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We search for a new gauge boson Z0 that couples only to heavy leptons and their corresponding neutrinos
in the process eþe− → Z0ð→ μþμ−Þμþμ−, using a 643 fb−1 data sample collected by the Belle experiment
at or near the ϒð1S; 2S; 3S; 4S; 5SÞ resonances at the KEKB collider. While previous searches for Z0

performed a data-based estimation of the initial state radiation effect, our search for the Z0 is the first to
include effects due to initial state radiation in the signal simulated samples that were used in estimating the
detection efficiency. No signal is observed in the Z0 mass range of 0.212–10 GeV=c2, and we set an upper
limit on the coupling strength, g0, constraining the possible Z0 contribution to the anomalous magnetic
dipole moment of the muon.

DOI: 10.1103/PhysRevD.106.012003

I. INTRODUCTION

The lack of evidence for a weakly interacting massive
particle by underground experiments [1,2] and the absence
of supersymmetric particle signals at the LHC [3–5]
suggest that dark matter might be composite and/or light.
This gives rise to dark sector models [6–16] that introduce a
zoology of dark particles which do not interact directly via
Standard Model (SM) forces but can interact by dark sector
forces via new mediators. Therefore, they interact only
indirectly with SM particles and could have masses
between 1 MeV=c2 and 10 GeV=c2.
Discrepancies observed at low-energy measurements

[17,18] have fueled new precision studies. Within this
context, the anomalous magnetic moment of the muon,
ðg − 2Þμ, is one of the most precisely measured quantities in
particle physics, where the difference between the exper-
imental value and the SM prediction [19] is about 4.2σ [20].
This discrepancy might be a sign of new physics and has
led to a variety of attempts to create physics models
involving the leptonic sector of the SM [21–24].

These attempts include the set of SM extensions that add
a new Uð1Þ gauge boson (Z0) coupled to the difference
between lepton family numbers, Li where i ¼ e, μ, and τ
[22]. The electron number differences have been well
constrained by measurements performed at eþe− colliders
[25,26] and will not be discussed here. In this study, we
present a search for the gauge boson coupled to the Lμ − Lτ

difference.
The partial widths for the Z0 decay to leptons [27,28] are

given by

ΓðZ0 → lþl−Þ ¼ ðg0Þ2MZ0

12π

�
1þ 2M2

l

M2
Z0

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
l

M2
Z0

s
θðMZ0 − 2MlÞ; ð1Þ

where g0 is the Lμ−Lτ coupling strength, and θðMZ0−2MlÞ
is a step function, and

ΓðZ0 → νlν̄lÞ ¼
ðg0Þ2MZ0

24π
: ð2Þ

For MZ0 ≫ Ml, the branching fraction to one neutrino
flavor is half of that to a charged lepton. This is due to the
fact that the Z0 boson only couples to left-handed neutrinos,
but couples to both left- and right-handed charged leptons.
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The visible branching fraction to muons is

BðZ0 → μþμ−Þ ¼ ΓðZ0 → μþμ−ÞPμ;τ
l ðΓðZ0 → νlν̄lÞ þ ΓðZ0 → lþl−ÞÞ ;

ð3Þ

which is identical to BðZ0 → ττÞ except for the replacement
of the decay width with the appropriate decay channel.
We search for the Z0 of an Lμ − Lτ model via the decay

Z0 → μþμ−. In this model, the Z0 only couples to the second
and third generation of leptons (μ, τ) and their neutrinos.
We search for four-muon events in the reaction depicted in
Fig. 1, in which the eþe− → μþμ− process is followed by
Z0 radiation from a muon, and then, the Z0 decays to μþμ−.
In addition to its possible contribution to the ðg − 2Þμ

anomaly, the effects of a Z0 have been searched for in other
scenarios. It could be a source of an increase in the neutrino
trident production, νμN → Nνμμ

þμ− [23]. No increase has
been observed, and a limit was set for the Z0 parameter
space. It could also work as an indirect channel to sterile
neutrino dark matter [24] and could provide predictions for
the neutrino mass-mixing matrix [29–31].
Recently, the Belle II Collaboration published the search

result with Z0 → νν decay using a 276 pb−1 luminosity data
[32]. No Z0 signature was found so an upper limit of the
parameter space of this decay mode was set. Previously,
BABAR searched for the Z0 with eþe− → Z0ð→ μþμ−Þμþμ−
using a 514 fb−1 luminosity data, and since no Z0 signature
was found, the most stringent upper limits as a function of
Z0 mass [33] were set. In this paper, we present a search for
the same Z0 model in the full available Belle data sample.

