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1 | INTRODUCTION

It is a long-standing open question, going back to a remark of Gromov in his seminal monograph
[35, Remark 5.3.B], whether every hyperbolic group is residually finite. This question is equivalent
to determining whether every non-trivial hyperbolic group has a non-trivial finite quotient (see
[41, Theorem 1.2] or [57, Theorem 2]). Using Olshanskii’s Common Quotient Theorem, those two
questions can further be shown equivalent to the following, which illustrates that the problem of
residual finiteness of hyperbolic groups is related to the asymptotic properties of the finite simple
groups (see [16, § 5.3] for an expository account):

Question 1.1. Let .#; be the collection of those finite simple groups that contain an isomor-
phic copy of the alternating group Alt(d). Does every non-elementary hyperbolic group admit a
quotient in . for all d?

A group that admits a finite quotient belonging to .#, for all d is said to have finite simple
quotients of arbitrarily large rank.

Kazhdan’s property (T) is relevant when trying to answer these questions negatively, that is,
finding a hyperbolic group that is not residually finite or does not admit finite simple quotients of
arbitrarily large rank. Indeed, the groundbreaking work of Agol, Haglund and Wise implies that
all compactly cubulated hyperbolic groups are residually finite, see [2] and references therein.
On the other hand, property (T) is incompatible with cocompact cubulations for an infinite
group’, see [54]. Moreover, the finite-dimensional unitary representations of Kazhdan groups
are subjected to various rigidity theorems, see [73] and [64]. It is thus tempting to believe that
a hyperbolic group with Kazhdan’s property (T) should have fewer finite simple quotients than
other hyperbolic groups.

This circle of ideas caused us to systematically investigate finite quotients and property (T) for
certain small hyperbolic groups. The condition ‘small’ here means ‘having a short presentation’
and is imposed for practical reasons: Many of our investigations involved computer-aided exper-
iments and calculations, and groups with short presentations are generally easier to work with.
On a related note, using MAGMA, we can check the existence of finite simple quotients only up
to a certain order (5 - 107) and we expect that for a small group the quotients in this region may
give a meaningful impression of general finite simple quotients while for a larger group they will
likely be noise.

For theoretic considerations, the structure of a group presentation is of course more relevant
than its length. For that reason, we have focused our study on the class of k-fold generalized
triangle groups, all of which have a presentation whose structure is fairly transparent. Follow-
ing Lubotzky-Manning-Wilton [50], we define such a group as the fundamental group of a
triangle of finite groups with trivial face group, cyclic edge groups of order k, and finite vertex

 Another known obstruction to the existence of a cocompact cubulation is provided by the work of Delzant-Gromov [25]
and Delzant-Py [26] on Kdhler groups; in particular, cocompact lattices in SU(n, 1), with n > 2, are hyperbolic groups that
are neither Kazhdan, nor virtually special.
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groups’. A 2-fold generalized triangle group is a Coxeter group, and no infinite Coxeter group has
(T) (see [13]). The aforementioned work [50] provides infinitely many examples of hyperbolic k-
fold generalized triangle groups with (T), for k > 18. In this paper, we obtain examples with k = 5,
as well as infinite families of examples with k any prime > 7.

For k = 5, our examples include the following, where the commutator of two elements x, y
is defined by [x,y] = x~'y~!xy, while the symbol [x,,...,x,] denotes the nth commutator

[[[x19 x2], ]’ xn]'
Theorem 1.2. Each of the groups

65, =(a,b,c | a’,b>, ¢ [a,cl,[b,c,bl,[b,c,c, bl,[b,c,c,cl,
aba®*ba*babtab™!,
b%aba'ba"'bab?a,

(bab~laba™1)?),

M09 ={a,b,c|a’,b% c, [a,cl[b,c,bl,[b,c,cl,
abab 'a 'baba ‘b ta'babla"lb7l,
babab*a'ba*b~?a ha"'b1a?,
ba 'bab lab’a"'bab laba b la?,
bab taba 'ba?b'a"'ba'blabla?,
ba 'ba b 2ab a7 'bla " ba?b2a?,
aba?b~a b la b 2abta"%b%ab7!,
a_zb_la_zbab_lab_lazb_laba_zbz),

is an infinite hyperbolic 5-fold generalized triangle group satisfying Kazhdan’s property (T).

It is easy to see from the presentation that each group from Theorem 1.2 is indeed a 5-fold gen-
eralized triangle group. For 7, the vertex groups (a, b) and (c, a) are, respectively, isomorphic
to PSL,(p) and C5 X C5 where p is the subscript, while the vertex group (b, c) is isomorphic to a
5-Sylow subgroup of Sp,(5) in the first case and to a 5-Sylow subgroup of SL;(5) in the second case.
The girths of the associated links are 10, 8 and 4 for the first group and are 14, 6 and 4 for the second
group, so that the natural metric space on which the groups act geometrically isa CAT(—1) triangle
complex whose simplices are hyperbolic triangles of type with angles 7 /5, 7 /4, /2 respectively
/7,7 /3, /2. For these groups, the assistance of computer calculations was required to provide a
certified estimate of the spectral gap of the link associated to {a, b). The presentations of the groups
263, and €9 have 10 and 13 relations, respectively. They can be simplified to presentations on
the same numbers of generators and relators of total relator lengths 88 and 160, respectively.

T They should not be confused with the generalized triangle groups occurring, for example, in [37], where the terminology
has a completely different meaning.
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Let now p be an odd prime. We next consider p-fold generalized triangles groups, each
of whose vertex groups are isomorphic to the p-Sylow subgroups in any of the finite groups
SL,(F,,) X SL,(F,), SL3(Fp) or Sp,(F,). Adopting a terminology suggested by Ershov-Jaikin-
Zapirain [30], we call them Kac—Moody-Steinberg groups, or KMS groups for short. We consider 10
infinite families of such groups, each indexed by the prime p. Three of those families appear in
the following.

Theorem 1.3. For each odd prime p, the groups
4, c0(p) =(a,b,c|al,bP,cP,[a,b,al,[a,b,b],
2

[b,c,b],[b,c,cl,[a,c,al,[a,c,c,al,[a,c,c,cl),

4,,0(P) = (a,b,c| af,b?,cP, [a,b,al,[a,b,b],
2

[c,b,c],[c,b,b,cl,[c,b,b,b],[c,a,cl,[c,a,a,c],[c,a,a,al),

and
7 o) = (t.a,b|,aP,tat b, [a,b,al.[a,b,b,al.[a,b,b,b]),
2

are infinite hyperbolic. Moreover, for all primes p > 7 (vespectively, p > 11), the groups %H C(l)(p) and
2

%HBgz) (p) (respectively, SZHB @ (p)) have Kazhdan’s property (T).

The choice of notation will be justified in Section 7. The group %ch)
2

three generators in which, after simplifications, the total length of the relators is 87. The generator

b of the group . C?)( p) is redundant. In fact, the group . ng)(ll) has a presentation on two

(7) has a presentation on

generators and five relators which, after simplifications, has a total relator length of 72. This yields
a significant improvement on the main result of [15], which provides an example of a presentation
of an infinite hyperbolic Kazhdan group which, after simplifications, has four generators and
sixteen relators, for a total relator length of 555.

In both Theorems 1.2 and 1.3, Property (T) is established using a criterion due to Ershov-
Jaikin-Zapirain recalled as Theorem 2.6. That criterion is expressed in terms of the so-called
representation angle formed by pairs of subgroups among the generating triple {a), (b), (c). In
the case of KMS groups, the exact value of the representation angles can be computed by hand, so
that the proof of Theorem 1.3 is silicon-free. We refer to Section 7 for the details, including other
series of infinite hyperbolic Kazhdan groups.

The following result reveals another remarkable feature of the KMS groups.

Theorem 1.4. For each odd prime p, the group %HB@)( p) has finite simple quotients of arbitrarily
2

large rank.

The proof is inspired by the seminal work of Kassabov [42, §4.1], and uses also important
results of Shangzhi Li [49] on the subgroup structure of the special linear groups. Combining
Theorems 1.3 and 1.4, we obtain the following direct consequence.
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Corollary 1.5. There exists a hyperbolic Kazhdan group which possesses finite simple quotients of
arbitrarily large rank.

Further progress toward Question 1.1 could be accomplished through a finer analysis of the
finite simple quotients of specific hyperbolic groups. Indeed, it is conceivable that a given hyper-
bolic group possesses quotients in .%,; for all d, but that for d large enough, the only such quotients
are of a restricted type. This leads us to the following:

Question 1.6. Let p be an odd prime and G be a hyperbolic KMS group over F,,. Does G have
quotients isomorphic to Alt(d), for infinitely many values d? Is there a d such that the Lie-type
quotients of G belonging to ., are subjected to type or characteristic restrictions?

A significant portion of the paper is devoted to a systematic experimental study of the small-
est non-positively curved 3-fold generalized triangle groups. In particular, we provide evidence
that such a 3-fold generalized triangle group cannot have property (T). Our experiments and
their outcome are described in Section 5, the appendices and the article’s repository [17]. Those
investigations involved an extensive use of the MAGMA algebra system [11]. They led us to pro-
pose a reformulation of the question whether all hyperbolic groups are residually finite, see
Question 5.17.

The article is organized as follows. In Section 2, we recall a criterion by Ershov-Jaikin-Zapirain
for a group to have property (T) in terms of the representation angle of certain subgroups. We
relate the representation angle to the spectral gap of the associated coset graph, following ideas
of Dymara-Januszkiewicz and Oppenheim. We also compute the representation angle of vari-
ous finite groups that will later appear as vertex stabilizers within generalized triangle groups.
Generalized triangle groups are introduced in Section 3. The following two sections are concerned
with 3-fold generalized triangle groups: in Section 4, we collect information on small 3-regular
graphs with edge-transitive automorphism groups, which in the sequel will play the roles of links
and stabilizers of vertices, respectively. In Section 5, we perform a systematic study of all possi-
ble 3-fold generalized triangle groups that can be built out of these graphs. The list of groups is
presented in Appendix A while many of their properties are listed in Appendix B. In Section 6,
we provide examples of 5-fold generalized triangle groups with property (T), proving in particu-
lar Theorem 1.2. Finally, Section 7 is devoted to Kac-Moody-Steinberg groups and contains the
proofs of Theorem 1.3 and 1.4.

2 | THE ERSHOV-JAIKIN-ZAPIRAIN CRITERION FOR

PROPERTY (T)

To establish property (T), we shall rely on a criterion due to Ershov-Jaikin-Zapirain [30] (see also
[43]). In order to recall its statement, we first need additional terminology.

2.1 | The representation angle between two subgroups

Given a group X generated by two subgroups A, B < X, and a unitary representation (V, ) of X
without non-zero X-invariant vectors, we define
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|(u, v)|
lluloll

sX(A,B;n')zsup{ |uGVA\{O},veVB\{O}}.

That quantity should be interpreted as the cosine of the angle between the fixed spaces V4 and
VB If V4 = {0} or VB = {0}, we put £x(A, B;7) = 0. If 7 is an arbitrary unitary representation,
we define ey (A, B; ) as ex(A, B; ), where 7, < 7 is the sub-representation of 7 defined on

the orthogonal complement of the subspace of X-invariant vectors. The supremum of ex (A, B; 7r)
taken over all unitary representations (V, 7r) of X with VX = {0}, is denoted by

ex(A, B).

In case the group X is finite, the quantity ey (A, B) coincides with the supremum of ex (A, B; )
taken over all irreducible non-trivial unitary representations (V, 7r) of X. A spectral interpretation
of the quantity ex (A, B; 7r) will be presented in Section 2.3.

Let a € [0,77/2] be defined by a = arccos(ex (A, B)). The number « is called the representation
angle associated with the triple (X; A, B).

Example 2.1. Let X ={a,bla™, b" aba™'b~!) be the direct product C,, X C,. Then
ex({a), (b)) = 0.

Example 2.2. Let X = (a,b|a?,b?,(ab)") be the dihedral group of order 2r. Then ex({a), (b)) =
cos(7 /r).

Example 2.3. Let p be a prime and X = (a, b|aP,b?,[a,b,a],[a, b, b]) be the Heisenberg group
over F,. As shown in [30, §4.1], we have ex((a), (b)) = 1/\/5.

Example 2.4. Let p > 2 be a prime and r > 1 be an integer such that r divides p — 1. Let also
w € Nsuch thatw” =1 mod pandw/ #1 mod pfor j =1,...,r — 1. Then

X =(a,bld",b",(ab)?,(ab)®a~tb71)
is the Frobenius group C}, X C, of order pr. The quantity ex({a), (b)) can be computed as follows.

Lemma 2.5. Let{ = e?™/P and o = Z;;(l) ¢’ Let also C(a) denote the set of all conjugates of a in
the cyclotomic field Q(¢). For any two distinct cyclic subgroups A, B < X of order r, we have

ex(A,B) = 7 sup {IB] | B € C(@)}.

Ifr = pT_l, then

\/—pTJ;l ifp=1 mod 4,
ex(4,B) =3 ?

—Vpp_+11 ifp=3 mod 4.

Proof. The group X = C,, X C, is a normal subgroup of C, X C,_; 2 F, X F;. The latter acts
doubly transitively on its unique conjugacy class of subgroups of order r. Thus Aut(X) is doubly
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transitive on the set of cyclic subgroups of X of order r. It follows that ex (A, B) is independent of
the choice of the two distinct subgroups A, B of order r.

Now we set A = (a) and B = abAb~'a~!. The group X has r inequivalent (irreducible) repre-
sentations of degree 1, and pT_l of degree r. Each of the latter is obtained by inducing a degree 1
representation of the cyclic subgroup C,, = (ab) to the whole group. Those representations can
be described as follows.

Let¢ = e2mi/P and ey, .-, ,_, be an orthonormal basis of V := C". Foreachn =0,..,p—1,a
representation p, : X — GL,(C)is determined by setting p,(a)e; = e;,; (with indices taken mod-

ulor),and p,(ab)e; = ¢ nel o ;- The fixed space VA4 is of dimension 1; it is spanned by Z;z(l) e;. Since

B = abAb~'a™!, we have VB = p, (ab)V4, which is spanned by pn(ab)(zg;(l) ej) = Z;;(l) {”“’jej.
We obtain

.
| 28"
j=0
ex(A,Bip,) = ————.
The desired conclusion follows, since C(a) = {E;;(l) ¢ newl In=1,..,p—1}%

In the special case where r = pT_l, we observe that {1, w, w?, ..., ~'}is an index 2 subgroup of
the multiplicative group F;, which consists of the squares. It follows that C(«) consists of exactly
two elements, namely a and § = Z;;é ¢ ! where a is represents a non-square in F,. We also
recall that the quadratic Gauss sum ¢(s; p) is defined as

p—1

gsip) =Y ¢

n=0

Observe that 1+ 2a = ¢g(1;p) and 1+ 23 = g(a; p). Moreover, 1+a+f = Zs;é ¢"=0. A
theorem of Gauss (see [9, Theorem 1.2.4]) ensures that

VP ifp=1 mod4,
g(;p) =1 . .
iy/p ifp=3 mod 4.

Therefore, we obtain |a| = \/;2_1 and |B| = ﬁ;l if p=1 mod 4, and |a| = |B] = p2+ Lif
p =3 mod 4. The required result now follows from the first part of the lemma. 1

The algebraic integer o from Lemma 2.5 is called a Gaussian period. Estimates of the absolute
norm of Gaussian periods have been established in the literature: see [52], [28] and [36].
2.2 | A criterion for property (T)

The relevance of the notion of unitary angle between subgroups comes from the following striking
result, due to Ershov-Jaikin-Zapirain.

Theorem 2.6 [30, Theorem 5.9]. Let G be a locally compact group generated by three open sub-
groups Ay, Ay, A,. For i mod 3, set X; = (A;_; UA;,,) and & = ex, (A;_1, Aj;). Assume that X;
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has relative property (T) in G (for example, X; is compact, or finite) for all i. If
€+ € +& + 2688 <1,
then G has Kazhdan’s property (T).

We refer to [43, Theorem 1.2] for a generalization of that result, concerning the case where G is
generated by more than three subgroups.

Remark 2.7. Let a; € [0,77/2] be defined by «; = arccos(g;). As observed by Kassabov [43], the
condition that €] + €7 + €3 + 2¢y¢, €, < 1 is equivalent to the requirement that

ag+a;+a, > .

Remark 2.8. In the reference [30], the result cited above is stated for an abstract group G; the
same proof provides the version stated above, where G is possibly non-discrete and the subgroups
Ay, Ay, A, are open. In the rest of this paper, we will apply Theorem 2.6 to a discrete group G,
except in Corollary 2.21 (a result which will not be used elsewhere in the paper). In particular, the
proofs of the main theorems stated in the introduction only rely on the application of Theorem 2.6
to discrete groups.

2.3 | Representation angle and the spectrum of coset graphs

Given a group X and two subgroups A, B < X, we define the coset graph of X with respect to {A, B}
as the bipartite graph

I'y(A,B)

with vertex set X /A LI X /B and edge set X/A N B, where the incidence relation is the relation
of inclusion.

In this section, we relate the number ex(A, B) introduced in Section 2.1 with the spectrum of
the coset graph I'y (A, B).

In the special case where A N B = {e}, the coset graph I'y(A,B) is tightly related to the
Cayley graph of X with respect to AU B\ {e}. In order to describe that relation, we recall that
the line graph associated with a graph ¢ = (V, E) is the graph .Z(G) with vertex set E, and where
two vertices are adjacent if they represent edges sharing a vertex. The following observation is
straightforward from the definition.

Lemma 2.9. Let X be a group and A, B < X be subgroups such that X = (AU B) and AN B = {e}.
Then the line graph of the coset graph I'y (A, B) is isomorphic to the Cayley graph of X with respect
to the generating set AU B \ {e}.

The following result is inspired by the work of Oppenheim [59] and from the first step of the
proof of Lemma 4.6 in [29]. The item (ii) appears in the work of Kaufman-Oppenheim, see [44,
Theorem 4.6].



HYPERBOLIC GENERALIZED TRIANGLE GROUPS | 9

Theorem 2.10. Let X be a finite group and A, B < X be proper subgroups such that X = (AU B).
Let also A be the combinatorial Laplacian on the coset graph T'y (A, B).

(i) For every unitary representation m of X, the real number 1 — ex (A, B; 7r) is an eigenvalue of A.
(ii) 1 —ex(A,B) is the smallest positive eigenvalue of A.

Proof. Let V be the vector space of the representation 7, and let V4, V5 and VX be the subspaces
consisting of the A-, B- and X-invariant vectors, respectively. Let also p4, pg and py denote the
orthogonal projections on VA4 VB and VX. One checks that ex(A, B; m) coincides with the operator
norm ||p4ps — Px|l, see [59, Remark 3.8]. Since X is a finite group, the representation 7 is a direct
sum of irreducible subrepresentations. There is thus no loss of generality in assuming that 7 is
irreducible and non-trivial; in particular, we assume henceforth that V is finite-dimensional.

