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Abstract. A software system is the result of all design decisions that
were made during development and maintenance. Documentation, such
as software architecture documentation, captures a variety of different
design decisions. Classifying the kinds of design decisions facilitates var-
ious downstream tasks by enabling more targeted analyses. In this pa-
per, we propose a taxonomy for design decisions in software architecture
documentation to primarily support consistency checking. Existing tax-
onomies about design decisions have different purposes and do not fit
well because they are too coarse. We take an iterative approach, starting
with an initial taxonomy based on literature and considerations regard-
ing consistency checking. Then, we mine open-source repositories to ex-
tract 17 software architecture documentations that we use to refine the
taxonomy. We evaluate the resulting taxonomy with regard to purpose,
structure, and application. Additionally, we explore the automatic iden-
tification and classification of design decisions in software architecture
documentation according to the taxonomy. We apply different machine
learning techniques, such as Logistic Regression, Decision Trees, Ran-
dom Forests, and BERT to the 17 software architecture documentations.
The evaluation yields a F1-score of up to 92.1% for identifying design
decisions and a F1-score of up to 55.2% for the classification of the kind
of design decision.

Keywords: Design Decisions · Software Architecture · Documentation
· Decision-Making · Software Design · Mining Software Repositories

1 Introduction

During software development, a lot of design decisions about the system are
made. The architecture as well as the software system itself are the result of
all design decisions. The successful development and maintenance of a software
system, therefore, relies on everyone involved in the development understanding
the design decisions. With documentation, design decisions can be captured and
made easily available to, e.g., help new team members or to recapture past
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decisions. As a result, the success of a software system also relies on the quality
of its documentation (cf. Parnas [22]).

There are different kinds of architectural design decisions (ADDs) in a sys-
tem and in software architecture documentation (SAD). For example, there are
existence decisions about, e.g., components like “The Logic component handles
the business logic.” Other examples include decisions about the development
process like “The system is fully written in Java” or decisions about design rules
like “There should be no dependencies between microservices.”

Taxonomies and ontologies help to structure a body of knowledge, provide
a better understanding of interrelationships, and improve decision-making pro-
cesses [29]. Taxonomies for ADDs, for example, can enable focused discussions
about certain ADDs and can raise awareness of the different kinds of ADDs.
There are already existing taxonomies and ontologies to classify ADDs. For ex-
ample, there are Kruchten’s ontology of design decisions [18], the architectural
design decision model introduced by Jansen and Bosch [12], and the architec-
tural design decision rationale framework by Falessi et al. [7]. Taxonomies always
serve specific purposes and are designed for certain scopes. Existing taxonomies
are rather broad. However, some purposes can benefit from fine-grained classes.

One example for such a purpose are consistency analyses. Various researchers
already pointed out the importance of consistency checking in software archi-
tecture artifacts: Based on two surveys with industrial practitioners, Wohlrab
et al. [30] conclude that there are various kinds of inconsistencies in software
architecture artifacts that need to be addressed. Moreover, Keim et al. [15] as
well as Lytra and Zdun [20] argue in favor of consistency analyses and incon-
sistency management to avoid missing or losing crucial information about the
software system and underlying design decisions. Knowing the kind of ADDs al-
lows analyzing consistency more targeted using different analyses. For example,
analyses that check an ADD that prohibits dependencies between microservices
need to identify dependencies and check for compliance. In contrast, to exam-
ine the existence of some component, other analyses have to investigate existing
components and find said component.

Kruchten’s ontology (cf. [18]) distinguishes three kinds of existence decisions:
structural and behavioral decisions as well as ban or non-existence. For targeted
consistency checking, this level of detail is insufficient. The same problem applies
to alternatives like the model by Jansen and Bosch [12] or the framework by
Falessi et al. [7]. Therefore, there is the need of a more fine-grained taxonomy
to serve the purpose of consistency checking.

