cases where at least one of the regions is ultra-soft we can take over the master integrals
from [I7, 18]. For some of the (complicated) three-loop triple-ultra-soft master integrals,
higher order € terms are needed. The method used for their calculation and the results
are given Ref. [I8]. All triple-hard master integrals can be found in Ref. [27].

For all moments we have computed the first 16, 11 and 8 terms in the d-expansion at

order ay,a? and o2, respectively. Note that the leading power of d is different for each
moment:
leading power of § for Q; ; : §o 2t
leading power of & for L; : §°™. (17)

This means for example that the a? correction to the width is computed up to order §'2,
while for the third lepton energy moment L3 the expansion extends to §'5. Note that the
leading term for the latter is §%.

The chosen expansion depths are a compromise between precision of our prediction and
computational resources. To achieve sufficient precision, especially for the centralized
moments (see next section), we had to perform a deep expansion in ¢ of the Feynman
propagators, up to 8th or 10th order which has led to intermediate expressions of the
order of 100 GB for each diagram. They must be handled carefully by FORM [28] in order
to avoid an explosion of the number of terms.

Furthermore for some of the integral families, individual propagators are raised to positive
and negative powers up to 12, which constitute a non-trivial task for the IBP reduction



programs. The latter could be handled thanks to a private version of FIRE [29] combined
with LiteRed [30]. For the subset of integrals which are needed for the expansion up to
619 we also use the stand-alone version of LiteRed as a cross-check.

There is an additional complication in the computation of the charged-lepton energy
moments. They are computed by introducing the factor (p, - v)* in the integrand of
the electron-neutrino loop, which make them dependent on the parity-odd part of the
amplitude. As a consequence the traces which contain an odd number of +5 matrices does
not cancel anymore and we have to deal with traces involving 75 in d dimension. We
adopt the so-called Larin prescription [31] and substitute

,.)/u,_)/S N %Suupa (rYVFYPfyG g 707,071/) :

(18)

in those cases where one instance of axial-vector current is present in a leptonic trace
and one in the bottom-charm fermion line. After evaluating the traces of v matrices, we
contract the two Levi-Civita tensors and interpret the result in d dimensions. In case two
5 matrices are present in a trace, we simply anti-commute ~°.

For the contributions where the Larin prescription have been used, an additional MS
renormalization constant has to be taken into account. An axial-vector current treated
with the Larin prescription must be renormalized with the factor [31], [32]

ag\21 /11 1 ag\3 [ 1 121 11
@“**(ﬂ>z<ﬂaﬂ¥—#%ﬂm>+(?>{§(4QQ”? 5aCACFTFTYy

1 ...\ 1/1789 77 . . 26 1,
— 2_70FTan) + - (25920ACF — 144CACF — gCACF’I’LfTF + §CFTan

1
+ 10T )| o

where T = 1/2 is the trace normalization and Cr = 4/3 and Cy = 3 are the Casimir

operators of the fundamental and the adjoint representation of SU(3), respectively, oy =

al™) (is), ny is the number of active flavours and i, is the renormalization scale of the

couphng constant. Furthermore one has to introduce a finite renormalization constant in
order to restore the correct Ward identity:

Qg g\ 2 107 11 1
Zs=1-2Cr+ (?> (—mCACF ety Y %Cprnf)
a\3 [ 2147 (s , (2917 5(s o 185  3(
+<7r> {CACF< 1728 8)+CACF(864 > ) T\ Tes T
+ CACFTFTLf + = C3 + CQTFTLf —i - 9 + — CF (20)
648 3 F 432 3 394 FHFT 7

Finally, it is interesting to note that the natural expansion parameter arising from the
Feynman diagrams is actually & = 1 — m?/m? as odd powers of m,. do not appear in
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the differential rate because of the V-A weak interaction [33, [34]. Odd powers of m,. can
appear in the lepton energy moments at intermediate steps when using the Larin scheme.
In particular, they are present in the higher € terms of the lower-order corrections. In this
case we rewrite m2"t = m.(1 —¢)"m}" and treat m, as additional parameter. However,
after renormalization, we verify that all odd powers of m, vanish.