Set P = p,pp — Px- For any non-zero vector x € V, we have

IPxI* = (Px, Px) = (x,P*Px) < ||x|l|IP*Px]|

by the Cauchy-Schwarz inequality. In particular, we have ||Px||?> < u||x||?, where u is the largest
eigenvalue of the positive operator P*P; moreover the equality case is achieved if x is a u-
eigenvector of P*P. Since 7« is a subrepresentation of the left-regular representation 4y of X,
we deduce from [59, Lemma 4.19] that every eigenvalue of P*P is of the form (1 —7)?, where
7 is an eigenvalue of A. We deduce that ||P|| = \/ﬁ =1 — 17 for some eigenvalue 7 of A. This
proves (i).

Applying the same reasoning to the regular representation 1y of X, we deduce that ex (A, B) =
ex(A,B; 1x) < 1 —1,, where 7, is the smallest positive eigenvalue of A. On the other hand, we
know from [59, Lemma 4.19] that if 7 = A4 is the left-regular representation, then the set of eigen-
values of P*P coincides with {(1 —7)? | 7 is an eigenvalue of A}. Thus the largest eigenvalue of
P*Pis equal to (1 —7,)?, so that ex (A, B) = 1 — 1, as required. O

The following alternative argument does not rely on [59, Lemma 4.19], but is inspired instead
by the first step of the proof of Lemma 4.6 in [29].

Alternative proof of Theorem 2.10(ii). Setd, =[A : AnB] and dg = [B : An B]. Consider the
Hermitian space #%(T) of complex-valued functions defined on the vertex set of . The inner prod-
uctis defined by (¢, P)r = Y,ex/a dabOIP(L) + X ex /5 dpp(L)P(V). Let A be the combinatorial
Laplacian on I' = I'y(A, B). Thus, for a complex-valued function f defined on the vertex set of T',
we have A()(©) = f(0) = 7~ Tyen f@) if v € X/A, and AP = f(0) = 7 Tuene) FW)
ifv € X/A, where N(v) denotes the set of neighbors of v in the graph I'. With respect to the inner
product on £%(T") defined above, the Laplacian A is a positive operator. Moreover, its spectrum is
symmetric around 1 (see [59, Proposition 2.14]). In particular the spectrum of A is contained in
the interval [0, 2], and we have § € (0, 1].

Let ff)(l“) be the subspace defined as the orthogonal complement of the space of constant func-
tions on I'. Since I' is connected, the latter is the eigenspace associated with the eigenvalue 0
of A. We also consider the right regular representation of X on #%(X), and its X-invariant sub-
space fg(X ) consisting of the functions with zero sum. We normalize the counting measure on
X so that the full measure of the subgroup A N B is 1. With this normalization, the inner prod-
uct (-, )y on £2(X) is such that for all ¢,3 € #>(X) that are A N B-invariant, we have (¢, )y =
Zyex JANB ¢(y)@, where ¢ and ¢ are viewed as functions on the coset space X /A N B.
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Since every non-trivial irreducible unitary representation of X is contained in the left regular
representation 4 of X, we have ex(A, B) = ex(A, B; 1). Let now f 4, f5 € £?(X) be functions that
are A- and B-invariant, respectively. Then f 4, fz may be viewed as function on X/A and X/B,
respectively. Denoting by F = f 4 LI f5 the function on X /A L1 X /B defined in the natural way, we
see that F is an element of #2(T"). In view of the normalizations of the inner products on #2(X) and
¢*(T') chosen above, we have ||F||2 = || f 4113 + || f5ll%- Borrowing a computation from the proof
of [29, Lemma 4.6], we obtain

(AF,Fyp = Y dA<fA(v>—di > fB(w>>fA<u>

vEX /A A weN(v)

) dB<fB<v)—di > fA<w>)fB<v>

vEX /B B weN()

=IFIZ= Y Y f@fa@— Y Y fa)fp®)

veX /A weN(v) veX /B weN(v)
=IFlIE = Y fr)fa)+ fa)fp(w)
(v,w)eE()
= |IF|I - zRe< D fA<v)fB<w)>
(v,w)eE(T)
= ||fA||§( + ”fB”)Z( —2Re((f 45 [B)x)-
If f 4, fp have norm 1, or more generally if ||F||7. = 2, then we obtain Re((f 4, f5)x) = 1 — <A”l;’f2>r.
r

We now suppose in addition that f 4 and f have zero sum, that is, they belong to f(z)(X ). Then
F belongs to fé(l“). By definition, the smallest eigenvalue of the restriction of A to fg(l“) is 4.

<A”1;’ﬁ:2>r > 6 since A is positive. We infer that Re({(f 4, f5)x) <1 — 9 for all
T

fa,fp of norm 1 belonging to fg(X ). For any two such functions f 4, f5, we write there exists a
complex number 8 of modulus 1 such that (f, fg) = [(f4.fp)|e®®. Therefore, (e7°f ,, f5) is a
positive real number, and since e~ 1o f4 is an A-invariant vector of norm 1 in f(z)(X ), we deduce
from the above that |(f 4, f5)] = (¢7® f 4, fz) < 1 — 8. In particular we have £x(4,B) < 1 — .
To prove the converse inequality, we choose a d-eigenvector F € fg(l“) of A. Up to scaling, we
may assume that ||F||12, = 2. Let f 4 (respectively, f5) be the restriction of F to X /A (respectively,

X /B). We view f 4, f as elements of #2(X). By [59, Proposition 2.16], we have f 4, f € £3(X).

(AF.F)r _
IFIE

1 — 8. Therefore, ex(A,B) > 1 — 4. O

Therefore, we have

From the computation above, we deduce that |[(f4, fg)x| = Re({f4, fr)x)=1—

Theorem 2.10 has several useful consequences. First observe thatif I'is any finite bipartite graph
and X < Aut(X) acts edge-transitively, by preserving the canonical bipartition of I, then I can be
identified with the coset graph I'y (A4, B), where A, B are the stabilizers in X of two adjacent vertices
in I'. Thus Theorem 2.10 provides a way to compute the spectral gap of certain edge-transitive
bipartite graphs using representation theory. For Cayley graphs, this is rather standard, see, for
example, [47] or [24].
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Theorem 2.10 can also be used in the other direction, to compute the representation angle of
some triple (X, A, B) using spectral graph theory. We record the following.

Corollary 2.11. Let X be a finite group and A, B < X be subgroups such that X = (A U B). Assume
that[A : AnB] =[B : AnB] = k. Let n, (respectively, 1,) be the second largest eigenvalue of the
adjacency matrix of the coset graph I'x (A, B) (respectively, the Cayley graph of X with respect to the
generating set AU B\ {e}).

Then ex(A,B) = %

Ifin addition AN B = {1}, then £x (A, B) = 222,

Proof. Since § =1 — % where & denote the smallest positive eigenvalue of the Laplacian on
I'x(A, B), we deduce directly from Theorem 2.10 thatex (A, B) = % We now assume that AN B =
{1}. It then follows from Lemma 2.9 that the Cayley graph of X with respect to the generating set
A U B\ {e} is isomorphic to the line graph .#(T') of ' = T'y (A, B). The relation between the spec-
trum of a graph and the spectrum of its line graph is well known, see [23, Theorem 1]. In particular,
we have 1, = 1, — k + 2. The result follows. O

Theorem 2.10 can also be combined with important results on spectral graph theory to provide
upper bounds on the representation angle. Let us in particular record the following result due
to Nilli.

Theorem 2.12 [55, Theorem 1]. Let T = (V, E) be a simple undirected graph such that the maximum
degree of avertexisd < oo. Let also A be the smallest positive eigenvalue of the matrix D — A, where D
is the diagonal matrix (deg(u)), < and A is the adjacency matrix. If T contains two edges at distance
at least 2m + 2, then

2 -1-1
/1<d—2\/d—1+d—.
m+1

We refer to [32] for a slightly stronger bound.

Corollary 2.13. Let X be a finite group and A, B < X be subgroups such that X = (A U B). Assume
that[A : ANB] =[B : AnB] = k. Let D be the diameter of T'x(A, B). Then

EX(A’B) >

2Vk -1 1 1 + 1
k D/2-1 k(D/2-1)
Proof. The graph I'y(A, B) is k-regular. Therefore, if 2 denotes the smallest positive eigenvalue

considered in Theorem 2.12, we have 5, = k — A. The distance between any two edges in I'y (A4, B)
is at least D — 2. Invoking Theorem 2.12 with m := D/2 — 2 yields

77222\/]{_ _Z—Vd_l_lzzy/k_1<1_ 1 >+ 1

D/2—1 D/2—-1 D/2-1

By Corollary 2.11, we have ex (A, B) = % The conclusion follows. O
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The lower bound from Corollary 2.13 is especially useful when the order of group X is large com-
pared to the order of A and B, since for k fixed, the diameter D is bounded below by a logarithmic
function of the order of X.

Recall that a k-regular graph is a Ramanujan graph if the second largest eigenvalue of its

adjacency matrix is at most 2V k — 1.

Corollary 2.14. Let X be a finite group and A, B < X be subgroups such that X = (A U B). Assume
that [A : ANB] =[B : AnB] = k. Then the coset graph T'yx(A, B) is Ramanujan if and only if

ex(A,B) < =L
Proof. Immediate from Corollary 2.11. O

We end this section with two very specific computation of a representation angle, relying on
Corollary 2.11. Their proofs have been computer-aided.

Proposition 2.15. Let (p,a,b, g, ) be one of the tuples

4 2 1 2
R R ,6,2.2 79775 ),
(5.4 2).(1 ) asasrrns)

<9, <§25 §6> : (gz ::2) ,8, 3.16227766017),

where ¢ € Fy is a root of the Conway polynomial x* + 2x + 2 € F;[x]. Let X = SL,(p) and let A
and B be the cyclic subgroups generated by the matrices a and b. Then:

(i) A and B are cyclic of order 5;
(ii) the girth of T'x(A, B) equals g;
(iii) |5ex(A,B) — | < 10710,

Remark 2.16. The exact values of 5ex(A, B) are probably \/E and 4/10, respectively, for the two
triples (X, A, B) appearing in Proposition 2.15.

Proof. Assertions (i) and (ii) are straightforward to check with MAGMA. The verification of (iii)
also required computer calculations, but is more involved. The coset graph of X with respect to
the subgroup A and B was computed with MAGMA. Its eigenvalues then were computed in JULIA

using ARBLIB [38]. O

Proposition 2.17. Let (p,a, b, g, p) be one of the tuples

8 14\ (23 0

(31, <4 11>,<14 27>,10,3.85410196624>,
0 28\ (38 27

41, : ,10,3.82842712474 |,

0 1 57 2
109, , ,14,4.02260136849 |,
< 09 <_1 11) <52 42) 022601368 9)
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—-58 —24 0o -3
(131, <—58 46 > , <44 _12> ,14,3.98383854575).

Let X = PSL,(p) and let A and B be the cyclic subgroups generated by the natural images of the
matrices a and b. Then:

(i) A and B are cyclic of order 5;
(ii) The girth of Tx(A, B) equals g;
(iii) |5ex(A,B) — | < 10710,

Proof. Assertions (i) and (ii) are straightforward to check with MAGMA. The verification of (iii)
also required computer calculations, but is much more involved. Let 4, be the second largest
eigenvalue of the adjacency matrix of the Cayley graph of X with respect to A U B \ {e}. By Corol-
lary 2.11, we have 5ex (A, B) = A, — 3. Thus we must prove that |1, — 3 — ¢| < 10~!°. For that
purpose, we followed the following computer-assisted computational approach.

A numerical estimate 4, = ¢ + 3 of the eigenvalue was obtained using standard ARPACK
eigenvalue routines on the full Cayley graph I'y(A, B). However, these computations lack cer-
tificates of the accuracy of the approximation. In order to obtain the required certification, we
have computed the largest eigenvalue of the Hermitian operator E?:l p(a)! + p(b)! for each non-
trivial irreducible representation p of X individually. Explicit realizations of those representations
are described in [62] (see also [47]). One implementation of those irreducible representations was
realized with MAGMA. Another, independent implementation [39] was realized in JULIA [10]. The
certification, including provably correct bounds, was obtained using the ARBLIB library [38] and
certified eigenvalue computations therein. The largest eigenvalue among non-trivial irreducible
representations of X satisfies (iii).

The obtained values agree numerically with those obtained in MAGMA. O

Remark 2.18. The group PSL,(109) is the smallest finite simple quotient of the free product Cs * C;
such that the associated coset graph has girth > 14. In view of Corollary 2.14, we see that the coset
graph I'y (A, B) from the case p = 109 in Proposition 2.17 is not a Ramanujan graph. The largest
eigenvalue among non-trivial irreducible representations in this case is afforded by the principal
representation associated to character vs : Fy,, — C,defined by vs(ar) = ¢ g , (Where the generator
of F,, & = 6199 Was chosen).

Remark 2.19. The three coset graphs I'y(A, B) for p # 109 in Proposition 2.17 are Ramanujan by
Corollary 2.14.

2.4 | Non-discrete groups

Theorem 2.10 is formulated for a finite group X. It is useful to observe that the result extends easily
to a possibly non-discrete compact groups (this is actually the set-up originally adopted in [29]).

Proposition 2.20. Let X be a compact group and A, B < X be proper open subgroups such that X =
(AUB). LetK = ﬂgeX g(A N B)g~! be the normal core of A N B, which is an open normal subgroup
(hence of finite index) in X. Set X = X /K, A = A/K and B = B/K. ThenTx(A,B) = Tx(4, B) and
ex(A,B) = ex(4, B).
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In particular, we have ex(A,B) =1— 0, where § is the smallest positive eigenvalue of the
combinatorial Laplacian on the coset graph T'x (A, B).

Proof. The equality Ty (A, B) = T'x(A4, B) is straightforward from the definitions.

Since any unitary representation of X is also a continuous representation of X, we deduce
that ex (A, B) > £¢(A, B). In particular, the required equality holds if ex(A, B) = 0. Assume now
that ex (A, B) > 0 and let 7 be an irreducible non-trivial unitary representation of X such that
ex(A, B; ) > 0. Denoting by V the vector space on which 7 is defined, we must have V4 # {0},
since otherwise we have ey (A, B; 1) = 0 by definition. Given a non-zero A-fixed vector v € V, the
X-orbit of v spans V (by the irreducibility of ), so that the normal core ﬂgEX gAg~!, which con-
tains K, acts trivially on V. This shows that K < Ker(7x), so that 7 descends to a representation of
the finite group X. Therefore, we have 5 (A, B; ) < £5(A, B). The required equality follows.

The last assertion of the Proposition is a direct consequence of Theorem 2.10. O

Combining Proposition 2.20 with Theorem 2.6, we obtain a noteworthy criterion ensuring that
certain (possibly non-discrete) automorphism groups of 2-dimensional simplicial complexes have

property (T).

Corollary 2.21. Let Y be a 2-dimensional, connected, locally finite, simplicial complex and G <
Aut(Y) be a closed subgroup of its automorphism group. Assume that G acts simplicially, and tran-
sitively on the 2-simplices. Let vy, U1, U, € Y© pevertices spanning a 2-simplex. Foreach i € {0, 1, 2},
we assume that the link Lky (v;) is connected and we denote by 8; the smallest positive eigenvalue of
the combinatorial Laplacian on Lky (v;). If

(1-80)+(1 -8 +(1—8)" +2(1-8)(1—8)1—-8,) <1,
then G has Kazhdan’s property (T).

Proof. Foreachi mod 3, let A; < G denote the stabilizer of the edge [v;_;,v;;,] and X; = G, be
the stabilizer of the vertex v;. Since G is closed in Aut(Y") and since Y is locally finite, it follows
that X; and A; are compact groups. Since the G-action on Y is simplicial and transitive on the
2-simplices, the connectedness of the link Lky(v;) implies that X; is generated by A;_; U A; ;.
Since Y is connected, we deduce that G is generated by Ay, UA; UA,. We may now invoke
Theorem 2.6, whose hypotheses are satisfied in view of Proposition 2.20. [

3 | GENERALIZED TRIANGLE GROUPS
3.1 | Non-positively curved triangles of finite groups

A triangle of groups is a simple complex of groups G(7') over the poset 7 of all subsets of {1, 2, 3}
(see [14, Example I1.12.17(1)]). In this note, we shall assume that the group attached to the 2-face
is trivial. Thus G(7") consists in a collection of six groups A, 4, A4,, X, X1, X, and six monomor-
phisms¢;; ;: A; = X;_jand¢;;, : A; = X;,; withi =0,1,2 mod 3. The fundamental group
of G(T'), denoted by G(T), is the direct limit of this system of groups and monomorphisms. Tri-
angles of groups appear in the work of Neumann-Neumann [53]; the non-positively curved case
has been studied by Gersten-Stallings (see [69] and [70]).



HYPERBOLIC GENERALIZED TRIANGLE GROUPS 15

The following result is well known.

Theorem 3.1. Let G(T) = (X;, Aj; ¢;.;.1) be a triangle of groups with trivial face group and let

G = G/(?) be its fundamental group. Assume that X; is generated by the images of A;_; and A, ;.
Fori=0,1,2, letT; be the coset graph T'y (¢;_1,;(A;_1), @i 41,(A;41)) and r; be half of its girth. If

1,1 .1
+ =+

then the following assertions hold.

(i) G acts isometrically, by simplicial automorphisms, on a CAT(0) simplicial complex Y(T') of
dimension 2. The action has a 2-simplex (v, v,,V,) as strict fundamental domain, which is
isometric to a euclidean or hyperbolic triangle with angles (7 /vy, /v, /r,). Fori =0,1,2,
the link of Y (T') at the vertex v; is isomorphic I';, and the stabilizer G, is isomorphic to X;.

(ii) Every finite subgroup of G is conjugate to a subgroup of G,, forsomei=0,1,2.

(iii) If none of the monomorphisms ¢;.;., is surjective, then G is infinite.
(iv) If thereis a homomorphism : G — F to a finite group, whose restriction to G,, is injective for
eachi=0,1,2, then G is virtually torsion-free.

W If

11,1,

Fo T I
then G is non-elementary hyperbolic, and the simplicial complex Y(T') carries a G-invariant
CAT(-1) metric.

Proof. For (i) and (ii), we refer to [69] (where the term CAT(0) is not used explicitly, but the notion
indeed appears). An alternative approach, with a more general scope, is provided by the concept
of simple complexes of groups from [14, Chapter I1.12], see in particular [14, Example I1.12.17(1)].
We apply the Basic Construction from [14, Theorem I1.12.18] to the triangle of groups G(7"). In
the notation and terminology of [14], the stratified space Y is isometric to a geodesic triangle
with interior angles equal torm / ro, 7 /ry and 7r / r2 in the Euclidean plane or the hyperbolic plane
depending on whether = + +—-=1or — + + = < 1. Considering the natural simplicial
structure of Y, this ylelds a stratlfted M -polyhedral complex in the sense of [14, Definition I1.12.1]
(with curvature x = 0 or x = —1 according to the two cases above). Once this is set up, we we
may invoke [14, Theorem I1.12.28], which yields G action by automorphisms on a 2-dimensional
CAT(x) simplicial complex Y(7), with finite stabilizers, and having a simplex as a strict funda-
mental domain. In particular, the G-action is proper and cocompact. The assertions (i) and (ii)
follow [14, Theorem 11.12.28] and [14, Theorem 11.12.18(2)]. Item (v) follows as well, since the
cond1t10n = + + — < 1ensures that Y(7") is CAT(-1), see [14, Proposition III.H.1.2].