II. EXPERIMENTAL SETUP

The search for eþe− → μþμ−Z0ð→ μþμ−Þ is performed
using the following luminosities: 33 fb−1 taken at the
ϒð1SÞ and ϒð2SÞ resonances, 2 fb−1 at the ϒð3SÞ reso-
nance, 484 fb−1 at the ϒð4SÞ resonance, 93 fb−1 at the
ϒð5SÞ resonance, and 67 fb−1 taken 60 MeV below the
ϒð4SÞ resonance, totaling 679 fb−1 collected by the Belle

detector [34,35] at the KEKB collider [36,37]. A 36 fb−1

subset of the ϒð4SÞ sample, the validation sample, is used
to verify the selection criteria and then discarded from the
analysis.
The Belle detector surrounds the interaction point of

KEKB. It is a large-solid-angle magnetic spectrometer
consisting of a silicon vertex detector, a 50-layer central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters, a barrellike arrangement of time-
of-flight scintillation counters, and an electromagnetic
calorimeter (ECL) comprised of CsI(TI) crystals located
inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented with resistive plate
chambers to detect K0

L mesons and identify muons
(KLM). The signal events are guaranteed to pass the
trigger with nearly full efficiency because the muonic Z0
decay topology features more than three charged tracks.
In addition, the large radius of the CDC (880 mm) [38]
allows for an excellent mass resolution and muon detec-
tion efficiency in Belle.

III. SELECTION CRITERIA

The selection is optimized based on the validation
sample as well as a Monte Carlo (MC) simulation done
in two steps. First, signal events are generated for different
Z0 mass hypotheses using WHIZARD [39], which takes into
account the initial state radiation (ISR) as well as the final
state radiation (FSR) at the ϒð4SÞ center-of-mass energy.
WHIZARD also has an option to generate events without
radiative corrections. Then, the detector response to
these events is simulated using GEANT3 [40]. There were
54 mass hypotheses generated for each of the Z0 MC
samples frommZ0 ¼ 212 MeV=c2 tomZ0 ¼ 1.015 GeV=c2

in 100 MeV=c2 steps and subsequently, in 200 MeV=c2

steps up to mZ0 ¼ 10.00 GeV=c2. The change in the steps
is due to the behavior of the detection efficiency observed
in the analysis.
The irreducible background, eþe− → μþμ−μþμ− is stud-

ied with an MC sample corresponding to a luminosity of
336 fb−1 generated with Diag36 [41] at ϒð4SÞ center-of-
mass energy; Diag36 generates events without ISR
corrections (non-ISR). There is no event generator available
for the QED 4-lepton final state with radiative correction. In
addition, other leptonic and hadronic background sources,
such as eþe− → eþe−eþe− and eþe−→πþπ−J=ψð→μþμ−Þ
were studied through MC samples, and found to give
negligible or no contributions after the application of the
selection criteria.
We select events with two pairs of oppositely charged

tracks in the final state. To ensure these tracks originate
from the interaction point, their transverse and longitudinal
impact parameters must be less than 0.2 and 1.5 cm,
respectively. At least two tracks are required to have a

FIG. 1. Feynman diagram for the main production channel of
the Z0 in eþe− colliders.
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muon likelihood ratio, Lμ

LμþLKþLπ
, greater than 0.1. The value

of Lμ depends on the difference between the expected and
actual muon penetration of the track in the KLM, and the
distance between its KLM hits and the extrapolation of the
track from the CDC. The efficiency for a track to be
identified as a muon is about 95% for momenta between
1 to 3 GeV=c and a slightly lower momenta below
1 GeV=c. In addition, a hadron veto is applied. The muon
candidate must not have a likelihood ratio corresponding to
a pion, kaon, or a proton. This is implemented by
comparing the likelihood ratio of two particles (proton
and kaon, kaon and pion, and proton and pion) as
PðijjÞ ¼ Li