In this paper, we present a taxonomy of design decisions in SAD to enable in-
depth analysis of ADDs. This taxonomy is intended for analyzing inconsistency,
but might as well be helpful for other use cases that can make use of more
fine-grained classifications, e.g., traceability link recovery or the generation of
specific test cases. To construct the taxonomy, we create an initial taxonomy that
is based on literature and theoretical considerations for consistency analyses.
We then adapt and refine the taxonomy using SADs that we mined from 17
open-source repositories. The resulting taxonomy is both argumentatively and
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empirically evaluated. For the empirical evaluation, we perform a small user
study. We additionally explore the automatic identification and classification of
ADDs in informal textual SADs according to the proposed taxonomy. For this,
we employ different machine learning techniques such as Logistic Regression
(LR), Decision Trees (DTs), Random Forests (RFs), and the language model
Bidirectional Encoder Representations from Transformers (BERT) [6].

The data to our research is published online [14]. This data contains the doc-
umentation texts and a classification of contained ADDs. Moreover, we provide
the source code of our automated classification and the evaluation results.

The remainder of the paper is structured as follows: We present foundations
and related work in Section 2 before we outline our procedure for creating the
taxonomy in Section 3. The resulting taxonomy is presented in Section 4, and
we evaluate and discuss this taxonomy in Section 5. We explore automated
classification of design decisions in SAD and analyze the results on our dataset
in Section 6. In Section 7, we argue about threats to validity before we finally
conclude this paper in Section 8.

2 Foundations and Related Work

We divide research with particular high relevance to our work into foundations
of taxonomy building and classification schemata/taxonomies for design deci-
sionsand automatic analysis of design decisions.

2.1 Foundations for Taxonomy Building

Ralph [23] recommends the following steps for generating a taxonomy: Choos-
ing a strategy, selecting a site, collect data, analyze data, conceptually evaluate
the taxonomy, writing-up and peer review. He recommends secondary studies,
grounded theory, and interpretive case studies as possible strategies. Data col-
lection and analyses are often conducted iteratively to let preliminary findings
drive further insights.

Bedford [3] introduces the following principles that a taxonomy should ful-
fill: consistency, affinity, differentiation, exclusiveness, ascertainability, currency,
and exhaustiveness. Consistency means that the rules for creating, changing, and
retiring categories should be consistent. Affinity is the principle that states that
each category definition should be based on its parent category and that cate-
gories in a lower hierarchy should have an increased intention. Moreover, when
creating sub-categories, there should be at least two (differentiation). However,
there does not need to be a differentiation on all levels. All categories should
be exclusive so that two or more categories do not overlap, and each category
has a clear scope and clear boundaries. Names should be immediately clear and
understandable (ascertainability) and they should reflect the language of the
domain (currency). Finally, categories should be exhaustive in a way that they
cover the whole domain.
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2.2 Classification Schemata for Design Decisions

There are several approaches to define a classification schema or taxonomy for
design decisions. Kruchten [18] proposes an ontology of architectural design de-
cisions that distinguishes between existence, property, and executive design deci-
sions. Existence design decisions are further divided into structural, behavioral,
and ban decisions. The former two are related to the creation or interaction of
elements, whereas the latter state that a certain element will not appear in the
design or implementation. Kruchten regards positively stated property decisions
as design rules or guidelines, and calls negatively stated decisions constraints.
In general, property decisions state traits or qualities of the system. According
to Kruchten, executive decisions are driven by either the business environment,
affect the development process, the people, or the organization, and extend the
choices of technologies and tools.

In an expert survey, Miesbauer and Weinreich [21] noticed that developers
often face existence decisions, whereas executive decisions are only present in a
quarter of decisions. Property decisions even only constitute 10% of the cases.
Additionally, they identify four levels of design decisions: implementation, archi-
tecture, project, and business

Jansen and Bosch [12] regard software architecture as a composition of design
decisions over time. They propose Archium that explicitly models the relations
between design decisions and software architecture during the whole development
process. The software architecture is then described as a set of design decisions,
deltas, and design fragments.

Falessi et al. [7] present a framework that associates design decisions with
their goals and available alternatives. The goal is to improve the maintenance of
systems by improving the comprehensibility of design decisions.

Based on Kruchten’s ontology and Falessi et al.’s use cases, Zimmermann
et al. [31] structure the decision-making process according to the three steps:
decision identification, decision making, and decision enforcement. They group
similar design decisions under a shared topic. Then, each topic is assigned to one
of the three levels of abstraction: conceptual, technology, and asset level.