The use of ¢’ further reduces the size of intermediate expressions. Only at the very end,
after renormalization, we re-express our results in term of 6 =1 —m./my =1 — 1 — ¢

since the series in 0 converges faster. This fact can be understood by comparing, for
instance, the behaviour of the tree level decay rate which is proportional to the function

flp) =1 —=8p* +8p° — p® —12p" log(p®), (21)

with p = m./my. If we substitute p = 1 — §, at higher orders in ¢ the series is governed
by the expansion of p*log(p?) which is given by

ot log(p?) = ~2(1 — )*log(1 — 8) = ~2(1 ' 3= O
m=1

[e o]

, 26, 25, 48 .
= =20+ 70" = 200+ 2 —Zn(n_1>(n_2)<n_3)(n_4>a. (22)

n=>

Instead, if we substitute p> = 1 — ¢ we obtain

ptlog(p?) = (1= ') log(1 —8') = —(1 = &')* ) %
! 3 N2 = 2 '\n
=—0+356V =) g (23)

n=3

If we adopt § as expansion parameter, the coefficients in the series are suppressed by 1/n”
for large n, while for ¢’ the coefficients are suppressed only by 1/n3. This fact suggest to
use 0 as expansion parameter also in the prediction at higher orders in as.

3 Results in the on-shell scheme

Our main results are analytic expressions for the moments @; ; and L;, with ¢ 4+ j < 4,
which can be downloaded from [35]. In this section we first assess the uncertainty of the
central moments related to the d-expansion. In the next section we convert our results to
the kinetic scheme and compare the size of the O(a?) terms to experimental results and
to the size of higher power corrections.

Let us fix for the numerical evaluation mP® = 4.6 GeV and m9% = 1.15 GeV which leads
to § = 0.75. We use Mp = 5.279 GeV for the M% moments and set the renormalization
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scale 1, = myS. The d-expansion provides precise approximations for Qi; and L;. To

give an idea of the convergence, we show the size of the different terms in the series at
order o? for three selected moments:

) = —44.9615(155 — 0.527532g6 + 4.3837257 — 2.5459345 + 0.10277150
+0.0168158510 + 0.00263043511 + 0.002160164:2 ),

Q') = —0.703488 (1513 — 0.527532511 + 2.79417515 — 1.488 516 — 007782417
— 0.0329351 51 — 0.0139737510 — 0.0058596520),

L = —16.8605(15 — 0.99252157 + 5.5669555 — 4.1403250 + 0.754176510
— 0.02518854511 — 0.0103673512 — 0.00171797513), (24)

where the subscripts are introduced to flag the different terms in the d-expansion. The
first equation corresponds to the expansion of the rate in [I6]. We observe that at O(a?)
the precision reached with eight terms is well below the relative 1% level.

However, the accuracy on the centralized moments reduces. To compute centralized
moments, we insert the analytic results of LZ( or Q ™) in Egs. (7)) and . and re-expand
in a; to third order. The re-expansion in a; of numerator and denommator is subject to
strong cancellations. We do not re-expand in . The correctlon to centrahzed moments at
order o involves non-trivial combinations of the moments L QE ;i » where m ranges
from 0 to n. A simple re-expansion in 4, let us say up to the elghth term at order a3,
spoils the delicate cancellations happening among different moments with m < n, which
are actually computed to higher precision in §. Therefore we suggest not to re-expand in ¢

quantities derived from LZ(-m) or QZ(ZL) since they represent the best possible approximation.

We estimate the final accuracy in the following way. We consider the moments with
the highest computed term in ¢ and insert numerical values for the masses. Then we
re-evaluate each moment removing the last term in the d-expansion at each order in a.
The difference between these two numerical predictions is quoted as uncertainty.

For the centralized ¢?> moments normalized to m; and expressed in the on-shell scheme
we obtain

N i Qg Qg 2 Qg 3
gi=  0.218482[1 +0.127423%° 1 0.4369(30) (—) — 5.34(30) (—) ]
L T m s
~ [ Qg Qg 2 Qg 3
o= 0.0203994[1 + 0.138093%5  +0.91584(89) (—) +3.52(33) (—) ]
L T T T
3

G5 = 0.00110423 :1—0.226532% +1.137(14) (%)2 + 53.37(59) ( )],
)

r 2 3
i = 0.000880517[1 + 0.167677%°  + 1.5921(11) (O‘—) +15.24(35) ( }
L T T

For the E, moments we find
A Qg g\ 2 g\ 3
0= 0.307202]1 - 0.0169117%  —0.6637(30) (—) ~15.01(15) (—) ]
T T T
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~ r 2 3
fy= 0.00862693|1 — 0.164901%  — 2.0568(59) (—) — 35.4(2.9) (O‘—> } ,
L T

™ ™

0y = —0.00041875 :1 —0.00580025%%  — 1.4848(68) (?f —95(17) (%)3]