LiþLj
, where Li is the likelihood product from

three detectors (ACC, TOF, and CDC). A pion is defined
as PðKjπÞ < 0.4 and PðpjπÞ < 0.4. A kaon is defined as
PðpjKÞ < 0.4 and PðKjiÞ > 0.6. A proton is defined as
PðpjKÞ > 0.6 and PðpjπÞ > 0.6.
To suppress the background due to neutral

particles, the sum of ECL clusters unrelated to any
charged tracks with an energy greater than 30 MeV is
required to be less than 200 MeV. Additionally, the
visible energy, Evis, calculated from the four muons must
be consistent with the center-of-mass energy, ECMS, so
that jECMS − Evisj < 500 MeV.
A kinematic fit based on the least square method for the

final state is carried out under the constraint that the four-
momentum of the final state be compatible with the initial
eþe− system. The chi-squared is minimized by Lagrange
multipliers; they issue a set of nonlinear equations that
are solved using the multidimensional Newton-Raphson
method. As a result, the reconstructed Z0 mass resolution is
improved.
As there are four possible combinations of oppositely

charged muons in the final state, all four possible
combinations correspond to four Z0 candidates counted
per event. To improve the sensitivity in the low Z0 mass
region, we introduce a reduced mass, defined as

mR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μþμ− − 4m2
μ;PDG

q
, where mμμ is the invariant

masses of Z0 candidate and m2
μ;PDG is the muon nominal

mass [42]. The mR distribution is smoother than the
invariant mass distribution around the Z0 mass close to
the dimuon threshold.
The Z0 reduced mass distributions for data and MC are

compared in Fig. 2. Although the normalization of the
data is almost 70% of the background level, it is fit to a
constant probability density function (pdf) as shown in
Fig. 2 (bottom). This difference arises due to the ISR
effect, which is not simulated in the background MC
sample.
We veto the reduced mass distribution around the J=ψ

mass, 3.05 < mR < 3.13 GeV=c2, as its muonic decay can
mimic a signal. This was not necessary around the ψð2SÞ
mass since the ψð2SÞ decay into muons is negligible
compared to the main background.

IV. RESULTS

We perform a binned maximum-likelihood fit to the
reduced mass distribution with the range of mZ0 � 25σZ0 .
The fit is repeated 9788 times with a different Z0 mass
hypotheses in steps of 1 MeV=c2 from 0 to 9787 MeV=c2.
The Z0 resolution starts from less than 1 MeV=c2 at the
dimuon mass threshold increasing until 5.5 GeV=c2, where
it is valued at 6 MeV=c2. Then it starts decreasing until
9.5 GeV=c2 where it is valued at ∼3 MeV=c2. The step is
set around half of the width of the reduced mass distribution
for MC generated signal.
The signal mR distribution is modeled as a sum of two

Crystal Ball [43] functions with a commonmean. The shape
parameters as a function of the mR are determined with
signal MC samples while the normalization is floated in the
fit. The width is calibrated using J=ψ → μþμ− events in the
veto region. The background is modeled with a third-order
polynomial, which is the lowest order function that can fit
the eþe− → μþμ−μþμ− background well. Background nor-
malization and shape parameters are floated in the fit.
The efficiency is determined using a fit to the MC signal

samples with different mass hypotheses. It is the result of
the integration of the fit function over mZ0 � 3σZ0, where
σZ0 is the Z0 mass resolution. This efficiency is interpolated
between the different discrete mass hypotheses.
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FIG. 2. Top: Reduced mass, mR, distributions. Red points
represent the data after all selection criteria are applied.
Black squares represent the non-ISR MC expectation for the
eþe− → μþμ−μþμ− (Diag36) [41] scaled to the data luminosity.
Bottom: The ratio between data and the non-ISR eþe− →
μþμ−μþμ− MC expectation. The red line represents a fit of a
first order polynomial where its constant term is 0.700� 0.003
and the slope term is negligible. Both: Black shaded region at
3.1 GeV=c2 represents the J=ψ region which is not used in this
analysis.
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This procedure is done identically for non-ISR MC
samples where themR distribution is also modeled as a sum
of two Crystal Ball functions with a common mean;
however, for the non-ISR MC samples, the parametrization
of the pdf is different than for the ISR case. Comparing ISR
and non-ISR detection efficiencies is key to understand the
gap between data and MC background on Fig. 2.
Figure 3 shows efficiencies as a function of reduced

