
Received: 5 January 2021 Revised: 15 February 2022 Accepted: 21 June 2022

DOI: 10.1112/jlms.12668

Journal of the London
Mathematical SocietyRESEARCH ARTICLE

Hyperbolic generalized triangle groups,
property (T) and finite simple quotients

Pierre-Emmanuel Caprace1 Marston Conder2 Marek Kaluba3,4

StefanWitzel5

1IRMP, Université catholique de Louvain,
Belgium
2Department of Mathematics, University
of Auckland, Auckland, New Zealand
3Karlsruher Institut für Technologie,
Karlsruhe, Germany
4Technische Universität Berlin, Germany
5JLU Gießen, Mathematisches Institut,
Gießen, Germany

Correspondence
Stefan Witzel, JLU Gießen,
Mathematisches Institut, Arndtstr. 2,
Gießen 35392, Germany.
Email:
Stefan.Witzel@math.uni-giessen.de

Funding information
F.R.S.-FNRS senior research associate;
National Science Center, Grant/Award
Number: 2017/26/D/ST1/00103; DFG,
Grant/Award Number: WI 4079-6

Abstract
We construct several series of explicit presentations of
infinite hyperbolic groups enjoying Kazhdan’s property
(T). Some of them are significantly shorter than the pre-
viously known shortest examples. Moreover, we show
that some of those hyperbolic Kazhdan groups possess
finite simple quotient groups of arbitrarily large rank;
they constitute the first-known specimens combining
those properties. All the hyperbolic groups we consider
are non-positively curved 𝑘-fold generalized triangle
groups, that is, groups that possess a simplicial action on
a CAT(0) triangle complex, which is sharply transitive
on the set of triangles, and such that edge-stabilizers are
cyclic of order 𝑘.
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1 INTRODUCTION

It is a long-standing open question, going back to a remark of Gromov in his seminal monograph
[35, Remark 5.3.B], whether every hyperbolic group is residually finite. This question is equivalent
to determining whether every non-trivial hyperbolic group has a non-trivial finite quotient (see
[41, Theorem 1.2] or [57, Theorem 2]). Using Olshanskii’s Common Quotient Theorem, those two
questions can further be shown equivalent to the following, which illustrates that the problem of
residual finiteness of hyperbolic groups is related to the asymptotic properties of the finite simple
groups (see [16, § 5.3] for an expository account):

Question 1.1. Let S𝑑 be the collection of those finite simple groups that contain an isomor-
phic copy of the alternating group Alt(𝑑). Does every non-elementary hyperbolic group admit a
quotient in S𝑑 for all 𝑑?

A group that admits a finite quotient belonging to S𝑑 for all 𝑑 is said to have finite simple
quotients of arbitrarily large rank.
Kazhdan’s property (T) is relevant when trying to answer these questions negatively, that is,

finding a hyperbolic group that is not residually finite or does not admit finite simple quotients of
arbitrarily large rank. Indeed, the groundbreaking work of Agol, Haglund and Wise implies that
all compactly cubulated hyperbolic groups are residually finite, see [2] and references therein.
On the other hand, property (T) is incompatible with cocompact cubulations for an infinite
group†, see [54]. Moreover, the finite-dimensional unitary representations of Kazhdan groups
are subjected to various rigidity theorems, see [73] and [64]. It is thus tempting to believe that
a hyperbolic group with Kazhdan’s property (T) should have fewer finite simple quotients than
other hyperbolic groups.
This circle of ideas caused us to systematically investigate finite quotients and property (T) for

certain small hyperbolic groups. The condition ‘small’ here means ‘having a short presentation’
and is imposed for practical reasons: Many of our investigations involved computer-aided exper-
iments and calculations, and groups with short presentations are generally easier to work with.
On a related note, using Magma, we can check the existence of finite simple quotients only up
to a certain order (5 ⋅ 107) and we expect that for a small group the quotients in this region may
give a meaningful impression of general finite simple quotients while for a larger group they will
likely be noise.
For theoretic considerations, the structure of a group presentation is of course more relevant

than its length. For that reason, we have focused our study on the class of 𝑘-fold generalized
triangle groups, all of which have a presentation whose structure is fairly transparent. Follow-
ing Lubotzky–Manning–Wilton [50], we define such a group as the fundamental group of a
triangle of finite groups with trivial face group, cyclic edge groups of order 𝑘, and finite vertex

†Another known obstruction to the existence of a cocompact cubulation is provided by the work of Delzant–Gromov [25]
and Delzant–Py [26] on Kähler groups; in particular, cocompact lattices in 𝑆𝑈(𝑛, 1), with 𝑛 ⩾ 2, are hyperbolic groups that
are neither Kazhdan, nor virtually special.
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groups†. A 2-fold generalized triangle group is a Coxeter group, and no infinite Coxeter group has
(T) (see [13]). The aforementioned work [50] provides infinitely many examples of hyperbolic 𝑘-
fold generalized triangle groups with (T), for 𝑘 ⩾ 18. In this paper, we obtain examples with 𝑘 = 5,
as well as infinite families of examples with 𝑘 any prime ⩾ 7.
For 𝑘 = 5, our examples include the following, where the commutator of two elements 𝑥, 𝑦

is defined by [𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦, while the symbol [𝑥1, … , 𝑥𝑛] denotes the 𝑛th commutator
[[[𝑥1, 𝑥2], … ], 𝑥𝑛].

Theorem 1.2. Each of the groups

H31 = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎5, 𝑏5, 𝑐5, [𝑎, 𝑐], [𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐],
𝑎𝑏𝑎2𝑏𝑎2𝑏𝑎𝑏−1𝑎𝑏−1,

𝑏2𝑎𝑏𝑎−1𝑏𝑎−1𝑏𝑎𝑏2𝑎,

(𝑏𝑎𝑏−1𝑎𝑏𝑎−1)2⟩,
H109 = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎5, 𝑏5, 𝑐5, [𝑎, 𝑐], [𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐],

𝑎𝑏𝑎𝑏−1𝑎−1𝑏𝑎𝑏𝑎−1𝑏−1𝑎−1𝑏𝑎𝑏−1𝑎−1𝑏−1,

𝑏𝑎𝑏𝑎𝑏2𝑎−1𝑏𝑎2𝑏−2𝑎−1𝑏𝑎−1𝑏−1𝑎2,

𝑏𝑎−1𝑏𝑎𝑏−1𝑎𝑏2𝑎−1𝑏𝑎𝑏−1𝑎𝑏𝑎−1𝑏−1𝑎2,

𝑏𝑎𝑏−1𝑎𝑏𝑎−1𝑏𝑎−2𝑏−1𝑎−1𝑏𝑎−1𝑏−1𝑎𝑏−1𝑎2,

𝑏𝑎−1𝑏𝑎−1𝑏−2𝑎𝑏−1𝑎−1𝑏−1𝑎−1𝑏𝑎−2𝑏−2𝑎2,

𝑎𝑏𝑎−2𝑏−1𝑎−1𝑏−1𝑎−1𝑏−2𝑎𝑏−1𝑎−2𝑏2𝑎𝑏−1,

𝑎−2𝑏−1𝑎−2𝑏𝑎𝑏−1𝑎𝑏−1𝑎2𝑏−1𝑎𝑏𝑎−2𝑏2⟩,
is an infinite hyperbolic 5-fold generalized triangle group satisfying Kazhdan’s property (T).

It is easy to see from the presentation that each group from Theorem 1.2 is indeed a 5-fold gen-
eralized triangle group. For H𝑝, the vertex groups ⟨𝑎, 𝑏⟩ and ⟨𝑐, 𝑎⟩ are, respectively, isomorphic
to PSL2(𝑝) and 𝐶5 × 𝐶5 where 𝑝 is the subscript, while the vertex group ⟨𝑏, 𝑐⟩ is isomorphic to a
5-Sylow subgroup of Sp4(5) in the first case and to a 5-Sylow subgroup of SL3(5) in the second case.
The girths of the associated links are 10, 8 and 4 for the first group and are 14, 6 and 4 for the second
group, so that the naturalmetric space onwhich the groups act geometrically is aCAT(−1) triangle
complex whose simplices are hyperbolic triangles of type with angles 𝜋∕5, 𝜋∕4, 𝜋∕2 respectively
𝜋∕7, 𝜋∕3, 𝜋∕2. For these groups, the assistance of computer calculations was required to provide a
certified estimate of the spectral gap of the link associated to ⟨𝑎, 𝑏⟩. The presentations of the groups
H31 and H109 have 10 and 13 relations, respectively. They can be simplified to presentations on
the same numbers of generators and relators of total relator lengths 88 and 160, respectively.

† They should not be confused with the generalized triangle groups occurring, for example, in [37], where the terminology
has a completely different meaning.
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Let now 𝑝 be an odd prime. We next consider 𝑝-fold generalized triangles groups, each
of whose vertex groups are isomorphic to the 𝑝-Sylow subgroups in any of the finite groups
SL2(𝐅𝑝) × SL2(𝐅𝑝), SL3(𝐅𝑝) or Sp4(𝐅𝑝). Adopting a terminology suggested by Ershov–Jaikin-
Zapirain [30], we call themKac–Moody–Steinberg groups, orKMS groups for short. We consider 10
infinite families of such groups, each indexed by the prime 𝑝. Three of those families appear in
the following.

Theorem 1.3. For each odd prime 𝑝, the groups

G
𝐻𝐶

(1)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑐]⟩,

G
𝐻𝐵

(2)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑐, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑏], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩,

and

G̃
𝐻𝐵𝐶

(3)
2

(𝑝) = ⟨𝑡, 𝑎, 𝑏 ∣𝑡3, 𝑎𝑝, 𝑡𝑎𝑡−1𝑏−1, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏]⟩,
are infinite hyperbolic.Moreover, for all primes𝑝 ⩾ 7 (respectively,𝑝 ⩾ 11), the groupsG

𝐻𝐶
(1)
2

(𝑝) and

G
𝐻𝐵

(2)
2

(𝑝) (respectively, G̃
𝐻𝐵𝐶

(3)
2

(𝑝)) have Kazhdan’s property (T).

The choice of notation will be justified in Section 7. The group G
𝐻𝐶

(1)
2

(7) has a presentation on
three generators in which, after simplifications, the total length of the relators is 87. The generator
𝑏 of the group G̃

𝐻𝐵𝐶
(3)
2

(𝑝) is redundant. In fact, the group G̃
𝐻𝐵𝐶

(3)
2

(11) has a presentation on two
generators and five relators which, after simplifications, has a total relator length of 72. This yields
a significant improvement on themain result of [15], which provides an example of a presentation
of an infinite hyperbolic Kazhdan group which, after simplifications, has four generators and
sixteen relators, for a total relator length of 555.
In both Theorems 1.2 and 1.3, Property (T) is established using a criterion due to Ershov–

Jaikin-Zapirain recalled as Theorem 2.6. That criterion is expressed in terms of the so-called
representation angle formed by pairs of subgroups among the generating triple ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩. In
the case of KMS groups, the exact value of the representation angles can be computed by hand, so
that the proof of Theorem 1.3 is silicon-free. We refer to Section 7 for the details, including other
series of infinite hyperbolic Kazhdan groups.
The following result reveals another remarkable feature of the KMS groups.

Theorem 1.4. For each odd prime 𝑝, the group G
𝐻𝐵

(2)
2

(𝑝) has finite simple quotients of arbitrarily
large rank.

The proof is inspired by the seminal work of Kassabov [42, §4.1], and uses also important
results of Shangzhi Li [49] on the subgroup structure of the special linear groups. Combining
Theorems 1.3 and 1.4, we obtain the following direct consequence.



HYPERBOLIC GENERALIZED TRIANGLE GROUPS 5

Corollary 1.5. There exists a hyperbolic Kazhdan group which possesses finite simple quotients of
arbitrarily large rank.

Further progress toward Question 1.1 could be accomplished through a finer analysis of the
finite simple quotients of specific hyperbolic groups. Indeed, it is conceivable that a given hyper-
bolic group possesses quotients inS𝑑 for all 𝑑, but that for 𝑑 large enough, the only such quotients
are of a restricted type. This leads us to the following:

Question 1.6. Let 𝑝 be an odd prime and 𝐺 be a hyperbolic KMS group over 𝐅𝑝. Does 𝐺 have
quotients isomorphic to Alt(𝑑), for infinitely many values 𝑑? Is there a 𝑑 such that the Lie-type
quotients of 𝐺 belonging to S𝑑 are subjected to type or characteristic restrictions?

A significant portion of the paper is devoted to a systematic experimental study of the small-
est non-positively curved 3-fold generalized triangle groups. In particular, we provide evidence
that such a 3-fold generalized triangle group cannot have property (T). Our experiments and
their outcome are described in Section 5, the appendices and the article’s repository [17]. Those
investigations involved an extensive use of the Magma algebra system [11]. They led us to pro-
pose a reformulation of the question whether all hyperbolic groups are residually finite, see
Question 5.17.
The article is organized as follows. In Section 2, we recall a criterion by Ershov–Jaikin-Zapirain

for a group to have property (T) in terms of the representation angle of certain subgroups. We
relate the representation angle to the spectral gap of the associated coset graph, following ideas
of Dymara–Januszkiewicz and Oppenheim. We also compute the representation angle of vari-
ous finite groups that will later appear as vertex stabilizers within generalized triangle groups.
Generalized triangle groups are introduced in Section 3. The following two sections are concerned
with 3-fold generalized triangle groups: in Section 4, we collect information on small 3-regular
graphs with edge-transitive automorphism groups, which in the sequel will play the roles of links
and stabilizers of vertices, respectively. In Section 5, we perform a systematic study of all possi-
ble 3-fold generalized triangle groups that can be built out of these graphs. The list of groups is
presented in Appendix A while many of their properties are listed in Appendix B. In Section 6,
we provide examples of 5-fold generalized triangle groups with property (T), proving in particu-
lar Theorem 1.2. Finally, Section 7 is devoted to Kac–Moody–Steinberg groups and contains the
proofs of Theorem 1.3 and 1.4.

2 THE ERSHOV–JAIKIN–ZAPIRAIN CRITERION FOR
PROPERTY (T)

To establish property (T), we shall rely on a criterion due to Ershov–Jaikin-Zapirain [30] (see also
[43]). In order to recall its statement, we first need additional terminology.

2.1 The representation angle between two subgroups

Given a group 𝑋 generated by two subgroups 𝐴, 𝐵 ⩽ 𝑋, and a unitary representation (𝑉, 𝜋) of 𝑋
without non-zero 𝑋-invariant vectors, we define
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𝜀𝑋(𝐴, 𝐵; 𝜋) = sup

{ |⟨𝑢, 𝑣⟩|‖𝑢‖‖𝑣‖ ∣ 𝑢 ∈ 𝑉𝐴 ⧵ {0}, 𝑣 ∈ 𝑉𝐵 ⧵ {0}
}
.

That quantity should be interpreted as the cosine of the angle between the fixed spaces 𝑉𝐴 and
𝑉𝐵. If 𝑉𝐴 = {0} or 𝑉𝐵 = {0}, we put 𝜀𝑋(𝐴, 𝐵; 𝜋) = 0. If 𝜋 is an arbitrary unitary representation,
we define 𝜀𝑋(𝐴, 𝐵; 𝜋) as 𝜀𝑋(𝐴, 𝐵; 𝜋0), where 𝜋0 ⩽ 𝜋 is the sub-representation of 𝜋 defined on
the orthogonal complement of the subspace of 𝑋-invariant vectors. The supremum of 𝜀𝑋(𝐴, 𝐵; 𝜋)
taken over all unitary representations (𝑉, 𝜋) of 𝑋 with 𝑉𝑋 = {0}, is denoted by

𝜀𝑋(𝐴, 𝐵).

In case the group 𝑋 is finite, the quantity 𝜀𝑋(𝐴, 𝐵) coincides with the supremum of 𝜀𝑋(𝐴, 𝐵; 𝜋)
taken over all irreducible non-trivial unitary representations (𝑉, 𝜋) of 𝑋. A spectral interpretation
of the quantity 𝜀𝑋(𝐴, 𝐵; 𝜋) will be presented in Section 2.3.
Let 𝛼 ∈ [0, 𝜋∕2] be defined by 𝛼 = arccos(𝜀𝑋(𝐴, 𝐵)). The number 𝛼 is called the representation

angle associated with the triple (𝑋;𝐴, 𝐵).

Example 2.1. Let 𝑋 = ⟨𝑎, 𝑏|𝑎𝑚, 𝑏𝑛, 𝑎𝑏𝑎−1𝑏−1⟩ be the direct product 𝐶𝑚 × 𝐶𝑛. Then
𝜀𝑋(⟨𝑎⟩, ⟨𝑏⟩) = 0.
Example 2.2. Let 𝑋 = ⟨𝑎, 𝑏|𝑎2, 𝑏2, (𝑎𝑏)𝑟⟩ be the dihedral group of order 2𝑟. Then 𝜀𝑋(⟨𝑎⟩, ⟨𝑏⟩) =
cos(𝜋∕𝑟).

Example 2.3. Let 𝑝 be a prime and 𝑋 = ⟨𝑎, 𝑏|𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏]⟩ be the Heisenberg group
over 𝐅𝑝. As shown in [30, §4.1], we have 𝜀𝑋(⟨𝑎⟩, ⟨𝑏⟩) = 1∕√𝑝.
Example 2.4. Let 𝑝 > 2 be a prime and 𝑟 > 1 be an integer such that 𝑟 divides 𝑝 − 1. Let also
𝜔 ∈ 𝐍 such that 𝜔𝑟 = 1 mod 𝑝 and 𝜔𝑗 ≠ 1 mod 𝑝 for 𝑗 = 1,… , 𝑟 − 1. Then

𝑋 = ⟨𝑎, 𝑏|𝑎𝑟, 𝑏𝑟, (𝑎𝑏)𝑝, (𝑎𝑏)𝜔𝑎−1𝑏−1⟩
is the Frobenius group 𝐶𝑝 ⋊ 𝐶𝑟 of order 𝑝𝑟. The quantity 𝜀𝑋(⟨𝑎⟩, ⟨𝑏⟩) can be computed as follows.
Lemma 2.5. Let 𝜁 = 𝑒2𝜋𝑖∕𝑝 and 𝛼 =

∑𝑟−1
𝑗=0 𝜁

𝜔𝑗 . Let also 𝐶(𝛼) denote the set of all conjugates of 𝛼 in
the cyclotomic field 𝐐(𝜁). For any two distinct cyclic subgroups 𝐴, 𝐵 ⩽ 𝑋 of order 𝑟, we have

𝜀𝑋(𝐴, 𝐵) =
1

𝑟
sup

{|𝛽| ∣ 𝛽 ∈ 𝐶(𝛼)}.
If 𝑟 = 𝑝−1

2
, then

𝜀𝑋(𝐴, 𝐵) =

⎧⎪⎨⎪⎩
√
𝑝+1

𝑝−1
if 𝑝 ≡ 1 mod 4,√

𝑝+1

𝑝−1
if 𝑝 ≡ 3 mod 4.