T

~ r Olg Qg 2 g 3
0= 0.000189369[1 — 0.245899%°  — 3.534(28) (—) —76(481) (-) ] (26)
L T T T

For M?% moments it is more convenient to normalize the results w.r.t. the first order in
a; since the partonic X, invariant mass differs from m,. only starting at O(«s) due to real
radiation. Our results read

A r g Qg g\ 3
hy =  0.0993848]2.10166 +1% 4 14.567(25) (—) +249.0(2.4) (-) ]
L T T T
N r 3
b= 0.0150817]0.029471 1% 1 11.008(5 (O‘—) + 152(40) ( ) }
L T T
N r 3
hy = 0.00342142] — 0.00103783 +1%5  +9.27(21) (-) +201(24) ( ) }
L v v
7 I g g Qg
hi=  0.001168]0.000361694  +1%° +9.1(1.4) (-) +0(19) x 10° (-) }
L T v T

We notice that the centralized ¢; moments are well approximated by the d-expansion. The
uncertainties of the a2 coefficients are at most of about 10%. For the first three E, and
My centralized moments, we find that our approximation is able to determine the size
of the third order correction. However for the moments €4 and h4 we observe that our
expansion depth is not deep enough and the large uncertainty is a consequence of severe
numerical cancellations.

We noticed also that an uncertainty estimate based on standard error progagatlon in
general overestimates the uncertainty. If we assigned to each moment L and Q(m
an error equal to the last known term in 0 and then combine the uncertainties in an
uncorrelated way, we would find for ¢; and /; uncertainties much larger than those quoted
above. For hadronic moments we would observe errors of similar size. This fact is likely
connected to stronger correlations among the different expansion terms in ¢ for the ¢? and
FE, moments.

We compared our results at O(a?) with the values for the Mx and E;, moments of Refs. [9,
10] and find good agreement.

4 Transition to the kinetic scheme

In this section we discuss the impact of higher order QCD corrections once a short-distance
mass scheme is adopted. Moreover we will compare them to the power corrections at order
1/m? and 1/m;} to understand the importance of the a2 corrections in the fits for |V|.
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In this work we concentrate on the so called kinetic scheme employed in the fits of Refs. [6]
30, [37]. In this scheme we adopt the kinetic mass [17, 18, 20), 21] for the bottom quark
using

2
kin oS _ [k (167 (1) ]pert 1
i (g1) = m — (R0 per — Lm0 (Y (28)
k)= T RN
while the charm quark mass is converted to the MS scheme. At the same time, in the
kinetic scheme one redefines the heavy-quark-expansion parameters p? and p3, in the
following way:

12(0) = g2 (1) — (12 (1) pert pH(0) = ph (1) — [b(1)]pert (29)

where the analytic expressions for [A(u)]perts [12(14)]pers and [ (1)]pers can be found in the
Appendix of Ref. [18]. The Wilsonian cutoff x plays the role of scale separation between
the short- and long-distance regimes. We adopt the standard HQE parameter definitions
employed in Refs. [4, [36], 37]:

9 1

Hr = ~gar (BIb.(iDY)*b,|B),
1 . , - w
pigy = Ny, (Blby(iD;,)(iDy ) (—ic" )b, | B),
1 = . . 1y
pb = g3z (Blbu(iD)(iv - D)(iD*)b, | B)
3 1 NV - L -4
pis = g (BIBGD;) (v D)D) (—io™ )b |B), (30)

where D, = 0y, — igsAu, Dy = (gu — vu0,)(iD”), by(z) = exp(—imyv - 2)b(x). The B
meson velocity and mass are denoted by v* = ply /mp and mp, respectively.

We consider two different approaches for the construction of the centralized moments:

(A) As a first step, expressions for centralized moments are obtained in the on-shell
scheme. To this end, the ratios in Egs. and are expanded up to O(a?)
(to leading order in 1/my) and up to 1/mj for the power corrections. We discard
higher «y corrections in the sub-leading power in 1/my,. Afterwards one applies the
transition to the kinetic scheme.

(B) We convert the expressions for ); ; and L; to the kinetic scheme. In a second step
the ratios in Egs. and are expanded up to o (to leading order in 1/my)

and up to O(1/m}) for the power corrections.