In a survey on architectural design decision models and tools, Shahin et
al. [26] identified decisions, constraints, solutions, and rationales as key elements
of all nine considered models. The models mostly differ in the used terminology.

As our goal is to enable and improve tasks like consistency checking for
software architecture documentation, existing work does not fit to our purposes.
The approaches are often too coarse, or the abstraction level does not fit. In
this work, we will explain why this is the case and present a more fine-grained
taxonomy that solves this issue.

2.3 Automatic Analysis of Design Decisions

Approaches that automatically identify or analyze design decisions have the
benefit that they reduce or even omit the costly manual effort needed to recover
design decisions using a domain expert.
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Bhat et al. [4] extract design decisions from issue trackers, using a machine
learning-based approach. Based on the classification schema of Kruchten [18],
they train a classifier on 1500 issues that is able to detect existence decisions
and their subclasses, structural, behavioral, and ban decisions. By using Support
Vector Machines (SVMs), they are able to detect existence decisions with an
accuracy of 91.29% and classify them into the subclasses with 82.79% accuracy.

Li et al. [19] also use machine learning to extract design decisions, but focus
on mailing lists. Their SVM-based classifier is able to detect whether a sen-
tence in an e-mail contains a design decision with a F1-score of 75.9%. By using
an ensemble learning method and feature selection, Fu et al. [8] are able to
improve the results achieved in a multi-class classification of decisions into the
five classes design, requirement, management, construction, and testing decision.
The ensemble of Näıve Bayes (NB), LR, and SVM with 50% features selected
achieves the best result with a weighted F1-score of 72.7%.

3 Research Design

Table 1. The 17 case studies used for developing and evaluating the taxonomy. #Lines
shows the number of lines in each documentation file (without empty lines) . Links to
the projects and the used documents can be found in our supplementary material [14].

Project Domain #Lines Project Domain #Lines

CoronaWarnApp Healthcare 369 SCons Software Dev. 79
Teammates Teaching 252 OnionRouting Networking 51
Beets Media 125 Spacewalk Operating System 38
ROD Data Mgmt. 119 Calipso Web Dev. 30
ZenGarden Media 109 MunkeyIssues Software Dev. 23
MyTardis Data Mgmt. 100 BIBINT Science 22
SpringXD Data Mgmt. 95 OpenRefine Data Mgmt. 21
QMiner Data Analysis 92 tagm8vault Media 16
IOSched Event Mgmt. 81

Our process of creating the taxonomy is oriented towards the guidelines by
Ralph [23]. We perform an iterative classification with 17 documentations from
open-source projects. We use the insights after applying our taxonomy to identify
shortcomings and adapt the taxonomy. This way, we try to also ensure Bedford’s
principles (cf. [3]).

We first develop an initial taxonomy that is based on literature, majorly
on Kruchten’s ontology [18]. We adopt the major classes (Existence, Property,
and Executive decisions) and add additional insights from related work, e.g., by
Jansen and Bosch [12], Bhat et al. [4], and Miesbauer and Weinreich [21]. For
example, existence decisions are the most common kind of decisions [21] and,
therefore, should be subdivided. Considering the rules for manual classification
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by Bhat et al. [4], there are two kinds of structural decisions: decisions about
the structure within the system and decisions about third-party systems and
external dependencies like libraries and plug-ins. We also consult literature and
specifications about software architecture and software design (e.g., [5, 9, 24, 27,
28]). Lastly, we make adaptations based on own considerations about needs for
stated application areas. For example, we disagree with Kruchten for having bans
only as a subclass of existence decisions as bans can appear in other categories
such as executive decisions as well. As a result, we view bans as negatively
formulated decisions and, as such, as a property of each kind of decision.

Next, we iteratively apply the taxonomy on a number of SADs and adapt the
taxonomy based on shortcomings and problems during classification. After each
iteration, we adapt the taxonomy. We first perform a pre-study (first iteration)
with one case study and then use three case studies per iteration. This allows
us to identify necessary adaptations early while minimizing the risk of overfit-
ting. We end the whole iterative process when the taxonomy is stable, i.e., the
taxonomy does not need to be updated in two consecutive iterations (six SADs).