Proof. The group 𝑋 ≅ 𝐶𝑝 ⋊ 𝐶𝑟 is a normal subgroup of 𝐶𝑝 ⋊ 𝐶𝑝−1 ≅ 𝐅𝑝 ⋊ 𝐅∗𝑝. The latter acts
doubly transitively on its unique conjugacy class of subgroups of order 𝑟. Thus Aut(𝑋) is doubly
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transitive on the set of cyclic subgroups of 𝑋 of order 𝑟. It follows that 𝜀𝑋(𝐴, 𝐵) is independent of
the choice of the two distinct subgroups 𝐴, 𝐵 of order 𝑟.
Now we set 𝐴 = ⟨𝑎⟩ and 𝐵 = 𝑎𝑏𝐴𝑏−1𝑎−1. The group 𝑋 has 𝑟 inequivalent (irreducible) repre-

sentations of degree 1, and 𝑝 − 1

𝑟
of degree 𝑟. Each of the latter is obtained by inducing a degree 1

representation of the cyclic subgroup 𝐶𝑝 = ⟨𝑎𝑏⟩ to the whole group. Those representations can
be described as follows.
Let 𝜁 = 𝑒2𝜋𝑖∕𝑝 and 𝑒0, … , 𝑒𝑟−1 be an orthonormal basis of 𝑉 ∶= 𝐂𝑟. For each 𝑛 = 0,… , 𝑝 − 1, a

representation 𝜌𝑛 ∶ 𝑋 → GL𝑟(𝐂) is determined by setting 𝜌𝑛(𝑎)𝑒𝑗 = 𝑒𝑗+1 (with indices takenmod-
ulo 𝑟), and 𝜌𝑛(𝑎𝑏)𝑒𝑗 = 𝜁𝑛𝜔

𝑗
𝑒𝑗 . The fixed space𝑉𝐴 is of dimension 1; it is spanned by

∑𝑟−1
𝑗=0 𝑒𝑗 . Since

𝐵 = 𝑎𝑏𝐴𝑏−1𝑎−1, we have 𝑉𝐵 = 𝜌𝑛(𝑎𝑏)𝑉𝐴, which is spanned by 𝜌𝑛(𝑎𝑏)(
∑𝑟−1
𝑗=0 𝑒𝑗) =

∑𝑟−1
𝑗=0 𝜁

𝑛𝜔𝑗 𝑒𝑗 .
We obtain

𝜀𝑋(𝐴, 𝐵; 𝜌𝑛) =
|∑𝑟−1

𝑗=0 𝜁
𝑛𝜔𝑗 |

𝑟
.

The desired conclusion follows, since 𝐶(𝛼) = {
∑𝑟−1
𝑗=0 𝜁

𝑛𝜔𝑗 ∣ 𝑛 = 1,… , 𝑝 − 1}.
In the special case where 𝑟 = 𝑝 − 1

2
, we observe that {1, 𝜔, 𝜔2, … , 𝜔𝑟−1} is an index 2 subgroup of

the multiplicative group 𝐅∗𝑝, which consists of the squares. It follows that 𝐶(𝛼) consists of exactly
two elements, namely 𝛼 and 𝛽 =

∑𝑟−1
𝑗=0 𝜁

𝑎𝜔𝑗 , where 𝑎 is represents a non-square in 𝐅𝑝. We also
recall that the quadratic Gauss sum g(𝑠; 𝑝) is defined as

g(𝑠; 𝑝) =
𝑝−1∑
𝑛=0

𝜁𝑠𝑛
2
.

Observe that 1 + 2𝛼 = g(1; 𝑝) and 1 + 2𝛽 = g(𝑎; 𝑝). Moreover, 1 + 𝛼 + 𝛽 =
∑𝑝−1
𝑛=0

𝜁𝑛 = 0. A
theorem of Gauss (see [9, Theorem 1.2.4]) ensures that

g(1; 𝑝) =

{√
𝑝 if 𝑝 ≡ 1 mod 4,

𝑖
√
𝑝 if 𝑝 ≡ 3 mod 4.

Therefore, we obtain |𝛼| = √
𝑝 − 1

2
and |𝛽| = √

𝑝 + 1

2
if 𝑝 ≡ 1 mod 4, and |𝛼| = |𝛽| = √

𝑝 + 1

2
if

𝑝 ≡ 3 mod 4. The required result now follows from the first part of the lemma. □

The algebraic integer 𝛼 from Lemma 2.5 is called a Gaussian period. Estimates of the absolute
norm of Gaussian periods have been established in the literature: see [52], [28] and [36].

2.2 A criterion for property (T)

The relevance of the notion of unitary angle between subgroups comes from the following striking
result, due to Ershov–Jaikin–Zapirain.

Theorem 2.6 [30, Theorem 5.9]. Let 𝐺 be a locally compact group generated by three open sub-
groups 𝐴0,𝐴1, 𝐴2. For 𝑖 mod 3, set 𝑋𝑖 = ⟨𝐴𝑖−1 ∪ 𝐴𝑖+1⟩ and 𝜀𝑖 = 𝜀𝑋𝑖 (𝐴𝑖−1, 𝐴𝑖+1). Assume that 𝑋𝑖
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has relative property (T) in 𝐺 (for example, 𝑋𝑖 is compact, or finite) for all 𝑖. If

𝜀20 + 𝜀
2
1 + 𝜀

2
2 + 2𝜀0𝜀1𝜀2 < 1,

then 𝐺 has Kazhdan’s property (T).

We refer to [43, Theorem 1.2] for a generalization of that result, concerning the case where 𝐺 is
generated by more than three subgroups.

Remark 2.7. Let 𝛼𝑖 ∈ [0, 𝜋∕2] be defined by 𝛼𝑖 = arccos(𝜀𝑖). As observed by Kassabov [43], the
condition that 𝜀2

0
+ 𝜀2

1
+ 𝜀2

2
+ 2𝜀0𝜀1𝜀2 < 1 is equivalent to the requirement that

𝛼0 + 𝛼1 + 𝛼2 > 𝜋.

Remark 2.8. In the reference [30], the result cited above is stated for an abstract group 𝐺; the
same proof provides the version stated above, where𝐺 is possibly non-discrete and the subgroups
𝐴0,𝐴1, 𝐴2 are open. In the rest of this paper, we will apply Theorem 2.6 to a discrete group 𝐺,
except in Corollary 2.21 (a result which will not be used elsewhere in the paper). In particular, the
proofs of themain theorems stated in the introduction only rely on the application of Theorem 2.6
to discrete groups.

2.3 Representation angle and the spectrum of coset graphs

Given a group𝑋 and two subgroups𝐴, 𝐵 ⩽ 𝑋, we define the coset graph of𝑋 with respect to {𝐴, 𝐵}
as the bipartite graph

Γ𝑋(𝐴, 𝐵)

with vertex set 𝑋∕𝐴 ⊔ 𝑋∕𝐵 and edge set 𝑋∕𝐴 ∩ 𝐵, where the incidence relation is the relation
of inclusion.
In this section, we relate the number 𝜀𝑋(𝐴, 𝐵) introduced in Section 2.1 with the spectrum of

the coset graph Γ𝑋(𝐴, 𝐵).
In the special case where 𝐴 ∩ 𝐵 = {𝑒}, the coset graph Γ𝑋(𝐴, 𝐵) is tightly related to the

Cayley graph of 𝑋 with respect to 𝐴 ∪ 𝐵 ⧵ {𝑒}. In order to describe that relation, we recall that
the line graph associated with a graph  = (𝑉, 𝐸) is the graph L () with vertex set 𝐸, and where
two vertices are adjacent if they represent edges sharing a vertex. The following observation is
straightforward from the definition.

Lemma 2.9. Let 𝑋 be a group and 𝐴, 𝐵 ⩽ 𝑋 be subgroups such that 𝑋 = ⟨𝐴 ∪ 𝐵⟩ and 𝐴 ∩ 𝐵 = {𝑒}.
Then the line graph of the coset graph Γ𝑋(𝐴, 𝐵) is isomorphic to the Cayley graph of 𝑋 with respect
to the generating set 𝐴 ∪ 𝐵 ⧵ {𝑒}.

The following result is inspired by the work of Oppenheim [59] and from the first step of the
proof of Lemma 4.6 in [29]. The item (ii) appears in the work of Kaufman–Oppenheim, see [44,
Theorem 4.6].
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Theorem 2.10. Let 𝑋 be a finite group and 𝐴, 𝐵 ⩽ 𝑋 be proper subgroups such that 𝑋 = ⟨𝐴 ∪ 𝐵⟩.
Let also Δ be the combinatorial Laplacian on the coset graph Γ𝑋(𝐴, 𝐵).

(i) For every unitary representation 𝜋 of 𝑋, the real number 1 − 𝜀𝑋(𝐴, 𝐵; 𝜋) is an eigenvalue of Δ.
(ii) 1 − 𝜀𝑋(𝐴, 𝐵) is the smallest positive eigenvalue of Δ.

Proof. Let 𝑉 be the vector space of the representation 𝜋, and let 𝑉𝐴, 𝑉𝐵 and 𝑉𝑋 be the subspaces
consisting of the 𝐴-, 𝐵- and 𝑋-invariant vectors, respectively. Let also 𝑝𝐴, 𝑝𝐵 and 𝑝𝑋 denote the
orthogonal projections on𝑉𝐴,𝑉𝐵 and𝑉𝑋 . One checks that 𝜀𝑋(𝐴, 𝐵; 𝜋) coincideswith the operator
norm ‖𝑝𝐴𝑝𝐵 − 𝑝𝑋‖, see [59, Remark 3.8]. Since𝑋 is a finite group, the representation 𝜋 is a direct
sum of irreducible subrepresentations. There is thus no loss of generality in assuming that 𝜋 is
irreducible and non-trivial; in particular, we assume henceforth that 𝑉 is finite-dimensional.
Set 𝑃 = 𝑝𝐴𝑝𝐵 − 𝑝𝑋 . For any non-zero vector 𝑥 ∈ 𝑉, we have

‖𝑃𝑥‖2 = ⟨𝑃𝑥, 𝑃𝑥⟩ = ⟨𝑥, 𝑃∗𝑃𝑥⟩ ⩽ ‖𝑥‖‖𝑃∗𝑃𝑥‖
by the Cauchy–Schwarz inequality. In particular, we have ‖𝑃𝑥‖2 ⩽ 𝜇‖𝑥‖2, where 𝜇 is the largest
eigenvalue of the positive operator 𝑃∗𝑃; moreover the equality case is achieved if 𝑥 is a 𝜇-
eigenvector of 𝑃∗𝑃. Since 𝜋 is a subrepresentation of the left-regular representation 𝜆𝑋 of 𝑋,
we deduce from [59, Lemma 4.19] that every eigenvalue of 𝑃∗𝑃 is of the form (1 − 𝜂)2, where
𝜂 is an eigenvalue of Δ. We deduce that ‖𝑃‖ =√𝜇 = 1 − 𝜂 for some eigenvalue 𝜂 of Δ. This
proves (i).
Applying the same reasoning to the regular representation 𝜆𝑋 of 𝑋, we deduce that 𝜀𝑋(𝐴, 𝐵) =

𝜀𝑋(𝐴, 𝐵; 𝜆𝑋) ⩽ 1 − 𝜂2, where 𝜂2 is the smallest positive eigenvalue of Δ. On the other hand, we
know from [59, Lemma 4.19] that if 𝜋 = 𝜆𝑋 is the left-regular representation, then the set of eigen-
values of 𝑃∗𝑃 coincides with {(1 − 𝜂)2 ∣ 𝜂 is an eigenvalue of Δ}. Thus the largest eigenvalue of
𝑃∗𝑃 is equal to (1 − 𝜂2)2, so that 𝜀𝑋(𝐴, 𝐵) = 1 − 𝜂2 as required. □

The following alternative argument does not rely on [59, Lemma 4.19], but is inspired instead
by the first step of the proof of Lemma 4.6 in [29].

Alternative proof of Theorem 2.10(ii). Set 𝑑𝐴 = [𝐴 ∶ 𝐴 ∩ 𝐵] and 𝑑𝐵 = [𝐵 ∶ 𝐴 ∩ 𝐵]. Consider the
Hermitian space 𝓁2(Γ) of complex-valued functions defined on the vertex set of Γ. The inner prod-
uct is defined by ⟨𝜙, 𝜓⟩Γ = ∑𝑣∈𝑋∕𝐴 𝑑𝐴𝜙(𝑣)𝜓(𝑣) +

∑
𝑣∈𝑋∕𝐵 𝑑𝐵𝜙(𝑣)𝜓(𝑣). LetΔ be the combinatorial

Laplacian on Γ = Γ𝑋(𝐴, 𝐵). Thus, for a complex-valued function 𝑓 defined on the vertex set of Γ,
we have Δ(𝑓)(𝑣) = 𝑓(𝑣) − 1

𝑑𝐴

∑
𝑤∈𝑁(𝑣) 𝑓(𝑤) if 𝑣 ∈ 𝑋∕𝐴, and Δ(𝑓)(𝑣) = 𝑓(𝑣) −

1

𝑑𝐵

∑
𝑤∈𝑁(𝑣) 𝑓(𝑤)

if 𝑣 ∈ 𝑋∕𝐴, where𝑁(𝑣) denotes the set of neighbors of 𝑣 in the graph Γ. With respect to the inner
product on 𝓁2(Γ) defined above, the Laplacian Δ is a positive operator. Moreover, its spectrum is
symmetric around 1 (see [59, Proposition 2.14]). In particular the spectrum of Δ is contained in
the interval [0, 2], and we have 𝛿 ∈ (0, 1].
Let 𝓁2

0
(Γ) be the subspace defined as the orthogonal complement of the space of constant func-

tions on Γ. Since Γ is connected, the latter is the eigenspace associated with the eigenvalue 0
of Δ. We also consider the right regular representation of 𝑋 on 𝓁2(𝑋), and its 𝑋-invariant sub-
space 𝓁2

0
(𝑋) consisting of the functions with zero sum. We normalize the counting measure on

𝑋 so that the full measure of the subgroup 𝐴 ∩ 𝐵 is 1. With this normalization, the inner prod-
uct ⟨⋅, ⋅⟩𝑋 on 𝓁2(𝑋) is such that for all 𝜙, 𝜓 ∈ 𝓁2(𝑋) that are 𝐴 ∩ 𝐵-invariant, we have ⟨𝜙, 𝜓⟩𝑋 =∑
𝑦∈𝑋∕𝐴∩𝐵 𝜙(𝑦)𝜓(𝑦), where 𝜙 and 𝜓 are viewed as functions on the coset space 𝑋∕𝐴 ∩ 𝐵.
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Since every non-trivial irreducible unitary representation of 𝑋 is contained in the left regular
representation 𝜆 of 𝑋, we have 𝜀𝑋(𝐴, 𝐵) = 𝜀𝑋(𝐴, 𝐵; 𝜆). Let now 𝑓𝐴, 𝑓𝐵 ∈ 𝓁2(𝑋) be functions that
are 𝐴- and 𝐵-invariant, respectively. Then 𝑓𝐴, 𝑓𝐵 may be viewed as function on 𝑋∕𝐴 and 𝑋∕𝐵,
respectively. Denoting by 𝐹 = 𝑓𝐴 ⊔ 𝑓𝐵 the function on𝑋∕𝐴 ⊔ 𝑋∕𝐵 defined in the natural way, we
see that𝐹 is an element of 𝓁2(Γ). In view of the normalizations of the inner products on 𝓁2(𝑋) and
𝓁2(Γ) chosen above, we have ‖𝐹‖2

Γ
= ‖𝑓𝐴‖2𝑋 + ‖𝑓𝐵‖2𝑋 . Borrowing a computation from the proof

of [29, Lemma 4.6], we obtain

⟨Δ𝐹, 𝐹⟩Γ = ∑
𝑣∈𝑋∕𝐴

𝑑𝐴

(
𝑓𝐴(𝑣) −

1

𝑑𝐴

∑
𝑤∈𝑁(𝑣)

𝑓𝐵(𝑤)

)
𝑓𝐴(𝑣)

+
∑

𝑣∈𝑋∕𝐵

𝑑𝐵

(
𝑓𝐵(𝑣) −

1

𝑑𝐵

∑
𝑤∈𝑁(𝑣)

𝑓𝐴(𝑤)

)
𝑓𝐵(𝑣)

= ‖𝐹‖2Γ − ∑
𝑣∈𝑋∕𝐴

∑
𝑤∈𝑁(𝑣)

𝑓𝐵(𝑤)𝑓𝐴(𝑣) −
∑

𝑣∈𝑋∕𝐵

∑
𝑤∈𝑁(𝑣)

𝑓𝐴(𝑤)𝑓𝐵(𝑣)

= ‖𝐹‖2Γ − ∑
(𝑣,𝑤)∈𝐸(Γ)

𝑓𝐵(𝑤)𝑓𝐴(𝑣) + 𝑓𝐴(𝑣)𝑓𝐵(𝑤)

= ‖𝐹‖2Γ − 2Re
( ∑
(𝑣,𝑤)∈𝐸(Γ)

𝑓𝐴(𝑣)𝑓𝐵(𝑤)

)
= ‖𝑓𝐴‖2𝑋 + ‖𝑓𝐵‖2𝑋 − 2Re(⟨𝑓𝐴, 𝑓𝐵⟩𝑋).

If 𝑓𝐴, 𝑓𝐵 have norm 1, ormore generally if ‖𝐹‖2
Γ
= 2, thenwe obtainRe(⟨𝑓𝐴, 𝑓𝐵⟩𝑋) = 1 − ⟨Δ𝐹,𝐹⟩Γ‖𝐹‖2

Γ

.

We now suppose in addition that 𝑓𝐴 and 𝑓𝐵 have zero sum, that is, they belong to 𝓁20(𝑋). Then
𝐹 belongs to 𝓁2

0
(Γ). By definition, the smallest eigenvalue of the restriction of Δ to 𝓁2

0
(Γ) is 𝛿.