Note that the two approaches do not yield the same analytic expressions because of the
redefinition of the HQE parameters, see Eq. . In approach (A) the perturbative ver-
sions of p, and pp appear after expanding the centralized moments in a, and 1/m,. In
case (B) they are introduced before expansion, and therefore treated as «y corrections

13



in the later re-expansion of the ratios. Approach (A) and (B) start to differ at order

a? since the shift of the power-suppressed terms according to Eq. induces pertur-

S
bative «y corrections from 1/my terms. In both approaches, we retain all powers of the
Wilsonian cutoff ;/mi®. Only those terms involving one of the genuine non-perturbative
parameters are expanded in 1/m,. For a further discussion of the differences between the
two approaches and their interpretation we refer to Section |5 where O(ay) corrections to
power-suppressed terms are considered for the ¢> moments.
We set the renormalization scale of the strong coupling constant p, = mi™ and use

ozg4)(mi‘i“) as expansion parameter, i.e. we decouple the bottom quark from the running

of a,, and we re-expand in al? up to third order. We use the input values

mg™(1GeV) = 4.526 GeV, me(3 GeV) = 0.993 GeV,
in=1GeV, oW (miin) = 0.2186. (31)

For the HQE parameters, we use the most updated values and their correlations from [37]:

P2 = 0.477(56) GeV?, ph = 0.185(31) GeV?,
uZ = 0.306(50) GeV?, phe = —0.130(92) GeV?, (32)

where all parameters are defined at ;= 1 GeV.

In the following we report the numerical prediction for the various moments in the kinetic
scheme, employing approaches (A) and (B). For each moment we factorize out the tree-
level prediction, and show the size of the a,, a2 and a2 corrections (denoted by X,»). The
quoted uncertainties come from the § expansion as explained in the previous section. We
denote the sum of all 1/m} and 1/m; corrections by the subscript “pw”.

For comparison, we quote also an uncertainty for the contribution of higher 1/my cor-
rections. It arises from the uncertainties in the HQE parameters given in Eq. with
correlations taken into account. We will use this uncertainty as reference value to compare
the relevance of the o2 corrections in the fits for |V|.

4.1 q*? moments

We first show results for the ¢ moments with approach (A)

G1=  0.232047[1—0.0106345,, — 0.008736(15)s  — 0.00505(13)a: — 0.0875(97)pw] :
o= 0.0235256]1—0.035937,, —0.0217035(20)0> — 0.01118(17)a: — 0.237(27)pw} :
Gs= 0.0014511[1 — 0.0700381,, — 0.035693(73).  —0.01909(12)0s — 0.726(94)pw} :
i = 0.00120161[1 —0.0585199,, — 0.042276(11)s:  — 0.02411(20)p — 0.631(77)pw}.
(33)
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With approach (B) we obtain:

Gi=  0.232047[1—0.0106332,, —0.007100(16)s:  — 0.00326(13)a: — 0.0875(97)pw] :
Go= 0.0235256]1 — 0.0359328,, — 0.0175591(28)az — 0.00677(17)as  — 0.237(27), }
Gy = 0.00145109[1 — 0.0700256,, — 0.030529(71)az  —0.01282(12)as  — 0.726(9 }
o= 0.0012016]1 — 00585099, — 0.0342094(88): — 0.01597(20)0s — 0.631(7 pw}

(

34)

For the ¢> moments we observe a good behaviour of the perturbative series, with coeffi-
cients precisely determined via the §-expansion. Note that for the ¢*> moments, even o?
corrections are not yet available in the literature as the results presented in Refs. [9, [10]
are only for electron energy and hadronic invariant mass moments.

The size of the o corrections are of few percent while third order corrections are about
a factor of two smaller and in the range of 0.5 — 2%. We observe that higher power
corrections are sizable and as large as 70% of the leading order contribution. The esti-
mated uncertainty of the power corrections are a factor two to three larger compared to
the a? term. At O(a?) the difference between the two approaches yields a difference of
0.3%,0.9%, 1.1% and 1.6% for the four moments which is of the same order of magnitude
as the a? terms.

Central moments of the ¢ spectrum have been measured recently by Belle [38] separately
for electrons and muons in the final state. The quoted results for a cut on the leptonic
invariant mass of ¢> > 3 GeV?, averaged between muon and electron, rea

q1(¢* > 3GeV?) = 6.23 (8) GeV?,

@(q* > 3GeV?) = 4.44 (15) GeV*,

g3(q* > 3GeV?) = 4.13 (68) GeV?,
( ) = 46.6 (

5.6) GeV® . (35)

Due to the cut of ¢? we refrain from a direct comparison to our predictions. However,
it is interesting to compare the uncertainties. The moments in Eq. have a relative
uncertainty of 1.3%,3.1%, 16% and 12%. The experimental error of ¢; and ¢, is only
about a factor two larger compared to the magnitude of the a2 term. Furthermore, note
that the measurements in [38] with a higher cut on ¢* have even smaller uncertainties
reaching a precision of 0.5% which makes the a2 corrections even more relevant.