For (111) observe that this condition implies that the graphs I'; have no vertices of degree 1.
In view of (i), we deduce from [14, Proposition I1.5.10] that every geodesic segment in Y(7) is
contained in a bi-infinite geodesic. In particular, Y(7") is unbounded, hence G is infinite by (i).

(iv) Lety : G — F be a homomorphism to a finite group whose restriction to X; is injective for
eachi =0,1,2.1f g € G is a torsion element, then xgx~! € X; for some x € G and i € {0, 1,2} by
(ii). Since | x, Is injective, we deduce that if g is non-trivial, then ¥(x)1(g)w¥(x)~! is non-trivial,
hence (g) is equally non-trivial. Thus Ker(3) is a torsion-free subgroup of finite indexin G. []
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Following [50], in case the edge-groups A, A;, A, are all cyclic, and none of the monomor-
phisms ¢;.;, is surjective, we say that C@ is a generalized triangle group. When the functions A;
are all cyclic of order k, we say that G is a k-fold triangle group. The triple (r,, 7;, r,) will be called
the half girth type of the generalized triangle group G. The triple (T, I';, I',) is called its link type.
If the half girth type satisfies the inequality 1/r, + 1/r; + 1/r, < 1, we say that the triangle group
G(T) is non-positively curved.

In the special case k = 3, which is of core interest in this paper, we say that G/(\y) is a trivalent
triangle group.

If the half girth type of G is one of (3,3,3), (2,4,4), or (2,3,6), Theorem 3.1 does not provide any
conclusion regarding the hyperbolicity of G. As we shall see, a triangle group can be hyperbolic
or not. To that end, we will use the following criteria in order to construct subgroups isomorphic
to Z2.

Lemma 3.2. Consider the setup of Theorem 3.1 and assume that v, = r| = r, = 3. Choose the
metric on Y(T) so that edges have length 1. Let {i, j,k} ={0,1,2}. Let a,d’,a”,a"" € A; \ {1},
b,b’,b",b",b",bY € Aj\ {1}andc,c”,c" € A \ {1}

(1) The element abcb’ acts on Y(T') with translation length \/E

(2) The element abca’b’c’ acts on Y(T') with translation length 3.

(3) The element abcb’ a’b”c'b""" acts on Y(T) with translation length 2\/5.

(4) The element abca’b’c’ a”’b"c"'b"" acts on Y(T) with translation length \/ﬁ

(5) The element abch’ a’b"c'b"" a'b'Vc""bY acts on Y(T) with translation length 31/3.

In each case, there is a non-empty open subset U of the triangle labeled 1 such that the element moves
every point of U by the translation length and, in particular, is hyperbolic.

In the proof, we will use the following special case of [14, Proposition 11.4.14]:

Lemma 3.3. Let X be a complete CAT(0) space and let Y be a complete connected length space. If
t: X — Y islocally an isometric embedding, then it is an isometric embedding.

Proof of Lemma 3.2. We take o to be the base triangle in Y(7") whose vertex stabilizers contain
(a, b), (a,c) and (b, c) and label the triangle x.c by x. Let g be one the words from the statement
and let Z be the complex consisting of triangles labeled by prefixes of g with identifications as in
Y (T), see Figure 1.

Then Z is a subcomplex of Y(7") and we equip it with the induced metric. Let 7 : Z — E? be
the map to the Euclidean plane indicated in the figure. We claim that if C C Z is such that 7(C)
is convex, then 7| is an isometric embedding. In order to prove this, note first that 7 is locally
1-Lipschitz since every vertex link of Y(7°) has girth 6. Let Z be Z equipped with the length metric
(the metric on Z and on 7(Z) induce the same length metric). Then the identitymap¢: Z — Z is
1-Lipschitz. Now if 7(C) is convex, then (7rot)|- is an isometric embedding, hence | is a locally
an isometric embedding. The claim now follows by applying Lemma 3.3.

Let U be the open region obtained by intersecting o with the region between the two dashed
lines. Taking C to be convex hull of U and gU, it follows from the above discussion that every
point of U is moved by the claimed distance. Since the displacement function d,: Y(T)—[0,00)
is convex and constant on U, it attains its minimum in U: If x € U and there were a point y of
smaller displacement, convexity would imply that d (z) < d,(x) for every pointz € (x,y]. [
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ta” b// C// bl/

ta” bl/ C”

1 ab abcad’ ta”b"

FIGURE 1 The complex Z in the various cases of Lemma 3.2. The complexes for cases (3) and (5) are not
drawn; they consists of two, respectively, three of the complexes for the first case glued together

Lemma 3.4. Consider the setup of Theorem 3.1 and assume that r, = r{ = 2,r, = 4. Choose the
metric on Y(T') so that the long edges have length 1. Let {i, j} = {0,1}. Let a,a’,a”,a" € A; \ {1},
b,b',b",b"" € A;\ {1} andc,c”,c",c"" € Ay \ {1}

(1) The element acbc’ acts on Y (T') with translation length \/5

(2) The element aca’bc’'b’ acts on Y(T') with translation length 2.

(3) The element acbc’ a’c"b'c’"" acts on Y(T') with translation length 2\/5.

(4) The element aca’bc’a”’b’c”"b" """ acts on Y(T') with translation length /10.

(5) The element aca’bc’b’ a’’c”a’’b" ""b"" acts on Y(T) with translation length 4.

In each case, there is a non-empty open subset U of the triangle labeled 1 such that the element moves
every point of U by the translation length and, in particular, is hyperbolic.

Proof. The proof is completely analogous to that of Lemma 3.2, see Figure 2. O

Corollary 3.5. Let x and y be two elements as in Lemma 3.2 or 3.4 with translation lengths | x| and
|¥|. If x and y commute, then (x,y) = Z X Z unless there are k,Z € N relatively prime such that
|xI/Iyl = k/¢ and x” # y*k,

Proof. Assume that x and y commute and do not span Z x Z. Then there are k’,#’ € N such
that x*" = y¥ or x*" = y=¥'. From now on, assume without loss the former. Then x and y
have a common axis and it follows that |x|/|y| = k'/¢’. Now let k = k' / ged(k’,#¢') and ¢ =
¢ ged(k!, ).

There is a point p in the interior of the triangle labeled 1 that lies on an axis for x as well as
an axis for y. This follows from the facts that x and y have a common axis and that each has an



18 CAPRACE ET AL.

achc

ach

tblcl/bl/C///
tb/cllb//

FIGURE 2 The relevant complexes for Lemma 3.4. The complexes for cases (3) and (5) are not drawn as
they consists of several copies of the complexes for the other case glued together

axis that meets the interior of the triangle labeled 1. It follows that x”.p = y.p and hence that the
triangle labeled 1 is taken to the same triangle by x” and y*. Since the action of G on triangles is
free, it follows that x? = yk. O

3.2 | Acylindrical hyperbolicity

Under the hypotheses of Theorem 3.1, the group G= G/(?) acts properly and cocompactly on the
2-dimensional CAT(0) complex Y (7). If + + < 1, then the complex is piecewise hyper-

bolic and the length metric on Y(7) is globally CAT( 1). As recorded in Theorem 3.1, the group
G is then non-elementary hyperbolic. In particular, it is acylindrically hyperbolic (see [60] for an
extensive account of this notion). The latter property actually also holds in most cases if we have
% + E + — = 1:indeed, the only exception occurs when all the vertex links are generalized poly-
gons, in Wthh case the complex Y(7') is a 2-dimensional Euclidean building. The following result

combines the Rank Rigidity theorem of Ballmann-Brin [6] with a result of A. Sisto [68].

Theorem 3.6. Retain the notation of Theorem 3.1 and assume that - + +Lig If the equality
holds, assume in addition that the graphs I'y, I'; and T, are not all generallzed 2polygons Then G =
G(T) contains an element acting as a rank one isometry on the CAT(0) complex Y(T ). In particular,
G is acylindrically hyperbolic, hence SQ-universal.
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Proof. The discussion preceding the statement covers the case rl + ri + rl < 1. We now assume
0 1 2

that we have equality: —~ + + = = 1. The complex Y(7') is then piecewise Euclidean, and the
length metricon Y(7) is globally CAT(O) We may then invoke the main result of [6], which yields
the following dichotomy: either the links I'y, I'; and T, are all generalized polygons, and then
Y (7)) is a Euclidean building, or it is not the case, and then the group G contains an element that
acts as a rank one isometry on Y (7). The latter property implies in turn that G is acylindrically
hyperbolic (this follows from the main results of [68], see also [18, Corollary 3.4]). It follows from
[60, Theorem 8.1] that G is SQ-universal. O

3.3 | Distinguishing isomorphism classes

Generalized triangle groups are generated by torsion elements. It follows that isomorphisms
between non-positively curved triangle groups can be analyzed with the help of the Bruhat-Tits
Fixed Point Theorem.

Proposition 3.7. Let k > 2 (respectively, k' > 2) be an integer, let G (respectively, G') be a non-
positively curved k-fold (respectively, k’-fold) triangle group of half girth type (ry, r,,1,) (respectively,
(r(,11,75)). Assume that none of the vertex groups of G is cyclic. Let Y (respectively, Y') the associated
CAT(0) simplicial complex, as in Theorem 3.1(i). Let also (v,,v;,v,) be a 2-simplex in Y, and let
¥ : G — G’ be a homomorphism whose restriction to G,, isinjective for alli € {0,1,2}.

Assume that r;, r;. €1{2,3,4} forall i,j €{0,1,2}, with ry <1 <1, and r(’] < ri < r;. Then the
following assertions hold.

(i) kdivides k’.
(ii) Foreachvertexy inY, the group 1,b(G ) fixes a unique vertexy' inY'.
(i) If1/r) +1/r) +1/r}, <1, then (vo, 1, V) is a 2-simplex of Y'.
(iv) Ify is an isomorphism, then (UO, " ) is a 2-simplex of Y', and the assignments y — y' extend
to a -equivariant isometry Y — Y.

Proof. Since the group ¢(GUL_) is finite, we deduce from Theorem 3.1(ii) that it fixes some vertex vlf
of the complex Y’. The group %(G, Jn gb(GUM) = gb(thqu) is cyclic of order k, and fixes point-
wise the geodesic segment [v v; +1] Since a point in the interior of a 2-simplex of Y’ has a trivial
stabilizer in G, we infer that [v v; +1] is entirely contained in the 1-skeleton of Y’. Since G,, is
not cyclic, whereas the stablhzer of every edge of Y’ in G’ is cyclic, we infer that vl.’ is the unique
vertex of Y’ fixed by gb(Gvi). Since (v, vy, V,) is a strict fundamental domain for the G-action on
Y by Theorem 3.1(i), we deduce that $(G,) fixes a unique vertex y'in Y’ for every vertex y in Y.
This proves (i) and (ii).

From the previous paragraph, we deduce that for all i, the Alexandrov angle «; :=

r(vl Ui +1) is an integer multiple of 7 /7’ r; for some j € {0,1,2}. Since Y’ is CAT(0), it fol-
lows from [14, Proposition I1.1.7(4)] that + a; + a, < w. Moreover, we must have «; > 0 for
all i since otherwise §(G,, ), which is generated by (G, ,, )V gb(le_’Um), would fix an edge of
Y. This is impossible since G, is not cyclic, whereas the stabilizer of every edge of Y’ is cyclic.
Therefore, since «; is an integer multiple of 7/ r;. and r§ € {2, 3,4}, there are only two possibil-

ities: either a; = 7/ r;., or (r(’), ri, r;) = (4,4,4) and a; = 7 /2. The second possibility is, however,
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excluded by the Flat Triangle Lemma, see [14, Proposition I1.2.9], since in that case Y’ is CAT(—1)
and, therefore, it does not contain any flat triangle.

Recall from Theorem 3.1(i) that the link of Y at v; is isomorphic to the coset graph of G, with
respect to the cyclic groups G, , | and Gy, v,,, - From the previous paragraph, we deduce that ¢
induces a simplicial embedding of the link of Y at v; into the link of Y’ at vlf .

Let us now assume in addition that 1/r; + 1/r! +1/r’, < 1,and assume now for a contradiction
that the geodesic triangle A = (v, v}, v}) does not span a 2-simplex of Y’. Then, by the previous
paragraph, the geodesic path [vlf_l, vlf 1], which is contained in the 1-skeleton of Y’, must contain
at least one vertex different from v/ | and v] +1- Therefore, any simply connected subcomplex of
Y’ containing v(), vi and v; has at least four simplices of dimension 2. Let us fix a smallest possible
such subcomplex, and view it as a ruled surface bounded by A in the sense of [14, ITI.H.2, p. 426].
We see that the area of that ruled surface is at least 4 times the area of a hyperbolic triangle with
angles (7 /r(, /vy, w/r}). In particular, it is at least 4(7 — 27 /3 — 7 /4) = 4n /12 = 7 /3.

Let us now consider the area of a comparison triangle for A in the hyperbolic plane. Since «; €
{m /4, 7 /3}, we deduce from [14, Proposition I1.1.7(4)] that, in this comparison triangle, every inner
angle is at least 77 /4. Therefore the area of that comparison triangle is at most 7 — 3/47 = 7 /4.
Thus we see that the area of the ruled surface bounded by A in Y” is strictly greater than the area
of a comparison triangle in the hyperbolic plane. This contradicts [14, Proposition I11.H.2.16].

Let us finally assume that 3 is an isomorphism (but relax the hypothesis that 1/ r(’) +1/ r; +
1/ r; < 1). Applying the discussion on the links above to the inverse map 3!, we deduce that ¢
induces a simplicial isomorphism from the link of Y at v; to the link of Y’ at vl.’ . In particular, we
haver; = rlf . By the definition of the complexes Y and Y, the metric is completely determined by
the girth type. More precisely, the Alexandrov angle £, (v;_, U;;) (respectively, Aviz(vi’_l, v] 1) is
equal to 7 /r; (respectively, 7/ rlf ). Therefore, ¢ induces an isometry from the link of Y at v; to the
link of Y’ are vlf . Assertions (iv) follows, in view of the fact that local isometries extend to global
isometries (see [14, Proposition 11.4.14]). O

Corollary 3.8. Let k > 2 (respectively, k' > 2) be an integer, let G (respectively, G') be a non-
positively curved k-fold (respectively, k’-fold) triangle group of half girth type (ry, r,,1,) (respectively,
(r(’),ri,ré)), none of whose vertex groups of G is cyclic. We denote by A,,A,,A, (respectively,
A, A\, A) the natural images of the defining edge groups into G (respectively, G'). Assume that
r; and r;. belong to {2, 3,4} foralli, j € {0,1,2}. Letp : G — G’ be an isomorphism.

Then there exist an element g € G’ and a permutation o € Sym({0, 1, 2}) such that
g¢(Ai)g_1 = A;(i)
foralli €{0,1,2}. In particular, k = k'.

Proof. Let Y (respectively, Y”) be the associated CAT(0) simplicial complex, as in Theorem 3.1(i).
Let also (v, v;, U,) be the 2-simplex in Y whose edges [v;, v,], [V, U] and [vy, v,] are, respec-
tively, fixed by A, A; and A,. Similarly let (w,, w;, w,) be be the 2-simplex in Y’ whose edges are,
respectively, fixed by A, A and A’,. By Proposition 3.7(iv), there exists a 2-simplex (v}, v}, v}) in
Y’ such that gb(GUi) < G:; , foralli € {0, 1, 2}. Since (wy, w;, w,) is a strict fundamental domain for

the G’-action on Y”, there exist an element g € G’ and a permutation o € Sym({0, 1, 2}) such that
gvlf = Wy for all i € {0, 1, 2}. The conclusion follows by Proposition 3.7. O



HYPERBOLIC GENERALIZED TRIANGLE GROUPS | 21

It is convenient to reformulate Corollary 3.8 using the following terminology. Let G(T) =
Xi, Aj39;541) and G(T7) = (X! ,A;;go;,iil) be triangles of groups with trivial face groups. We
say that G(T') and G(T") are equivalent there is a permutation o € Sym({0, 1, 2}) and, for each
i mod 3, an isomorphism «; : A} — A,;) and an isomorphism g; : X; — X;_ 1) such that
§0{,ii1 = Bo(iz1) © Po(i).o(i+1) © Xi-

Denoting by p € Sym({0, 1,2}) the 3-cycle defined by p(i) = i + 1, we have o(i + 1) = op*!(i).
Thus the image of §,;.) is X;il(i) = X}, as required.

It is clear that two equivalent triangles of groups have isomorphic fundamental groups. The
conclusion of Corollary 3.8 is that, under the corresponding hypotheses, the converse holds: two
triangles of groups have isomorphic fundamental groups if and only if they are equivalent.

A well-known theorem of Sela ensures that one-ended torsion-free hyperbolic groups are co-

Hopfian (see [66, Theorem 4.4]). We recover a very special variation on that result.

Corollary 3.9. Let k > 2 be an integer, let G be a k-fold triangle group of type (v,,7;,7,), none of
whose vertex groups is cyclic. If r; € {3,4} for all i € {0,1,2} and (r,r,,7,) # (3,3, 3), then every
injective homomorphism G — G is surjective. In other words, G is co-Hopfian.

Proof. Immediate from Proposition 3.7. O

4 | SMALL EDGE-REGULAR CUBIC GRAPHS

In view of the previous section, in order to build the smallest non-positively curved 3-fold gener-
alized triangle groups, we should determine which of the small edge-transitive bipartite trivalent
graphs (also called i) admit a group X acting regularly on the edge set, preserving the bipartition.
Such graphs will a fortiori coincide with the coset graph of X with respect to the stabilizers A, B of
two adjacent vertices, that must both be of order 3 by construction. We shall rely on classification
results that describe all cubic graphs admitting an edge-transitive automorphism group, up to a
certain size (see [22], [20] and [21]).

We consider graphs of order < 54. Since the order of a bipartite cubic graph of girth 2r is at
least 2"+1 — 2, we obtain r < 4. Therefore, it suffices to consider graphs of girth 4, 6 and 8 in the
context we have adopted. For graphs of girth < 6, we shall moreover limit ourselves to graphs of
order < 30.

In the following, we provide the exact values of the cosine of the representation angle associated
with the triple (X, A, B) under consideration, computed formally by investigating systematically
all irreducible representations of X. Corollary 2.11, together with the MAGMA tools computing the
spectrum of graphs, can be used to provide a computational confirmation.