Therefore, we have ⟨Δ𝐹,𝐹⟩Γ‖𝐹‖2
Γ

⩾ 𝛿 since Δ is positive. We infer that Re(⟨𝑓𝐴, 𝑓𝐵⟩𝑋) ⩽ 1 − 𝛿 for all
𝑓𝐴, 𝑓𝐵 of norm 1 belonging to 𝓁2

0
(𝑋). For any two such functions 𝑓𝐴, 𝑓𝐵, we write there exists a

complex number 𝜃 of modulus 1 such that ⟨𝑓𝐴, 𝑓𝐵⟩ = |⟨𝑓𝐴, 𝑓𝐵⟩|𝑒𝑖𝜃. Therefore, ⟨𝑒−𝑖𝜃𝑓𝐴, 𝑓𝐵⟩ is a
positive real number, and since 𝑒−𝑖𝜃𝑓𝐴 is an 𝐴-invariant vector of norm 1 in 𝓁2

0
(𝑋), we deduce

from the above that |⟨𝑓𝐴, 𝑓𝐵⟩| = ⟨𝑒−𝑖𝜃𝑓𝐴, 𝑓𝐵⟩ ⩽ 1 − 𝛿. In particular we have 𝜀𝑋(𝐴, 𝐵) ⩽ 1 − 𝛿.
To prove the converse inequality, we choose a 𝛿-eigenvector 𝐹 ∈ 𝓁2

0
(Γ) of Δ. Up to scaling, we

may assume that ‖𝐹‖2
Γ
= 2. Let 𝑓𝐴 (respectively, 𝑓𝐵) be the restriction of 𝐹 to 𝑋∕𝐴 (respectively,

𝑋∕𝐵). We view 𝑓𝐴, 𝑓𝐵 as elements of 𝓁2(𝑋). By [59, Proposition 2.16], we have 𝑓𝐴, 𝑓𝐵 ∈ 𝓁2
0
(𝑋).

From the computation above, we deduce that |⟨𝑓𝐴, 𝑓𝐵⟩𝑋| ⩾ Re(⟨𝑓𝐴, 𝑓𝐵⟩𝑋) = 1 − ⟨Δ𝐹,𝐹⟩Γ‖𝐹‖2
Γ

=

1 − 𝛿. Therefore, 𝜀𝑋(𝐴, 𝐵) ⩾ 1 − 𝛿. □

Theorem2.10 has several useful consequences. First observe that ifΓ is any finite bipartite graph
and 𝑋 ⩽ Aut(𝑋) acts edge-transitively, by preserving the canonical bipartition of Γ, then Γ can be
identifiedwith the coset graphΓ𝑋(𝐴, 𝐵), where𝐴, 𝐵 are the stabilizers in𝑋 of two adjacent vertices
in Γ. Thus Theorem 2.10 provides a way to compute the spectral gap of certain edge-transitive
bipartite graphs using representation theory. For Cayley graphs, this is rather standard, see, for
example, [47] or [24].
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Theorem 2.10 can also be used in the other direction, to compute the representation angle of
some triple (𝑋,𝐴, 𝐵) using spectral graph theory. We record the following.

Corollary 2.11. Let 𝑋 be a finite group and𝐴, 𝐵 ⩽ 𝑋 be subgroups such that 𝑋 = ⟨𝐴 ∪ 𝐵⟩. Assume
that [𝐴 ∶ 𝐴 ∩ 𝐵] = [𝐵 ∶ 𝐴 ∩ 𝐵] = 𝑘. Let 𝜂2 (respectively, 𝜆2) be the second largest eigenvalue of the
adjacency matrix of the coset graph Γ𝑋(𝐴, 𝐵) (respectively, the Cayley graph of 𝑋 with respect to the
generating set 𝐴 ∪ 𝐵 ⧵ {𝑒}).
Then 𝜀𝑋(𝐴, 𝐵) =

𝜂2
𝑘
.

If in addition 𝐴 ∩ 𝐵 = {1}, then 𝜀𝑋(𝐴, 𝐵) =
𝜆2−𝑘+2

𝑘
.

Proof. Since 𝛿 = 1 − 𝜂2
𝑘
, where 𝛿 denote the smallest positive eigenvalue of the Laplacian on

Γ𝑋(𝐴, 𝐵), we deduce directly from Theorem 2.10 that 𝜀𝑋(𝐴, 𝐵) =
𝜂2
𝑘
. We now assume that𝐴 ∩ 𝐵 =

{1}. It then follows from Lemma 2.9 that the Cayley graph of 𝑋 with respect to the generating set
𝐴 ∪ 𝐵 ⧵ {𝑒} is isomorphic to the line graph L (Γ) of Γ = Γ𝑋(𝐴, 𝐵). The relation between the spec-
trumof a graph and the spectrumof its line graph iswell known, see [23, Theorem 1]. In particular,
we have 𝜂2 = 𝜆2 − 𝑘 + 2. The result follows. □

Theorem 2.10 can also be combined with important results on spectral graph theory to provide
upper bounds on the representation angle. Let us in particular record the following result due
to Nilli.

Theorem2.12 [55, Theorem 1]. LetΓ = (𝑉, 𝐸) be a simple undirected graph such that themaximum
degree of a vertex is 𝑑 < ∞. Let also 𝜆 be the smallest positive eigenvalue of thematrix𝐃−𝐀, where𝐃
is the diagonal matrix (deg(𝑢))𝑢∈𝑉 and𝐀 is the adjacencymatrix. If Γ contains two edges at distance
at least 2𝑚 + 2, then

𝜆 ⩽ 𝑑 − 2
√
𝑑 − 1 +

2
√
𝑑 − 1 − 1

𝑚 + 1
.

We refer to [32] for a slightly stronger bound.

Corollary 2.13. Let 𝑋 be a finite group and𝐴, 𝐵 ⩽ 𝑋 be subgroups such that 𝑋 = ⟨𝐴 ∪ 𝐵⟩. Assume
that [𝐴 ∶ 𝐴 ∩ 𝐵] = [𝐵 ∶ 𝐴 ∩ 𝐵] = 𝑘. Let 𝐷 be the diameter of Γ𝑋(𝐴, 𝐵). Then

𝜀𝑋(𝐴, 𝐵) ⩾
2
√
𝑘 − 1

𝑘

(
1 −

1

𝐷∕2 − 1

)
+

1

𝑘(𝐷∕2 − 1)
.

Proof. The graph Γ𝑋(𝐴, 𝐵) is 𝑘-regular. Therefore, if 𝜆 denotes the smallest positive eigenvalue
considered in Theorem 2.12, we have 𝜂2 = 𝑘 − 𝜆. The distance between any two edges in Γ𝑋(𝐴, 𝐵)
is at least 𝐷 − 2. Invoking Theorem 2.12 with𝑚 ∶= 𝐷∕2 − 2 yields

𝜂2 ⩾ 2
√
𝑘 − 1 −

2
√
𝑑 − 1 − 1

𝐷∕2 − 1
= 2
√
𝑘 − 1

(
1 −

1

𝐷∕2 − 1

)
+

1

𝐷∕2 − 1
.

By Corollary 2.11, we have 𝜀𝑋(𝐴, 𝐵) =
𝜂2
𝑘
. The conclusion follows. □
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The lower bound fromCorollary 2.13 is especially usefulwhen the order of group𝑋 is large com-
pared to the order of𝐴 and 𝐵, since for 𝑘 fixed, the diameter𝐷 is bounded below by a logarithmic
function of the order of 𝑋.
Recall that a 𝑘-regular graph is a Ramanujan graph if the second largest eigenvalue of its

adjacency matrix is at most 2
√
𝑘 − 1.

Corollary 2.14. Let 𝑋 be a finite group and𝐴, 𝐵 ⩽ 𝑋 be subgroups such that 𝑋 = ⟨𝐴 ∪ 𝐵⟩. Assume
that [𝐴 ∶ 𝐴 ∩ 𝐵] = [𝐵 ∶ 𝐴 ∩ 𝐵] = 𝑘. Then the coset graph Γ𝑋(𝐴, 𝐵) is Ramanujan if and only if

𝜀𝑋(𝐴, 𝐵) ⩽
2
√
𝑘−1

𝑘
.

Proof. Immediate from Corollary 2.11. □

We end this section with two very specific computation of a representation angle, relying on
Corollary 2.11. Their proofs have been computer-aided.

Proposition 2.15. Let (𝑝, 𝑎, 𝑏, g , 𝜑) be one of the tuples(
5,

(
4 2

3 3

)
,

(
1 2

0 1

)
, 6, 2.2360679775

)
,

(
9,

(
𝜁5 𝜁

2 𝜁6

)
,

(
𝜁3 𝜁6

𝜁5 𝜁3

)
, 8, 3.16227766017

)
,

where 𝜁 ∈ 𝐅9 is a root of the Conway polynomial 𝑥2 + 2𝑥 + 2 ∈ 𝐅3[𝑥]. Let 𝑋 = SL2(𝑝) and let 𝐴
and 𝐵 be the cyclic subgroups generated by the matrices 𝑎 and 𝑏. Then:

(i) 𝐴 and 𝐵 are cyclic of order 5;
(ii) the girth of Γ𝑋(𝐴, 𝐵) equals g ;
(iii) |5𝜀𝑋(𝐴, 𝐵) − 𝜑| < 10−10.
Remark 2.16. The exact values of 5𝜀𝑋(𝐴, 𝐵) are probably

√
5 and

√
10, respectively, for the two

triples (𝑋,𝐴, 𝐵) appearing in Proposition 2.15.

Proof. Assertions (i) and (ii) are straightforward to check with Magma. The verification of (iii)
also required computer calculations, but is more involved. The coset graph of 𝑋 with respect to
the subgroup𝐴 and 𝐵 was computed with Magma. Its eigenvalues then were computed in Julia
using Arblib [38]. □

Proposition 2.17. Let (𝑝, 𝑎, 𝑏, g , 𝜑) be one of the tuples(
31,

(
8 14

4 11

)
,

(
23 0

14 27

)
, 10, 3.85410196624

)
,

(
41,

(
0 28

19 35

)
,

(
38 27

2 9

)
, 10, 3.82842712474

)
,

(
109,

(
0 1

−1 11

)
,

(
57 2

52 42

)
, 14, 4.02260136849

)
,
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(
131,

(
−58 −24

−58 46

)
,

(
0 −3

44 −12

)
, 14, 3.98383854575

)
.

Let 𝑋 = PSL2(𝑝) and let 𝐴 and 𝐵 be the cyclic subgroups generated by the natural images of the
matrices 𝑎 and 𝑏. Then:

(i) 𝐴 and 𝐵 are cyclic of order 5;
(ii) The girth of Γ𝑋(𝐴, 𝐵) equals g ;
(iii) |5𝜀𝑋(𝐴, 𝐵) − 𝜑| < 10−10.
Proof. Assertions (i) and (ii) are straightforward to check with Magma. The verification of (iii)
also required computer calculations, but is much more involved. Let 𝜆2 be the second largest
eigenvalue of the adjacency matrix of the Cayley graph of 𝑋 with respect to 𝐴 ∪ 𝐵 ⧵ {𝑒}. By Corol-
lary 2.11, we have 5𝜀𝑋(𝐴, 𝐵) = 𝜆2 − 3. Thus we must prove that |𝜆2 − 3 − 𝜑| < 10−10. For that
purpose, we followed the following computer-assisted computational approach.
A numerical estimate 𝜆2 ≈ 𝜑 + 3 of the eigenvalue was obtained using standard ARPACK

eigenvalue routines on the full Cayley graph Γ𝑋(𝐴, 𝐵). However, these computations lack cer-
tificates of the accuracy of the approximation. In order to obtain the required certification, we
have computed the largest eigenvalue of the Hermitian operator

∑4
𝑖=1 𝜌(𝑎)

𝑖 + 𝜌(𝑏)𝑖 for each non-
trivial irreducible representation 𝜌 of𝑋 individually. Explicit realizations of those representations
are described in [62] (see also [47]). One implementation of those irreducible representations was
realizedwithMagma. Another, independent implementation [39] was realized in Julia [10]. The
certification, including provably correct bounds, was obtained using the Arblib library [38] and
certified eigenvalue computations therein. The largest eigenvalue among non-trivial irreducible
representations of 𝑋 satisfies (iii).
The obtained values agree numerically with those obtained in Magma. □

Remark 2.18. The groupPSL2(109) is the smallest finite simple quotient of the free product𝐶5 ∗ 𝐶5
such that the associated coset graph has girth ⩾ 14. In view of Corollary 2.14, we see that the coset
graph Γ𝑋(𝐴, 𝐵) from the case 𝑝 = 109 in Proposition 2.17 is not a Ramanujan graph. The largest
eigenvalue among non-trivial irreducible representations in this case is afforded by the principal
representation associated to character 𝜈5 ∶ 𝐅∗109 → 𝐂, defined by 𝜈5(𝛼) = 𝜁554 (where the generator
of 𝐅∗

109
𝛼 = 6109 was chosen).

Remark 2.19. The three coset graphs Γ𝑋(𝐴, 𝐵) for 𝑝 ≠ 109 in Proposition 2.17 are Ramanujan by
Corollary 2.14.

2.4 Non-discrete groups

Theorem 2.10 is formulated for a finite group𝑋. It is useful to observe that the result extends easily
to a possibly non-discrete compact groups (this is actually the set-up originally adopted in [29]).

Proposition 2.20. Let𝑋 be a compact group and𝐴, 𝐵 ⩽ 𝑋 be proper open subgroups such that𝑋 =⟨𝐴 ∪ 𝐵⟩. Let𝐾 = ⋂g∈𝑋 g(𝐴 ∩ 𝐵)g−1 be the normal core of𝐴 ∩ 𝐵, which is an open normal subgroup
(hence of finite index) in 𝑋. Set 𝑋̄ = 𝑋∕𝐾, 𝐴̄ = 𝐴∕𝐾 and 𝐵̄ = 𝐵∕𝐾. Then Γ𝑋(𝐴, 𝐵) = Γ𝑋̄(𝐴̄, 𝐵̄) and
𝜀𝑋(𝐴, 𝐵) = 𝜀𝑋̄(𝐴̄, 𝐵̄).
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In particular, we have 𝜀𝑋(𝐴, 𝐵) = 1 − 𝛿, where 𝛿 is the smallest positive eigenvalue of the
combinatorial Laplacian on the coset graph Γ𝑋(𝐴, 𝐵).

Proof. The equality Γ𝑋(𝐴, 𝐵) = Γ𝑋̄(𝐴̄, 𝐵̄) is straightforward from the definitions.
Since any unitary representation of 𝑋̄ is also a continuous representation of 𝑋, we deduce

that 𝜀𝑋(𝐴, 𝐵) ⩾ 𝜀𝑋̄(𝐴̄, 𝐵̄). In particular, the required equality holds if 𝜀𝑋(𝐴, 𝐵) = 0. Assume now
that 𝜀𝑋(𝐴, 𝐵) > 0 and let 𝜋 be an irreducible non-trivial unitary representation of 𝑋 such that
𝜀𝑋(𝐴, 𝐵; 𝜋) > 0. Denoting by 𝑉 the vector space on which 𝜋 is defined, we must have 𝑉𝐴 ≠ {0},
since otherwise we have 𝜀𝑋(𝐴, 𝐵; 𝜋) = 0 by definition. Given a non-zero𝐴-fixed vector 𝑣 ∈ 𝑉, the
𝑋-orbit of 𝑣 spans 𝑉 (by the irreducibility of 𝜋), so that the normal core

⋂
g∈𝑋 g𝐴g−1, which con-

tains 𝐾, acts trivially on 𝑉. This shows that 𝐾 ⩽ Ker(𝜋), so that 𝜋 descends to a representation of
the finite group 𝑋̄. Therefore, we have 𝜀𝑋(𝐴, 𝐵; 𝜋) ⩽ 𝜀𝑋̄(𝐴̄, 𝐵̄). The required equality follows.
The last assertion of the Proposition is a direct consequence of Theorem 2.10. □

Combining Proposition 2.20 with Theorem 2.6, we obtain a noteworthy criterion ensuring that
certain (possibly non-discrete) automorphism groups of 2-dimensional simplicial complexes have
property (T).

Corollary 2.21. Let 𝑌 be a 2-dimensional, connected, locally finite, simplicial complex and 𝐺 ⩽

Aut(𝑌) be a closed subgroup of its automorphism group. Assume that 𝐺 acts simplicially, and tran-
sitively on the 2-simplices. Let 𝑣0, 𝑣1, 𝑣2 ∈ 𝑌(0) be vertices spanning a 2-simplex. For each 𝑖 ∈ {0, 1, 2},
we assume that the link Lk𝑌(𝑣𝑖) is connected and we denote by 𝛿𝑖 the smallest positive eigenvalue of
the combinatorial Laplacian on Lk𝑌(𝑣𝑖). If

(1 − 𝛿0)
2 + (1 − 𝛿1)

2 + (1 − 𝛿2)
2 + 2(1 − 𝛿0)(1 − 𝛿1)(1 − 𝛿2) < 1,

then 𝐺 has Kazhdan’s property (T).

Proof. For each 𝑖 mod 3, let 𝐴𝑖 ⩽ 𝐺 denote the stabilizer of the edge [𝑣𝑖−1, 𝑣𝑖+1] and 𝑋𝑖 = 𝐺𝑣𝑖 be
the stabilizer of the vertex 𝑣𝑖 . Since 𝐺 is closed in Aut(𝑌) and since 𝑌 is locally finite, it follows
that 𝑋𝑖 and 𝐴𝑖 are compact groups. Since the 𝐺-action on 𝑌 is simplicial and transitive on the
2-simplices, the connectedness of the link Lk𝑌(𝑣𝑖) implies that 𝑋𝑖 is generated by 𝐴𝑖−1 ∪ 𝐴𝑖+1.
Since 𝑌 is connected, we deduce that 𝐺 is generated by 𝐴0 ∪ 𝐴1 ∪ 𝐴2. We may now invoke
Theorem 2.6, whose hypotheses are satisfied in view of Proposition 2.20. □

3 GENERALIZED TRIANGLE GROUPS

3.1 Non-positively curved triangles of finite groups

A triangle of groups is a simple complex of groups 𝐺( ) over the poset  of all subsets of {1, 2, 3}
(see [14, Example II.12.17(1)]). In this note, we shall assume that the group attached to the 2-face
is trivial. Thus 𝐺( ) consists in a collection of six groups𝐴0,𝐴1, 𝐴2, 𝑋0, 𝑋1, 𝑋2 and six monomor-
phisms 𝜑𝑖;𝑖−1 ∶ 𝐴𝑖 → 𝑋𝑖−1 and 𝜑𝑖;𝑖+1 ∶ 𝐴𝑖 → 𝑋𝑖+1 with 𝑖 = 0, 1, 2 mod 3. The fundamental group
of 𝐺( ), denoted by 𝐺( ), is the direct limit of this system of groups and monomorphisms. Tri-
angles of groups appear in the work of Neumann–Neumann [53]; the non-positively curved case
has been studied by Gersten–Stallings (see [69] and [70]).
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The following result is well known.