2We thank F. Bernlochner and R. van Tonder for providing us with the values of the centralized
moments constructed from the data of Ref. [3§].
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4.2 Charged-Lepton Energy Moments

For the electron energy moments our result in the approach (A) read

0 = 0.315615[1 — 00101064, — 0.005082(17)a2  — 0.00227(13)0s — 0.0192(31)pw],
fy= 0.00900585[1 —0.01992,  —0.006152(41)s2 +0.0002(21)0:  + 0.017(11)pw} ,
f5 = —0.000464269[1 — 0.0639319,, — 0.035673(10)a2 — 0.0142(46)0s  — 0.175(22)pw},
fi=" 000020743[1—0.028854,,  —0.00717(28)az  —0.00(25),,  +0.000(21),,,],
(36)

while for (B) we find

b = 0.315615[1 — 0.010106,,  — 0.004838(17)az  — 0.00200(13),s — 0.0192(31)pw] :
fy = 0.00900585[1 — 0.0199202,, —0.006303(42)az  —0.0001(21)as  + 0.017(11)pw} ,
05 = —0.000464268[1 — 0.0639261,, — 0.0358480(91)q: — 0.0142(46)0s  — 0.175(22)pw} :
{y= 0.00020743[1 — 0.0288534,, — 0.00611(23)az -+ 0.00(25)as + 0.000(21)pw} .
(37)

For these moments we observe in general a good convergence of the perturbative series
in the kinetic scheme. It is interesting to note that the relative size of the a? corrections
are smaller compared to those found for ¢> moments. For /1 and l5 we have 0.2% and
0.02% and for {5 about 1.4%. For {4, the o3 correction is not determined in a reliable
way due to the uncertainty of the finite expansion in §. On the other hand, also the
impact of the power corrections is much smaller compared to ¢*> moments. For ¢, and
{5 the power correction uncertainty is of the order of 0.1-0.3% and comparable with the
size of a3 corrections. The o coefficient of ¢, is small which is likely due to numerical
cancellation. In case of {3 the uncertainty coming from higher 1/my, terms of about 2.2%

is comparable with the a? correction.

The difference between our predictions obtained with the approaches (A) and (B) are
small, and overall they never exceed the 0.1% of the leading order contribution.

We can examine the precision of experimental measurements for instance by quoting the
values of the electron energy moments, with a cut £, > 0.4 GeV, as measure by Belle [39]

01(Ey > 0.4GeV) = 1393.92(6.73)(3.02) MeV,

lo(Ey > 0.4GeV) = 168.77(3.68)(1.53) x 107 GeV?,

(3(E; > 0.4GeV) = —21.04(1.93)(0.66) x 107 GeV?,

(4(Ey > 0.4GeV) = 64.153(1.813)(0.935) x 107° GeV*. (38)
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The relative accuracies of these measurements are 0.5%, 2.3%, 9.6% and 3.2%, respectively.
Due to the applied cut, the central values cannot directly be compared to our prediction.
However, we note that for /; the a3 corrections are only a factor of two smaller than the
experimental error. Also for the moments of the charged lepton energy, the experimental
measurements are in general more precise at higher values of the cut. Therefore for some
of the moments, third order QCD corrections are already comparable to the experimental
error and the uncertainties associated to power corrections.

4.3 Hadronic Invariant Mass Moments

Finally let us analyze the predictions for the hadronic invariant mass moments. For
approach (A) we have

hy= 0.00899843] +23.4975  +1+404223(15)a: +0.147(11)0s  + 0.04(20)pw},

ho = 0.000745468] +0.87352  +1+0.4505(74)a: +0.34(43)es  + 3.33(59)pw},

>
w
I

0.0000915954| — 0.0729568  + 1+ 0.165(62)02  +2.29(55)0s  + 7.3(1.1)pw},

ha=  0.000091207[ +0.0100938 + 1+ 0.51(17), + 1(145)q0 + 0.380(52)1,4 ,
' (39)

while for (B) we find

b= 0.00899836] +23.4976  +1-+04114(15).: +0.134(11)ss + 0.04(20)pw],

ho = 0.000745462] +0.873533  +1+0.3971(73): +0.25(43)0:  + 3.33(59)pw},

>
w
I

0.0000915935| — 0.0720428  +1—0.088(61)az  +2.00(55)0s  + 7.3(1.1)pw],

>
W~
I

0.0000912064 [ + 0.0100992  + 1 + 0.56(16)2 +0(145) 40 + 0.380(52)pw] :
' (40)

As before, we normalize the various higher order terms w.r.t. the O(ay) corrections, since
the partonic tree-level invariant mass vanishes.