For this process, we need a number of SADs. Therefore, we mine English
SADs from open-source projects. We identify these by querying GitHub for “ar-
chitecture” and randomly selecting 50 projects. We then manually filter those
based on the following criteria: We select English documentation with acceptable
text quality, different SAD size, and various domains. Overall, we use 17 case
studies with different sizes and domains that are listed in Table 1 and that can
be found in our dataset [14].

Finally, we evaluate the taxonomy both argumentatively and empirically and
experiment with automatic classification based on the taxonomy.

4 Taxonomy of Design Decisions

Using the process described in Section 3, we gained valuable insights into de-
sign decisions in SADs. These insights play a crucial role in the final design of
the taxonomy and, as such, also serve as reasoning for some classes. Generally,
existing structures were often too general and broad, thus needed further dis-
tinction. For example, we further subdivide structural decisions, decisions about
functionality, and technological executive design decisions.

After following the process described in Section 3, the final taxonomy is com-
posed of the following classes that are also displayed in Figure 1 and Figure 2.
The root of the taxonomy captures the existence of a design decision. Design
decisions are then split into three main categories: existence decisions, prop-
erty decisions, and executive decisions. These three categories originate from
Kruchten’s ontology [18], and we agree on his categorization. However, there is
a major difference in how we see decisions about Bans, as we already stated in
Section 3. While Kruchten sees bans as a subclass of existence decisions, we see
a ban as a negatively formulated design decision and a ban can exist in other
sub-categories such as executive decisions as well. For example, there can be a
design decision that states that a certain component (e.g., cache) should not
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exist but also that a certain tool or process should not be employed (e.g., for
legal reasons). As a consequence, there is no category that indicates bans in
our taxonomy. We regard it as an attribute of a design decision that indicates
inclusion or exclusion of something. The same applies to delayed decisions, i.e.,
decisions that are made but postponed to a later point in time.

existence decision
L

design decision

structural decision
L

extra-systemic intra-systemic

data file

integration

interface

component

class-related

classassociation inheritance

behavioral decision
L

relation

function

algorithm

messaging

arrangement decision

architectural style

architectural pattern

reference architecture

Fig. 1. Sub-categories of existence decisions with leaves highlighted in green and inter-
mediate categories in orange. Categories derived from literature are labeled with L .

The taxonomy subdivides existence decisions into structural decisions, ar-
rangement decisions, and behavioral decisions. These three sub-categories are
again further refined, as it is visible in Figure 1. An important distinction that
we make is between intra- and extra-systemic structural decisions. Coming from
our insights, we define systemic as parts of the executable system that are devel-
oped for this particular system. Therefore, extra-systemic means everything that
comes from external sources in regard to this system like libraries or external
plug-ins. This definition helps us to draw a sharp line between external parts
and parts that are developed especially as part of the system, which is especially
useful for consistency analyses. External parts are often modelled in a fashion
that uses, e.g., external calls. This clearly needs different checks than internal
parts that are explicitly modelled.

Aside from existence decisions, there are property decisions and executive
decisions. Figure 2 shows the sub-categorization of property decisions and exec-
utive decisions. In Table 2 and Table 3, we define the different categories and
sub-categories and describe them in more detail.
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Table 2. Existence decision and its sub-categories

existence decision : State whether some software element or artifact will be present in
the system’s design or implementation [18].

structural decision : Break down a system
in reusable subsystems and components.

extra-systemic : Decisions that make use
of software elements beyond the system’s
borders to add them to the system under
development or to feed in data.

data file : Non-executable files that pro-
vide information that can be transferred
and shared between (sub-) systems.

integration : In this category fall exter-
nally developed software elements like li-
braries and plug-ins, but also reused com-
ponents from other projects/systems that
are not specifically developed for the cur-
rent system under development.

intra-systemic : Decisions affecting the di-
vision of a system in subsystems and
smaller units developed for this particu-
lar system.

interface : Provide “a declaration of a set
of public features and obligations that to-
gether constitute a coherent service” [5].
Interfaces within a software system serve
to bundle functionality together.

component : A unit of composition with
contractually specified interfaces and ex-
plicit context dependencies [28]. We addi-
tionally recognize packages as such compo-
sitions . This category comprises decisions
about components that are developed for
the system under development, not im-
ported components (cf. integration).