Theorem 3.1. Let 𝐺( ) = (𝑋𝑖, 𝐴𝑗; 𝜑𝑖;𝑖±1) be a triangle of groups with trivial face group and let
𝐺 = 𝐺( ) be its fundamental group. Assume that 𝑋𝑖 is generated by the images of 𝐴𝑖−1 and 𝐴𝑖+1.
For 𝑖 = 0, 1, 2, let Γ𝑖 be the coset graph Γ𝑋𝑖 (𝜑𝑖−1;𝑖(𝐴𝑖−1), 𝜑𝑖+1;𝑖(𝐴𝑖+1)) and 𝑟𝑖 be half of its girth. If

1

𝑟0
+
1

𝑟1
+
1

𝑟2
⩽ 1,

then the following assertions hold.

(i) 𝐺 acts isometrically, by simplicial automorphisms, on a CAT(0) simplicial complex 𝑌( ) of
dimension 2. The action has a 2-simplex (𝑣0, 𝑣1, 𝑣2) as strict fundamental domain, which is
isometric to a euclidean or hyperbolic triangle with angles (𝜋∕𝑟0, 𝜋∕𝑟1, 𝜋∕𝑟2). For 𝑖 = 0, 1, 2,
the link of 𝑌( ) at the vertex 𝑣𝑖 is isomorphic Γ𝑖 , and the stabilizer 𝐺𝑣𝑖 is isomorphic to 𝑋𝑖 .

(ii) Every finite subgroup of 𝐺 is conjugate to a subgroup of 𝐺𝑣𝑖 for some 𝑖 = 0, 1, 2.
(iii) If none of the monomorphisms 𝜑𝑖;𝑖±1 is surjective, then 𝐺 is infinite.
(iv) If there is a homomorphism 𝜓∶ 𝐺 → 𝐹 to a finite group, whose restriction to 𝐺𝑣𝑖 is injective for

each 𝑖 = 0, 1, 2, then 𝐺 is virtually torsion-free.
(v) If

1

𝑟0
+
1

𝑟1
+
1

𝑟2
< 1,

then 𝐺 is non-elementary hyperbolic, and the simplicial complex 𝑌( ) carries a 𝐺-invariant
CAT(−1)metric.

Proof. For (i) and (ii), we refer to [69] (where the termCAT(0) is not used explicitly, but the notion
indeed appears). An alternative approach, with a more general scope, is provided by the concept
of simple complexes of groups from [14, Chapter II.12], see in particular [14, Example II.12.17(1)].
We apply the Basic Construction from [14, Theorem II.12.18] to the triangle of groups 𝐺( ). In
the notation and terminology of [14], the stratified space 𝑌 is isometric to a geodesic triangle
with interior angles equal to 𝜋∕𝑟0, 𝜋∕𝑟1 and 𝜋∕𝑟2 in the Euclidean plane or the hyperbolic plane
depending on whether 1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
= 1 or 1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
< 1. Considering the natural simplicial

structure of 𝑌, this yields a stratified𝑀𝜅-polyhedral complex in the sense of [14, Definition II.12.1]
(with curvature 𝜅 = 0 or 𝜅 = −1 according to the two cases above). Once this is set up, we we
may invoke [14, Theorem II.12.28], which yields 𝐺 action by automorphisms on a 2-dimensional
CAT(𝜅) simplicial complex 𝑌( ), with finite stabilizers, and having a simplex as a strict funda-
mental domain. In particular, the 𝐺-action is proper and cocompact. The assertions (i) and (ii)
follow [14, Theorem II.12.28] and [14, Theorem II.12.18(2)]. Item (v) follows as well, since the
condition 1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
< 1 ensures that 𝑌( ) is CAT(−1), see [14, Proposition III.H.1.2].

For (iii), observe that this condition implies that the graphs Γ𝑖 have no vertices of degree 1.
In view of (i), we deduce from [14, Proposition II.5.10] that every geodesic segment in 𝑌( ) is
contained in a bi-infinite geodesic. In particular, 𝑌( ) is unbounded, hence 𝐺 is infinite by (i).
(iv) Let 𝜓∶ 𝐺 → 𝐹 be a homomorphism to a finite group whose restriction to 𝑋𝑖 is injective for

each 𝑖 = 0, 1, 2. If g ∈ 𝐺 is a torsion element, then 𝑥g𝑥−1 ∈ 𝑋𝑖 for some 𝑥 ∈ 𝐺 and 𝑖 ∈ {0, 1, 2} by
(ii). Since 𝜓|𝑋𝑖 is injective, we deduce that if g is non-trivial, then 𝜓(𝑥)𝜓(g)𝜓(𝑥)−1 is non-trivial,
hence 𝜓(g) is equally non-trivial. Thus Ker(𝜓) is a torsion-free subgroup of finite index in 𝐺. □
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Following [50], in case the edge-groups 𝐴0,𝐴1, 𝐴2 are all cyclic, and none of the monomor-
phisms 𝜑𝑖;𝑖±1 is surjective, we say that 𝐺() is a generalized triangle group. When the functions𝐴𝑖
are all cyclic of order 𝑘, we say that 𝐺 is a 𝑘-fold triangle group. The triple (𝑟0, 𝑟1, 𝑟2)will be called
the half girth type of the generalized triangle group 𝐺. The triple (Γ0, Γ1, Γ2) is called its link type.
If the half girth type satisfies the inequality 1∕𝑟0 + 1∕𝑟1 + 1∕𝑟2 ⩽ 1, we say that the triangle group
𝐺( ) is non-positively curved.
In the special case 𝑘 = 3, which is of core interest in this paper, we say that 𝐺() is a trivalent

triangle group.
If the half girth type of 𝐺 is one of (3,3,3), (2,4,4), or (2,3,6), Theorem 3.1 does not provide any

conclusion regarding the hyperbolicity of 𝐺. As we shall see, a triangle group can be hyperbolic
or not. To that end, we will use the following criteria in order to construct subgroups isomorphic
to 𝐙2.

Lemma 3.2. Consider the setup of Theorem 3.1 and assume that 𝑟0 = 𝑟1 = 𝑟2 = 3. Choose the
metric on 𝑌( ) so that edges have length 1. Let {𝑖, 𝑗, 𝑘} = {0, 1, 2}. Let 𝑎, 𝑎′, 𝑎′′, 𝑎′′′ ∈ 𝐴𝑖 ⧵ {1},
𝑏, 𝑏′, 𝑏′′, 𝑏′′′, 𝑏′‵′, 𝑏‵′ ∈ 𝐴𝑗 ⧵ {1} and 𝑐, 𝑐′′, 𝑐′′ ∈ 𝐴𝑘 ⧵ {1}.

(1) The element 𝑎𝑏𝑐𝑏′ acts on 𝑌( ) with translation length
√
3.

(2) The element 𝑎𝑏𝑐𝑎′𝑏′𝑐′ acts on 𝑌( ) with translation length 3.
(3) The element 𝑎𝑏𝑐𝑏′ 𝑎′𝑏′′𝑐′𝑏′′′ acts on 𝑌( ) with translation length 2

√
3.

(4) The element 𝑎𝑏𝑐𝑎′𝑏′𝑐′ 𝑎′′𝑏′′𝑐′′𝑏′′′ acts on 𝑌( ) with translation length
√
21.

(5) The element 𝑎𝑏𝑐𝑏′ 𝑎′𝑏′′𝑐′𝑏′′′ 𝑎′′𝑏′‵′𝑐′′𝑏‵′ acts on 𝑌( ) with translation length 3
√
3.

In each case, there is a non-empty open subset𝑈 of the triangle labeled 1 such that the element moves
every point of𝑈 by the translation length and, in particular, is hyperbolic.

In the proof, we will use the following special case of [14, Proposition II.4.14]:

Lemma 3.3. Let 𝑋 be a complete CAT(0) space and let 𝑌 be a complete connected length space. If
𝜄 ∶ 𝑋 → 𝑌 is locally an isometric embedding, then it is an isometric embedding.

Proof of Lemma 3.2. We take 𝜎 to be the base triangle in 𝑌( ) whose vertex stabilizers contain⟨𝑎, 𝑏⟩, ⟨𝑎, 𝑐⟩ and ⟨𝑏, 𝑐⟩ and label the triangle 𝑥.𝜎 by 𝑥. Let g be one the words from the statement
and let 𝑍 be the complex consisting of triangles labeled by prefixes of g with identifications as in
𝑌( ), see Figure 1.
Then 𝑍 is a subcomplex of 𝑌( ) and we equip it with the induced metric. Let 𝜋∶ 𝑍 → 𝔼2 be

the map to the Euclidean plane indicated in the figure. We claim that if 𝐶 ⊆ 𝑍 is such that 𝜋(𝐶)
is convex, then 𝜋|𝐶 is an isometric embedding. In order to prove this, note first that 𝜋 is locally
1-Lipschitz since every vertex link of𝑌( ) has girth 6. Let 𝑍̂ be 𝑍 equipped with the length metric
(the metric on 𝑍 and on 𝜋(𝑍) induce the same length metric). Then the identity map 𝜄 ∶ 𝑍̂ → 𝑍 is
1-Lipschitz. Now if 𝜋(𝐶) is convex, then (𝜋◦𝜄)|𝐶 is an isometric embedding, hence 𝜄|𝐶 is a locally
an isometric embedding. The claim now follows by applying Lemma 3.3.
Let 𝑈 be the open region obtained by intersecting 𝜎 with the region between the two dashed

lines. Taking 𝐶 to be convex hull of 𝑈 and g𝑈, it follows from the above discussion that every
point of𝑈 is moved by the claimed distance. Since the displacement function 𝑑g ∶ 𝑌( ) → [0,∞)

is convex and constant on 𝑈, it attains its minimum in 𝑈: If 𝑥 ∈ 𝑈 and there were a point 𝑦 of
smaller displacement, convexity would imply that 𝑑g (𝑧) < 𝑑g (𝑥) for every point 𝑧 ∈ (𝑥, 𝑦]. □
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F IGURE 1 The complex 𝑍 in the various cases of Lemma 3.2. The complexes for cases (3) and (5) are not
drawn; they consists of two, respectively, three of the complexes for the first case glued together

Lemma 3.4. Consider the setup of Theorem 3.1 and assume that 𝑟0 = 𝑟1 = 2, 𝑟2 = 4. Choose the
metric on 𝑌( ) so that the long edges have length 1. Let {𝑖, 𝑗} = {0, 1}. Let 𝑎, 𝑎′, 𝑎′′, 𝑎′′′ ∈ 𝐴𝑖 ⧵ {1},
𝑏, 𝑏′, 𝑏′′, 𝑏′′′ ∈ 𝐴𝑗 ⧵ {1} and 𝑐, 𝑐′′, 𝑐′′, 𝑐′′′ ∈ 𝐴2 ⧵ {1}.

(1) The element 𝑎𝑐𝑏𝑐′ acts on 𝑌( ) with translation length
√
2.

(2) The element 𝑎𝑐𝑎′𝑏𝑐′𝑏′ acts on 𝑌( ) with translation length 2.
(3) The element 𝑎𝑐𝑏𝑐′ 𝑎′𝑐′′𝑏′𝑐′′′ acts on 𝑌( ) with translation length 2

√
2.

(4) The element 𝑎𝑐𝑎′𝑏𝑐′𝑎′′𝑏′𝑐′′𝑏′′𝑐′′′ acts on 𝑌( ) with translation length
√
10.

(5) The element 𝑎𝑐𝑎′𝑏𝑐′𝑏′ 𝑎′′𝑐′′𝑎′′′𝑏′′𝑐′′′𝑏′′′ acts on 𝑌( ) with translation length 4.

In each case, there is a non-empty open subset𝑈 of the triangle labeled 1 such that the element moves
every point of𝑈 by the translation length and, in particular, is hyperbolic.

Proof. The proof is completely analogous to that of Lemma 3.2, see Figure 2. □

Corollary 3.5. Let 𝑥 and 𝑦 be two elements as in Lemma 3.2 or 3.4 with translation lengths |𝑥| and|𝑦|. If 𝑥 and 𝑦 commute, then ⟨𝑥, 𝑦⟩ ≅ 𝐙 × 𝐙 unless there are 𝑘,𝓁 ∈ 𝐍 relatively prime such that|𝑥|∕|𝑦| = 𝑘∕𝓁 and 𝑥𝓁 ≠ 𝑦±𝑘 .

Proof. Assume that 𝑥 and 𝑦 commute and do not span 𝐙 × 𝐙. Then there are 𝑘′,𝓁′ ∈ 𝐍 such
that 𝑥𝓁′ = 𝑦𝑘′ or 𝑥𝓁′ = 𝑦−𝑘′ . From now on, assume without loss the former. Then 𝑥 and 𝑦
have a common axis and it follows that |𝑥|∕|𝑦| = 𝑘′∕𝓁′. Now let 𝑘 = 𝑘′∕ gcd(𝑘′,𝓁′) and 𝓁 =
𝓁′∕ gcd(𝑘′,𝓁′).
There is a point 𝑝 in the interior of the triangle labeled 1 that lies on an axis for 𝑥 as well as

an axis for 𝑦. This follows from the facts that 𝑥 and 𝑦 have a common axis and that each has an
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F IGURE 2 The relevant complexes for Lemma 3.4. The complexes for cases (3) and (5) are not drawn as
they consists of several copies of the complexes for the other case glued together

axis that meets the interior of the triangle labeled 1. It follows that 𝑥𝓁 .𝑝 = 𝑦𝑘.𝑝 and hence that the
triangle labeled 1 is taken to the same triangle by 𝑥𝓁 and 𝑦𝑘. Since the action of 𝐺 on triangles is
free, it follows that 𝑥𝓁 = 𝑦𝑘. □

3.2 Acylindrical hyperbolicity

Under the hypotheses of Theorem 3.1, the group 𝐺 = 𝐺( ) acts properly and cocompactly on the
2-dimensional CAT(0) complex 𝑌( ). If 1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
< 1, then the complex is piecewise hyper-

bolic and the length metric on 𝑌( ) is globally CAT(−1). As recorded in Theorem 3.1, the group
𝐺 is then non-elementary hyperbolic. In particular, it is acylindrically hyperbolic (see [60] for an
extensive account of this notion). The latter property actually also holds in most cases if we have
1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
= 1: indeed, the only exception occurs when all the vertex links are generalized poly-

gons, in which case the complex𝑌( ) is a 2-dimensional Euclidean building. The following result
combines the Rank Rigidity theorem of Ballmann–Brin [6] with a result of A. Sisto [68].

Theorem 3.6. Retain the notation of Theorem 3.1 and assume that 1
𝑟0
+ 1

𝑟1
+ 1

𝑟2
⩽ 1. If the equality

holds, assume in addition that the graphs Γ0, Γ1 and Γ2 are not all generalized polygons. Then 𝐺 =
𝐺( ) contains an element acting as a rank one isometry on theCAT(0) complex𝑌( ). In particular,
𝐺 is acylindrically hyperbolic, hence SQ-universal.
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Proof. The discussion preceding the statement covers the case 1

𝑟0
+ 1

𝑟1
+ 1

𝑟2
< 1. We now assume

that we have equality: 1
𝑟0
+ 1

𝑟1
+ 1

𝑟2
= 1. The complex 𝑌( ) is then piecewise Euclidean, and the

lengthmetric on𝑌( ) is globally CAT(0).Wemay then invoke themain result of [6], which yields
the following dichotomy: either the links Γ0, Γ1 and Γ2 are all generalized polygons, and then
𝑌( ) is a Euclidean building, or it is not the case, and then the group 𝐺 contains an element that
acts as a rank one isometry on 𝑌( ). The latter property implies in turn that 𝐺 is acylindrically
hyperbolic (this follows from the main results of [68], see also [18, Corollary 3.4]). It follows from
[60, Theorem 8.1] that 𝐺 is SQ-universal. □

3.3 Distinguishing isomorphism classes

Generalized triangle groups are generated by torsion elements. It follows that isomorphisms
between non-positively curved triangle groups can be analyzed with the help of the Bruhat–Tits
Fixed Point Theorem.

Proposition 3.7. Let 𝑘 ⩾ 2 (respectively, 𝑘′ ⩾ 2) be an integer, let 𝐺 (respectively, 𝐺′) be a non-
positively curved 𝑘-fold (respectively, 𝑘′-fold) triangle group of half girth type (𝑟0, 𝑟1, 𝑟2) (respectively,
(𝑟′
0
, 𝑟′
1
, 𝑟′
2
)). Assume that none of the vertex groups of𝐺 is cyclic. Let𝑌 (respectively,𝑌′) the associated

CAT(0) simplicial complex, as in Theorem 3.1(i). Let also (𝑣0, 𝑣1, 𝑣2) be a 2-simplex in 𝑌, and let
𝜓∶ 𝐺 → 𝐺′ be a homomorphism whose restriction to 𝐺𝑣𝑖 is injective for all 𝑖 ∈ {0, 1, 2}.
Assume that 𝑟𝑖, 𝑟′𝑗 ∈ {2, 3, 4} for all 𝑖, 𝑗 ∈ {0, 1, 2}, with 𝑟0 ⩽ 𝑟1 ⩽ 𝑟2 and 𝑟

′
0
⩽ 𝑟′

1
⩽ 𝑟′

2
. Then the

following assertions hold.

(i) 𝑘 divides 𝑘′.
(ii) For each vertex 𝑦 in 𝑌, the group 𝜓(𝐺𝑦) fixes a unique vertex 𝑦′ in 𝑌′.
(iii) If 1∕𝑟′

0
+ 1∕𝑟′

1
+ 1∕𝑟′

2
< 1, then (𝑣′

0
, 𝑣′
1
, 𝑣′
2
) is a 2-simplex of 𝑌′.