Our approximation does not determine hy at O(a?) and also for hy we can only provide
the order of magnitude. While for hy and hs the perturbative series still displays a good
convergence, the prediction for hs shows an enhanced O(a?) term which is more than a
factor of two larger than the O(«y) contribution. For ilg also the power-suppressed terms
are quite large and the corresponding uncertainty is as large as the O(a;) term. This calls
for a careful assessment of the theoretical uncertainties for this specific moment, or as a
conservative approach, for the elimination of hs from the set of observables considered
in the fits. For h; the relative difference between approaches (A) and (B) is about 0.1%
while for hy and hj it is of 2.3% and 5%, respectively.
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From the expressions in Eq. we obtain after multiplication with the proper power of
my the results

hy = 4.63(4)GeV?,
hy = 1.88(23)GeV?,
hs = 8.41(97)GeV®, (41)

where the uncertainties in Eq. have been added in quadrature. We refrain from listing
h4 since there is a strong dependence on the higher order power-suppressed corrections [40)].
The results in Eq. can be compared to the experimental measurements of the My
moments performed by DELPHI [41]f]

hi = 4.541 (101) GeV?,
hy = 1.56 (18) (16) GeV*,
hs = 4.05 (74) (32) GeV®. (42)

Note that no cuts have been applied. Their relative errors are 2%,15% and 20%, respec-
tively. For h; one observes agreement within the uncertainties. Note, however, that the
experimental error is about a factor 2.5 larger than the one from the theory prediction.
Furthermore, from Eq. one observes that the contribution from the o term has about
the same order of magnitude as the theory uncertainty. Also for hy we find agreement
between the theory prediction and the experimental result. However, one has to keep in
mind that the theory prediction is dominated by the power-suppressed terms. In the case
of hg it is worth mentioning that the expansion in a4 does not converge. Furthermore,
there are large contributions from the power-suppressed terms and thus it is not surprising
that the numbers in Eqgs. and do not agree within the one sigma range of the
uncertainties. Let us mention that for hy and hz we observe that the o terms are larger
than the quoted error by DELPHI.

5 Including NLO perturbative corrections to the
power suppressed terms

In this section we study the origin in the numerical differences between approach (A) and
(B), and how it can be reduced by including NLO perturbative corrections to the power
suppressed terms, i.e. by taking into account O(ay) corrections in the Wilson coefficients
of the HQE parameters p2, u2, p3 and p3o. We will refer to these correction as ay/m}
corrections (n = 2 or 3 in our case).

We focus on the ¢ moments. Analytic results for the ¢? spectrum including a,/m}
corrections were recently computed in [I5]. By performing an analytic integration of the

3We thank P. Gambino for clarification about the value of hy.
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differential decay rate, we obtain expressions for the perturbative corrections to power
suppressed terms of the ¢> moments. Schematically they have the form (compare also

with Eq. (5))
Lo P o (Fa pLs
2m} Wone \ m2 - mp

p
ngQpD CQzO@D ] lga (43>

my,

Quo= Q0+ Q%+ (2) + ol (2

i O,PLS

«Q MG 1 o PLS
QzO“u,G . Q = mg +

(1)
4,0,nG

can be found in Ref. [15].

where as = a4(us). For convenience we prov1de analytlc results for on e @ and

Q(l) in Appendix (B, The results for Q and Q

4,0,pL5
Let us compare the predictions for the centralized moments ¢; obtained in Egs. (33) and
(34) where no O(as/mj') correction was taken into account. We obtain

4,0,0D 4,0,pD

Aq, = 0.3%,
Agy = 0.9%,
Agz = 1.1%,
Aqs = 1.6%, (44)

where we define the relative difference between scheme (A) and (B) by

~(A ~(B
@ g

4
AQZ = ’ T.O (45)
q;
Let us explain the origin of such difference. It is related to terms of the form
3
o X p—g. (46)

my,

In the kinetic scheme one has to redefine p?,(0) according to Eq. where the pertur-
bative expansion of [pp(u)|pert 1S given by

n as n
P lpers = 1 Y ren (2) (47)
n>1
The coefficients rl()zzt are known up to O(a?) from [I8]. Their explicit expressions are
not relevant for our discussion. For ¢> moments we can ignore the role of p2 since its

dependence drops out due to reparametrization invariance [14].