class-related : Deal with the development
of software systems along classes of ob-
jects. Even if class-related decisions may
not be architectural in general, many ar-
chitecture documentations contain them,
so we include them in our taxonomy.

class : A set of objects with consistent
properties and functionality [5]. One can
make decisions about its existence, struc-
ture and naming.

association : A set of links that are tuple[s]
of values that refer to typed objects [5].

inheritance : Through inheritance, a child
class adopts properties of its parent class.
Design decisions in this category include
the existence and design of inheritance hi-
erarchies and the determination of (ab-
stract) parent and child classes.

behavioral decision : Relate to how soft-
ware elements are connected and how they
interact to provide functionality [18].

relation : Decisions about connectors and
dependencies between software elements
that can be established, modified or ex-
cluded. This determines the accessibility
of the functionality of the elements.

function : Decisions about specific func-
tionality of a software system. These func-
tions are usually implemented as methods.

algorithm : Refer to a named sequence of
operations to realize certain functional-
ity for a specific problem. The procedures
must be sufficiently general and state the
general goal. Otherwise, it should be cate-
gorized as function or messaging.

messaging : Decisions about functionality
concerning communication between soft-
ware elements through method calls, send-
ing messages, and data packages (cf. [11]).
With messaging, the sender usually in-
vokes some behavior at the receiver.

arrangement decision : Decisions for an
arrangement of software elements in a
known manner and under consideration of
related principles. Decisions in this cate-
gory will affect both structure and behav-
ior of the system.

architectural style : Provide solution prin-
ciples for architectural problems that are
independent of the given application and
should be used throughout the whole ar-
chitecture [25]. Examples are Layered Ar-
chitecture or Client-Server Architecture.

architectural pattern : A proven, reusable
solution to a recurring problem. The scope
is broader (concerning components) com-
pared to design patterns (concerning code
base parts) [24]. In relation to archi-
tectural styles, architectural patterns are
more specific to a certain problem. Exam-
ples for architectural patterns are Model-
View-Controller and Domain Model.

reference architecture : Defines a set of ar-
chitectural design decisions for a specific
application domain [24]. The AUTOSAR
architecture for the automotive domain
can be seen as an example.
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property decision
L

executive decision
L

guideline
L

design rule
L

technological
L

organizational/process-related
L

boundary
interface

platformdata basetool programming
language

framework

APIuser interface

design decision

Fig. 2. Sub-categories of property decisions and executive decisions with leaves high-
lighted in green and intermediate categories in orange. Categories derived from litera-
ture are labeled with L .

5 Evaluation

In this chapter, we evaluate our taxonomy with respect to its suitability and
different properties that we derive from the principles by Bedford [3] and the
guidelines by Ralph [23] (cf. Section 2). We argue about the suitability for the
intended purpose in Section 5.1. In Section 5.2, we consider the structure of the
taxonomy and argue about the consistency, currency, affinity, differentiation, and
exhaustiveness. Moreover, we look into the usability, application, and handling
of the taxonomy, especially the exclusiveness and ascertainability in Section 5.3.

5.1 Evaluating the Purpose

The main purpose of the ontology is enabling consistency checking using doc-
umentation on one side and, e.g., formal architectural models or code on the
other side. Consistency analyses need to treat certain kinds of design decisions
differently. To enable that, the taxonomy needs clear differentiation and non-
overlapping classes (exclusiveness, cf. Sections 5.2 and 5.3). Moreover, the classes
need to capture concepts and kinds of design decisions that need different treat-
ment. This is obvious for classes belonging to different upper categories. For
instance, structural decisions can be checked for consistency using a structural
view on the architecture, while executive decisions cannot be checked this way.
This also holds true for classes that fall under a certain sub-category. For exam-
ple, components need to be treated differently from interfaces or associations,
as all these have different attributes and involved elements. Treating named al-
gorithms needs external knowledge to capture all involved parts. For messaging,
there are different software elements involved and, therefore, the consistency
check explicitly needs to check for these. We argue that similar argumentation
can be done for all classes and categories. Overall, we conclude that the purpose
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Table 3. Property decision and executive decision and their sub-categories

property decision : State an enduring, overarching trait of quality of a system [18].