(iv) If 𝜓 is an isomorphism, then (𝑣′
0
, 𝑣′
1
, 𝑣′
2
) is a 2-simplex of𝑌′, and the assignments 𝑦 ↦ 𝑦′ extend

to a 𝜓-equivariant isometry 𝑌 → 𝑌′.

Proof. Since the group 𝜓(𝐺𝑣𝑖 ) is finite, we deduce from Theorem 3.1(ii) that it fixes some vertex 𝑣′
𝑖

of the complex 𝑌′. The group 𝜓(𝐺𝑣𝑖 ) ∩ 𝜓(𝐺𝑣𝑖+1) = 𝜓(𝐺𝑣𝑖,𝑣𝑖+1) is cyclic of order 𝑘, and fixes point-
wise the geodesic segment [𝑣′

𝑖
, 𝑣′
𝑖+1
]. Since a point in the interior of a 2-simplex of 𝑌′ has a trivial

stabilizer in 𝐺′, we infer that [𝑣′
𝑖
, 𝑣′
𝑖+1
] is entirely contained in the 1-skeleton of 𝑌′. Since 𝐺𝑣𝑖 is

not cyclic, whereas the stabilizer of every edge of 𝑌′ in 𝐺′ is cyclic, we infer that 𝑣′
𝑖
is the unique

vertex of 𝑌′ fixed by 𝜓(𝐺𝑣𝑖 ). Since (𝑣0, 𝑣1, 𝑣2) is a strict fundamental domain for the 𝐺-action on
𝑌 by Theorem 3.1(i), we deduce that 𝜓(𝐺𝑦) fixes a unique vertex 𝑦′ in 𝑌′ for every vertex 𝑦 in 𝑌.
This proves (i) and (ii).
From the previous paragraph, we deduce that for all 𝑖, the Alexandrov angle 𝛼𝑖 ∶=

∠𝑣′
𝑖
(𝑣′
𝑖−1
, 𝑣′
𝑖+1
) is an integer multiple of 𝜋∕𝑟′

𝑗
for some 𝑗 ∈ {0, 1, 2}. Since 𝑌′ is CAT(0), it fol-

lows from [14, Proposition II.1.7(4)] that 𝛼0 + 𝛼1 + 𝛼2 ⩽ 𝜋. Moreover, we must have 𝛼𝑖 > 0 for
all 𝑖 since otherwise 𝜓(𝐺𝑣𝑖 ), which is generated by 𝜓(𝐺𝑣𝑖,𝑣𝑖−1 ) ∪ 𝜓(𝐺𝑣𝑖,𝑣𝑖+1 ), would fix an edge of
𝑌′. This is impossible since 𝐺𝑣𝑖 is not cyclic, whereas the stabilizer of every edge of 𝑌

′ is cyclic.
Therefore, since 𝛼𝑖 is an integer multiple of 𝜋∕𝑟′𝑗 and 𝑟

′
𝑗
∈ {2, 3, 4}, there are only two possibil-

ities: either 𝛼𝑖 = 𝜋∕𝑟′𝑗 , or (𝑟
′
0
, 𝑟′
1
, 𝑟′
2
) = (4, 4, 4) and 𝛼𝑖 = 𝜋∕2. The second possibility is, however,
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excluded by the Flat Triangle Lemma, see [14, Proposition II.2.9], since in that case𝑌′ is CAT(−1)
and, therefore, it does not contain any flat triangle.
Recall from Theorem 3.1(i) that the link of 𝑌 at 𝑣𝑖 is isomorphic to the coset graph of 𝐺𝑣𝑖 with

respect to the cyclic groups 𝐺𝑣𝑖,𝑣𝑖−1 and 𝐺𝑣𝑖,𝑣𝑖+1 . From the previous paragraph, we deduce that 𝜓
induces a simplicial embedding of the link of 𝑌 at 𝑣𝑖 into the link of 𝑌′ at 𝑣′𝑖 .
Let us now assume in addition that 1∕𝑟′

0
+ 1∕𝑟′

1
+ 1∕𝑟′

2
< 1, and assumenow for a contradiction

that the geodesic triangle Δ = (𝑣′
0
, 𝑣′
1
, 𝑣′
2
) does not span a 2-simplex of 𝑌′. Then, by the previous

paragraph, the geodesic path [𝑣′
𝑖−1
, 𝑣′
𝑖+1
], which is contained in the 1-skeleton of 𝑌′, must contain

at least one vertex different from 𝑣′
𝑖−1

and 𝑣′
𝑖+1
. Therefore, any simply connected subcomplex of

𝑌′ containing 𝑣′
0
, 𝑣′
1
and 𝑣′

2
has at least four simplices of dimension 2. Let us fix a smallest possible

such subcomplex, and view it as a ruled surface bounded by Δ in the sense of [14, III.H.2, p. 426].
We see that the area of that ruled surface is at least 4 times the area of a hyperbolic triangle with
angles (𝜋∕𝑟′

0
, 𝜋∕𝑟′

1
, 𝜋∕𝑟′

2
). In particular, it is at least 4(𝜋 − 2𝜋∕3 − 𝜋∕4) = 4𝜋∕12 = 𝜋∕3.

Let us now consider the area of a comparison triangle for Δ in the hyperbolic plane. Since 𝛼𝑖 ∈
{𝜋∕4, 𝜋∕3}, we deduce from [14, Proposition II.1.7(4)] that, in this comparison triangle, every inner
angle is at least 𝜋∕4. Therefore the area of that comparison triangle is at most 𝜋 − 3∕4𝜋 = 𝜋∕4.
Thus we see that the area of the ruled surface bounded by Δ in 𝑌′ is strictly greater than the area
of a comparison triangle in the hyperbolic plane. This contradicts [14, Proposition III.H.2.16].
Let us finally assume that 𝜓 is an isomorphism (but relax the hypothesis that 1∕𝑟′

0
+ 1∕𝑟′

1
+

1∕𝑟′
2
< 1). Applying the discussion on the links above to the inverse map 𝜓−1, we deduce that 𝜓

induces a simplicial isomorphism from the link of 𝑌 at 𝑣𝑖 to the link of 𝑌′ at 𝑣′𝑖 . In particular, we
have 𝑟𝑖 = 𝑟′𝑖 . By the definition of the complexes 𝑌 and 𝑌′, the metric is completely determined by
the girth type.More precisely, the Alexandrov angle∠𝑣𝑖 (𝑣𝑖−1, 𝑣𝑖+1) (respectively,∠𝑣′𝑖 (𝑣

′
𝑖−1
, 𝑣′
𝑖+1
)) is

equal to 𝜋∕𝑟𝑖 (respectively, 𝜋∕𝑟′𝑖 ). Therefore, 𝜓 induces an isometry from the link of 𝑌 at 𝑣𝑖 to the
link of 𝑌′ are 𝑣′

𝑖
. Assertions (iv) follows, in view of the fact that local isometries extend to global

isometries (see [14, Proposition II.4.14]). □

Corollary 3.8. Let 𝑘 ⩾ 2 (respectively, 𝑘′ ⩾ 2) be an integer, let 𝐺 (respectively, 𝐺′) be a non-
positively curved 𝑘-fold (respectively, 𝑘′-fold) triangle group of half girth type (𝑟0, 𝑟1, 𝑟2) (respectively,
(𝑟′
0
, 𝑟′
1
, 𝑟′
2
)), none of whose vertex groups of 𝐺 is cyclic. We denote by 𝐴0,𝐴1, 𝐴2 (respectively,

𝐴′
0
, 𝐴′

1
, 𝐴′

2
) the natural images of the defining edge groups into 𝐺 (respectively, 𝐺′). Assume that

𝑟𝑖 and 𝑟′𝑗 belong to {2, 3, 4} for all 𝑖, 𝑗 ∈ {0, 1, 2}. Let 𝜓∶ 𝐺 → 𝐺′ be an isomorphism.
Then there exist an element g ∈ 𝐺′ and a permutation 𝜎 ∈ Sym({0, 1, 2}) such that

g𝜓(𝐴𝑖)g
−1 = 𝐴′

𝜎(𝑖)

for all 𝑖 ∈ {0, 1, 2}. In particular, 𝑘 = 𝑘′.

Proof. Let 𝑌 (respectively, 𝑌′) be the associated CAT(0) simplicial complex, as in Theorem 3.1(i).
Let also (𝑣0, 𝑣1, 𝑣2) be the 2-simplex in 𝑌 whose edges [𝑣1, 𝑣2], [𝑣2, 𝑣0] and [𝑣0, 𝑣1] are, respec-
tively, fixed by𝐴0,𝐴1 and𝐴2. Similarly let (𝑤0, 𝑤1, 𝑤2) be be the 2-simplex in𝑌′ whose edges are,
respectively, fixed by 𝐴′

0
, 𝐴′

1
and 𝐴′

2
. By Proposition 3.7(iv), there exists a 2-simplex (𝑣′

0
, 𝑣′
1
, 𝑣′
2
) in

𝑌′ such that 𝜓(𝐺𝑣𝑖 ) ⩽ 𝐺
′
𝑣′
𝑖

for all 𝑖 ∈ {0, 1, 2}. Since (𝑤0, 𝑤1, 𝑤2) is a strict fundamental domain for

the 𝐺′-action on 𝑌′, there exist an element g ∈ 𝐺′ and a permutation 𝜎 ∈ Sym({0, 1, 2}) such that
g𝑣′

𝑖
= 𝑤𝜎(𝑖) for all 𝑖 ∈ {0, 1, 2}. The conclusion follows by Proposition 3.7. □
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It is convenient to reformulate Corollary 3.8 using the following terminology. Let 𝐺( ) =
(𝑋𝑖, 𝐴𝑗; 𝜑𝑖,𝑖±1) and 𝐺( ′) = (𝑋′𝑖 , 𝐴

′
𝑗
; 𝜑′
𝑖,𝑖±1

) be triangles of groups with trivial face groups. We
say that 𝐺( ) and 𝐺( ′) are equivalent there is a permutation 𝜎 ∈ Sym({0, 1, 2}) and, for each
𝑖 mod 3, an isomorphism 𝛼𝑖 ∶ 𝐴

′
𝑖
→ 𝐴𝜎(𝑖) and an isomorphism 𝛽𝑖 ∶ 𝑋𝑖 → 𝑋′

𝜎−1(𝑖)
such that

𝜑′𝑖,𝑖±1 = 𝛽𝜎(𝑖±1) ◦ 𝜑𝜎(𝑖),𝜎(𝑖±1) ◦ 𝛼𝑖.

Denoting by 𝜌 ∈ Sym({0, 1, 2}) the 3-cycle defined by 𝜌(𝑖) = 𝑖 + 1, we have 𝜎(𝑖 ± 1) = 𝜎𝜌±1(𝑖).
Thus the image of 𝛽𝜎(𝑖±1) is 𝑋′𝜌±1(𝑖) = 𝑋

′
𝑖±1

as required.
It is clear that two equivalent triangles of groups have isomorphic fundamental groups. The

conclusion of Corollary 3.8 is that, under the corresponding hypotheses, the converse holds: two
triangles of groups have isomorphic fundamental groups if and only if they are equivalent.
A well-known theorem of Sela ensures that one-ended torsion-free hyperbolic groups are co-

Hopfian (see [66, Theorem 4.4]). We recover a very special variation on that result.

Corollary 3.9. Let 𝑘 ⩾ 2 be an integer, let 𝐺 be a 𝑘-fold triangle group of type (𝑟0, 𝑟1, 𝑟2), none of
whose vertex groups is cyclic. If 𝑟𝑖 ∈ {3, 4} for all 𝑖 ∈ {0, 1, 2} and (𝑟0, 𝑟1, 𝑟2) ≠ (3, 3, 3), then every
injective homomorphism 𝐺 → 𝐺 is surjective. In other words, 𝐺 is co-Hopfian.

Proof. Immediate from Proposition 3.7. □

4 SMALL EDGE-REGULAR CUBIC GRAPHS

In view of the previous section, in order to build the smallest non-positively curved 3-fold gener-
alized triangle groups, we should determine which of the small edge-transitive bipartite trivalent
graphs (also called i) admit a group 𝑋 acting regularly on the edge set, preserving the bipartition.
Such graphs will a fortiori coincide with the coset graph of𝑋 with respect to the stabilizers𝐴, 𝐵 of
two adjacent vertices, that must both be of order 3 by construction. We shall rely on classification
results that describe all cubic graphs admitting an edge-transitive automorphism group, up to a
certain size (see [22], [20] and [21]).
We consider graphs of order ⩽ 54. Since the order of a bipartite cubic graph of girth 2𝑟 is at

least 2𝑟+1 − 2, we obtain 𝑟 ⩽ 4. Therefore, it suffices to consider graphs of girth 4, 6 and 8 in the
context we have adopted. For graphs of girth ⩽ 6, we shall moreover limit ourselves to graphs of
order ⩽ 30.
In the following, we provide the exact values of the cosine of the representation angle associated

with the triple (𝑋,𝐴, 𝐵) under consideration, computed formally by investigating systematically
all irreducible representations of𝑋. Corollary 2.11, together with theMagma tools computing the
spectrum of graphs, can be used to provide a computational confirmation.

4.1 Girth 4

Among the small cubic graphswith an edge-transitive automorphismgroup, only twohave girth 4.
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4.1.1 Order 6: the complete bipartite graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, 𝑎𝑏𝑎−1𝑏−1⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is the direct product 𝐶3 × 𝐶3. The coset graph Γ𝑋(𝐴, 𝐵) is the complete bipartie

graph 𝐾3,3. By Example 2.1, we have

𝜀𝑋(𝐴, 𝐵) = 0.

The corresponding angle is 90◦.

4.1.2 Order 8: the cube

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, 𝑎𝑏𝑎𝑏⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is the alternating group Alt(4). The coset graph Γ𝑋(𝐴, 𝐵) is the 1-skeleton of the

cube. Computations show that

𝜀𝑋(𝐴, 𝐵) =
1

3
.

The corresponding angle is ≈ 70.53◦.

4.2 Girth 6

In girth 6, we focus on graphs of order ⩽ 30. We see from [22] and [21] that there are exactly six
such graphs, respectively, of order 14, 16, 18, 20, 24 and 26. The graph of order 20 is the Desargues
graph. It can be viewed as the coset graph of 𝑋 = Alt(5) with respect to 𝐴 = ⟨(1, 2), (1, 2, 3)⟩ and
𝐵 = ⟨(3, 4), (3, 4, 5)⟩. We claim that it does not admit any automorphism group acting regularly
on the edges preserving the bipartition, so it is excluded from our list. Indeed, such a group would
have order 30. In every group of order 30, any Sylow 3-subgroup, which is cyclic of order 3, is
normal. Therefore, no group of order 30 is generated by a pair of cyclic subgroups of order 3. Thus
the Desargues graph cannot be the coset graph of a group of order 30, as claimed.
Each of the five remaining graphs is discussed below.

4.2.1 Order 14: the Heawood graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, 𝑎𝑏𝑎−1𝑏−1𝑎𝑏⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
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The group𝑋 is the Frobenius group of order 21. The coset graph Γ𝑋(𝐴, 𝐵) is theHeawood graph,
which is the incidence graph of the projective plane of order 2. By Lemma 2.5, we have

𝜀𝑋(𝐴, 𝐵) =
√
2∕3.

The corresponding angle is ≈ 61.87◦.

4.2.2 Order 16: the Möbius–Kantor graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, 𝑎𝑏𝑎𝑏−1𝑎−1𝑏−1⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to SL2(𝐅3), its order is 24. The coset graph Γ𝑋(𝐴, 𝐵) is theMöbius–

Kantor graph. This group coincides with the complex reflection group with Coxeter diagram

Computations show that

𝜀𝑋(𝐴, 𝐵) =
√
3∕3.

The infimum is achieved by a faithful representation as a complex reflection group in SU(2).
The corresponding angle is ≈ 54.74◦.
The group 𝑋 has one quotient that occurred before, namely Alt(4). A homomorphism to the

presentation of Alt(4) from Section 4.1.2 is obtained by mapping 𝑎 to 𝑎 and 𝑏 to 𝑏−1.

4.2.3 Order 18: the Pappus graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑎𝑏)3, (𝑎𝑏−1)3⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to the Heisenberg group over 𝐅3, its order is 27. The coset graph

Γ𝑋(𝐴, 𝐵) is the Pappus graph. As mentioned in Example 2.3 above, we have

𝜀𝑋(𝐴, 𝐵) =
√
3∕3.

The corresponding angle is ≈ 54.74◦.
The group 𝑋 has one quotient that occurred before, namely the direct product 𝐶3 × 𝐶3.
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4.2.4 Order 24: the Nauru graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑎𝑏)3, 𝑎𝑏𝑎−1𝑏𝑎−1𝑏−1𝑎𝑏−1⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to the direct product Alt(4) × 𝐶3, its order is 36. The coset graph

Γ𝑋(𝐴, 𝐵) is the Nauru graph. Computations show that

𝜀𝑋(𝐴, 𝐵) = 2∕3.

The corresponding angle is ≈ 48.19◦.
The group 𝑋 has two quotients that occurred before, namely 𝐶3 × 𝐶3 and Alt(4).

4.2.5 Order 26

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑎𝑏)3, 𝑎𝑏𝑎−1𝑏𝑎−1𝑏𝑎−1𝑏−1⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to the Frobenius group of order 39. The coset graph Γ𝑋(𝐴, 𝐵) is the

cubic graph denoted by F26A in the Foster census. Using Lemma 2.5, we find that

𝜀𝑋(𝐴, 𝐵) =
|𝜁2 + 𝜁5 + 𝜁6|

3
,

where 𝜁 = 𝑒2𝜋𝑖∕13.
The corresponding angle is ≈ 46.26◦.

4.3 Girth 8

In girth 8, we focus on graphs of order ⩽ 54. We see from from [20] and [21] that there are
exactly four such graphs, respectively, of order 30, 40, 48 and 54. The graph of order 30 is the Tutte
8-cage  , which is also the incidence graph of the generalized quadrangle of order 2. It does not
admit any automorphism group acting regularly on the edges preserving the bipartition, so it is
excluded from our list. Indeed, since  is of order 30, an edge-regular automorphism group must
have order 45; on the other hand, the index 2 subgroup ofAut( ) preserving the bipartition is iso-
morphic to Sym(6), which does not have any subgroup of order 45. Each of the three remaining
ones is discussed below.
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4.3.1 Order 40: the double cover of the dodecahedron

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑎𝑏−1𝑎𝑏)2, (𝑎−1𝑏−1𝑎𝑏−1)2⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to Alt(5), which is of order 60: indeed, there is an isomorphism

mapping 𝑎 to (1, 2, 3) and 𝑏 to (3, 4, 5). The coset graph Γ𝑋(𝐴, 𝐵) is a double cover of the 1-skeleton
of the dodecahedron. Computations show that

𝜀𝑋(𝐴, 𝐵) =
√
5∕3.