mass.
It is clear that the detection efficiency increases with

increasing Z0 mass up to 6 GeV=c2, and then it decreases.
This behavior is due to the muon detection efficiency in the
KLM, which has a threshold momentum of 600 MeV=c
reaching maximum at 1 GeV=c, then flattens for even
higher values.
Systematic uncertainties arise from luminosity, track

identification, muon identification, and fitting bias. The
luminosity uncertainty is 1.4% and is measured using
Bhabha and two-photon events. The track identification
uncertainty is 0.35% per charged track, or 1.4% in this
analysis, and is determined by comparing the track finding
efficiency of partially and fully reconstructed D�þ →
D0ð→ K−πþÞπþ decays. A muon identification uncertainty
of 1.15% is determined from the change in event yields
while varying the muon likelihood ratio criterion from
0.1 to 0.2. With muon likelihood cuts, there is also a
systematic error to be considered on the detection effi-
ciency calculated through MC signal samples. This error is
calculated comparing γγ → μþμ− data and MC samples.

Due to the large number of these events, it is possible to
map the dependency between momentum, muon likelihood
ratio, and error rate. Comparing our MC signal calculated
detection efficiency with and without this correction gives a
1% difference. Finally, a correction from the hadron veto is
implemented on the MC samples. This correction factor is
also 1%, and it is obtained by comparing MC samples with
and without the hadron veto.
The effect of fitting bias is investigated using a bootstrap

study to check whether allowing third-order polynomial
components to float in the fit end up inducing a bias on the
yield extracted. For each mass scan, this study is done by
varying the data with a Poisson distribution, varying each
individual bin of the histogram. This changed dataset is
then injected with a signal of yield, corresponding to a
Poisson distribution of the upper limit on the number of
observed events and a distribution following its pdf.
This reconstructed ensemble is then fitted in the same
way as the data. The newly extracted yield, Nsig, is then
compared to the true number of events injected, Ntrue

sig ,
divided by the uncertainty in the newly yield extracted,
σNsig

, as ðNtrue
sig − NsigÞ=σNsig

. This procedure is repeated
1000 times for each mass scan. We find that the extracted
yield and its uncertainty are systematically overestimated
by 3% and 4%, respectively. These biases are accordingly
taken into account in the Z0 scan and g0 upper limit
calculation by correcting the yield extracted and the error
on the yield extracted. They correspond to Ncor

sig ¼
Nsigð1þ bÞ and Nerrcor

sig ¼ Nerr
sig × berr, where b stands for

bias and the variables with a superscript err are related to
the error on the yield.
The significance of each possible Z0 candidate is

evaluated as

S ¼ signðNobsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðLSþB=LBÞ

p
; ð4Þ

where signðNobsÞ is the sign of the number of observed
events and LSþB=LB is the ratio between the maximum
likelihoods of the fits with a signal plus background
hypothesis ðLSþBÞ and background only hypothesis
ðLBÞ. The distribution of significances is shown Fig. 4.
The largest local significance observed in an excess

(deficit) is 3.7σ (3.5σ) around mZ0 ¼ 3.3 GeV=c2

(3.1 GeV=c2), in Fig. 5. After incorporating the look-
elsewhere-effect, the global significance for the excess
becomes 2.23σ.
Since no fit resulted in a global significance of at least

5σ, we set upper limits on the coupling strength g0 as a
function ofmZ0 . A Bayesian method [44] is used to estimate
the 90% credibility interval (C.I.) upper limit on the number
of observed signal events, Nobs. A flat prior is assumed for
the signal yield and two nuisance parameters are added, one
for the signal yield and another for the background yield.
These nuisance parameters are two Gaussian uncertainties
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FIG. 3. Top: Detection efficiency as a function of the reduced
mass. Red points represent values with ISR correction. Open blue
squares represent values without it. Bottom: Ratio between ISR
and non-ISR detection efficiencies linearly fit. The average
constant value from a linear and constant fit is 0.741� 0.001.
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that correspond to the systematic errors. For the back-
ground nuisance parameter, the statistical errors are added
in quadratic sum to the systematic errors [45].
The results are shown in Fig. 6. Using the calculated

detection efficiency as shown in Fig. 3, the branching
fraction from Eq. (3) and the Belle luminosity ðLÞ of
643 fb−1, the 90% upper limit on the Born eþe− → Z0μþμ−
cross section is obtained using