design rule : A rule, positively or nega-
tively stated, expresses some trait or qual-
ity the system design must strictly fulfill.
This is a combination of Kruchten’s classes
design rules and constraint [18]. This does
not include observable quality attributes
such as performance or reliability.

guideline : Recommended practices that
improve the system’s quality. They are less
strict than design rules and usually not en-
forced.

executive decision : Relate to environmental aspects of the development process [18].

technological : State the choice for or
against numerous technologies that enable
and support software development.

tool : Developer tools can utilize and au-
tomate the development process.

data base : Decisions referring to storing
data in data bases as well as decisions on
query languages (e.g., SQL) and data base
technologies (e.g., MongoDB).

platform : Decisions that refer to an en-
vironment of software and hardware com-
ponents that allow development, deploy-
ment, and execution.

programming language : An agreed pro-
gramming language for a system or com-
ponents leads to syntactical and semantic
rules for writing code.

framework : Abstractions that allow the
development of extensive applications. A
framework can either be an architecture
framework (cf. [1]) or a software frame-
work like a web framework (e.g., Django).

boundary interface : Interfaces that are lo-
cated on the system’s boundary and en-
able the connection from and to other sys-
tems and technologies.

API : Application programming interfaces
provide external functions that can be
used in another software system. If a de-
sign decision is not about the functionality
of communications but about used proto-
cols like HTTP and TCP, we also classify
it into this class.

user interface : Located between the (hu-
man) user and the technical system, and
allows the user to enter commands. There
are different kinds of user interfaces like
graphical user interfaces (GUIs) or com-
mand line interfaces (CLIs).

organizational/process-related : Sum up
all decisions concerned with the develop-
ment process, the methodological proce-
dure, and the project organization.

for this taxonomy is clear and that the taxonomy fits to this purpose. However,
we still need to collect further evidence by creating applications that use the
taxonomy in future work.

5.2 Evaluating the Structure

The proposed taxonomy is based on related work and refines the ontology pro-
posed by Kruchten [18]. As Kruchten’s proposal is widely used in the commu-
nity, especially as a foundation for approaches that automatically classify de-
sign decisions, our taxonomy can be regarded as consistent with existing work.
Our taxonomy only breaks with the structure of Kruchten’s ontology at one
instance: We regard inclusive/exclusive wording as an attribute of each design



A Taxonomy for Design Decisions in Software Architecture Documentation 11

decision instead of explicitly modelling ban decisions as a sub-category of ex-
istence decisions. With this decision, our taxonomy allows modelling excluding
statements on different occasions and at a more fine-grained level. For example,
we can model excluding executive decisions. Such excluding executive decisions
occurred in our case studies and, therefore, we argue that our taxonomy is more
exhaustive. Besides Kruchten’s proposed classes, we also regarded Bhat et al.’s
rules [4] for manual identification of design decisions while refining the taxonomy.

We reflect the language of the domain by using well-known and widely ac-
cepted names and terms within the software architecture domain (currency).
We further ensure that there is an affinity of each subclass to its superclasses
by iteratively adding new subclasses to existing classes in a top-down fashion.
The proposed taxonomy also fulfills the differentiation principle, as each further
refined class has at least two subclasses. Concerning the taxonomy’s exhaustive-
ness, we cannot eliminate the possibility that other case studies may include
decisions that would require different subclasses. However, as our superclasses
stem from Kruchten’s ontology and these classes were sufficient to classify each
occurring design decision in various related work (cf. [4,21]), our taxonomy is at
least as exhaustive as related work.

Additionally, our iterative approach follows the methodology of the National
Information Standards Organization [2] and produced no further subclasses even
for heterogeneous documentations (length and domain).