41 | Girth4

Among the small cubic graphs with an edge-transitive automorphism group, only two have girth 4.
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411 | Order 6: the complete bipartite graph

Let
X = (a,b|a3,b3,aba_1b_1)

and set A = (a) and B = (b).
The group X is the direct product C; X C;. The coset graph I'y(A, B) is the complete bipartie
graph K; ;. By Example 2.1, we have

ex(A,B) = 0.

The corresponding angle is 90°.

4.1.2 | Order 8: the cube

Let
X = (a,b|a3,b3,abab)

and set A = (a) and B = (b).
The group X is the alternating group Alt(4). The coset graph I'y (A, B) is the 1-skeleton of the
cube. Computations show that

1
EX(A, B) e g.

The corresponding angle is ~ 70.53°.

42 | Girthe

In girth 6, we focus on graphs of order £ 30. We see from [22] and [21] that there are exactly six
such graphs, respectively, of order 14, 16, 18, 20, 24 and 26. The graph of order 20 is the Desargues
graph. It can be viewed as the coset graph of X = Alt(5) with respect to A = ((1, 2), (1,2, 3)) and
B ={(3,4),(3,4,5)). We claim that it does not admit any automorphism group acting regularly
on the edges preserving the bipartition, so it is excluded from our list. Indeed, such a group would
have order 30. In every group of order 30, any Sylow 3-subgroup, which is cyclic of order 3, is
normal. Therefore, no group of order 30 is generated by a pair of cyclic subgroups of order 3. Thus
the Desargues graph cannot be the coset graph of a group of order 30, as claimed.
Each of the five remaining graphs is discussed below.

421 | Order 14: the Heawood graph
Let
X = (a,b|a3,b3,aba_1b_1ab)

and set A = (a) and B = (b).
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The group X is the Frobenius group of order 21. The coset graph I'y (A, B) is the Heawood graph,
which is the incidence graph of the projective plane of order 2. By Lemma 2.5, we have

ex(A,B) = V2/3.

The corresponding angle is ~ 61.87°.

422 | Order 16: the Mobius-Kantor graph
Let

X =(a,b|a’, b, abab ta"b71)
and set A = (a) and B = (b).

The group X is isomorphic to SL,(F;), its order is 24. The coset graph I'y (A, B) is the Mobius-
Kantor graph. This group coincides with the complex reflection group with Coxeter diagram

Computations show that
ex(A,B) = V/3/3.
The infimum is achieved by a faithful representation as a complex reflection group in SU(2).
The corresponding angle is ~ 54.74°.

The group X has one quotient that occurred before, namely Alt(4). A homomorphism to the
presentation of Alt(4) from Section 4.1.2 is obtained by mapping a to a and b to b™!.

4.2.3 | Order 18: the Pappus graph
Let

X = (a,bla’, b3, (ab)?,(ab™1)%)
and set A = (a) and B = (b).

The group X is isomorphic to the Heisenberg group over Fa, its order is 27. The coset graph
I'x(A, B) is the Pappus graph. As mentioned in Example 2.3 above, we have

ex(A,B) = V/3/3.

The corresponding angle is ~ 54.74°.
The group X has one quotient that occurred before, namely the direct product C; X Cj.
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4.2.4 | Order 24: the Nauru graph

Let
X = (a,bla’, b3, (ab)?,aba"'ba~'b~tab™?)

and set A = (a) and B = (b).
The group X is isomorphic to the direct product Alt(4) X C;, its order is 36. The coset graph
I'v(A, B) is the Nauru graph. Computations show that

ex(A,B) =2/3.

The corresponding angle is ~ 48.19°.
The group X has two quotients that occurred before, namely C; X C; and Alt(4).

4.2.5 | Order 26

Let
X = (a,bla’, b3, (ab)?,aba"'ba"'ba~'b71)

and set A = (a) and B = (b).
The group X is isomorphic to the Frobenius group of order 39. The coset graph I'y (A, B) is the
cubic graph denoted by F26A in the Foster census. Using Lemma 2.5, we find that

2, #5466
ex(A,B) = w’

where ¢ = ¢271/13,

The corresponding angle is =~ 46.26°.

43 | Girth 8

In girth 8, we focus on graphs of order < 54. We see from from [20] and [21] that there are
exactly four such graphs, respectively, of order 30, 40,48 and 54. The graph of order 30 is the Tutte
8-cage T, which is also the incidence graph of the generalized quadrangle of order 2. It does not
admit any automorphism group acting regularly on the edges preserving the bipartition, so it is
excluded from our list. Indeed, since 7 is of order 30, an edge-regular automorphism group must
have order 45; on the other hand, the index 2 subgroup of Aut(7") preserving the bipartition is iso-
morphic to Sym(6), which does not have any subgroup of order 45. Each of the three remaining
ones is discussed below.
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431 | Order 40: the double cover of the dodecahedron

Let
X ={(a, b|a3, b3, (ab_lab)z, (a_lb_lab_1)2>

and set A = (a) and B = (b).

The group X is isomorphic to Alt(5), which is of order 60: indeed, there is an isomorphism
mapping a to (1,2, 3) and b to (3, 4, 5). The coset graph I'y (A, B) is a double cover of the 1-skeleton
of the dodecahedron. Computations show that

ex(A,B) = V/5/3.

The infimum is achieved by the irreducible representations in degree 3.
The corresponding angle is ~ 41.81°.

43.2 | Order48

Let
X =(a,bla,b%, (ab)*(a™'b™1)?)

and set A = (a) and B = (b).

The group X is isomorphic to the direct product SL,(F;) X Cj, its order is 72. The coset graph
I'y(A,B) is of girth 8. This group coincides with the complex reflection group with Coxeter
diagram

Computations show that

ex(A,B) = \/2/3.

The infimum is achieved by a faithful representation as a complex reflection group in SU(2).

The corresponding angle is & 35.26°.

The group X has four quotients that occurred before: adding the relation (ab)* gives a presen-
tation of SL,(F;) (order 24, acting on the Mdbius-Kantor graph of order 16). A homomorphism
to the presentation above is given by taking a to a and b to b~!. The second quotient is obtained
by adding the relation (ab~!)*. This is a presentation of the group Alt(4) X C; (order 36, acting on
the Nauru graph of order 24). A homomorphism to the previous presentation is given by taking
atoaand b to b~!. One can then postcompose with quotient maps mentioned above, and obtain
quotients isomorphic to C; X C; and Alt(4).
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4.3.3 | Order 54: the Gray graph

Let
X =(a,bla’, b, aba”'b~ta " hab~?, (aba'b)?)

and set A = (a) and B = (b).

The group X is isomorphic to the wreath product C; 2 C;. It is also isomorphic to the 3-Sylow
subgroup in Sp,(F;). Alternatively, it can be viewed as a non-trivial split extension of the Heisen-
berg group over F; by C5. Its order is 81. The coset graph I'y (A, B) is the Gray graph. An alternative
presentation will be provided in Proposition 7.2(ii) below. Moreover, by Proposition 7.3(ii), we
have

ex(A,B) = V/2/3.

The corresponding angle is & 35.26°.

The group X has two quotients that occurred before. Adding the relation (ab)? gives a pre-
sentation of the Heisenberg group over F; (order 27, acting on the Pappus graph of order 18).
The homomorphism to the presentation from Section 4.2.3 is given by taking a to a and b to b.
Post-composing with a quotient map mentioned above, we also obtain C; X C; as a quotient.

Remark 4.1. We emphasize that the Gray graph is not vertex-transitive (it is semi-symmetric, but
not symmetric), while each of the other nine graphs above admits a vertex-transitive automor-
phism group. Moreover, the Gray graph should not be confused with the graph denoted by F54A in
the Foster census. The latter graph is bipartite, of order 54, symmetric, and of girth 6 (and therefore
excluded from our list, since for graphs of girth < 6, we only considered graphs of order < 30).

Remark 4.2. For 9 of the 10 triples (X, A, B) catalogued above, we have

\/ﬁ

ex(A,B) € {T | n =0,1,2,3,4,5,6}.

The only exception is the Frobenius group of order 39, whose associated graph is F26A, see
Section 4.2.5. This is also the only group involving the prime 13 (the other groups involve only
2,3,5,7).

Remark 4.3. 1t follows from Corollary 2.14 that the 10 graphs above are all Ramanujan graphs.

5 | NON-POSITIVELY CURVED TRIVALENT TRIANGLE GROUPS:
AN EXPERIMENTAL CASE STUDY

5.1 | Overview

A 3-fold generalized triangle group is called a trivalent triangle group. We have undertaken a
systematic enumeration of non-positively curved trivalent triangle groups with the smallest pos-

sible vertex links. In this introduction, we present an overview of our experimental set-up and of
the outcome of our computations, and refer to the next subsections of the text for details. The
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repository [17] for this article contains code that was used for these computations as well the
resulting data in machine-readable form. In human-readable form, these data are collected in
the Appendices A, B, and C.

In a trivalent triangle group, every vertex link is an edge-regular trivalent graph (also called

cubic graph). In order to satisfy the non-positive curvature condition, the inequality 2—” +Z 4

9

%}” < 7 must be satisfied, where g; denotes the girth of the ith vertex link in the triangle of groups
under consideration (see Theorem 3.1). The bound on the order of the graphs we have imposed
implies that ¢; < 8 for all i. The non-positive curvature condition therefore implies that the only
girths to be considered are 4, 6 and 8. The previous section describes the two smallest edge-regular
cubic graphs of girth 4, the 5 smallest edge-regular cubic graphs of girth 6, and the three smallest
edge-regular cubic graphs of girth 8. (It is important to emphasize that not every edge-transitive
cubic graph is edge-regular.) This leads us to a set X of 10 graphs, and a corresponding set of ten
finite groups acting regularly on the edges of those graphs.

In the following, we describe an enumeration of all the possible trivalent triangle groups, all
of whose vertex groups belong to X. There are exactly 252 inequivalent triangles of groups with
vertex groups in X. Corollary 3.8 ensures that two inequivalent triangles of groups from that list
yield non-isomorphic fundamental groups. We have thus obtained a list of 252 non-isomorphic
trivalent triangle groups, that are all infinite. A list of their presentations is included in Section A.

When the girths of the vertex links satisfy the strict 1nequahty m ¥ 4 2% < 7, the corre-

sponding trivalent triangle group is hyperbolic (see Theorem 3.1). Among the 252 groups of our
list, 149 satisfy that condition. Among the remaining 103 groups, 38 are hyperbolic while 65 con-
tain a subgroup isomorphic to Z x Z and are thus not hyperbolic. It is noteworthy that there exist
pairs (H,, H,) of trivalent triangle groups sharing the same triple of vertex groups, such that H; is
hyperbolic but H, is not (see, for example, the pairs (G14 14,24 Gi4’14’24) or (G§4’24’24, Gf4’24’24) in
Appendix B).

It is important to underline that four of the groups from our list had been introduced by Ronan
[65] and studied by various authors. These Ronan groups are those obtained by imposing that
the three vertex links are all isomorphic to the Heawood graph. The Ronan groups act properly,
chamber-transitively on A,-buildings. Therefore, they have Kazhdan’s property (T), and they are
not hyperbolic. Moreover, it is conjectured that there exists some d such that none of them has a
quotient in .#; (two of the Ronan groups are arithmetic, see [46], hence for them, this conjectural
assertion follows from Serre’s conjecture on the congruence subgroup problem [63, Conjecture 1];
for the other two Ronan groups, see [4, Conjecture 1.5]).

Let us now describe our findings regarding property (T). Theorem 2.6 confirms that the four
Ronan groups have property (T), but happens to be inconclusive for the remaining 248 groups
on our list. On the other hand, by enumerating subgroups of low index, we found that the
majority of those 248 have finite index subgroups with infinite abelianization, and thus fail
to have property (T). On the remaining groups, we have also run the algorithmic tools devel-
oped in [40] to check property (T), without reaching any conclusion. Moreover, further results
confirming the absence of property (T) for a large subset of those groups have more recently
been obtained by Ashcroft [3, Corollary C], who constructs a fixed-point-free action on CAT(0)
cube complexes and further proves that some of the hyperbolic groups considered are virtually
special.

In addition, we were also able to prove that four of our groups have an unbounded isometric
action on the real hyperbolic 3-space, while nine of them have an unbounded isometric action
on the complex hyperbolic plane, and five have an unbounded isometric action on the complex
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hyperbolic 3-space (see Section 5.4). The existence of such actions is also an obstruction to property
(T). Among those groups, one has all its vertex groups isomorphic to SL,(F,) = Alt(5), and has a
Kleinian quotient group. Two others have all their vertex groups isomorphic to SL,(F5), and admit
quotient groups that are arithmetic and non-arithmetic lattices in SU(2, 1). These lattices were first
introduced and studied by Mostow [51]. We view those specific triangle groups as relatives of the
k-fold generalized triangle groups considered in [50]: indeed, they share the property of having
all their vertex groups isomorphic to (P)SLz(Fq) or (P)GLz(Fq) for some prime power q.

According to an unpublished result of Shalom and Steger, the four Ronan groups are heredi-
tarily just-infinite (this means that each of their proper quotients is finite, and that this property
is inherited by their finite index subgroups). None of the other 248 groups on our list has this
property: indeed, all of them are acylindrically hyperbolic, hence SQ-universal (see Theorem 3.6).
Thus, as far as infinite quotients are concerned, the four Ronan groups constitute an exception in
our sample.

Let us now describe our findings regarding finite simple quotients. All the data we collected
are displayed in Section B. We performed a systematic search of finite simple quotients of order <
5.107, and a systematic search of alternating quotients of degree < 30. For various subclasses,
this upper bound could be extended up to degree < 40. The outputs of those computations show
that when the girth triple (g,, 9, ¢5) is (8, 8, 8), the corresponding triangle group has a tremendous
amount of finite simple quotients, including most alternating groups of degree between 20 and 40.
Moreover, all of them are virtually torsion-free. When the girth triple is not (8, 8, 8), the situation
is less clear. For each group with girth triple (6, 8, 8) on our list, we could find some (and usually
many) non-abelian finite simple quotients. On the other hand, for some of the hyperbolic groups
with girth triple (4, 8, 8), (6, 6, 6) and (6, 6, 8) on our list, we could not find any (non-abelian) finite
simple quotient at all. We underline that our investigations of the finite simple quotients of the
groups from our sample was primarily based on a systematic enumeration of all simple quotients
of finite order up to a certain upper bound (namely 5 - 107), and a systematic enumeration of all
subgroups of finite index up to a certain upper bound (typically 30 or 40). Occasionally, we have
also found individual finite simple quotients, usually of much larger order, by exhibiting explicit
linear representations in degree d < 6 in characteristic 0, and then by extracting congruence quo-
tients. The latter construction was achieved by investigating certain representation varieties of the
groups under consideration, using the MAGMA tools in algebraic geometry (see Section 5.3 and
Remark 5.16).

Our list of trivalent triangle groups interpolates between two extremes. At one end of the spec-
trum, we have the four Ronan groups, that are very rigid non-hyperbolic groups with conjecturally
no finite simple quotient of arbitrarily large rank. At the opposite end, we have the 17 trivalent
groups from our list all of whose vertex links have girth 8. Each of the latter has a tremendous
amount of finite simple quotients compared to the other groups from the list. It is tempting to
believe that those 17 groups admit Alt(d)-quotients for all but finitely many d, and that they
are all virtually special (the latter conjecture has recently been partly verified by Ashcroft, see
[3, Corollary C]). The other groups on our list have properties that appear to be intermediate com-
pared to those extremes. This led some of us to speculate, at an intermediate stage of this project,
that some of them, with girth triple (6, 6, 6) or (6, 6,8), could fail to admit quotients in .# for all
d. We emphasize that the two hyperbolic groups that are ‘as close as possible’ to the four Ronan

groups are those denoted by Gé4’14’24 and Gé4’14’26 on our list.
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TABLE 1 Description of Aut(X'*),, 5, for L € £

X =(A,B) Order of Aut(X);, 5, Generators of Aut(X),, p,
X6, X8, x40 8 (ab)a' b)), (aa™)

S N8 et i 4 (ab)@'b™),(aa)bb™)
X4, X2 2 (ab™)(a!'b)

x5 4 (@a™),(bb™)

5.2 | Enumerating small trivalent triangle groups

Let £ be the set consisting of the ten graphs listed in Section 4. We have performed a systematic
enumeration of all the non-positively curved triangles G() of finite groups with trivial face group
and cyclic edge groups of order 3, such that the link in the local development at every vertex
belongs to L. Their half girth type is thus an element of the set

{(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4)}.

Let Y be the collection of those G(Y). It follows from Corollary 3.8 that if two elements
G(Y,),G(Y,) € Y are inequivalent, their fundamental groups G/(_)?) and G/()Z) are not iso-
morphic (see Section 3.3 for the definition of the notion of equivalence of triangles of
groups).

For each graph L € L, let |L| be its order (that is, the cardinality of its vertex set) and
Xl = (a, b) be the group acting regularly on the edges of L, generated by a pair of elements
of order 3, as it appears in the list from Section 4. We need to describe, for each such group
XH, the group Aut(X!H),, p, of those automorphisms of X'l that stabilizes the pair {A,B},
where A = (a) and B = (b). By definition, every element o € Aut(X |L|){ 4,5 permutes the set
{a,a™!,b, b~1}; moreover « is uniquely determined by its action on that set. Thus Aut(X |L|){ AB}
is isomorphic to a subgroup of the dihedral group of order 8. In Table 1, we provide a generating
set for Aut(X |L|){ 4,5 as a collection of permutations of the set {a,a”!,b,b~'}. The case-by-case
verification is straightforward.

We are now ready for the following.

Proposition 5.1. The setY consists of 252 inequivalent triangles of finite groups. Their fundamental
groups are pairwise non-isomorphic. Their presentations are those listed in Appendix A.

About the proof. A triangle of groups G(Y) € Y is determined by the following data: the three edge
groups A; = (c;) which are cyclic of order 3; the vertex groups X; = (a;, b;), each of which is one
of the ten groups whose presentation is given in Section 4, and the homomorphisms ¢;_; ;,®;, 1 ;
which amount to identifying the pair (a;, b;) with one of the eight pairs (c:—'_ll, c;—:rll), (cii+11’ clf—*_l1 .
Once the (A;);—1, and (X;),—o 1 , are fixed, this leads to 8 possible triangles of groups. However,
replacing c; by ci_1 in a given triangle of groups and also inverting c; in the identifications coming
from the ¢; ; leads to a triangle of groups that is obviously equivalent to the original one. Thus at
most 43 = 64 of these triangles of groups are inequivalent. Therefore, once the triple (X,, X;,X,)
of vertex groups is fixed, we may encode all the possible triangles of groups G(J) by an element of
the 6-dimensional vector space Fg as follows. To a vector v = (Vy, Uy, ..., Us) € Fg, we associate a
unique triangle of groups G(Y) defined as follows. For each i € {0, 1, 2}, we rename the generating
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pair (a;, b;) in X; according to the rule:

(ai, bl) lf Uzl- = O
(X, y) = .
(bi,al’) lf Uzi =1.