The infimum is achieved by the irreducible representations in degree 3.
The corresponding angle is ≈ 41.81◦.

4.3.2 Order 48

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑎𝑏)2(𝑎−1𝑏−1)2⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to the direct product SL2(𝐅3) × 𝐶3, its order is 72. The coset graph

Γ𝑋(𝐴, 𝐵) is of girth 8. This group coincides with the complex reflection group with Coxeter
diagram

Computations show that

𝜀𝑋(𝐴, 𝐵) =
√
2∕3.

The infimum is achieved by a faithful representation as a complex reflection group in SU(2).
The corresponding angle is ≈ 35.26◦.
The group 𝑋 has four quotients that occurred before: adding the relation (𝑎𝑏)4 gives a presen-

tation of 𝑆𝐿2(𝐅3) (order 24, acting on the Möbius–Kantor graph of order 16). A homomorphism
to the presentation above is given by taking 𝑎 to 𝑎 and 𝑏 to 𝑏−1. The second quotient is obtained
by adding the relation (𝑎𝑏−1)3. This is a presentation of the groupAlt(4) × 𝐶3 (order 36, acting on
the Nauru graph of order 24). A homomorphism to the previous presentation is given by taking
𝑎 to 𝑎 and 𝑏 to 𝑏−1. One can then postcompose with quotient maps mentioned above, and obtain
quotients isomorphic to 𝐶3 × 𝐶3 and Alt(4).
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4.3.3 Order 54: the Gray graph

Let

𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, 𝑎𝑏𝑎−1𝑏−1𝑎−1𝑏𝑎𝑏−1, (𝑎𝑏𝑎−1𝑏)3⟩
and set 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩.
The group 𝑋 is isomorphic to the wreath product 𝐶3 ≀ 𝐶3. It is also isomorphic to the 3-Sylow

subgroup in Sp4(𝐅3). Alternatively, it can be viewed as a non-trivial split extension of the Heisen-
berg group over𝐅3 by𝐶3. Its order is 81. The coset graph Γ𝑋(𝐴, 𝐵) is theGray graph. An alternative
presentation will be provided in Proposition 7.2(ii) below. Moreover, by Proposition 7.3(ii), we
have

𝜀𝑋(𝐴, 𝐵) =
√
2∕3.

The corresponding angle is ≈ 35.26◦.
The group 𝑋 has two quotients that occurred before. Adding the relation (𝑎𝑏)3 gives a pre-

sentation of the Heisenberg group over 𝐅3 (order 27, acting on the Pappus graph of order 18).
The homomorphism to the presentation from Section 4.2.3 is given by taking 𝑎 to 𝑎 and 𝑏 to 𝑏.
Post-composing with a quotient map mentioned above, we also obtain 𝐶3 × 𝐶3 as a quotient.

Remark 4.1. We emphasize that the Gray graph is not vertex-transitive (it is semi-symmetric, but
not symmetric), while each of the other nine graphs above admits a vertex-transitive automor-
phism group.Moreover, theGray graph should not be confusedwith the graph denoted byF54A in
the Foster census. The latter graph is bipartite, of order 54, symmetric, and of girth 6 (and therefore
excluded from our list, since for graphs of girth ⩽ 6, we only considered graphs of order ⩽ 30).

Remark 4.2. For 9 of the 10 triples (𝑋,𝐴, 𝐵) catalogued above, we have

𝜀𝑋(𝐴, 𝐵) ∈

{√
𝑛

3
∣ 𝑛 = 0, 1, 2, 3, 4, 5, 6

}
.

The only exception is the Frobenius group of order 39, whose associated graph is 𝐹26𝐴, see
Section 4.2.5. This is also the only group involving the prime 13 (the other groups involve only
2, 3, 5, 7).

Remark 4.3. It follows from Corollary 2.14 that the 10 graphs above are all Ramanujan graphs.

5 NON-POSITIVELY CURVED TRIVALENT TRIANGLE GROUPS:
AN EXPERIMENTAL CASE STUDY

5.1 Overview

A 3-fold generalized triangle group is called a trivalent triangle group. We have undertaken a
systematic enumeration of non-positively curved trivalent triangle groups with the smallest pos-
sible vertex links. In this introduction, we present an overview of our experimental set-up and of
the outcome of our computations, and refer to the next subsections of the text for details. The
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repository [17] for this article contains code that was used for these computations as well the
resulting data in machine-readable form. In human-readable form, these data are collected in
the Appendices A, B, and C.
In a trivalent triangle group, every vertex link is an edge-regular trivalent graph (also called

cubic graph). In order to satisfy the non-positive curvature condition, the inequality 2𝜋

g0
+ 2𝜋

g1
+

2𝜋

g2
⩽ 𝜋must be satisfied, where g𝑖 denotes the girth of the 𝑖th vertex link in the triangle of groups

under consideration (see Theorem 3.1). The bound on the order of the graphs we have imposed
implies that g𝑖 ⩽ 8 for all 𝑖. The non-positive curvature condition therefore implies that the only
girths to be considered are 4, 6 and 8. The previous section describes the two smallest edge-regular
cubic graphs of girth 4, the 5 smallest edge-regular cubic graphs of girth 6, and the three smallest
edge-regular cubic graphs of girth 8. (It is important to emphasize that not every edge-transitive
cubic graph is edge-regular.) This leads us to a set  of 10 graphs, and a corresponding set of ten
finite groups acting regularly on the edges of those graphs.
In the following, we describe an enumeration of all the possible trivalent triangle groups, all

of whose vertex groups belong to  . There are exactly 252 inequivalent triangles of groups with
vertex groups in  . Corollary 3.8 ensures that two inequivalent triangles of groups from that list
yield non-isomorphic fundamental groups. We have thus obtained a list of 252 non-isomorphic
trivalent triangle groups, that are all infinite. A list of their presentations is included in Section A.
When the girths of the vertex links satisfy the strict inequality 2𝜋

g0
+ 2𝜋

g1
+ 2𝜋

g2
< 𝜋, the corre-

sponding trivalent triangle group is hyperbolic (see Theorem 3.1). Among the 252 groups of our
list, 149 satisfy that condition. Among the remaining 103 groups, 38 are hyperbolic while 65 con-
tain a subgroup isomorphic to 𝐙 × 𝐙 and are thus not hyperbolic. It is noteworthy that there exist
pairs (𝐻1,𝐻2) of trivalent triangle groups sharing the same triple of vertex groups, such that𝐻1 is
hyperbolic but 𝐻2 is not (see, for example, the pairs (𝐺

14,14,24
0

, 𝐺14,14,24
1

) or (𝐺24,24,24
0

, 𝐺24,24,24
1

) in
Appendix B).
It is important to underline that four of the groups from our list had been introduced by Ronan

[65] and studied by various authors. These Ronan groups are those obtained by imposing that
the three vertex links are all isomorphic to the Heawood graph. The Ronan groups act properly,
chamber-transitively on 𝐴2-buildings. Therefore, they have Kazhdan’s property (T), and they are
not hyperbolic. Moreover, it is conjectured that there exists some 𝑑 such that none of them has a
quotient inS𝑑 (two of the Ronan groups are arithmetic, see [46], hence for them, this conjectural
assertion follows from Serre’s conjecture on the congruence subgroup problem [63, Conjecture 1];
for the other two Ronan groups, see [4, Conjecture 1.5]).
Let us now describe our findings regarding property (T). Theorem 2.6 confirms that the four

Ronan groups have property (T), but happens to be inconclusive for the remaining 248 groups
on our list. On the other hand, by enumerating subgroups of low index, we found that the
majority of those 248 have finite index subgroups with infinite abelianization, and thus fail
to have property (T). On the remaining groups, we have also run the algorithmic tools devel-
oped in [40] to check property (T), without reaching any conclusion. Moreover, further results
confirming the absence of property (T) for a large subset of those groups have more recently
been obtained by Ashcroft [3, Corollary C], who constructs a fixed-point-free action on CAT(0)
cube complexes and further proves that some of the hyperbolic groups considered are virtually
special.
In addition, we were also able to prove that four of our groups have an unbounded isometric

action on the real hyperbolic 3-space, while nine of them have an unbounded isometric action
on the complex hyperbolic plane, and five have an unbounded isometric action on the complex
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hyperbolic 3-space (see Section 5.4). The existence of such actions is also an obstruction to property
(T). Among those groups, one has all its vertex groups isomorphic to SL2(𝐅4) ≅ Alt(5), and has a
Kleinian quotient group. Two others have all their vertex groups isomorphic to SL2(𝐅3), and admit
quotient groups that are arithmetic andnon-arithmetic lattices in SU(2, 1). These latticeswere first
introduced and studied by Mostow [51]. We view those specific triangle groups as relatives of the
𝑘-fold generalized triangle groups considered in [50]: indeed, they share the property of having
all their vertex groups isomorphic to (P)SL2(𝐅𝑞) or (P)GL2(𝐅𝑞) for some prime power 𝑞.
According to an unpublished result of Shalom and Steger, the four Ronan groups are heredi-

tarily just-infinite (this means that each of their proper quotients is finite, and that this property
is inherited by their finite index subgroups). None of the other 248 groups on our list has this
property: indeed, all of them are acylindrically hyperbolic, hence SQ-universal (see Theorem 3.6).
Thus, as far as infinite quotients are concerned, the four Ronan groups constitute an exception in
our sample.
Let us now describe our findings regarding finite simple quotients. All the data we collected

are displayed in Section B. We performed a systematic search of finite simple quotients of order ⩽
5 ⋅ 107, and a systematic search of alternating quotients of degree ⩽ 30. For various subclasses,
this upper bound could be extended up to degree ⩽ 40. The outputs of those computations show
that when the girth triple (g0, g1, g2) is (8, 8, 8), the corresponding triangle group has a tremendous
amount of finite simple quotients, includingmost alternating groups of degree between 20 and 40.
Moreover, all of them are virtually torsion-free. When the girth triple is not (8, 8, 8), the situation
is less clear. For each group with girth triple (6, 8, 8) on our list, we could find some (and usually
many) non-abelian finite simple quotients. On the other hand, for some of the hyperbolic groups
with girth triple (4, 8, 8), (6, 6, 6) and (6, 6, 8) on our list, we could not find any (non-abelian) finite
simple quotient at all. We underline that our investigations of the finite simple quotients of the
groups from our sample was primarily based on a systematic enumeration of all simple quotients
of finite order up to a certain upper bound (namely 5 ⋅ 107), and a systematic enumeration of all
subgroups of finite index up to a certain upper bound (typically 30 or 40). Occasionally, we have
also found individual finite simple quotients, usually of much larger order, by exhibiting explicit
linear representations in degree 𝑑 ⩽ 6 in characteristic 0, and then by extracting congruence quo-
tients. The latter constructionwas achieved by investigating certain representation varieties of the
groups under consideration, using the Magma tools in algebraic geometry (see Section 5.3 and
Remark 5.16).
Our list of trivalent triangle groups interpolates between two extremes. At one end of the spec-

trum,we have the four Ronan groups, that are very rigid non-hyperbolic groupswith conjecturally
no finite simple quotient of arbitrarily large rank. At the opposite end, we have the 17 trivalent
groups from our list all of whose vertex links have girth 8. Each of the latter has a tremendous
amount of finite simple quotients compared to the other groups from the list. It is tempting to
believe that those 17 groups admit Alt(𝑑)-quotients for all but finitely many 𝑑, and that they
are all virtually special (the latter conjecture has recently been partly verified by Ashcroft, see
[3, Corollary C]). The other groups on our list have properties that appear to be intermediate com-
pared to those extremes. This led some of us to speculate, at an intermediate stage of this project,
that some of them, with girth triple (6, 6, 6) or (6, 6, 8), could fail to admit quotients in S𝑑 for all
𝑑. We emphasize that the two hyperbolic groups that are ‘as close as possible’ to the four Ronan
groups are those denoted by 𝐺14,14,24

0
and 𝐺14,14,26

0
on our list.
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TABLE 1 Description of Aut(𝑋|𝐿|){𝐴,𝐵} for 𝐿 ∈ 

𝑿 = ⟨𝑨,𝑩⟩ Order of 𝐀𝐮𝐭(𝑿){𝑨,𝑩} Generators of 𝐀𝐮𝐭(𝑿){𝑨,𝑩}
𝑋6, 𝑋18, 𝑋40 8 (𝑎 𝑏)(𝑎−1 𝑏−1), (𝑎 𝑎−1)

𝑋8, 𝑋16, 𝑋24, 𝑋48 4 (𝑎 𝑏)(𝑎−1 𝑏−1), (𝑎 𝑎−1)(𝑏 𝑏−1)

𝑋14, 𝑋26 2 (𝑎 𝑏−1)(𝑎−1 𝑏)

𝑋54 4 (𝑎 𝑎−1), (𝑏 𝑏−1)

5.2 Enumerating small trivalent triangle groups

Let  be the set consisting of the ten graphs listed in Section 4. We have performed a systematic
enumeration of all the non-positively curved triangles𝐺() of finite groupswith trivial face group
and cyclic edge groups of order 3, such that the link in the local development at every vertex
belongs to . Their half girth type is thus an element of the set

{(2, 4, 4), (3, 3, 3), (3, 3, 4), (3, 4, 4), (4, 4, 4)}.

Let 𝐘 be the collection of those 𝐺(). It follows from Corollary 3.8 that if two elements
𝐺(1), 𝐺(2) ∈ 𝐘 are inequivalent, their fundamental groups 𝐺(1) and 𝐺(2) are not iso-
morphic (see Section 3.3 for the definition of the notion of equivalence of triangles of
groups).
For each graph 𝐿 ∈ , let |𝐿| be its order (that is, the cardinality of its vertex set) and

𝑋|𝐿| = ⟨𝑎, 𝑏⟩ be the group acting regularly on the edges of 𝐿, generated by a pair of elements
of order 3, as it appears in the list from Section 4. We need to describe, for each such group
𝑋|𝐿|, the group Aut(𝑋|𝐿|){𝐴,𝐵} of those automorphisms of 𝑋|𝐿| that stabilizes the pair {𝐴, 𝐵},
where 𝐴 = ⟨𝑎⟩ and 𝐵 = ⟨𝑏⟩. By definition, every element 𝛼 ∈ Aut(𝑋|𝐿|){𝐴,𝐵} permutes the set
{𝑎, 𝑎−1, 𝑏, 𝑏−1}; moreover 𝛼 is uniquely determined by its action on that set. Thus Aut(𝑋|𝐿|){𝐴,𝐵}
is isomorphic to a subgroup of the dihedral group of order 8. In Table 1, we provide a generating
set for Aut(𝑋|𝐿|){𝐴,𝐵} as a collection of permutations of the set {𝑎, 𝑎−1, 𝑏, 𝑏−1}. The case-by-case
verification is straightforward.
We are now ready for the following.

Proposition 5.1. The set𝐘 consists of 252 inequivalent triangles of finite groups. Their fundamental
groups are pairwise non-isomorphic. Their presentations are those listed in Appendix A.

About the proof. A triangle of groups𝐺() ∈ 𝐘 is determined by the following data: the three edge
groups 𝐴𝑖 = ⟨𝑐𝑖⟩ which are cyclic of order 3; the vertex groups 𝑋𝑖 = ⟨𝑎𝑖, 𝑏𝑖⟩, each of which is one
of the ten groups whose presentation is given in Section 4, and the homomorphisms 𝜑𝑖−1,𝑖 , 𝜑𝑖+1,𝑖
which amount to identifying the pair (𝑎𝑖, 𝑏𝑖) with one of the eight pairs (𝑐

±1
𝑖−1
, 𝑐±1
𝑖+1
), (𝑐±1

𝑖+1
, 𝑐±1
𝑖−1
).

Once the (𝐴𝑖)𝑖=0,1,2 and (𝑋𝑖)𝑖=0,1,2 are fixed, this leads to 83 possible triangles of groups. However,
replacing 𝑐𝑖 by 𝑐−1𝑖 in a given triangle of groups and also inverting 𝑐𝑖 in the identifications coming
from the 𝜑𝑖,𝑗 leads to a triangle of groups that is obviously equivalent to the original one. Thus at
most 43 = 64 of these triangles of groups are inequivalent. Therefore, once the triple (𝑋0, 𝑋1, 𝑋2)
of vertex groups is fixed, wemay encode all the possible triangles of groups𝐺() by an element of
the 6-dimensional vector space 𝐅6

2
as follows. To a vector 𝑣 = (𝑣0, 𝑣1, … , 𝑣5) ∈ 𝐅62, we associate a

unique triangle of groups𝐺() defined as follows. For each 𝑖 ∈ {0, 1, 2}, we rename the generating
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pair (𝑎𝑖, 𝑏𝑖) in 𝑋𝑖 according to the rule:

(𝑥𝑖, 𝑦𝑖) =

{
(𝑎𝑖, 𝑏𝑖) if 𝑣2𝑖 = 0
(𝑏𝑖, 𝑎𝑖) if 𝑣2𝑖 = 1.