5.3 Evaluating the Application

We base our evaluation for the applicability and reliability on the guidelines by
Kaplan et al. [13]. We let two software engineers (doctoral researchers) indepen-
dently classify the design decisions in the case studies Calipso, Spacewalk, and
SpringXD with only the information on the taxonomy provided in Section 4 at
hand. We calculate Krippendorff’s α (Kα) [17] to measure the inter-annotator
agreement. The annotators achieved an overall Kα of 0.771 across the three stud-
ies. If the results are calculated per project, we achieve an average Kα of 0.841.
The discrepancy stems from the documentation of SpringXD seemingly being
more difficult. The documentation of SpringXD is far longer than the other two
and contains several parts that were no actual architecture documentation. Thus,
we state that the difficulty and uniformity of different users applying the taxon-
omy depends on the quality of the documentation. Still, the Kα values indicate a
reasonable agreement that clearly exceed the lower bound of 0.66 and come close
or exceed the commonly accepted threshold of 0.8 (cf. Krippendorff [16]). These
results are promising regarding that the taxonomy comprises 24 leaf classes. As
the annotators were also able to identify a fitting class for each decision, we are
confident to state that the taxonomy can be applied in cases where a refined
classification of design decisions is beneficial.
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Table 4. Distribution of design decisions in our dataset [14]

Taxonomy class Primary Secondary Total

ex
is

te
n
ce

st
ru

ct
u
ra

l ex
tr

a integration 38 7 45
data file 17 6 23

in
tr

a

component 132 23 155
interface 19 0 19

cl
a
ss

-r
. class 77 26 103

association 65 12 77
inheritance 19 3 22

a
rr

a
n
g
. architectural style 26 14 40

architectural pattern 21 3 24
reference architecture 4 2 6

b
eh

av
io

ra
l function 271 43 314

relation 56 14 70
algorithm 48 6 54
messaging 37 11 48

property
design rule 73 0 73

guideline 8 2 10

ex
ec

u
ti

v
e

organizational/process-related 9 1 10

te
ch

n
o
lo

g
ic

a
l

platform 72 15 87
programming language 39 19 58

framework 32 13 45
data base 40 14 54

tool 5 2 7

boundary i.
API 51 12 63

user interface 31 10 41

identified design decisions (in 1622 lines) 1190 258 1448
lines without a design decision 432

Table 5. Classification results of classifying if a line contains a design decision (binary),
the kind of the most prevalent design decision (multi-class, weighted average) and
the kinds of a design decision (multi-label, weighted average). Weighted average can
produce F1-scores not in between precision (P) and recall (R).

LRtrigram DTBoW RFbigram BERT

P R F1 P R F1 P R F1 P R F1

binary 0.877 0.894 0.885 0.850 0.852 0.851 0.831 0.970 0.895 0.901 0.942 0.921
multi-class 0.452 0.451 0.427 0.314 0.322 0.304 0.346 0.353 0.269 0.575 0.559 0.552
multi-label 0.578 0.326 0.396 0.453 0.394 0.406 0.482 0.090 0.145 0.679 0.427 0.500
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6 Exploratory Automated Application

To be able to efficiently utilize design decisions in SAD in other approaches they
have to be automatically identified and classified. The ability to automatically
identify the design decisions and their subclasses also heavily affects the taxon-
omy’s applicability. To measure this, we employed different established super-
vised machine learning-based approaches to classify sentences in SADs according
to our taxonomy. To train the classifiers, we use the dataset that resulted from
our taxonomy building process. The dataset consists of the 1622 lines of the 17
case studies (cf. Table 1). Table 4 gives an overview on the distribution of classes
in the dataset. We labeled only the most prevalent primary and also the most
obvious secondary decision per line.

To train the classifiers, we experimented with the preprocessing steps stop
word removal, lemmatization, transformation to lowercase, and their combina-
tions. For preprocessing, only lemmatization and lowercasing shows positive ef-
fects on the results. Likewise, we experimented with bag-of-words (BoW), term
frequency-inverse document frequency (tf-idf), and bi- or trigrams as vector rep-
resentations for the preprocessed lines. Based on the vector representations, we
use Logistic Regression (LR), Decision Trees (DTs), and Random Forests (RFs)
as ML techniques. This aligns with approaches in literature (e.g., [4, 19]). For
the sake of brevity we only report the best combinations here. Additionally, we
use BERT [6] as a language model-based approach. For BERT, we use the same
setup that performed well for our approach for classifying requirements. For de-
tails, see Hey et al. [10]. We fine-tune a classifier based on the bert-base-uncased
model with 16 epochs, a batch size of 8, and use lowercasing.