The connecting homomorphisms ¢;_; ;,¢;.;; are then uniquely determined by the following
identifications:

Vi =Xy vy, =0
yi=x ifoyg =1,
where, as usual, the index i is taken modulo 3.

Using that parametrization, we can now determine the equivalence classes of triangles of
groups, keeping the triple (X,,X;,X,) fixed, as follows. The equivalence classes of triangles
of groups coincide with the orbits of a finite group A determined by the groups Aut(X;)4 5,
described in Table 1, fori = 0, 1, 2, and the permutations of {X,), X;, X,} permuting identical vertex
groups. Let us illustrate this by two examples. If the group Aut(X); Aq.B,} cONtains the permutation
(ay by 1)(aa 1hy), it follows that for every vector v = (vy, vy, ..., Us), the triangle of group deter-
mined by v is equivalent to the triangle of groups determined by (v, + 1,0, + 1,0,, U3, Uy, U5 + 1).
This means that A contains the translation v — v + (1, 1,0, 0, 0, 1). Similarly, if the groups X, and
X, are identical, so that the assignments (ay, by) — (ay, b;) define an isomorphism, then A con-
tains the linear transformation (vy, vy, Uy, U3, Ug, Us) > (U5, U3, Uy, Ug, Uy, Us). Therefore, using the
coding we have introduced above, we see that the group A acts on Fg by affine transformations.
The equivalence classes of triangle presentations with vertex groups (X, X;, X,) are nothing but
the A-orbits on the space Fg. This computation is now easily implemented in MAGMA.

It is straightforward to obtain a presentation for the fundamental group of a triangle of groups
G(Y) given by these data: it is generated by the a; and presented by the relations of the X; with
the appropriate identifications.

Section A lists these fundamental groups in the form G?l’mz’m where the number m; is the
order of the cubic graph on which the groups X; acts edge-transitively and the number £ €
{0, ..., 63} corresponds to an element of the index set Fg as described above (explicitly (vy, ..., Us)
corresponds to 32(1 — vy) + 16v; + 8(1 — v,) + 4v; + 2(1 — vy) + vs).

In view of Proposition 3.7, two inequivalent triangles of groups have non-isomorphic funda-
mental groups. This leads to a computation of isomorphism classes; for each class Section A lists,
the representative with smallest index 7.

An independent verification has also been realized using the MAGMA call

! ! !
SearchForIsomorphism(G;“’mz’m3, Gzl’mz’m3, 3), for all # # ¢’ €{0,1,...63}. This searches for
an isomorphism taking the generators of G?l’mz’m to generators or inverses of generators of

!’ !
Gzl’mz’%. Although there is no guaranty that every such isomorphism will be found, it turns out
that the outcome confirms the list displayed in Section A.

We observe that A depends on X; only through the group Aut(X;), 4,8, For example, the num-
ber of equivalence classes for the triple (X4, X6, X'8) must be equal to the number of equivalence
classes with the triple (X2°, X%, X*3) since, in view of Table 1, the affine group A will be identical
in those two cases. O

Information about these groups is tabulated in Section B. That information was mostly
obtained by basic use of MAGMA and is described before the tables. There are a few exceptions.
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FIGURE 3 Short vectors in the root lattices of type A, and C, (the (longer) edges have length 1)

Information on Kazhdan’s property (T) is incomplete. The four groups G;“’M’M, ¢ €{0,1,2,6}
are Ronan’s groups [65] that are uniform lattices on A,-buildings and therefore are well known
to have property (T). This is also recovered by Theorem 2.6 using that ey (A;_;, A;y;) = \/5/ 3,
see Section 4.2.1. For all the other groups, Theorem 2.6 is inconclusive. It turns out that many of
them have a finite index subgroup with infinite abelianization. Moreover, some of them admit
unbounded isometric actions on real or complex hyperbolic spaces, which is also an obstruction
is property (T) (see Section 5.4).

The information on alternating quotients is obtained by running a systematic search of
subgroups of small index, using the MAGMA call LowIndexSubgroups, then extracting the corre-
sponding coset action and testing whether the corresponding quotient group is alternating. That
procedure was run up to a certain upper bound on the index, which was fixed for each half girth
type, and is clearly indicated in the tables.

The table for groups of half girth type (2, 4,4) and (3,3,3) also contains information on hyper-
bolicity of the groups. It uses an automatic structure that is found (for all trivalent triangle groups)
by Holt’s KBMAG using the MAGMA call isaut, GA := IsAutomaticGroup(G).For those groups
that are hyperbolic, it can be confirmed using IsHyperbolicGroup(GA : MaxTries:=20). For
the groups that are not, the table provides two elements that generate Z X Z by Corollary 3.5, where
the hypotheses can be verified using the automatic group GA.

Although this is not relevant for verifying non-hyperbolicity, we briefly explain how we found
these elements. A copy of Z X Z in a generalized triangle group of half-girth type (3,3,3) or (2,4, 4)
will act on a flat plane of the CAT(0) complex Y associated with G(), leaving the vertex coloring
by conjugacy classes of stabilizers invariant. It is therefore canonically a finite-index subgroup of
the isomorphism group of that colored tiled plane, which is the root lattice A of type A, or C,,
respectively. If the plane contains the base simplex o, the vectors of the five shortest lengths in A
are represented by words as in Lemma 3.2, see Figure 3. In searching for generators of Z X Z, we
enumerated pairs (g, ¢,) of such words with | g;| > |g,| in lexicographic order of their translation
lengths. Using the automatic structure, we could then have MAGMA check whether they commute
and use Lemma 3.2 to decide whether the cyclic groups they generate are commensurate.
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Remark 5.2. As can be seen in the table in Section B.2, the elements of the first pair we found
always satisfy |g;| = |g,|. It is not a priori clear to us why we would never find pairs with |g;| =
2y/3and |g,| = \/gorwith lg:] = 2\/§and lg,| = 3 first.

Remark 5.3. If we take edge lengths to be 1, the covolume of the root lattice A of type A, is 37\/3 As
a consequence of the previous remark, the covolumes of the copies of Z X Z that we first find

33
2

not the copies of Z X Z with smallest covolume: Ronan’s group G

in trivalent triangle groups of half-girth type (3,3,3) are -{1,3,4,7,9}. These are generally

14,14,14
1

of covolume 3—23 -3 (with (|g; 1, 1g2]) = (2\/5, \/5)) while our search first finds one of covolume

W54 (with (Igy | 1gs]) = (3,3):

It would be interesting to know which covolumes (asymptotically) appear with which multi-
plicity in a given generalized triangle group. Such information is not known even in the case of
Ronan’s groups.

contains a copy of ZxX Z

5.3 | Linear representations with infinite image in characteristic 0

In the following sections, we construct, for certain trivalent triangle groups, explicit low degree
representations in characteristic 0 with infinite image. We have used the following methods.
First, the MAGMA call L2Quotients computes the finite quotients of a finitely presented group
G = (S|R) of the form PSL,(q) or PGL,(q). When this algorithm ensures the existence of infinitely
many such quotients in infinitely many different characteristics, one expects the group G to have a
representation in PGL,(C) with infinite image. This is confirmed in our sample (see Section B and
Proposition 5.5). If the group G is 2-generated, there is a similar function L3Quotients. This does
not apply to any trivalent triangle group from our sample, since they fail to be 2-generated, but
it does apply to certain extensions described in Section 5.5. Fifty-four groups from our sample
have a subgroup of index 3 which is 2-generated, but the presentation of that subgroup hap-
pens to be too complicated for the L3Quotients-algorithm to reach a conclusion in a reasonable
computing time.

An alternative approach attempts to build explicit points of the representation variety of G
in GL4(C), exploiting the fact that triangle groups are generated by torsion subgroups. More
precisely, given a triangle group G = (a, b, c | R), we can start with an explicit representation
p: X — GL4(F) of the finite group X = (a, b), where F is a number field. The possibility to define
p(c) in such a way that p extends to a representation of G can be explored as follows. First define
C as a matrix whose entries are d? indeterminates. Each of the relators from the presentation
of G yields an identity, each of which corresponds to d? polynomial equations in the indeter-
minates above. The collection of those matrices C satisfying those identities is thus a complex
algebraic variety, which can be studied with the MAGMA tools in algebraic geometry. In particu-
lar, the dimension of that variety can be computed. When the dimension is —1, the representation
p cannot be extended to G, whereas if its dimension is 0, MAGMA finds its rational points over
the ground field F. Picking any such a point C, we may then set p(c) = C and obtain a represen-
tations of G. Of course, there is no guarantee that the representation p constructed in that way
has infinite image. This method has been used to identify some of the representations described
below.
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5.4 | Actions on real and complex hyperbolic spaces

The goal of this section is to explain that some of the groups appearing in the enumeration above
admit representations with unbounded image in SO(3,1), in U(2,1) or in U(3,1). We start by
recalling that the existence of such a representation is an obstruction to Kazhdan’s property (T).

Theorem 5.4 [8, Theorem 2.7.2]. Let n > 2. For any group T with Kazhdan’s property (T), the image
of any homomorphism of T to O(n, 1) or U(n, 1) has compact closure, and therefore has a global
fixed point.

In other words, if a group I is capable of acting by isometries on a real or complex hyperbolic
space without a global fixed point, then I" does not have (T).

Proposition 5.5. For T € {G§’40’40, Gé6’40’40, G§4’40’40, Ggo’40’48}, there is a representation
I' - SO(3, 1) whose image is a non-discrete, Zariski dense subgroup.

The group G30’40’40 has a representation T’ — SO(3, 1) whose image is a cocompact lattice (namely,
an index 2 subgroup of the compact hyperbolic Coxeter group of type (3, 5, 3)).

In particular, none of those five groups has Kazhdan’s property (T).

Proof. Let G = SO(3, 1). In the hyperbolic 3-space X, consider a geodesic triangle 7 with vertices
Vo, U1, U, and, fori mod 3,let #; be the geodesic line through v;_;, v;, ;. Let p; € G be arotation of
an angle 277/3 around ¢;. Note that the stabilizer G, is isomorphic to O(3). Its action on the unit
tangent sphere at v; is transitive on the set of ordered pairs at any given distance. Therefore, the
isomorphism type of the subgroup (p;_,0;4,) < G,, depends only on the angle formed by #;_,
and 7, ;.

If we choose vy, 1, U, so that the cosines of the inner angles of 7 are, respectively, 1/3, \/E /3
and 1/5/3 (which is possible since the sum of those three angles is < 7), it follows that the sub-
group (01, p,) = Alt(4) and (py, p1) = {0y, £2) = Alt(5). Therefore, A = {p,, p1, 0,) is a quotient
of the trivalent triangle group G§’40’40, which is the unique trivalent triangle group whose vertex
groups are, respectively, isomorphic to Alt(4), Alt(5), Alt(5). In view of the epimorphisms recorded
in Section C, this implies that A is a common quotient of G§’40’40, G36’40’40, G§4’40’40 and G30’40’48.

By construction, A does not fix any point in X or in the ideal boundary of X. Moreover A does
not preserve any non-empty closed convex subset strictly contained in X. It then follows from the
Karpelevich-Mostow Theorem that A is Zariski-dense (see [19, Proposition 2.8]). The fact that A
is non-discrete follows from the classification in [33].

If we choose vy, U1, U, so that the cosines of the inner angles of 7 are all equal to \/g /3, then the
group (p;, p;41) = Alt(5) forall i and A" = (py, p;, p,) is a cocompact lattice in G contained, as an
index 2 subgroup in the compact hyperbolic Coxeter group of type (3, 5, 3) (this follows from the
classification in [33]). Since Ggo,40,40 is the unique trivalent triangle group whose vertex groups

are all isomorphic to Alt(5), we deduce that A’ is a quotient of Ggo,4o,4o' O

We also note that the representations afforded by Proposition 5.5 also provide a theoretical con-
firmation of the occurrence of infinitely many L,(q)-quotients found by the computer calculations
(see Section B).

Corollary 5.6. Each of the groups Gg’40’40, G36’4O’4O, G§4’4O’4O, Ggo,4o,4o and Gg°’40’48
simple quotients of the form PSL,(q) for infinitely many values of q.

admits finite
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Proof. By Proposition 5.5, each of those groups has a Zariski dense representation in SO(3,1) (in
the case of Ggo,4o,4o’ this follows from the Borel density theorem), hence in SL,(C). The conclusion
follows from the Strong Approximation of Weisfeiler and Nori (see [74] and [56]). O

Proposition 5.7. For T € {Géﬁ’m’m,G116’16’48,G36’48’48,Gf8’48’48}, there is a representation T —
SU(2,1) whose image is a lattice. In particular, T does not have (T), and T' admits finite simple
quotients of the form A,(q) or 2A,(g?) for infinitely many values of q.

Proof. The assignment x — a and y — b~! extends to a surjective homomorphism (x,y |
x3,y3, xyxyx~ly~1x"1y~1) = (a,b | a®,b?,abab 'a~'b~!) whose kernel is the normal closure
of (xy)*. Therefore, we have surjective homomorphisms
G4118,48,48 R Gés,4s,48 R Gi6,16,48 R Gé6’16’16.

In particular, it suffices to prove the required assertion for I = Gé6’16’16. As observed above, the
three vertex groups of I are each isomorphic to a complex reflection group, and the existence of
a quotient of I' embedding as a lattice in U(2, 1) follows from [51, Theorem A] (it is in fact easy
to arrange that this lattice be contained in SU(2, 1), see [61, Theorem 4.7]). Explicit representa-
tions are provided in [51, §9.1] or in [61, Theorem 4.7]. The assertion on the failure of property
(T) then follows from Theorem 5.4. By Borel density, the image of I' is Zariski dense in SU(2, 1).
Strong approximation yields finite simple quotients of the form A,(q) or 2A,(g?) for infinitely
many values of q. O

Remark 5.8. The group G36’16’16 has an automorphism of order 3 that cyclically permutes the
generators. One checks that the corresponding semi-direct product G36’16’16 X C; admits the

following presentation:
(a,b|a’ b’ abtabab~la'ba"'bta"'b).

Since that group is 2-generated, we may invoke the L3Quotients algorithm in MAGMA, which
confirms the occurrence of infinitely many A,(q)-quotients. Any of those quotients descends to a

quotient of Géé’m’m, since a non-abelian simple group does not have proper subgroups of index 3.

16,16,16 16,16,16
GO Gl

Remark 5.9. By Theorem 3.1, the groups and act cocompactly on 2-dimensional
simplicial complexes, all of whose vertex links are isomorphic to the Mobius-Kantor graph.
A systematic study of such complexes has been conducted by Barré and Pichot, see [7] and
references therein.

Proposition 5.10. ForT € {Gg’48’48, Gé6’16’48, Gi6’48’48, Gf4’48’48, G38’48’48}, there is a representation
I' - U(2, 1) whose image does not have compact closure. In particular, T does not have (T).

Proof. Asin the proof of Proposition 5.7 (see also Section C), we have surjective homomorphisms

G(4)18,48,48 N Gf4,48,48 N G8,48,48.

The three vertex groups of the trivalent triangle group

Go*™* = (a,b,c| a,b% ¢ bab™ a™!, (cb)*(c™'b71) (ac)* (@ c ™))
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are complex reflection groups, so that the group Gg’48’48 is a complex hyperbolic triangle group
with Coxeter—-Mostow diagram
©,

@ 4

Following Mostow [51], we obtain a representation in GL,;(C) mapping (a, b, c) to (A, B, C), where

Gy—=

Z/

® (w_l)\/TE 0 1 0 0 1 0 0
A=|o 1 ol-B=19 1 0], andC = (cu—l)\/Tg w (a)—l)é ,
0 0 1 0 (cu—l)‘/Tg ® 0 0 1

and w = w = e%7/3, The matrices A, B, C preserve the Hermitian form with Gram matrix

Ve

3

>l -
- ufg o

1
Ve

3

which is non-degenerate with signature (2, 1). Moreover, by (2.3.3) in [51], the image of the repre-
sentation acts irreducibly on C3, and therefore its closure is not compact. The failure of property
(T) follows from Theorem 5.4.

Similarly, we have surjective homomorphisms

48,48,48 16,48,48 16,16,48
G0 - Gl - G0 .

The group Gé6’16’48 ={a,b,c| a3 b3 c3 baba b ta"!,cbcb~lc b1, (ac)*(a'c71)?) can be
represented as a complex hyperbolic triangle group in GL;(C) by mapping (a, b, ¢) to the triple
(A, B,C), where

0 @-DL @-D¥ 1 0 0
A=]p 1 , B= 0 1 0 , and
0 0 1 (w—l)é (w—1)§ w

1 0 0
C= (a)—l)\/Tg w (a)—l)\/Tg-
0 0 1

The matrices A, B, C preserve the Hermitian form with Gram matrix

which is non-degenerate with signature (2, 1). The other conclusions follow as before.

ol -

Ve V3
33
|
Y
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Proposition 5.11. For T € {Gf4’24’24, G§4’24’48, Gf4’48’48, G38’48’48}, there is a representation
I' - U(3, 1) whose image does not have compact closure. In particular, T does not have (T).

Proof. As before, we first notice the existence of surjective homomorphisms G38’48’48 -

G124’48’48 - 634’24’48 - G124’24’24, so that it suffices to consider the case where I' = Gf4’24’24. S

w = e27/3 The representation sends (a, b, ¢) to (4, B, C), where

et

0 01 O 0 0 w O
A= 1 0 0 O . B= - 0 0 O
01 0 O 0 —-w 0 O
0 0 0 1 0 0O 0 1
and
) -1 —w—2 4
) —w—2 -1 4
B 2w+ 1 w w —4w

W -1 -1 —w+3

The Hermitian form whose Gram matrix is the diagonal matrix with coefficients (1,1, 1, —4) is
preserved by Q = (A, B, C), so that Q is contained in U(3,1). The finite group (A, B) acts irre-
ducibly on the 3-dimensional subspace spanned by the first three vectors of the canonical basis.
Since that subspace is not invariant under C, it follows that Q acts irreducibly on C*. This implies
that Q is not conjugate to a compact subgroup of U(3, 1). O

Remark 5.12. Observe that Q is contained in GL,(Z[w]). It is thus a discrete subgroup. Using
the MAGMA call CongruencelImage, followed by LMGChiefFactors, one deduces from Proposi-
tion 5.11 that I has finite simple quotients isomorphic to PSU,(5), PSL,(7), PSU,(11), PSL,(13)
and PSU,(17).

Remark 5.13. Using the representation variety approach described in Section 5.3, we found that
the groups Gf6’26’26 and Ggf’%’% both have also a representation to U(3,1) with unbounded
image. The coefficients are, however, too long to be included here. As above, we can compute
the first few congruence quotients of those linear images, and deduce that Gf6’26’26 and G§6’26’26
both have finite simple quotients isomorphic to PSU,(25), PSU,(49), PSU,(121), PSU,(17) and

PSU,(361).