The connecting homomorphisms 𝜑𝑖−1,𝑖 , 𝜑𝑖+1,𝑖 are then uniquely determined by the following
identifications:

𝑦𝑖 = 𝑥𝑖+1 if 𝑣2𝑖+1 = 0
𝑦𝑖 = 𝑥

−1
𝑖+1

if 𝑣2𝑖+1 = 1,

where, as usual, the index 𝑖 is taken modulo 3.
Using that parametrization, we can now determine the equivalence classes of triangles of

groups, keeping the triple (𝑋0, 𝑋1, 𝑋2) fixed, as follows. The equivalence classes of triangles
of groups coincide with the orbits of a finite group Δ determined by the groups Aut(𝑋𝑖){𝐴𝑖,𝐵𝑖}
described in Table 1, for 𝑖 = 0, 1, 2, and the permutations of {𝑋0, 𝑋1, 𝑋2} permuting identical vertex
groups. Let us illustrate this by two examples. If the groupAut(𝑋0){𝐴0,𝐵0} contains the permutation
(𝑎0 𝑏

−1
0
)(𝑎−1

0
𝑏0), it follows that for every vector 𝑣 = (𝑣0, 𝑣1, … , 𝑣5), the triangle of group deter-

mined by 𝑣 is equivalent to the triangle of groups determined by (𝑣0 + 1, 𝑣1 + 1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 + 1).
This means that Δ contains the translation 𝑣 ↦ 𝑣 + (1, 1, 0, 0, 0, 1). Similarly, if the groups𝑋0 and
𝑋1 are identical, so that the assignments (𝑎0, 𝑏0) ↦ (𝑎1, 𝑏1) define an isomorphism, then Δ con-
tains the linear transformation (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) ↦ (𝑣2, 𝑣3, 𝑣0, 𝑣1, 𝑣4, 𝑣5). Therefore, using the
coding we have introduced above, we see that the group Δ acts on 𝐅6

2
by affine transformations.

The equivalence classes of triangle presentations with vertex groups (𝑋0, 𝑋1, 𝑋2) are nothing but
the Δ-orbits on the space 𝐅6

2
. This computation is now easily implemented in Magma.

It is straightforward to obtain a presentation for the fundamental group of a triangle of groups
𝐺() given by these data: it is generated by the 𝑎𝑖 and presented by the relations of the 𝑋𝑖 with
the appropriate identifications.
Section A lists these fundamental groups in the form 𝐺

𝑚1,𝑚2,𝑚3
𝓁 where the number 𝑚𝑖 is the

order of the cubic graph on which the groups 𝑋𝑖 acts edge-transitively and the number 𝓁 ∈
{0, … , 63} corresponds to an element of the index set 𝐅6

2
as described above (explicitly (𝑣0, … , 𝑣5)

corresponds to 32(1 − 𝑣0) + 16𝑣1 + 8(1 − 𝑣2) + 4𝑣3 + 2(1 − 𝑣4) + 𝑣5).
In view of Proposition 3.7, two inequivalent triangles of groups have non-isomorphic funda-

mental groups. This leads to a computation of isomorphism classes; for each class Section A lists,
the representative with smallest index 𝓁.
An independent verification has also been realized using the Magma call

SearchForIsomorphism(𝐺𝑚1,𝑚2,𝑚3𝓁 , 𝐺
𝑚′
1
,𝑚′
2
,𝑚′
3

𝓁′
, 3), for all 𝓁 ≠ 𝓁′ ∈ {0, 1, … 63}. This searches for

an isomorphism taking the generators of 𝐺𝑚1,𝑚2,𝑚3𝓁 to generators or inverses of generators of

𝐺
𝑚′
1
,𝑚′
2
,𝑚′
3

𝓁′
. Although there is no guaranty that every such isomorphism will be found, it turns out

that the outcome confirms the list displayed in Section A.
We observe that Δ depends on 𝑋𝑖 only through the groupAut(𝑋𝑖){𝐴𝑖,𝐵𝑖}. For example, the num-

ber of equivalence classes for the triple (𝑋14, 𝑋16, 𝑋18)must be equal to the number of equivalence
classes with the triple (𝑋26, 𝑋40, 𝑋48) since, in view of Table 1, the affine group Δwill be identical
in those two cases. □

Information about these groups is tabulated in Section B. That information was mostly
obtained by basic use of Magma and is described before the tables. There are a few exceptions.
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F IGURE 3 Short vectors in the root lattices of type 𝐴̃2 and 𝐶̃2 (the (longer) edges have length 1)

Information on Kazhdan’s property (T) is incomplete. The four groups 𝐺14,14,14𝓁 ,𝓁 ∈ {0, 1, 2, 6}
are Ronan’s groups [65] that are uniform lattices on 𝐴̃2-buildings and therefore are well known
to have property (T). This is also recovered by Theorem 2.6 using that 𝜀𝑋𝑖 (𝐴𝑖−1, 𝐴𝑖+1) =

√
2∕3,

see Section 4.2.1. For all the other groups, Theorem 2.6 is inconclusive. It turns out that many of
them have a finite index subgroup with infinite abelianization. Moreover, some of them admit
unbounded isometric actions on real or complex hyperbolic spaces, which is also an obstruction
is property (T) (see Section 5.4).
The information on alternating quotients is obtained by running a systematic search of

subgroups of small index, using the Magma call LowIndexSubgroups, then extracting the corre-
sponding coset action and testing whether the corresponding quotient group is alternating. That
procedure was run up to a certain upper bound on the index, which was fixed for each half girth
type, and is clearly indicated in the tables.
The table for groups of half girth type (2, 4, 4) and (3,3,3) also contains information on hyper-

bolicity of the groups. It uses an automatic structure that is found (for all trivalent triangle groups)
byHolt’s kbmagusing theMagma call 𝑖𝑠𝑎𝑢𝑡, 𝐺𝐴 := IsAutomaticGroup(𝐺). For those groups
that are hyperbolic, it can be confirmed using IsHyperbolicGroup(𝐺𝐴 : MaxTries:=20). For
the groups that are not, the table provides two elements that generate𝐙 × 𝐙 byCorollary 3.5, where
the hypotheses can be verified using the automatic group 𝐺𝐴.
Although this is not relevant for verifying non-hyperbolicity, we briefly explain how we found

these elements. A copy of 𝐙 × 𝐙 in a generalized triangle group of half-girth type (3,3,3) or (2, 4, 4)
will act on a flat plane of the CAT(0) complex 𝑌 associated with 𝐺(), leaving the vertex coloring
by conjugacy classes of stabilizers invariant. It is therefore canonically a finite-index subgroup of
the isomorphism group of that colored tiled plane, which is the root lattice Λ of type 𝐴̃2 or 𝐶̃2,
respectively. If the plane contains the base simplex 𝜎, the vectors of the five shortest lengths in Λ
are represented by words as in Lemma 3.2, see Figure 3. In searching for generators of 𝐙 × 𝐙, we
enumerated pairs (g1, g2) of such words with |g1| ⩾ |g2| in lexicographic order of their translation
lengths. Using the automatic structure, we could then haveMagma checkwhether they commute
and use Lemma 3.2 to decide whether the cyclic groups they generate are commensurate.



32 CAPRACE et al.

Remark 5.2. As can be seen in the table in Section B.2, the elements of the first pair we found
always satisfy |g1| = |g2|. It is not a priori clear to us why we would never find pairs with |g1| =
2
√
3 and |g2| =√3 or with |g1| = 2√3 and |g2| = 3 first.

Remark 5.3. If we take edge lengths to be 1, the covolume of the root latticeΛ of type 𝐴̃2 is
3
√
3

2
. As

a consequence of the previous remark, the covolumes of the copies of 𝐙 × 𝐙 that we first find
in trivalent triangle groups of half-girth type (3,3,3) are 3

√
3

2
⋅ {1, 3, 4, 7, 9}. These are generally

not the copies of 𝐙 × 𝐙 with smallest covolume: Ronan’s group 𝐺14,14,14
1

contains a copy of 𝐙 × 𝐙

of covolume 3
√
3

2
⋅ 3 (with (|g1|, |g2|) = (2√3,√3)) while our search first finds one of covolume

3
√
3

2
⋅ 4 (with (|g1|, |g2|) = (3, 3)).

It would be interesting to know which covolumes (asymptotically) appear with which multi-
plicity in a given generalized triangle group. Such information is not known even in the case of
Ronan’s groups.

5.3 Linear representations with infinite image in characteristic 0

In the following sections, we construct, for certain trivalent triangle groups, explicit low degree
representations in characteristic 0 with infinite image. We have used the following methods.
First, the Magma call L2Quotients computes the finite quotients of a finitely presented group
𝐺 = ⟨𝑆|𝑅⟩ of the form PSL2(𝑞) or PGL2(𝑞). When this algorithm ensures the existence of infinitely
many such quotients in infinitelymany different characteristics, one expects the group𝐺 to have a
representation in PGL2(𝐂)with infinite image. This is confirmed in our sample (see Section B and
Proposition 5.5). If the group 𝐺 is 2-generated, there is a similar function L3Quotients. This does
not apply to any trivalent triangle group from our sample, since they fail to be 2-generated, but
it does apply to certain extensions described in Section 5.5. Fifty-four groups from our sample
have a subgroup of index 3 which is 2-generated, but the presentation of that subgroup hap-
pens to be too complicated for the L3Quotients-algorithm to reach a conclusion in a reasonable
computing time.
An alternative approach attempts to build explicit points of the representation variety of 𝐺

in GL𝑑(𝐂), exploiting the fact that triangle groups are generated by torsion subgroups. More
precisely, given a triangle group 𝐺 = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑅⟩, we can start with an explicit representation
𝜌∶ 𝑋 → GL𝑑(𝐹) of the finite group𝑋 = ⟨𝑎, 𝑏⟩, where𝐹 is a number field. The possibility to define
𝜌(𝑐) in such a way that 𝜌 extends to a representation of 𝐺 can be explored as follows. First define
𝐶 as a matrix whose entries are 𝑑2 indeterminates. Each of the relators from the presentation
of 𝐺 yields an identity, each of which corresponds to 𝑑2 polynomial equations in the indeter-
minates above. The collection of those matrices 𝐶 satisfying those identities is thus a complex
algebraic variety, which can be studied with the Magma tools in algebraic geometry. In particu-
lar, the dimension of that variety can be computed. When the dimension is−1, the representation
𝜌 cannot be extended to 𝐺, whereas if its dimension is 0, Magma finds its rational points over
the ground field 𝐹. Picking any such a point 𝐶, we may then set 𝜌(𝑐) = 𝐶 and obtain a represen-
tations of 𝐺. Of course, there is no guarantee that the representation 𝜌 constructed in that way
has infinite image. This method has been used to identify some of the representations described
below.
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5.4 Actions on real and complex hyperbolic spaces

The goal of this section is to explain that some of the groups appearing in the enumeration above
admit representations with unbounded image in SO(3, 1), in U(2, 1) or in U(3, 1). We start by
recalling that the existence of such a representation is an obstruction to Kazhdan’s property (T).

Theorem5.4 [8, Theorem 2.7.2]. Let 𝑛 ⩾ 2. For any group Γwith Kazhdan’s property (T), the image
of any homomorphism of Γ to 𝑂(𝑛, 1) or 𝑈(𝑛, 1) has compact closure, and therefore has a global
fixed point.

In other words, if a group Γ is capable of acting by isometries on a real or complex hyperbolic
space without a global fixed point, then Γ does not have (T).

Proposition 5.5. For Γ ∈ {𝐺8,40,40
0

, 𝐺16,40,40
0

, 𝐺24,40,40
0

, 𝐺40,40,48
0

}, there is a representation
Γ → SO(3, 1) whose image is a non-discrete, Zariski dense subgroup.
The group𝐺40,40,40

0
has a representationΓ → SO(3, 1)whose image is a cocompact lattice (namely,

an index 2 subgroup of the compact hyperbolic Coxeter group of type (3, 5, 3)).
In particular, none of those five groups has Kazhdan’s property (T).

Proof. Let 𝐺 = SO(3, 1). In the hyperbolic 3-space 𝑋, consider a geodesic triangle  with vertices
𝑣0, 𝑣1, 𝑣2 and, for 𝑖 mod 3, let 𝓁𝑖 be the geodesic line through 𝑣𝑖−1, 𝑣𝑖+1. Let 𝜌𝑖 ∈ 𝐺 be a rotation of
an angle 2𝜋∕3 around 𝓁𝑖 . Note that the stabilizer 𝐺𝑣𝑖 is isomorphic to 𝑂(3). Its action on the unit
tangent sphere at 𝑣𝑖 is transitive on the set of ordered pairs at any given distance. Therefore, the
isomorphism type of the subgroup ⟨𝜌𝑖−1, 𝜌𝑖+1⟩ ⩽ 𝐺𝑣𝑖 depends only on the angle formed by 𝓁𝑖−1
and 𝓁𝑖+1.
If we choose 𝑣0, 𝑣1, 𝑣2 so that the cosines of the inner angles of  are, respectively, 1∕3,

√
5∕3

and
√
5∕3 (which is possible since the sum of those three angles is < 𝜋), it follows that the sub-

group ⟨𝜌1, 𝜌2⟩ ≅ Alt(4) and ⟨𝜌0, 𝜌1⟩ ≅ ⟨𝜌0, 𝜌2⟩ ≅ Alt(5). Therefore, Λ = ⟨𝜌0, 𝜌1, 𝜌2⟩ is a quotient
of the trivalent triangle group 𝐺8,40,40

0
, which is the unique trivalent triangle group whose vertex

groups are, respectively, isomorphic toAlt(4),Alt(5),Alt(5). In viewof the epimorphisms recorded
in Section C, this implies that Λ is a common quotient of 𝐺8,40,40

0
, 𝐺16,40,40

0
, 𝐺24,40,40

0
and 𝐺40,40,48

0
.

By construction, Λ does not fix any point in 𝑋 or in the ideal boundary of 𝑋. Moreover Λ does
not preserve any non-empty closed convex subset strictly contained in 𝑋. It then follows from the
Karpelevich–Mostow Theorem that Λ is Zariski-dense (see [19, Proposition 2.8]). The fact that Λ
is non-discrete follows from the classification in [33].
If we choose 𝑣0, 𝑣1, 𝑣2 so that the cosines of the inner angles of  are all equal to

√
5∕3, then the

group ⟨𝜌𝑖, 𝜌𝑖+1⟩ ≅ Alt(5) for all 𝑖 and Λ′ = ⟨𝜌0, 𝜌1, 𝜌2⟩ is a cocompact lattice in 𝐺 contained, as an
index 2 subgroup in the compact hyperbolic Coxeter group of type (3, 5, 3) (this follows from the
classification in [33]). Since 𝐺40,40,40

0
is the unique trivalent triangle group whose vertex groups

are all isomorphic to Alt(5), we deduce that Λ′ is a quotient of 𝐺40,40,40
0

. □

We also note that the representations afforded by Proposition 5.5 also provide a theoretical con-
firmation of the occurrence of infinitelymany 𝐿2(𝑞)-quotients found by the computer calculations
(see Section B).

Corollary 5.6. Each of the groups 𝐺8,40,40
0

, 𝐺16,40,40
0

, 𝐺24,40,40
0

, 𝐺40,40,40
0

and 𝐺40,40,48
0

admits finite
simple quotients of the form PSL2(𝑞) for infinitely many values of 𝑞.
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Proof. By Proposition 5.5, each of those groups has a Zariski dense representation in SO(3, 1) (in
the case of𝐺40,40,40

0
, this follows from the Borel density theorem), hence in SL2(𝐂). The conclusion

follows from the Strong Approximation of Weisfeiler and Nori (see [74] and [56]). □

Proposition 5.7. For Γ ∈ {𝐺16,16,16
0

, 𝐺16,16,48
1

, 𝐺16,48,48
0

, 𝐺48,48,48
1

}, there is a representation Γ →
SU(2, 1) whose image is a lattice. In particular, Γ does not have (T), and Γ admits finite simple
quotients of the form 𝐴2(𝑞) or 2𝐴2(𝑞2) for infinitely many values of 𝑞.

Proof. The assignment 𝑥 → 𝑎 and 𝑦 → 𝑏−1 extends to a surjective homomorphism ⟨𝑥, 𝑦 ∣
𝑥3, 𝑦3, 𝑥𝑦𝑥𝑦𝑥−1𝑦−1𝑥−1𝑦−1⟩→ ⟨𝑎, 𝑏 ∣ 𝑎3, 𝑏3, 𝑎𝑏𝑎𝑏−1𝑎−1𝑏−1⟩ whose kernel is the normal closure
of (𝑥𝑦)4. Therefore, we have surjective homomorphisms

𝐺48,48,48
1

→ 𝐺16,48,48
0

→ 𝐺16,16,48
1

→ 𝐺16,16,16
0

.

In particular, it suffices to prove the required assertion for Γ = 𝐺16,16,16
0

. As observed above, the
three vertex groups of Γ are each isomorphic to a complex reflection group, and the existence of
a quotient of Γ embedding as a lattice in 𝑈(2, 1) follows from [51, Theorem A] (it is in fact easy
to arrange that this lattice be contained in SU(2, 1), see [61, Theorem 4.7]). Explicit representa-
tions are provided in [51, §9.1] or in [61, Theorem 4.7]. The assertion on the failure of property
(T) then follows from Theorem 5.4. By Borel density, the image of Γ is Zariski dense in 𝑆𝑈(2, 1).
Strong approximation yields finite simple quotients of the form 𝐴2(𝑞) or 2𝐴2(𝑞2) for infinitely
many values of 𝑞. □

Remark 5.8. The group 𝐺16,16,16
0

has an automorphism of order 3 that cyclically permutes the
generators. One checks that the corresponding semi-direct product 𝐺16,16,16

0
⋊ 𝐶3 admits the

following presentation:

⟨𝑎, 𝑏 ∣ 𝑎3, 𝑏3, 𝑎𝑏−1𝑎𝑏𝑎𝑏−1𝑎−1𝑏𝑎−1𝑏−1𝑎−1𝑏⟩.
Since that group is 2-generated, we may invoke the L3Quotients algorithm in Magma, which
confirms the occurrence of infinitely many𝐴2(𝑞)-quotients. Any of those quotients descends to a
quotient of 𝐺16,16,16

0
, since a non-abelian simple group does not have proper subgroups of index 3.

Remark 5.9. By Theorem 3.1, the groups 𝐺16,16,16
0

and 𝐺16,16,16
1

act cocompactly on 2-dimensional
simplicial complexes, all of whose vertex links are isomorphic to the Möbius–Kantor graph.
A systematic study of such complexes has been conducted by Barré and Pichot, see [7] and
references therein.

Proposition 5.10. For Γ ∈ {𝐺6,48,48
0

, 𝐺16,16,48
0

, 𝐺16,48,48
1

, 𝐺24,48,48
1

, 𝐺48,48,48
0

}, there is a representation
Γ → U(2, 1) whose image does not have compact closure. In particular, Γ does not have (T).

Proof. As in the proof of Proposition 5.7 (see also Section C), we have surjective homomorphisms

𝐺48,48,48
0

→ 𝐺24,48,48
1

→ 𝐺6,48,48
0

.