To train and test the models on the dataset, we perform a random 5-fold
cross validation with three repetitions. For multi-class and multi-label classifi-
cation we report the weighted F1-score as it takes the imbalanced dataset into
account. Table 5 shows the results for three different classification tasks. For
binary classification into design or no design decision, the best performing con-
figuration is the BERT-based classifier achieving 92.1% F1-score. As the input
differs from existing work, we cannot directly compare the results. However, our
results are similar to the results by Bhat et al. [4] for identifying design decisions
in issue trackers. Our results are also better than the results by Li et al. [19] for
identifying design decisions in mailing lists.

Based on these promising results, we apply the multi-class classification to
lines containing a design decision. Here, BERT outperforms the best other ap-
proaches by over 12.5 percentage points. Given the number of classes and the
limited dataset, the result of 55.2% weighted F1-score is promising. As the ab-
straction levels of the leaves deviate, the performance of a single multi-class clas-
sifier might be limited. In the future, we plan to apply hierarchical approaches.

To be able to identify multiple decisions in one line, a multi-label classification
is needed. For BERT, we use a multi-label implementation. For the other ap-
proaches, we train One-vs-Rest classifiers for each label. Performance decreases
slightly in this more difficult setting, but results are still close to our best re-
sults for non-multi-label classification. Again, BERT outperforms the other ap-
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proaches with a weighted F1-score of 50%. In this setting, the decision tree
classifier performs far better and even outperforms the logistic regression.

7 Threats to Validity

To discuss threats to validity, we follow the guidelines by Runeson and Höst [25].
Construct Validity — We applied commonly used experimental designs and

common metrics for classification tasks. However, there might be a certain bias
in the selection of the use cases. We ensured construct validity by using projects
from different domains and with different characteristics like size or architecture
styles and patterns.

Internal Validity — We used the same case studies for the taxonomy creation
and automated classification. This way, we create a fitting classification schema
but assume representative documentations. Additionally, we only labeled the
most prevalent direct decisions and the most obvious implicit decisions. In rare
cases, there are more decisions and, thus, there is potential bias in the selection.

External Validity — In our evaluation, we examined 17 publicly available
case studies from different domains. We aimed for a representative selection, but
we risk that not all facets and aspects of design decisions are covered. All classes
are represented, but some classes only have small representation (cf. Table 4).
This is caused by the nature of some kind of design decisions to be mentioned
only once per documentation (e.g., reference architecture) compared to those
occurring more often (e.g., decisions about components).

Reliability — For our experiments on automated classification, we manually
created a gold standard. We tried to minimize bias from single researchers by
discussing the taxonomy in detail and how to decide on the most prevalent design
decision. Moreover, we discussed certain classifications.

8 Conclusion

SAD captures design decisions about the architecture and executive decisions
and makes these decisions easily available. In SADs, there are different kinds
of design decisions that cover aspects about the structure, execution, or certain
properties and guidelines of the system.

In this paper, we argued in favor of a taxonomy about design decisions in
SADs with the main purpose to enable and improve consistency analyses. For
this, we propose a taxonomy that is based on literature and an iterative process of
applying and improving the taxonomy on 17 open-source SADs. This taxonomy
consists of 24 leaf-classes, where the new fine-grained classes are designed to
support consistency analyses.

We evaluated the taxonomy by arguing for its validity and fitness for its
purpose. We argue why our taxonomy and its construction follow the principles
by Bedford [3] and the guidelines by Ralph [23]. Moreover, we performed an
empirical study with two subjects classifying design decisions achieving a good
inter-annotator agreement (Kα = 0.771).
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Lastly, we explored different widely used approaches to automatically identify
and classify design decisions in SADs. The results are promising and show that
we can identify design decisions with a F1-score of up to 92.1%. We can also
classify into the leaf-classes of our taxonomy with a F1-score of up to 55.2%. We
publish our data and source code online [14].

In the future, we want to obtain feedback from open source architects about
the taxonomy and classification. We also plan to further explore the usage of this
taxonomy with applications that use classification for inconsistency detection.
This way, we can also collect more evidence about the applicability, usability,
and suitability. Moreover, we want to identify and fine-tune further approaches
for the automatic classification to get reliable results.
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