5.5 | Cyclic extensions of triangle groups

The existence of an automorphism of order 3 that cyclically permutes the generators, observed
in Remark 5.8 for the group G(1)6’16’16, actually applies to each group of the form Gg’k’k from
our sample, namely with k € {14, 16, 18, 24, 26, 40, 48, 54}. The corresponding semi-direct prod-

uct Gg kg C; is denoted by ég kA presentation of ég kK can be obtained as follows. Denoting
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by R¥ the relators involving only a and b in the presentation of Gg’k’k, we have

Gk = (t,a,bIR¥, 3, tat™1b 7).

~k.k.k
GO

Clearly, the generator b is redundant, and is a 2-generator group. In fact, after simplifi-

k.k.k

cations, the presentation of Gg’k’k is usually much shorter than the presentation of G

Section A.6).

Let X be the subgroup of Gg’k’k generated by a and b. Thus X is a finite group with presenta-
tion X = (a, b|R¥). The group ég’k’k is a quotient of the HNN-extension (¢, a, b|R¥, tat~'b~1) of
the finite group X (which is a virtually free group) by the single extra relation t> = 1. That very
specific structure of Gg’k’k can be used to construct homomorphisms p : 53‘”"" — H to a given
target H, as follows. Assume given a homomorphism p : X — H to a group H. Assume moreover
that there is an element r € H that conjugates p(a) to p(b). Then any element T belonging to the
coset 7Cp(p(a)) of the centralizer Cy;(po(a)) conjugates p(a) to p(b). Therefore, the assignment
p(t) =T defines a homomorphism p : ég’k’k — H if and only if T3 = 1. This method has been
implemented to construct the representation described in the following.

(see

Proposition 5.14. Letw = e*™/3 and ¢ = €27'/° € C. The assignments(a, b, c) — (A, B, C), where

0 0 1 0 1 0 w+1l 0 —w
A=|w 0 0|, B=|0 0 1} C= 0 0 w|,
0 10 w 0 0 o+l w @
define a homomorphism p : Gég’lg’lg — PGL;(Z[w]) with Zariski dense image.

Moreover, the extra assignment t — T, where

24+ 83 +¢—1 0 20+ 83 +E-1 S+ B+ +2
T=|-¢*-23-20 -1 ¢4+ +¢+2 204483 +¢-1 |,
W+ B +E—1 KPP+ -1 =23 -20 -1

defines an extension of p to a homomorphism p : 5;8’18’18 — PGL5(Z[¢)).

Proof. We retain the notation from the discussion made before the proposition. We have
X = (a,b|a’,b3,(ba)’,(ba"')3). Computations show that A3 and B> are both equal to the
scalar matrix wId. Moreover, we have (BA)? = Id = (BA~1)3. Thus p defines a homomorphism
X — PGLy(Z[w]).

One further computes that T2 is a scalar matrix, and that T conjugates A to B, and B to C. There-
fore, p indeed defines a homomorphism 538’18’18 — PGL;(Z[¢]) whose restriction to Gég’ls’ls
takes values in the group PGL;(Z[w]).

To verify that the image of p is Zariski dense, one computes that

1 0 3w
(ABAC =|0 1 —3w?].
0 0 1
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In particular, the Zariski closure of the cyclic group ((ABAC)?) is a 1-dimensional unipotent sub-
group of SL;(C). It is then straightforward to check that this subgroup, together with its conjugates
under (A, B, C), generates the entire group SL;(C). The required assertion follows. O

Asin Corollary 5.6, combining Proposition 5.14 with Strong Approximation, we deduce that the
groups Gé&lg’lg and 538’18’18 have quotients of the form PGL;(F,) for infinitely many finite fields
F,, each of which is of degree < 6 over its prime field. This is confirmed by calling L3Quotients
for the group G,>'®'® in MAGMA.

‘We also remark that, in contrast with the representations studied in Section 5.4, Proposition 5.14
does not provide an unbounded action of the group Gég’lg’ls on real or complex hyperbolic spaces,
but it rather provides an action on a symmetric space of higher rank. In particular, it does not yield
any conclusion on the possible failure of property (T) for that group.

We conclude this section by underlining another feature of the cyclically extended groups.
Except for the case k = 54, the associated simplicial complex associated to the group Glg’k’k
via Theorem 3.1 satisfies the hypotheses of Swiatkowski’s main theorem in [71]. In view of
the regularity properties of the vertex links that can be consulted in [22], we deduce that for
k = 16,18, 24,26, 40, 48, the full automorphism group of the simplicial complex associated with
the group Gg kK is discrete. On the other hand, the complex associated with Gé4’14’14 is a 2-adic
Bruhat-Tits building, whose automorphism group is non-discrete.

5.6 | Arepresentation in degree 6

The following result was obtained using the representation variety approach described in
Section 5.3.

14,14,18 ~14,14,54
) ] G ] >

Proposition 5.15. For T € {G " .G,

whose image is infinite.

}, there is an irreducible representation T' — U(6)

Proof. There is a surjective homomorphism Gl Gi4’14’18

4
ment for ' = G}‘4’14’18. We next observe that I' has an automorphism of order 2 fixing b and
swapping a and c¢~!. The corresponding extension, which is an overgroup of index 2 of T, has

the following presentation:

, so it suffices to prove the state-

[ =(t,a,b|t*,a b3 thtb~!,bab ta~'ba, (ata™'t)?, (at)®).

Set w = e¥/3 and ¢ = e27/12, Let
0 0 1 1 0 1 00
A;=|1 0 0],4,=|0 w?> O|landI=|0 1 Of.
01 0 0 0 0 0 1

Define the 6 X 6-matrices
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where each entry represents a 3 X 3-block. Finally, define

o1 a2l 1 ¢ ¢ =38+4
3 6 6 3 6 T 6
—2¢2+3 —¢2 —2¢242 —¢3 $3+42¢ -3
6 3 3 6 6 6
®-s -1 1 £ £+ =
B = 6 3 3 6 6 6
—¢ —¢3 —3¢344¢ 21 —4¢2+1 -1
3 6 6 3 6 6
=43 $3+2¢ = 20743 =2 —20%+2
6 6 6 6 3 3
=3 &342¢ =3 2825 ¢2-1 1
6 6 6 6 3 3

One verifies that the assignments (¢, a, b) — (T, A, B) defines a representation p : T — U(6). Set-
ting C = TA™!T, one also verifies that the matrix A~'BCB has eigenvalues that are not roots of
unity, so that the group (T, A, B) is infinite. The only two non-trivial invariant subspaces of the
subgroup (A, C) are the 3-dimensional subspaces, respectively, spanned by the first and the last
three vectors of the canonical basis. Since none of them is B-invariant, it follows that (A, B, C)
acts irreducibly. Therefore, the restriction of p to I" defines an irreducible unitary representation,
as required. O

Remark 5.16. As in Remark 5.12, we can compute the first few congruence quotients of the linear
group (T, A, B), and deduce that the groups Gi4’14’18 and Gi4’14’54 both have finite simple quotients
isomorphic to PSpg(5), PSp(7), PSpe(11), PSpy(13), PSps(17), PSpe(19). Using Theorem 3.1(iv),
one can derive that Gi4’14’18 is virtually torsion-free. Note that the systematic searches for small
finite simple quotients, and alternating quotients of small degree, of those groups, reported on in
Section B, did not identify any non-abelian finite simple quotient for Gi4’14’18 and Gi4’14’54.

5.7 | Onrepresentations of hyperbolic quotients of PSL,(Z)

The relative success of the representation variety approach we followed in the previous
sections suggests to consider the following.

Question 5.17. Letd > 1be an integer, letw = e?"/3 and R; = C[X], ..., X442] be the polynomial
ring in 9d? indeterminates over C. LetalsoT = (a,x | a®) 2 C; * Zand p: T — GL;,(R,) be the
representation of I' defined by

Iy 0 0 X, e Xag
pl@)=10 wly 0 | andp(x) = : o,
0 0 @ Xoq2—3d+1  ++ Xog2

where I; denotes the d X d-identity matrix.

Let now ry,..,r, € be such that the quotient group T =T/{x2,7r,..,r,) = (a,x |
a3, x?, ¥i,.,Fy) is non-trivial and hyperbolic (in particular, I is a hyperbolic quotient of C;
C, = PSL,(Z)). Let I be the ideal in R ; generated by the (m + 1)9d? polynomials corresponding
to the entries of the m + 1 matrices in the set {p(x?) — I;4} U {p(rj) —Lylj=1,..,m}.

Does there exist d > 1 such that the quotient ring R ;/1; is non-zero?
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Remark 5.18. Question 5.17 is formally equivalent to the question whether every hyperbolic group
is residually finite. Indeed, if the answer to Question 5.17 is positive, then every non-trivial hyper-
bolic quotient of PSL,(Z) has a non-trivial finite-dimensional linear representation over C, and
hence a non-trivial finite quotient. Since every non-elementary hyperbolic group G has a non-
elementary hyperbolic quotient in common with PSL,(Z) by Olshanskii’s Common Quotient
Theorem, it follows that G has a non-trivial finite quotient. It then follows that all hyperbolic
groups are residually finite, see [41, Theorem 1.2] or [57, Theorem 2]. Conversely, if every hyper-
bolic group is residually finite, then the group I' from Question 5.17 has a non-trivial finite quotient
Q in which the cyclic group (a) injects. In particular, the order of Q is 3d for some integer d > 1,
and the image of a in the regular representation of Q is conjugate to the matrix

I, O 0
0 Cl)Id 0
0 0 &’y

Therefore, the representation variety of I' whose coordinate ring is R;/1,, is non-empty, and
hence the ring R ; /1, is non-zero.

The potential asset of the reformulation provided by Question 5.17 stems from the possibility
to approach the problem by Grobner bases computations. Investigating Question 5.17 for random
quotients of PSL,(Z), such as those considered in [58], would be highly interesting.

6 | FIVEFOLD HYPERBOLIC TRIANGLE GROUPS WITH
PROPERTY (T)

As mentioned in Section 3, the only trivalent triangle groups from our sample for which The-
orem 2.6 applies and guarantees property (T) are the four Ronan groups. For the majority of
the other groups, we could find a finite index subgroup with infinite abelianization and/or an
isometric action on a real or complex hyperbolic space, which show that property (T) fails.

Let us also remark that we cannot expect Theorem 2.6 to apply and guarantee property (T) for
non-positively curved trivalent triangle group with a vertex group of very large order, since by

Corollary 2.13, one of the representation angles is bounded above by arccos(\/Tg —€) =~ 19.47°. We
consider this as evidence that, in order for an infinite hyperbolic k-fold generalized triangle group
to have property (T), it is necessary that k > 4.

Remark 6.1. A possible approach to confirm that a hyperbolic k-fold generalized triangle groups
with k small cannot have property (T) would be to show that the conformal dimension of the
boundary of those hyperbolic groups is at most 2. This is known to be an obstruction to property
(T), see [12] and [5, Theorem 1.3(3)].

In this section, we will see that hyperbolic k-fold generalized triangle groups with property (T)
do exist for k = 5. The following remark clarifies how we obtained experimental evidence that
such examples could be constructed using Theorem 2.6.

Remark 6.2. To a finite group X and two subgroups A and B, we can associate two kinds of angles:
one is 27t/ gy (A, B) where gy (A, B) is the girth of the bipartite coset graph I'y (A, B). The other is
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arccos ex(A, B), which we call the representation angle. In order for a generalized triangle group
associated to A, A;, A,, Xy, X;,X, to be non-positively curved according to Theorem 3.1, the sum
over the three angles of the first kind needs to be < 7. In order for Theorem 2.6 to guarantee
property (T), the sum over the three angles of the second kind needs to be > 7. So in order for
both properties to be satisfied, for at least one triple (X, A, B) = (X;, A;_1, A;,1), one needs

27

arccosey(A,B) > ———.
X 9x(A, B)

)
Among groups of small order this is rarely satisfied. Indeed, numerical evidence suggests that the
only groups X of order |X| < 2000 that admit subgroups A, B of order 5 satisfying (1) are %;(5),
SL,(Fs), (both with girth 6 and representation angle > 60°), %,4(5), SL,(F,), and a polycyclic group
of order 800 (all three with girth 8 and representation angle > 45°). In fact, Proposition 2.15 pro-
vides certified estimates for SL,(Fs) and SL,(F,). The groups %;(5) and %,(5) will be introduced
and studied in Section 7 where their exact representation angle is determined.

From those experiments, it follows that the only candidates for being 5-fold generalized triangle
groups with all vertex groups of order < 2000 that would both be hyperbolic and have property
(T) by an application of Theorem 2.6 would have to be of half girth type (3, 3, 3). Moreover, all of
their vertex groups would be isomorphic to %4(5) or SL,(F5). We shall see in Section 7 that, up to
isomorphism, there is only one non-positively curved 5-fold triangle group with all vertex groups
isomorphism to %;(5). That group has (T), but it is not hyperbolic (see Proposition 7.11).

Nonetheless, it turns out that if we allow (much) larger vertex groups, then we can indeed
construct hyperbolic 5-fold generalized triangle groups with property (T).

Proposition 6.3. Let X be a finite group generated by two elements a, b of order 5. Let A = (a) and
B = (b). Assume that:

(i) the girth of the coset graph T = I'x(A, B) is at least 14;
(i) ex(4,B) < 2.

Then every generalized 5-fold triangle group with vertex groups, respectively, isomorphic to X, C5 X Cs
and the Heisenberg group over Fs, is infinite hyperbolic with Kazhdan’s property (T).

Proof. Let G(T') be 5-fold triangle group as in the statement. The coset graph of Cs X C5 with
respect to a generating pair of cyclic subgroups of order 5 is the complete bipartite graph K s. Its
girth is 4. Moreover, the corresponding representation angle is 77 /2, see Example 2.1.

We shall see in Proposition 7.1 that the coset graph of the Heisenberg group over F, with respect
to some (and in fact any) generating pair of cyclic subgroups of order p is of girth 6. Moreover, the

cosine of the corresponding representation angle is g by Example 2.3.

Assume that (i) and (ii) hold. The half-girth type of G(7") is (2, 3, 7), where r is half the girth of
I'. Therefore, the fundamental group G(7) is infinite hyperbolic by Theorem 3.1, in view of (i).

Since ex(A, B) < # by hypothesis, it follows from Theorem 2.6 that G/(\T) has (T). O
Analogously one can verify using Proposition 7.3:

Proposition 6.4. Let X be a finite group generated by two elements a, b of order 5. Let A = {a) and
B = (b). Assume that:
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(i) the girth of the coset graph T = I'y(A, B) is at least 10;
(i) ex(4,B) < Y2,

Let G(T') be a generalized 5-fold triangle group generated with vertex groups isomorphic to X, C5 X Cs
and the 5-Sylow subgroup %,(5) of Sp,(5), respectively. Assume that the edge groups embed into
U4 (5) as the generating pair of cyclic subgroups described in Section 7.1. Then G is infinite hyperbolic
with Kazhdan’s property (T).

Proof. Again C5 X Cs has a coset graph of girth 4 and a representation angle of 7 /2. The group
%,(p) with respect to the described subgroups has as coset graph of girth 8 by Proposition 7.1 and
a representation angle of arccos( \/Z/_p) by Proposition 7.2.

The half-girth type of G(7) is (2,4,r), where r > 5 by (i). Therefore, the fundamental group
G/(?) is infinite hyperbolic by Theorem 3.1.

The cosines of the representation angles are (0, \/m, €)wheree < \/ﬁ by (ii). It follows from
Theorem 2.6 that G/(\T) has (T). O

Two examples of triples (X, A, B) satisfying the hypotheses of Proposition 6.3 are given by the
cases p = 109 and p = 131 of Proposition 2.17. Two examples of triples (X, A, B) satisfying the
hypotheses of Proposition 6.4 are given by the cases p = 31 and p = 41 the same proposition.
This leads to several hyperbolic 5-fold generalized triangle groups with property (T). Two of these
feature in Theorem 1.2 from the introduction, whose proof can now be completed.

Proof of Theorem 1.2. The presentations of .7/, make it clear that the groups are 5-fold generalized
triangle group.

LetL = (a,b | a°,b>,R), where R denotes the set consisting of the seven relators of 77, involv-
ing both a and b. The following procedure allows one to verify with MAGMA that L is isomorphic
X =~ PSL,(109). First, one computes that the assignments

an—»(o 1) and b~ <57 2)

-1 11 52 42

define a surjective homomorphism L — X = PSL,(109). On the other hand, the MAGMA com-
mand #L confirms that L is a finite group of order 647460 = |PSL,(109)|. The required
assertion follows.

By Proposition 2.17, the girth of I'y(A4,B) is 14 and 5ex(A,B) < 2\/_ ~ 4.47213595. The
conclusion for .77y follows from Proposition 6.3.

Similarly if a, b, X, A, B are as in the p = 31 case of Proposition 2.17, one verifies that the group
presented by the generators and relations of 7%, involving only a and b is isomorphic to X =
PSL,(31) where the generators are represented by matrices with the same letter. We conclude that
the coset graph has girth 14 and that 5¢x(A, B) < V15 ~ 3.8729833462. Let M = (b, c | S) where
S are the relations of .73, involving only b and c. We will see in the next section that M = %,(5)
and that [b, c] does not commute with c. Therefore, we can conclude with Proposition 6.4. O

Remark 6.5. Clearly, the method used above yields more examples of hyperbolic 5-fold general-
ized triangle groups with property (T) than those recorded in Theorem 1.2. We may indeed use
PSL,(41) instead of PSL,(31), and PSL,(131) instead of PSL,(109), as a consequence of Propo-
sition 2.17. Moreover, for each triple of vertex groups, we can take advantage of the freedom we
have in defining the homomorphisms identifying an edge group to a generator of the vertex group
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containing it. However, we have not been able to construct an infinite family of hyperbolic 5-fold
generalized triangle groups with property (T).

7 | KAC-MOODY-STEINBERG GROUPS OF RANK 3
7.1 | Coset graphs from Moufang polygons

The Pappus graph and the Gray graph are members of an infinite family of graphs that can be
constructed as follows. Some of those graphs were considered in [48].

Given two elements x, y in a group G, we denote by [x, y] = x~1y~!xy their commutator. Given
subgroups A, B < G, we denote by [A, B] the subgroup generated by all elements of the form [a, b]
witha € Aand b € B.

Let n € {3,4, 6,8} and G be a Moufang n-gon. Let (U, U, ..., U,) be the root group sequence
associated with G, as defined in [72, (8.10)]. This means in particular that U is a group, and that U,
isasubgroup of U for each i, that is called a root group. Moreover the productmap U; X -+ X U,, —
U is bijective, and for all i < j, we have [Uj, Uj] <Uppq - Uj.

Proposition 7.1. The (possibly disconnected) bipartite coset graph I't;(Uy, U,,) is the subgraph of
the generalized n-gon G spanned by all the edges opposite the unique edge fixed by U. In particular,
the girth of Ty (U, U,,) is 2n.