σB ¼ Nobs

LBϵISRð1þ δÞj1 − Πj2 ; ð5Þ

where Nobs, ϵISR, B, (1þ δ) and j1 − ΠðsÞj2 are the upper
limit on the yield extracted from the data scan as shown in
Fig. 6, the ISR signal MC sample based detection effi-
ciency, the branching fraction from Eq. (3), the ISR
correction factor, and the vacuum polarization factor,
respectively.
In order to test the ISR and the vacuum polarization

effects, we check the ratio between the number of observed
signalNS

obs and the number of simulated signal eventsNS
MC.

This can be written as

NS
obs

NS
MC

¼ σV
σB

×
ϵISR

ϵnon−ISR
; ð6Þ

where ϵISRðϵnon−ISRÞ is the detection efficiency obtained by
the ISR (non-ISR) signal MC. Since the cross section with
the ISR and vacuum polarization corrections (σV) is related
to the Born cross section by σV ¼ ð1þ δÞj1 − Πj2 × σB
[46] the ratio, Eq. (6), becomes

NS
obs

NS
MC

¼ ð1þ δÞj1 − Πj2 × ϵISR
ϵnon−ISR

: ð7Þ

As the ISR and vacuum polarization corrections are
common for the signal and the eþe− → μþμ−μþμ−ð4μÞ
background process, one can expect that the ratio, Eq. (6),
is the same for the signal and the 4μ background:
NS

obs
NS

MC
¼ N4μ

obs

N4μ
MC

.

Checking the consistency of the efficiency and ISR
correction factors can be carried out by the 4μ MC
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background and data. From Fig. 2, we observe the ratio
between data and the MC expectation for the 4μ process to

be
NS

obs

N4μ
MC

¼ 0.700. This value is compatible with the product

of the ratio of the detection efficiencies ð ϵISR
ϵnon−ISR

¼ 0.741Þ
and the ISR factor multiplied by the vacuum polariza-
tion ( ð1þ δÞð1 − ΠÞ2 ¼ 0.945).
The 90% C.I. upper limits on Born cross section as a

function of mZ0 are calculated and shown in Fig. 7.

A. Limits on the coupling strength g0

With a Born theoretical cross section σthð
ffiffiffi
s

p Þ, for a given
mZ0 , at

ffiffiffi
s

p
and the coupling g0, the expected number

of signal events for data samples used in this analysis is
given as

Nexp¼g02εBðσϒð4SÞ
th ðmZ0 ÞLϒð4SÞ þσϒð3SÞ

th Lϒð3SÞ þ…Þ: ð8Þ

With Eq. (8), the 90% C.I. upper limit on g0 correspond-
ing to Nexp ¼ Nobs, is calculated and shown in Fig. 8. The
result excludes most of the Z0 parameter space that could be
related to the updated ðg − 2Þμ region from the Muon
(g − 2) experiment [17,20]. Also shown in Fig. 8 are
comparisons with the CHARM-II experiment, the
first measurement of the neutrino trident production [47],
the reinterpretation of the Columbia-Chicago-Fermilab-
Rochester (CCFR) results [23,48], and the first Z0 →
μþμ− search done by BABAR [33].

V. CONCLUSION

In summary, we report a search for a new gauge boson Z0
in the Lμ − Lτ model with the on shell production of
eþe− → Z0μþμ−, followed by Z0 → μþμ−. This is the first
search with the ISR effect directly included in the MC
signal sample, since previous searches did a data-driven
estimation of the ISR effect. Since no significant excess is
observed, the upper limit on the coupling is set and the Z0
parameter space constraint is improved.
This result specifically improves the previous g0 upper

limit between 2 and 8.4 GeV=c2.
The Z0 mass region lighter than the dimuon threshold,

does not have any constraints, but in the future, Belle II
will be able to perform a more stringent test for the
region [49–51].
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