In case we neglect terms of O(as/mi), contributions scaling like g X p3,/m3 are dropped
in approach (A) after re-expansion of (7)) in the on-shell scheme. In approach (B) we first
transform the building blocks entering Eq. @ to the kinetic scheme. In particular, we
redefine p?, according to Eq. . After inserting the expressions in Eq. (7)) and expanding
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in a, new terms of order a? are generated since the ratio p/mj is considered of order

one and not 1/m3. Thus, we observe that the difference between (A) and (B) scales like
2,.(1

pertpf)’ Jmi if O(ag /mb) terms are neglected. In case ag/mjy terms are included the

2,.(1) 6
difference is of order o? Sroertht/ my.

Oé T

We now compare the values of the ¢*> moments obtained in approaches (A) and (B) after
the inclusion of terms of O(as/my). We recompute the prediction for the centralized
moments ¢; by re-expanding the final result up to O(a?) at the partonic level, while we
keep corrections of O(as/mjy') in the power suppressed terms. With approach (A) we
obtain

Gi=  0.232047[1 - 0.0106137,, —0.00383463,:  — 0.00327(13)0s — 0.097(11)pw ],
Go= 002352561 — 0.0359242,  — 0.00697531,:  — 0.00683(17)0s  — 0.240(27)pu |,
Gs= 000145111 — 0.0701143,, +0.0145548,:  — 0.00866(13)ns — 0.624(80)pw |,
o= 0.00120161[1 — 0.058515,,  — 0.000100666,: — 0.01686(20)0s — 0.545(65)pu] ,
(48)

and approach (B) leads to
qQ1 = 0.232947 _1 —0.0106265,, — 0.00402646,2  — 0.00190

g2 = 0.0235256 1 0.0359104,, —0.00817945,2 — 0.00366

(13) (11)
(17) (26)pw |
Gs = 0.00145109[1 — 0.0699819,,  +0.00342844,:  — 0.00822(12)0s  — 0.510(68)pu |,
G = 0.0012016]1 —0.0584734,  — 0.00681918,: — 0.01185(20) (58) pu |
(49)

Taking the difference from leading m,; contribution only, i.e., from the terms flagged by

1PN B}

al” we obtain

Aq = 0.1%,
Agy = 0.2%,
Ags = 1.1%,
Ags = 0.2%. (50)

Comparing Eqs. and we observe that the predictions using (A) and (B) get closer
after the inclusion of the O(as/mj}) corrections. This happens because now both approach
(A) and (B) take into account contributions scaling as a, x p% /m3. After redefinition of
pp, both (A) and (B) generate the same corrections of the form agréle)rt p3/m3. Therefore

Agq; become smaller.

However if we take into account also the power-suppressed terms, i.e., the parts flagged
by “pw”, we obtain

Aql = 04%,
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AQQ = 15%,
Aq;g = 103%,

which are even larger than without including O(as/m}) terms. Similarly to what we
observed before, the difference starts now at order 1/m? and 1/m; because of contributions
of the form

3 2 3 3
a, X [pD]gert % M_GQ or o, X [IOD]gert y pD(gb) (52)
my my my, my,

which arise if one uses approach (B). However these terms are actually of O(1/m;j) and
O(1/m$) and therefore they would not appear if [pp]pert/mi ~ u®/mj is considered as a
1/m} suppressed term and the expressions for the moments re-expanded up to 1/m;.

In the end, we conclude that the ambiguity between approaches (A) and (B) can be
removed if the power corrections p/my, originating from the kinetic scheme are considered
as 1/my, suppressed term in the HQE. Note that for the charged-lepton energy moments
the contribution from the power-suppressed terms are significantly smaller and thus the
different treatment of the j/m; terms is numerically less important as can be seen from

the comparison of Egs. and (37).

6 Conclusions

In this work we compute several kinematic moments of inclusive B — X (v, decays up
to O(a?). In particular we consider for the first time higher order QCD corrections to ¢*
moments. We use the optical theorem to obtain analytic expressions for the moments as
an expansion in the parameter § = 1 —m,/my,. For most of the considered observables, the
series expansion in ¢ is sufficient to obtain precise results for the coefficients of the per-
turbative expansion. However, for some of the centralized moments, there are significant
cancellations and our finite expansion depth in § does not allow for a determination of the
a2 corrections in a reliable way. Note that also a calculation based on numerical methods
might have similar problems since also there in a first step the elementary moments are
computed with a finite numerical accuracy [10].