Proof. The proof, formulated in a special case in [48, Theorem 3.1 and Proposition 3.2], applies in
full generality. O

We now focus on two specific examples.

Let q be a power of a prime p. We denote by %5(q) a copy of the p-Sylow subgroup in SL;(q)
and by %,(q) a copy of the p-Sylow subgroup in Sp,(q). In those groups, each of the root groups
U,,..., U, is isomorphic to the additive group of a field k of order q. Denoting by x; : k — U, an
isomorphism, then the non-trivial commutation relations between the root subgroups of %,,(q)
are as follows, for all a, b € k (see [72, (16.2)]):

[x1(a), x3(b)] = x,(ab)

ifn =3, and

[x,(a), x4(b) "] = x5(2ab)
[x1(a), x4,(b) '] = x,(ab)x;(ab?)

if n = 4 (the root subgroups not involved with those relations commute). It is easy to see from
those commutation relations that the group %4(q) is generated by U, and U, and similarly that
if ¢ > 2, then %,(q) is generated by U, and U,. Hence the graphs Lo q)(Uy, Us) (respectively,
F%(q)(Ul, U,) with q > 2) are connected. The group %;(q) is nothing but a Heisenberg group
over k.

In the special case where q is a prime, the groups %;(q) and %,(q) admit the following
presentations, where the symbol [x,, ..., x,,] denotes the nth commutator [[[x;, x,], ... ], x,,].
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Proposition 7.2. Let p be a prime. Then:

(1) 62/3(17) = <a5b | apa bP’ [a’ baa]a [a’ b’b]>,
(ii) If p > 2, then % (p) = {a,b | a?,b?,[a,b,al,[a,b,b,al,[a, b, b, b]).

Proof. That (a,b | a?,b®,[a,b,a],[a,b,b]) is a presentation of the Heisenberg group over F,, is
well known and easy to see.

Let U ={a,b | aP,b?,[a,b,al,[a,b,b,al,[a,b,b,b]). Observe that z = [a,b,b] commutes
with a and b, and is thus a central element of U. The quotient U /(z) is isomorphic to {(a,b |
aP,bP,[a,b,a],[a,b,b]) = %(p). Moreover, since z is central, it follows that z" = [a, b, b"] for
all n. In particular, zP? = 1. We infer that |U| < p4.

On the other hand, the assignment a — x;(1) and b — x,(—1) extends to a homomorphism
¢: U — Z(p). Since p > 2, it follows from the commutation relations described above that
%,(p) is generated by U, and Uy, so that ¢ is surjective. Since |%,(p)| = p*, we deduce from
the previous paragraph that ¢ is an isomorphism. O

We next compute the representation angles.

Proposition 7.3. Let p be a prime. Then:

(1) eqy(p(U1,Us3) = 1/4/p;
(i) if p > 2, then ey, (U, Uy) = v2/p.

In particular, the graphs Uy, (U, Us) and Ty, ,(Uy, U,) are Ramanujan graphs.

Proof. For the first assertion, see [30, §4]. We focus on %,(p).

Let a = x;(1) and b = x,4(—1). Let W be the subgroup generated U, U U, U U;. Thus W is
abelian of order p* and %,(p) is a semi-direct product W X U,. We view W as a vector space
over F,. In view of Proposition 7.2, we see that the action of b on W is represented by the matrix

1 10
B=|0 1 1
0 01

with respect to the basis ([a, b, b, [a, b], a).

We claim that every irreducible representation of U = %,(p) is either of degree 1, or is a
representation of degree p induced by a degree 1 representation of W.

To prove the claim, we let y be a character of W and = = Ind%( x) be the representation of U
induced by . The representation 7 can be realized as follows. Let (e, ey, ..., €,_;) denote a basis
of CP. Then 7r(b)e, = e, (where the indices are taken modulo p), and 7(a)e, = x(b™"ab")e,,.

According to [67, Corollary to Proposition 23], the representation 7 = Ind%{,( x) is irreducible
if and only if the characters y®" : W — C* : w —~ y(b~"wb") are pairwise distinct for distinct
values of n mod p. In particular, if y([a,b]) # 1 or y([a,b,b]) # 1, then 7 is irreducible. The
number characters of W satisfying that condition is p3> — p. Those characters from p? — 1 orbits
under the action of (b) by automorphisms. Thus we obtain p? — 1 pairwise non-isomorphic irre-
ducible representations of U in this way. Since the abelianization of U has order p?, it follows
that U has also p? representations of degree 1. Since p* = p? + (p? — 1)p?, it follows that every
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irreducible representation of U is either of degree 1, or is of the form 7 = Ind‘[){,( x) for some
character y of W such that y([a, b]) # 1 or x([a, b, b]) # 1. This proves the claim.

Therefore, in order to finish the proof, we may fix such a representation 7 and show that
eg(U, Uy m) < \/%

The fixed-point space of U, = (b) under the representation 7 is the one-dimensional
subspace spanned by Zﬁ L,¢€n- Since the action of U; =(a) under 7 is diagonal in the
basis (e, ...,e,_;), the fixed-point space of U, is spanned by those e, which are fixed
by a. We have m(a)e, = y(b~"ab"™)e,. Moreover y(b~"ab") = y(ala,b]"[a,b,b]""~1/2) =
x(@x([a,b])"x([a, b, b])""~1/2 We know that y(a), x([a, b]) and y([a, b, b]) are three pth roots
of unity, and moreover y([a, b]) and y([a, b, b]) are not both equal to 1. The number of values of
n mod p such that y(b~"ab™) =1 is thus the number of solutions of a quadratic equation in
the prime field of order p. Hence the fixed point space of a has dimension < 2. If its dimension

is 0, we have ¢;;(U,, U,; w) = 0. If its dimension is 1, it is spanned by some e,, and we obtain
. — |<en’2k ek>| _ . . . . o . .

eg(Uy, Uy ) = Teall Sredll = 1/4/p. If its dimension is 2, it is spanned by a pair e,,, e, and we

obtain

|</1€m + Mey, Zk ek>|
e, + pe, llll 2y el

EU(UI,U4;7T)=SHP{ |A,,L£EC, (A’#)#(O’O)}

|4+ pl
=supy ———— | L, u€EC, (/1,,4«!)7&(0,0)}
{\/|/1|2+ l2l\/p

=vV2/p

by the Cauchy-Schwarz inequality. Therefore, ;,(U;, Uy) = v/2/p.
The last assertion now follows from Corollary 2.14. O

Remark 7.4. For p odd and g any power of p, the estimate

1++/p

p

€, (U1, Uy) <

can be extracted from the work of Ershov-Rall [31].

7.2 | Kac-Moody-Steinberg groups of rank 3

We now show that all the trivalent triangle groups considered in Section 3, all of whose vertex
groups are 3-groups, belong to a broad infinite family that contains numerous examples of infinite
hyperbolic Kazhdan groups.

Let G(T) be a triangle of groups with all edge groups cyclic of order p, and the vertex group X;
isomorphic to 021,1_ (p) for r; € {2,3,4}, where i = 0,1, 2 and where %,(p) is defined as the direct

product C, X C),. LetG = G(T) be its fundamental group. Thus G is a generalized p-fold triangle
group. In view of Theorem 3.1 and Proposition 7.1, the half girth type of G(T) is (ry, 11, 7,). We
denote by C the collection of all non-positively curved generalized triangle groups obtained in
this way.
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O=<=0=>=0 O=>=0==%=0 O=>=0=>=0
By s BC,
VANSERVIN
A HCyY
VAN S S 1
HBY HCY? HBC
PN Y
HBY HBCY

FIGURE 4 Ten Dynkin diagrams of rank 3

Corollary 3.8 allows us to classify the groups in C up to isomorphism. In order to facilitate
the statement, we introduce additional notation. Let us first list ten Dynkin diagrams of rank 3,
see Figure 4. The notation for the diagrams of affine type, namely 4,, B,, C, and BC,, is stan-
dard. The notation for the six other diagrams is inspired by Kac-Moody theory; the Weyl group
corresponding to each of those six diagrams is a hyperbolic triangle Fuchsian group.

To each of those Dynkin diagrams and to every odd prime p, we associate a finitely presented
group, as follows.

%g;(p) ={a,b,c| aP,bP,cP,[a,b],
[c,b,c],[c,b,b,cl,[c,b,b,b],[c,a,cl,[c,a,a,c],[c,a,a,al).
g@;(p) ={a,b,c | a?,b?,cP,|a,b],
[b,c,bl,[b,c,c,bl, [b,c,c,cl,[a,c, al,[a,cc alla,c,cc]).
Y55, (p) =(a,b,c | aP,bP,cP, [a,b],

[b,c,b],[b,c,c,bl,[b,c,c,cl[c,a,cllca,a,cllca,a,al).

95, (p) =(a,b,c | a”,bP,cP [a,b,a],[a,b,b],

[b,c,b],[b,c,cl,[a,c,al,[a,c,c]).

gHC(l)(p) = <a7 byc | aP’bP’ cp7 [a’ b’ a]7 [a7 b7 b]7
2

[b,c,bl,[b,c,cl,[a,c,al,[a,c,c,al,[a,c,c,cl).
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4, zo(p)=(a,b,c|af,bP,cP [a,b,a],[a,b,b],
2

[c,b,cl,[c,b,b,cl,[c,b,b,b],[c,a,c],[c,a,a,c],[c,a,a,al).

4,.»(p) = (a,b,c| a?,bP,cP,[a,b,al,[a,b,b],
2

[b,c,b],[b,c,c,bl,[b,c,c,cl,[a,c,al,la,c,c,al,[a,c,cc]).

Gupc>(P) = (a,b,c] a?,bP,c [a,b,al],[a,b,b],

[b,c,bl,[b,c,c,bl,[b,c,c,cl,[c, a,cl,[c,a,a,cl,[c a,a,al).
gHB@)(p) ={a,b,c| a?,b?,cP,[a,b,al],la,b,b,al],la,b,b,b],
2

[b,c,b],[b,c,c,b],[b,c,c,cl,[a,c,al,[a,c,c,al,[a,c,c,c]).

9, 5c®(P) =(a,b,c| aP,bP,cP,[a,b,al,[a,b,b,al,[a,b,b,b],
2

[b,c,b],[b,c,c,bl,[b,c,c,cl,[c,a,cl,[c,a,a,c],[c,a,a,al).

Remark 7.5. Setting p = 3, we obtain ten trivalent triangle groups that belong to the sample from
Section 3 (see the presentations in Section A). The isomorphisms are as follows:

~ (0,54,54 ~ (0,54,54 ~ (6,54,54
Gr(3) =GP g3 =GP, g (3) 26,

~ (~18,18,18 ~ (~18,18,54
Y =677, G, @) =67,
2
~ (18,54,54 ~ (18,54,54 ~ (18,54,54
%HB(2>(3) =G, , gHC(Z)(?’) = Gg , gHBC(Z)(S) =G, ,
2 2 2
~ G545 ~ (54,54,54
gHBS)(:S) ~ G2 and gHBCf)(?’) ~ GO .

The following result implies in particular that for a fixed p, the ten groups above are pairwise
non-isomorphic.

Proposition 7.6. Let p, p’ be odd primes. Let G,G’ € C be p- and p’-fold triangle groups of type
(rg,ry,1,) and (r(’), r{, r;), respectively, withry < ry <r, and r(’) < ri < r;.

If GG/, then p=p' and (ry,ry,1,) = (ré,r{,r;). Moreover, exactly one of the following
assertions holds.

s (rg,11,75) =(2,4,4),and G = %Ez(p) orG %E;(p) orG = %}\C;(p).
s (rg,11,72) =(3,3,3)and G = gg;(p).
s (rg,11,72) =(3,3,4)and G = gHC(l)(p).
2
s (rg,r1,72) =(3,4,4),and G = chg”(p) orG = %HBEZ)(p) orG = %HBCEZ)(p).
s (rg,11,75) = (4,4,4),and G = %Hng)(p) orG = %HBcf)(p).
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Proof. The first assertion is a straightforward consequence of Corollary 3.8. For the second, we
use the following properties of %;(p) and %,(p).

* The subgroup of Aut(%4(p)) which stabilizes the pair {U,, U;} is isomorphic to the wreath
product C,_; 2 C,.

* The subgroup of Aut(%,(p)) which stabilizes the pair {U,,U,} is isomorphic to the direct
product C,,_; X Cp,_;. In particular, no automorphism of %,(p) swaps U, and U,.

Indeed, it is easily verified using Proposition 7.2 that for any r € {1, ..., p — 1}, the assignments
(a,b) = (a",b)and (a, b) — (a,b") both extend to automorphisms of %;(p) (respectively, %,(p)).
In particular, the subgroup of Aut(%;(p)) (respectively, %,(p)) which stabilizes the pair {U;, U}
(respectively, {U;, U,}) is contains Aut(U;) X Aut(U;) (respectively, Aut(U,) X Aut(U,)), which
is isomorphic to Clz)_l. Moreover, the assignment (a, b) — (b, a) extends to an automorphism of
2,(p), whereas no automorphism of %,(p) swaps (a) = U; and (b) = U,. The two properties
listed above follow.

In view of those assertions, the required conclusion is a consequence of Corollary 3.8. O

Following the terminology in [30], we say that a p-fold triangle group G € C is a Kac-Moody-
Steinberg group or KMS group for short) over the field F, of order p.

Theorem 7.7. Let G be a KMS group of half girth type (r, r1,r,) over F,,. Then G is acylindrically
hyperbolic, and if 1/ry + 1/r, + 1/r, < 1, then G is hyperbolic. Moreover:

@) if(rg,ry,13) = (2,4,4), then G has property (T) if and only if p
(i) if (rg,ry,13) = (3,3,3), then G has property (T) if and only if p
(ii) if (rg,ry,72) = (3,3,4), then G has property (T) forall p > 7;
@v) if(rg,ry,13) = (3,4,4), then G has property (T) forall p > 7;
W) if(rg,ry,1y) = (4,4,4), then G has property (T) forall p > 11.

5;

2
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Proof. In view of Theorem 3.1 and Proposition 7.1, we see that G is infinite, and G is hyperbolic if
1/ro+1/r; +1/r, < 1.In all cases, G is acylindrically hyperbolic by Theorem 3.6.

For the other assertions, we invoke Theorem 2.6 together with Proposition 7.3. If (ry, r1,7,) =
(2,4,4), we find that G has property (T) for all p such that p > 4. Moreover, for p = 3, it follows
from Remark 7.5 and the results from Section B.1 that G has a finite index subgroup with infinite
abelianization. Hence, G does not have (T).

If (ro, 71, 7,) = (3,3, 3), we find that G has property (T) for all p such that p* — 6p? + 9p — 4 > 0.
In particular G has (T) for p > 5. Moreover, for p = 3, it follows from Remark 7.5 and the results
from Section B.2 that G has a finite index subgroup with infinite abelianization. Hence, G does
not have (T).

If (ry, 11, 1,) = (3, 3,4), we find that G has property (T) for all p such that p* — 8p* + 16p — 8 >
0. If (ro,ry,7,) = (3,4,4), we find that G has property (T) for all p such that p> — 10p? + 25p —
16 > 0. If (ry, r1,7,) = (4,4,4), we find that G has property (T) for all p such that p* — 12p? +
36p —32> 0. O

We shall see in Proposition 7.11 below that if (r(, 71, 7,) = (3, 3, 3), then G is not hyperbolic.
The KMS groups %Z; (p)and %HB O (p) admit an automorphism of order 3 that permutes cycli-
2

cally the generators. In the same vein as in Section 5.5, we therefore obtain overgroups of index 3
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Gy (p) —— gHBéz) (p) // Y5, (p)
%Hcéz) (p) (g@ (p)
Yupee (P) — Gypee () Y56, (1)

FIGURE 5 Epimorphisms between KMS groups over F,,

admitting the following presentations:
G (p)=(t,a,b |t*,a?,tat"'b™", [a,b,al, [a, b, b])

G oo (P) = (t,a,b |t*,aP,tat™'b™", [a,b,a],[a,b, b, al,[a,b,b, b]).
2

Clearly, the generator b is redundant and the groups %};(p) and S?HB c® (p) are 2-generated.
2

Combining Theorem 7.7 with Proposition 7.2, we obtain infinite families of infinite hyperbolic
groups with property (T), each given by an explicit presentation.

Corollary 7.8. For every prime p > 7, the groups %H i (p), %H @ (p), gHBf) (p)and %HB @ (p)are

infinite hyperbolic groups with property (T).
For every prime p > 11, the groups %HB@) (p), gHB c® (p) and gHB c® (p) are infinite hyperbolic
2 2 2

groups with property (T).

The number of relators in those presentations is uniformly bounded. Alternative presentations
whose total length is a logarithmic function of p can be obtained using the results from [34, Sec-
tion 8], which provide short presentations of cylic groups that can be used to shorten the three
relators a?, bP and c”.

7.3 | Epimorphisms of KMS groups

The quotient of the group %,(p) by its center is isomorphic to %;(p). This can be used to construct
various epimorphisms between the KMS groups over a fixed prime field F,, sending each of the
generator of the source KMS group to a generator of the target KMS group. The complete set of
epimorphisms constructed in this way is depicted in Figure 5.

In particular, the group %Z;(p) is a quotient of each hyperbolic KMS group over F,. This
motivates further investigations of the former.
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7.4 | Further properties of ¥;-(p)
We start by observing that 54;;; (p) has a linear representation with infinite image.

Proposition 7.9. The assignments

0 1 0 O
ae— o, b—»|0 1 1|,c—=]0 1 O
0 0 1 T 0 1

extend to a homomorphism
p i Z5(p) = SLy(Fp[TD.
The image of p is a residually-p group of index (p> — 1)(p® — 1) in SL;(F,[TD.

Proof. The fact that p is a well-defined homomorphism %A;; (p) — SL;(Fp[T]) is straightforward
to verify from the presentation of %Z;(p). The fact that the subgroup of SL;(F,[T]) generated
by the matrices p(a), p(b), p(c) have the asserted properties can be deduced, for example, from
[1, Theorem M]. O

Corollary 7.10. Let p be an odd prime and q = p° for some e > 3. Let also G be %&(p), or any
of the six hyperbolic KMS groups over F, (that is, a KMS group of one of the six types appearing in
Corollary 7.8). Then G has an infinite pro-p completion, and G has a quotient isomorphic to SL;(F ).

Proof. In view of the epimorphisms from Figure 5, it suffices to prove those assertions for G =
g;g(p). To that end, consider the representation p afforded by Proposition 7.9. Since the image
of p is an infinite residually-p group, it follows that G has an infinite pro-p completion. Observe
moreover that the field F, is a quotient of the ring F ,[T], since the multiplicative group F;I iscyclic
It follows that SL;(F,) is a quotient group of SL;(F,[T]). Since g > p, it follows that the group
SL;(F,) does not admit any proper subgroup of index < (p*> — 1)(p® — 1) since g > p*. Therefore,
the composite map

G — SLy(F,[T]) — SLs(F,)
must be surjective. Ol

Our next goal is to show that 54;;2 (p) is not hyperbolic. In the following statement, the elements
a, b, c are the generators of %A~2 (p) as they appear in the presentation from Section 7.2.

Proposition 7.11. Let p be an odd prime and let G = %Z; (p). Then the elements

p-1 p1
x=aba 2 ¢ and y=aca 2 b

generate a subgroup of G isomorphic to Z X Z.
In particular, G is an acylindrically hyperbolic group which is not hyperbolic.
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FIGURE 6 The elements in Proposition 7.11

Proof. From the presentation of G, it follows that the commutator [b, a] commutes with a and b.
Moreover, we have [b, a"™| = [b, a]™ for all m > 0, and [b, a]P = 1. Similar assertions hold for the
pairs {a, c} and {b, c}.

Setn = pT_l. We have

xy = aba"caca"b
= a""b[b, a™]ac[c, ala"c[c,a"]b
= a""ba[b,al*ca’c[c,a]*"'b
= a"*2p[b, a]" ' a"c[c, a]*c[c,a]*"'b
= a"2ba"[b, a]™'c*[c, a*™*'b
= a®"2p[b, a]"[b, a]"*'¢*[c, a]"*'b
= aP*'b[b,alPc?[c, a]Pb

= abc?b.

Similar computations show that yx = acb?c. Since bc?b = b%c?[c?, b] = b%c?[c, b]? and cb?c =
b2c[e, b*]c = b?c?[c, b]?, we infer that xy = yx.

In order to show that (x, y) = Z X Z, it remains to show that x and y are both of infinite order,
and that the cyclic subgroups they generate are not commensurate in G. We establish this using
the geometric action of G on the 2-dimensional CAT(0) complex Y afforded by Theorem 3.1.

Let (vy, vy, U,) be 2-simplex of Y such that v, is fixed by (a, b), v, is fixed by (b, c) and v, is fixed
by (c, a). Let p be the center of (v,, vy, U,). From Lemma 3.2, we know that x and y are hyperbolic
isometries and that p lies on an axis of each. As in the proof of the lemma, we see that [p, x.p]
contains v, while the geodesic segment [p, y.p] contains v,, see Figure 6. That is, the axes of x
and y are not parallel and hence the cyclic groups (x) and (y) are not commensurate.

Clearly, this implies that G is not hyperbolic. That G is acylindrically hyperbolic follows from
Theorem 3.6. O

Land

Remark 7.12. Similar arguments show that in the group %E;(p), the elements x = acb~'c™
y = bca=!c™! generate a subgroup isomorphic to Z x Z. In particular, %5;( p) is not hyperbolic.

We omit the details.
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‘We finish this section by reporting on a supplementary construction of finite quotients of the
group %;rz (p)- Inview of the epimorphisms from Figure 5, it follows that the answer to Question 1.6
can only be negative if %A~2 (p) fails to have quotients in .#; for all d. The following variation
on Proposition 7.9 can be used to challenge this problem. It is inspired by the seminal work of
Kassabov [42, §4.1].

Proposition 7.13. Let q be a positive power of the odd prime p, and let k > 1 be an integer. Let also
Mg, My, M, € Maty (F,) be any three k X k-matrices with coefficients in F . Then the assignments

1 M, 0 10 0 1 00
arU,:=l0 1 0|,b=U,:=[0 1 My|c—U.:=|0 1 0},
0 0 1 00 1 M, 0 1

c

where each entry represents a k X k-block, extend to a homomorphism
pMa’Mb’Mc : gz;(p) s SL3k(Fq)
Proof. Straightforward computation in view of the presentation of %Z; (p) from Section 7.2. [

Thus, every subgroup of SL; (F,) generated by three matrices of the form U,,, Uy, U, is a finite
quotient of %Z; (p). It turns out that this construction does not produce finite simple quotients of
large rank, in view of the following observation.

Proposition 7.14. Retain the notation of Proposition 7.13 and letT" = (U, Uy, U,.). Then there is a
finite extension F of F; and a subnormal series of I such that every subquotient from that series is
either a p-group, or isomorphic to a subgroup of GL;(F).

Proof. We work by induction on k. In the base case k = 1, there is nothing to prove. Let now k > 1.
We distinguish two cases.

Assume first that at least two of the matrices M, M, M, € Maty;(F,) have a non-zero deter-
minant. Without loss of generality, we may assume that det(M,) # 0 # det(M}). Let x be the
block-diagonal matrix in GL;; (F,) defined by

-1
M1 0 0
x=l 0o 1 o]
0 0 M,

and set U}, = xU,x™", U = xUpx " and U} = xU.x"". Then

110 1 00 1 0 0
U,=(0 1 of,U;=[0o 1 1f,andU, = 1 1 of.
001 001 MMM, 0 1

In particular, the group xI'x~' is a subgroup of SL;(A), where A < Maty, (F,) is the
F,-subalgebra generated by the single element M, M_M,,. Thus A is commutative, and is in fact a
quotient of the polynomial ring F,[T]. Denoting by T a maximal ideal in A, we obtain a congru-
ence quotient SL;(.A) — SL;(A/T) whose kernel is to be a p-group (see [27, §26.4] for a detailed



HYPERBOLIC GENERALIZED TRIANGLE GROUPS | 53

proof of this well-known fact). Since .A /1 is a finite field extension of F, the required conclusion
holds in this case.

We now assume that at most one of the matrices M,, My, M, € Mat (F;) has a non-zero
determinant. Then at least two of them have zero determinant. Without loss of generality, we
may assume that det(M;) = det(M,) = 0. Then there exists L;, L; € GL;(F,) such that the first
column of M L7 and the first column of M pL3 ! are both zero. If det(M,) = 0, we choose similarly
a matrix L, € GLk(Fq) such that the first column of M oLy Lis zero. If det(M o) # 0, then we set
L, = L;M, € GL,(F,). In either case, we see that the matrices M, = L;M,L;", M| = L,M,L;"
and M/, = L;M L7 all belong to

% k
B = {(0 X) | X e Mat(k—l)x(k—l)(Fq)} .

Let y be the block-diagonal matrix in GL;;(F,) defined by

L, 0 0
0 0 L,
Then the group yI'y~! is generated by
1 M, o0 10 0
U,=yUy~'=[0 1 of|, U =yUyy'=[0 1 M|, and
0o 0 1 0 0 1
1 0 O
U =yUy = 1 0]
M 0 1

In particular, yI'y~! is a subgroup of GL;(1B). Clearly, the set B is a F,-subalgebra of Mat;; (F,)
that maps onto Mat_;y,—1)(Fg). This yields a homomorphism GL3(53) — GL;_1y(Fy). It is
easy to see that its kernel has a normal p-subgroup such that the quotient is isomorphic to
GL;(F,). Restricting to yTy~1, we obtain a homomorphism taking values in SLs(k—1)(Fg), whose
kernel decomposes as an extension of a p-group by a subgroup of GL;(F,). Moreover, the image
of the generators U/, U; and U/ under that homomorphism generate a subgroup of SL3;_;)(F,)

to which the induction hypothesis applies. The required conclusion follows. O

7.5 | Further properties of 4, .o, (p) and 9 (p)

In view of Section 7.3, the quotients of 54;2 (p) described in the previous section are also quotients
of each hyperbolic KMS group over F,. We now focus more specifically on gH c® (p)and %HB@) (p),
2 2

first establishing an analogue of Proposition 7.13.

Proposition 7.15. Let q be a positive power of the odd prime p, and let k > 1 be an integer. Let also
Mg, My, M, € Maty (F,) be any three k X k-matrices with coefficients in F. Set
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1 0 0 O 1 0 0 O 1 0 0 M,
0 1 00 0 0 0 01 M, O
V,= , Vp = andV, = ,
M, 01 0 0 0 1 0 0 0 1 0
0 0 01 0 M, 0 1 0 0 O 1

where each entry represents a k X k-block. Then the assignments (a,b,c) = (V,,V,,,V,) extend to a
homomorphism oy v, u, %C;(p) — SLy(Fy).
Similarly, the assignments (a, b, c) — (V(’l, VI’), Vé), where

10 0 M, 1 00 0 1 0 00

01 M, 0 M, 1 0 0 1 00
V! = ¢ V= and V! =

00 1 0 0 01 —-M, 0 0 10

00 0 1 0 00 1 0 M, 0 1

o

extend to a homomorphism O-I,\/Ia,Mb,MC : %HB? (p) — SLy(Fy)

Proof. Straightforward computation in view of the presentation of the KMS groups from
Section 7.2. m

It turns out that the outcome of the constructions from Proposition 7.15 is very different for the
groups %5;( p)and %HB@) (p). Indeed, for gﬁ; (p), the quotients from Proposition 7.15 are subjected
2

to analogous restrictions as in Proposition 7.14. This can easily be established by similar argu-
ments. We omit the details. Instead, we focus on %HB@ (p), for which the situation is strikingly
2

different, as illustrated by the following.

Proposition 7.16. Let p be an odd prime. For any prime k # p, there exist matrices M, M,,M, €
Maty(F ) such that the subgroup of SLy;(F,) generated by the three elements V', V|, V', defined
as in Proposition 7.15, has a quotient in .%,_;.

The proof of that proposition requires some preparation. We start with a special case of a general
result due to Shangzhi Li.

Theorem 7.17 (See [49, Theorem 1]). Let F be a finite field of order q and K be a finite extension of
F of degree k. We assume that k is prime and that (q, k) # (2, 2). Embed the group N = SL,(K) as a
subgroup of G = SL,;(F) by identifying the natural N-module K* with the G-module F?*. Let also
X be a subgroup of G containing N. Then one of the following holds.

(i) X normalizes N.
(ii) X contains a normal subgroup isomorphic to Sp, (F).
(iii)) X =G.

The group N embedded as a subgroup of G as in Theorem 7.17 is called a field extension sub-
group. Specializing Theorem 7.17, we obtain the following result describing subgroups of SL,; (F )
generated by three unipotent block matrices.
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Proposition 7.18. Let p, k be primes with p > 2. Let also My, M,, M5 € Mat(F,) and define the
elements V,,V,,V3 € G = SLy(F,) by

1 M 1 0 1 M

where each entry represents a k X k-block. We assume that M, M, is invertible, of multiplicative
order p* — 1. Then the following assertions hold.

(1) (V1,V,) isisomorphic to a field extension subgroup SL,(F ) < G.
(ii) If in addition, we have M\ M,M; # M;M,M, and p # k, then (V,V,,V3) either contains a
normal subgroup isomorphic to Spy(F ), or is the whole group G = SL,; (F ).

Proof. An element C of the group GL;(F,) of order p¥ is called a Singer element. If C is a Singer
element, the cyclic group (C) acts irreducibly on F;‘). Therefore, it follows from Schur’s lemma and
Wedderburn’s theorem that the subalgebra of Mat, ., (F,,) generated by C is a subfield, isomorphic
to F . It then follows from the work of Dickson (see [45, §2.1]) that the subgroup of G generated

by
11 1 O
d
(6 3)ma (e 3)
is isomorphic to a field extension subgroup SL,(Fx) < G.
By hypothesis, the matrix C = M, M, is a Singer element of GL; (F ). Moreover, the matrix

1 0
d=
<0 M 1)
conjugates V', and V,, respectively, to

1 1 and 1 O
0 1 c 1)°
The first assertion follows.

Let now M; € Mat; (F,) be such that M;M,M; # M;M,M,, and assume p # k. We claim
that V; does not normalize the field extension subgroup (V;,V,). In view of Theorem 7.17, the
required assertion follows from that claim.

In order to prove the claim, it suffices to show that

dv,d = <1 M3M1_1>
0 1

does not normalize

o=l 1) (e 1)

By [49, Theorem 1], the full normalizer of the field extension subgroup H in GLy (F,) is isomor-
phic to GL,(F ,x) X Aut(F ,x). In particular, since p # k, the p-Sylow subgroups of that normalizer
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are all contained in H, and are conjugate to

() mec)

where C denotes the subalgebra of Maty (F ) generated by C. Since dV;d~! is of order p and
centralizes the latter subgroup, we deduce that dV;d~! normalizes H if and only ift M; M 1 belongs
to C. As mentioned above, the subalgebra C is isomorphic to F, and is thus commutatlve. Since
M,M,M; # M3M, M, it follows that (M, M,)(M;M[ ") # M3M2 = (MM 1) (M M,), so that C =
MM, and M;M 1 do not commute. This confirms that dV;d~! does not normalize H. The claim
follows. O

Proof of Proposition 7.16. Let M, be the matrix with (M,);,,; = 1foralli =1, ...,k — 1 and with
all other entries equal to 0. Let M, be the matrix with (Mj);;,; =1foralli=1,..,k -1 and
with all other entries equal to 0. Set M; = M, M, + M, M, = diag(1,2,...,2,1). Choose a Singer
element C € Mathk(Fp) whose last column is (1,0, ..., O)T, clearly, such a Singer element exists
since GL (F,) acts transitively on ordered pairs of linearly independent vectors in Ff,- Finally, set
M, =M7 1C. We claim that these matrices satisfy the required conditions.

In order to verify this, we set M, =M, and M; =M, M,M .M M,. Observe that
M1M2M3M1‘1 = Cdiag(0,271,...,271,1)Cdiag(1,27%,...,271,0). In particular, the last col-
umn of M;M,M;M;" is zero. On the other hand, we have M;M, = diag(0,27%,...,271,1)
Cdiag(1,271,...,271,0)C. Applying that element to the nth vector e, of the canonical basis of
FE, we obtain M;M,(e,) = diag(0,271,...,271,1)C(e,) since C(e;) = e; by the definition of C.
Since C is a Singer element, the vector C(e,) is not colinear with e; . Since the kernel of the linear
map represented by the diagonal matrix diag(0, 271, ...,271,1) is spanned by e;, we deduce that
M;M,(e;) # 0. It follows that M; M, M5 # M;M,M,.

Computations show that

100 0 100 O
01 0 —MM,—MM 01 0 —-M
[V‘,I,V{)]: a*"'b ba= 1
0 0 1 0 001 0
0 00 1 000 1
and
1 00 0 100 0
WLV = 0 1 0 —4MMyMMM,| |0 1 0 —4M;
’ 0 0 1 0 001 O
0 0 0 1 000 1

Since M, M, = C is a Singer element, it follows from Proposition 7.18(i) that (V/, [V, V] ]) is iso-
morphic to SL,(F ). Since SLZ(Fpk) is perfect, this implies in particular that V! belongs to the
derived subgroup of H = (V/, V;, V).

Moreover, Proposition 7.18(i) implies that (V[,[V],V]]) is a field extension subgroup of
SL,y(F,), which is itself embedded in SLy (F,) as the subgroup consisting of block matrices of
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the form
1 0 0 O
0 %= 0 =x
0 01 of
0 *x 0 =
This implies that (V!,[V/, VI’)]) contains the matrix
1 0 0 O
-1
d= 0 2 0 0
0O 0 1 0
0O 0 0 2

where, as before, each entry represents a k X k-block. Now, we compute that the commuta-
tor [d, (V;)_l] coincides with V. Similarly, we have [d, (V,;)_l] = Vl’). It follows that the group
H =(V|,V,,V.)is perfect.

On the other hand, we have seen above that M;M,M; # M;M,M,. Therefore, Proposi-
tion 7.18(ii) implies that (V7/, [V(’l,Vl’)], [Vé,Vl’),V,’J,V;,V"I]) either contains a normal subgroup
isomorphic to szk(Fp), or it is isomorphic to Ssz(Fp).

Let finally S be a smallest non-trivial quotient of H. Since H is perfect, the group S is
a non-abelian finite simple group. The image of V! in S is non-trivial, since otherwise H
would be a quotient of (V/, Vl’)), which is a p-group. Therefore, the image of the subgroup
(Vé, [VA, Vt,;]’ [Vé, Vt,;’ Vl’), V</1’ V;]) must contain a normal subgroup isomorphic to (P)Sp,(F,),
or to (P)SL,,(Fp). Any of these groups contain a copy of Alt(k —1). The required conclusion
follows. O

Corollary 7.19. Let p be an odd prime. The groups ¢, .o (p) and 4, . (p) both admit a quotient
in 7 forall d. ’ ’

Proof. The statement for %H o) (p) is followed by combining Propositions 7.15 and 7.16. In view of
2

Section 7.3, the group %HB@) (p) is a quotient of gHB@) (p). The conclusion follows. O
2 2

Remark 7.20. Propositions 7.13 and 7.15 afford simple quotients of the groups %Z; (p)and %HB@) (p),
2

respectively, based on closely related constructions. However, the outcome of those constructions

are in sharp contrast, as one can see by comparing Proposition 7.14 with Proposition 7.16. Recall

that the triangle group %;rz(p) is of half-girth type (3,3, 3), whereas %HB@(p) is of half-girth
2

type (3,4, 4). This somehow corroborates our experimental results on trivalent triangle groups,
for which the most stringent restrictions on the existence of small finite simple quotients were
observed for the groups of half-girth type (3, 3, 3) as well. In some sense, the results of this study
seem to indicate that for generalized triangle groups, the small size of the girth of the vertex links
is more tightly related to the scarcity of finite simple quotients than the validity of Kazhdan’s

property (T).

Let R = F (x, y, z) denote the free associative non-commutative ring in three indeterminates
over F,. The homomorphisms highlighted by Propositions 7.13 and 7.15 can be factored as the com-
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position of representations G - GLy4(R), where G € {g;rz(p),%vz(p), %HB@)(p)} and d € {3, 4},
2

followed by the homomorphisms
GL4(R) = GL4(Maty, (F,))

induced by the homomorphism of F,-algebras R — Maty,(F,) defined by the assignments
(x,y,2) = (M, M, M,.). The following result provides analogous representations for the KMS

groups ¢, @ (p)and & @ (p).

Proposition 7.21. Let R =TF.(x,y,z) denote the free associative non-commutative ring in
three indeterminates over Fg, where q is a power of the odd prime p. Then the assignments

1 x 0 O 1 0 0 O 1 0 0 O
. 01 0 O b 01 0 0 R 01 z O ’

0 0 1 0 0 01 0 0 0 1 z

0 0 0 1 y 0 0 1 0 0 0 1

extend to a homomorphism %H @ (p) = GL4(R).
Similarly, the assignments
1 0 0 0 O 1 0 0 0 O z 0 0 O
01 x X; 0 01000 01000
a~|l0 01 x 0,b—~]0 0 1 0 O cr 01 0 0f

00 0 1 O 0 0 010 0 0 1 z
0O 0 0 0 1 y 0 0 0 1 0 0 01

extend to a homomorphism %HB @ (p) » GL5(R).

Proof. Straightforward computation in view of the presentation of the KMS groups from
Section 7.2. O

As before, numerous quotients of those KMS groups are obtained by postcomposing the
representations from Proposition 7.21 with congruence homomorphisms.
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