We describe in detail our computational methods. The quark masses are renormalized
in the on-shell scheme. Afterwards, we study the moments in the kinetic scheme and
investigate the importance of the higher order QCD corrections for the determination of
|Vp|. To this end, we present numerical results in the kinetic scheme together with the
contribution from higher 1/m,, power corrections and the related uncertainties.

For the first two ¢? and electron energy moments, we find that the third order corrections
are of the same order as the uncertainties associated to 1/m? and 1/mj corrections.
Furthermore, they are comparable in size with experimental errors. Thus, the inclusion
of a2 corrections in future analyses might be important. For the hadronic invariant mass
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moments hy and hz we observe a? corrections which are of the same order of magnitude

or even larger than experimental uncertainties and thus might influence the |V,,| fit. For
these moments also the power-suppressed terms are sizeable.

We discuss two approaches for the construction of the centralized moments in the kinetic
scheme. In approach (A) the scheme transformation rules are applied to the centralized
moments in the on-shell scheme. On the other hand, in approach (B) the building blocks
are transformed to the kinetic scheme and the centralized moments are constructed after-
wards. The numerical results differ starting from order o which is due to the fact that
p/my, counts as order one, where p is the Wilsonian cutoff of the kinetic scheme. For
the ¢ we show that the difference reduces in case higher order QCD corrections to the
power-suppressed terms are considered.

The analysis of the inclusive third order corrections of charged-lepton energy, leptonic
invariant mass and hadronic invariant mass moments performed in this paper suggests
that one should initiate a differential calculations at third order.
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A Tensor decomposition formulas

In this appendix we report the formulas employed to compute one-loop hard and ultra-
soft tensor integrals. We denote by {[g]"[p]¥ ~*"}*#~ the product of r metric tensors
and N — 2r vectors p, totally symmetric in its N Lorentz indices.

A.1 Massless two-point integral

The tensor integral of a massless one-loop two-point function is given by (see e.g. Ref. [23])

e R =gy me )

/ dk N i d/2—n1—no
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Py +ne —r — d/2)T(d/2+ N — 1y — 1)0(d)2 — na +7) 5o, .
2 Tt s T N = 7r = 112 () (] Ta) ")
(53)

r=0

where [N/2] is the greatest integer less than or equal to N/2.

A.2 On-shell two-point integral with one mass

The tensor integral of a massive one-loop two-point function reads

/ dk; Jorn Lk L SR
(2m)d (—k2)m(—k2 +2p - k)2 (dm)d/?

[N/2]

L +ny — 7 = d/2)T(d + N = 2m — ny)
> (—2) T(n2)T(d + N — ny — ny)

(m?) {lg)" [p] "2 it (54)

r=0

where p? = m?. Such integrals appear in case the loop momentum is hard.

A.3 Ultra-soft integral

The tensor integral of a one-loop ultra-soft two-point function is given by

/ d’k kH kN _ 0 i 2m et N (2= N—d/2
(2m)d (=k2)m(=2p-k+y)m2  (4m)d/2
[N/2]

(—)N*'T(d/2 —ny — 7 + N)I'(2ny +ny — N — d)

27T ()L (1) (%) {[g) [}V 2y (55)

B Inclusive ¢> moments to order a;

The analytic results for the leading m,; expansion terms read

o _ ¢, 25 289 2395° 255" 25 175
3 6

17 32 3200 175t

645°2(1 + p)1 In(l—p)|—— _
+p(+,0n+\/_>+n {6+3 ; ;

= — In(p) | —10p — 455
0,0 3 6 + 6 3 +H(P)( 0p —45p” +

1
+ (2 +60p° + 2p* — 32p%% — 32ﬁ5/2) 1n(ﬁ)] + 7 (—5 —8p% — % + 165°/2

1
- 16ﬁ5/2> — 552(36 + 2 In?(p) — 1285°/%(1 4 p)Lia(\/p) + (3 + 485° + 35
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+325%% + 32/35/2)L12(ﬁ)} , (56)
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30 10 00 300 " \PHT ATy (1+/5)

~4 =5
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N 3 N 9472 _ y L
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where p = m2/m?. The results presented in this Appendix are obtained from the dif-
ferential expressions of Ref. [I5] after integration over the dilepton pair invariant mass
squared.

The analytic expressions shown in the Appendix can also be obtained from [35].
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