The three vertex groups of the trivalent triangle group

𝐺6,48,48
0

= ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎3, 𝑏3, 𝑐3, 𝑏𝑎𝑏−1𝑎−1, (𝑐𝑏)2(𝑐−1𝑏−1)2, (𝑎𝑐)2(𝑎−1𝑐−1)2⟩
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are complex reflection groups, so that the group 𝐺6,48,48
0

is a complex hyperbolic triangle group
with Coxeter–Mostow diagram

FollowingMostow [51], we obtain a representation inGL3(𝐂)mapping (𝑎, 𝑏, 𝑐) to (𝐴, 𝐵, 𝐶), where

𝐴 =

⎛⎜⎜⎜⎝
𝜔 (𝜔 − 1)

√
6

3
0

0 1 0

0 0 1

⎞⎟⎟⎟⎠ , 𝐵 =
⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 (𝜔 − 1)
√
6

3
𝜔

⎞⎟⎟⎟⎠ , and 𝐶 =
⎛⎜⎜⎜⎝

1 0 0

(𝜔 − 1)
√
6

3
𝜔 (𝜔 − 1)

√
6

3
0 0 1

⎞⎟⎟⎟⎠ ,
and 𝜔 = 𝜔 = 𝑒2𝜋𝑖∕3. The matrices 𝐴, 𝐵, 𝐶 preserve the Hermitian form with Gram matrix

⎛⎜⎜⎜⎜⎝
1

√
6

3
0√

6

3
1

√
6

3

0
√
6

3
1

⎞⎟⎟⎟⎟⎠
,

which is non-degenerate with signature (2, 1). Moreover, by (2.3.3) in [51], the image of the repre-
sentation acts irreducibly on 𝐂3, and therefore its closure is not compact. The failure of property
(T) follows from Theorem 5.4.
Similarly, we have surjective homomorphisms

𝐺48,48,48
0

→ 𝐺16,48,48
1

→ 𝐺16,16,48
0

.

The group 𝐺16,16,48
0

= ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎3, 𝑏3, 𝑐3, 𝑏𝑎𝑏𝑎−1𝑏−1𝑎−1, 𝑐𝑏𝑐𝑏−1𝑐−1𝑏−1, (𝑎𝑐)2(𝑎−1𝑐−1)2⟩ can be
represented as a complex hyperbolic triangle group in GL3(𝐂) by mapping (𝑎, 𝑏, 𝑐) to the triple
(𝐴, 𝐵, 𝐶), where

𝐴 =

⎛⎜⎜⎜⎝
𝜔 (𝜔 − 1)

√
6

3
(𝜔 − 1)

√
3

3
0 1 0

0 0 1

⎞⎟⎟⎟⎠ , 𝐵 =
⎛⎜⎜⎜⎝

1 0 0

0 1 0

(𝜔 − 1)
√
3

3
(𝜔 − 1)

√
3

3
𝜔

⎞⎟⎟⎟⎠ , and

𝐶 =

⎛⎜⎜⎜⎝
1 0 0

(𝜔 − 1)
√
6

3
𝜔 (𝜔 − 1)

√
3

3
0 0 1

⎞⎟⎟⎟⎠ .
The matrices 𝐴, 𝐵, 𝐶 preserve the Hermitian form with Gram matrix

⎛⎜⎜⎜⎜⎝
1

√
6

3

√
3

3√
6

3
1

√
3

3√
3

3

√
3

3
1

⎞⎟⎟⎟⎟⎠
,

which is non-degenerate with signature (2, 1). The other conclusions follow as before. □
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Proposition 5.11. For Γ ∈ {𝐺24,24,24
1

, 𝐺24,24,48
0

, 𝐺24,48,48
1

, 𝐺48,48,48
0

}, there is a representation
Γ → U(3, 1) whose image does not have compact closure. In particular, Γ does not have (T).

Proof. As before, we first notice the existence of surjective homomorphisms 𝐺48,48,48
0

→

𝐺24,48,48
1

→ 𝐺24,24,48
0

→ 𝐺24,24,24
1

, so that it suffices to consider the case where Γ = 𝐺24,24,24
1

. Set
𝜔 = 𝑒2𝜋𝑖∕3. The representation sends (𝑎, 𝑏, 𝑐) to (𝐴, 𝐵, 𝐶), where

𝐴 =

⎛⎜⎜⎜⎜⎝
0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
, 𝐵 =

⎛⎜⎜⎜⎜⎝
0 0 𝜔 0

−𝜔 0 0 0

0 −𝜔 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
and

𝐶 =

⎛⎜⎜⎜⎜⎜⎝

𝜔 −1 −𝜔 − 2 4

𝜔 −𝜔 − 2 −1 4

2𝜔 + 1 𝜔 𝜔 −4𝜔

𝜔 −1 −1 −𝜔 + 3

⎞⎟⎟⎟⎟⎟⎠
.

The Hermitian form whose Gram matrix is the diagonal matrix with coefficients (1, 1, 1, −4) is
preserved by 𝑄 = ⟨𝐴, 𝐵, 𝐶⟩, so that 𝑄 is contained in 𝑈(3, 1). The finite group ⟨𝐴, 𝐵⟩ acts irre-
ducibly on the 3-dimensional subspace spanned by the first three vectors of the canonical basis.
Since that subspace is not invariant under 𝐶, it follows that 𝑄 acts irreducibly on 𝐂4. This implies
that 𝑄 is not conjugate to a compact subgroup of 𝑈(3, 1). □

Remark 5.12. Observe that 𝑄 is contained in GL4(𝐙[𝜔]). It is thus a discrete subgroup. Using
the Magma call CongruenceImage, followed by LMGChiefFactors, one deduces from Proposi-
tion 5.11 that Γ has finite simple quotients isomorphic to PSU4(5), PSL4(7), PSU4(11), PSL4(13)
and PSU4(17).

Remark 5.13. Using the representation variety approach described in Section 5.3, we found that
the groups 𝐺26,26,26

1
and 𝐺26,26,26

21
both have also a representation to U(3, 1) with unbounded

image. The coefficients are, however, too long to be included here. As above, we can compute
the first few congruence quotients of those linear images, and deduce that 𝐺26,26,26

1
and 𝐺26,26,26

21
both have finite simple quotients isomorphic to PSU4(25), PSU4(49), PSU4(121), PSU4(17) and
PSU4(361).

5.5 Cyclic extensions of triangle groups

The existence of an automorphism of order 3 that cyclically permutes the generators, observed
in Remark 5.8 for the group 𝐺16,16,16

0
, actually applies to each group of the form 𝐺𝑘,𝑘,𝑘

0
from

our sample, namely with 𝑘 ∈ {14, 16, 18, 24, 26, 40, 48, 54}. The corresponding semi-direct prod-
uct 𝐺𝑘,𝑘,𝑘

0
⋊ 𝐶3 is denoted by 𝐺

𝑘,𝑘,𝑘
0

. A presentation of 𝐺𝑘,𝑘,𝑘
0

can be obtained as follows. Denoting
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by 𝑅𝑘 the relators involving only 𝑎 and 𝑏 in the presentation of 𝐺𝑘,𝑘,𝑘
0

, we have

𝐺𝑘,𝑘,𝑘
0

≅ ⟨𝑡, 𝑎, 𝑏|𝑅𝑘, 𝑡3, 𝑡𝑎𝑡−1𝑏−1⟩.
Clearly, the generator 𝑏 is redundant, and 𝐺𝑘,𝑘,𝑘

0
is a 2-generator group. In fact, after simplifi-

cations, the presentation of 𝐺𝑘,𝑘,𝑘
0

is usually much shorter than the presentation of 𝐺𝑘,𝑘,𝑘
0

(see
Section A.6).
Let 𝑋 be the subgroup of 𝐺𝑘,𝑘,𝑘

0
generated by 𝑎 and 𝑏. Thus 𝑋 is a finite group with presenta-

tion 𝑋 ≅ ⟨𝑎, 𝑏|𝑅𝑘⟩. The group 𝐺𝑘,𝑘,𝑘
0

is a quotient of the HNN-extension ⟨𝑡, 𝑎, 𝑏|𝑅𝑘, 𝑡𝑎𝑡−1𝑏−1⟩ of
the finite group 𝑋 (which is a virtually free group) by the single extra relation 𝑡3 = 1. That very
specific structure of 𝐺𝑘,𝑘,𝑘

0
can be used to construct homomorphisms 𝜌∶ 𝐺𝑘,𝑘,𝑘

0
→ 𝐻 to a given

target𝐻, as follows. Assume given a homomorphism 𝜌∶ 𝑋 → 𝐻 to a group𝐻. Assumemoreover
that there is an element 𝜏 ∈ 𝐻 that conjugates 𝜌(𝑎) to 𝜌(𝑏). Then any element 𝑇 belonging to the
coset 𝜏𝐶𝐻(𝜌(𝑎)) of the centralizer 𝐶𝐻(𝜌(𝑎)) conjugates 𝜌(𝑎) to 𝜌(𝑏). Therefore, the assignment
𝜌(𝑡) = 𝑇 defines a homomorphism 𝜌∶ 𝐺𝑘,𝑘,𝑘

0
→ 𝐻 if and only if 𝑇3 = 1. This method has been

implemented to construct the representation described in the following.

Proposition 5.14. Let𝜔 = 𝑒2𝜋𝑖∕3 and 𝜁 = 𝑒2𝜋𝑖∕9 ∈ 𝐂. The assignments (𝑎, 𝑏, 𝑐) ↦ (𝐴, 𝐵, 𝐶), where

𝐴 =

⎛⎜⎜⎜⎝
0 0 1

𝜔 0 0

0 1 0

⎞⎟⎟⎟⎠, 𝐵 =

⎛⎜⎜⎜⎝
0 1 0

0 0 1

𝜔 0 0

⎞⎟⎟⎟⎠, 𝐶 =

⎛⎜⎜⎜⎝
𝜔 + 1 0 −𝜔

0 0 𝜔

𝜔 + 1 𝜔 𝜔2

⎞⎟⎟⎟⎠,
define a homomorphism 𝜌∶ 𝐺18,18,18

0
→ PGL3(𝐙[𝜔]) with Zariski dense image.

Moreover, the extra assignment 𝑡 ↦ 𝑇, where

𝑇 =

⎛⎜⎜⎜⎝
2𝜁4 + 𝜁3 + 𝜁 − 1 2𝜁4 + 𝜁3 + 𝜁 − 1 −𝜁4 + 𝜁3 + 𝜁 + 2

−𝜁4 − 2𝜁3 − 2𝜁 − 1 −𝜁4 + 𝜁3 + 𝜁 + 2 2𝜁4 + 𝜁3 + 𝜁 − 1

2𝜁4 + 𝜁3 + 𝜁 − 1 2𝜁4 + 𝜁3 + 𝜁 − 1 −𝜁4 − 2𝜁3 − 2𝜁 − 1

⎞⎟⎟⎟⎠,
defines an extension of 𝜌 to a homomorphism 𝜌∶ 𝐺18,18,18

0
→ PGL3(𝐙[𝜁]).

Proof. We retain the notation from the discussion made before the proposition. We have
𝑋 = ⟨𝑎, 𝑏|𝑎3, 𝑏3, (𝑏𝑎)3, (𝑏𝑎−1)3⟩. Computations show that 𝐴3 and 𝐵3 are both equal to the
scalar matrix 𝜔Id. Moreover, we have (𝐵𝐴)3 = Id = (𝐵𝐴−1)3. Thus 𝜌 defines a homomorphism
𝑋 → PGL3(𝐙[𝜔]).
One further computes that𝑇3 is a scalarmatrix, and that𝑇 conjugates𝐴 to𝐵, and𝐵 to𝐶. There-

fore, 𝜌 indeed defines a homomorphism 𝐺18,18,18
0

→ PGL3(𝐙[𝜁]) whose restriction to 𝐺18,18,18
0

takes values in the group PGL3(𝐙[𝜔]).
To verify that the image of 𝜌 is Zariski dense, one computes that

(𝐴𝐵𝐴𝐶)3 =
⎛⎜⎜⎝
1 0 3𝜔2

0 1 −3𝜔2

0 0 1

⎞⎟⎟⎠ .
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In particular, the Zariski closure of the cyclic group ⟨(𝐴𝐵𝐴𝐶)3⟩ is a 1-dimensional unipotent sub-
group of SL3(𝐂). It is then straightforward to check that this subgroup, togetherwith its conjugates
under ⟨𝐴, 𝐵, 𝐶⟩, generates the entire group SL3(𝐂). The required assertion follows. □

As in Corollary 5.6, combining Proposition 5.14 with Strong Approximation, we deduce that the
groups 𝐺18,18,18

0
and 𝐺18,18,18

0
have quotients of the form PGL3(𝐅𝑞) for infinitely many finite fields

𝐅𝑞, each of which is of degree ⩽ 6 over its prime field. This is confirmed by calling L3Quotients
for the group 𝐺18,18,18

0
in Magma.

We also remark that, in contrast with the representations studied in Section 5.4, Proposition 5.14
does not provide an unbounded action of the group𝐺18,18,18

0
on real or complex hyperbolic spaces,

but it rather provides an action on a symmetric space of higher rank. In particular, it does not yield
any conclusion on the possible failure of property (T) for that group.
We conclude this section by underlining another feature of the cyclically extended groups.

Except for the case 𝑘 = 54, the associated simplicial complex associated to the group 𝐺𝑘,𝑘,𝑘
0

via Theorem 3.1 satisfies the hypotheses of Swiatkowski’s main theorem in [71]. In view of
the regularity properties of the vertex links that can be consulted in [22], we deduce that for
𝑘 = 16, 18, 24, 26, 40, 48, the full automorphism group of the simplicial complex associated with
the group 𝐺𝑘,𝑘,𝑘

0
is discrete. On the other hand, the complex associated with 𝐺14,14,14

0
is a 2-adic

Bruhat–Tits building, whose automorphism group is non-discrete.

5.6 A representation in degree 6

The following result was obtained using the representation variety approach described in
Section 5.3.

Proposition 5.15. For Γ ∈ {𝐺14,14,18
4

, 𝐺14,14,54
4

}, there is an irreducible representation Γ → U(6)

whose image is infinite.

Proof. There is a surjective homomorphism 𝐺14,14,54
4

→ 𝐺14,14,18
4

, so it suffices to prove the state-
ment for Γ = 𝐺14,14,18

4
. We next observe that Γ has an automorphism of order 2 fixing 𝑏 and

swapping 𝑎 and 𝑐−1. The corresponding extension, which is an overgroup of index 2 of Γ, has
the following presentation:

Γ̃ = ⟨𝑡, 𝑎, 𝑏|𝑡2, 𝑎3, 𝑏3, 𝑡𝑏𝑡𝑏−1, 𝑏𝑎𝑏−1𝑎−1𝑏𝑎, (𝑎𝑡𝑎−1𝑡)3, (𝑎𝑡)6⟩.
Set 𝜔 = 𝑒2𝜋𝑖∕3 and 𝜁 = 𝑒2𝜋𝑖∕12. Let

𝐴1 =
⎛⎜⎜⎝
0 0 1

1 0 0

0 1 0

⎞⎟⎟⎠ , 𝐴2 =
⎛⎜⎜⎝
1 0 0

0 𝜔2 0

0 0 𝜔

⎞⎟⎟⎠ and 𝐼 =
⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠ .
Define the 6 × 6-matrices

𝐴 =

(
𝐴1 0

0 𝐴2

)
and 𝑇 =

(
0 𝐼

𝐼 0

)
,
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where each entry represents a 3 × 3-block. Finally, define

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜁2−1

3

−4𝜁2+1

6
−1

6
−
𝜁

3
−
𝜁3

6

−3𝜁3+4𝜁

6
−2𝜁2+3

6

−𝜁2

3

−2𝜁2+2

3

−𝜁3

6

𝜁3+2𝜁

6

−𝜁3

6
2𝜁2−5

6

𝜁2−1

3

1

3

−𝜁3

6

𝜁3+2𝜁

6

−𝜁3

6
−𝜁

3

−𝜁3

6

−3𝜁3+4𝜁

6

𝜁2−1

3

−4𝜁2+1

6

−1

6
−𝜁3

6

𝜁3+2𝜁

6

−𝜁3

6

−2𝜁2+3

6

−𝜁2

3

−2𝜁2+2

3
−𝜁3

6

𝜁3+2𝜁

6

−𝜁3

6

2𝜁2−5

6

𝜁2−1

3

1

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One verifies that the assignments (𝑡, 𝑎, 𝑏) ↦ (𝑇,𝐴, 𝐵) defines a representation 𝜌∶ Γ̃ → U(6). Set-
ting 𝐶 = 𝑇𝐴−1𝑇, one also verifies that the matrix 𝐴−1𝐵𝐶𝐵 has eigenvalues that are not roots of
unity, so that the group ⟨𝑇,𝐴, 𝐵⟩ is infinite. The only two non-trivial invariant subspaces of the
subgroup ⟨𝐴,𝐶⟩ are the 3-dimensional subspaces, respectively, spanned by the first and the last
three vectors of the canonical basis. Since none of them is 𝐵-invariant, it follows that ⟨𝐴, 𝐵, 𝐶⟩
acts irreducibly. Therefore, the restriction of 𝜌 to Γ defines an irreducible unitary representation,
as required. □

Remark 5.16. As in Remark 5.12, we can compute the first few congruence quotients of the linear
group ⟨𝑇,𝐴, 𝐵⟩, and deduce that the groups𝐺14,14,18

4
and𝐺14,14,54

4
both have finite simple quotients

isomorphic to PSp6(5), PSp6(7), PSp6(11), PSp6(13), PSp6(17), PSp6(19). Using Theorem 3.1(iv),
one can derive that 𝐺14,14,18

4
is virtually torsion-free. Note that the systematic searches for small

finite simple quotients, and alternating quotients of small degree, of those groups, reported on in
Section B, did not identify any non-abelian finite simple quotient for 𝐺14,14,18

4
and 𝐺14,14,54

4
.

5.7 On representations of hyperbolic quotients of 𝐏𝐒𝐋𝟐(𝐙)

The relative success of the representation variety approach we followed in the previous
sections suggests to consider the following.

Question 5.17. Let 𝑑 ⩾ 1 be an integer, let𝜔 = 𝑒2𝜋𝑖∕3 and𝑑 = 𝐂[𝑋1, … , 𝑋9𝑑2] be the polynomial
ring in 9𝑑2 indeterminates over𝐂. Let also Γ̃ = ⟨𝑎, 𝑥 ∣ 𝑎3⟩ ≅ 𝐶3 ∗ 𝐙 and 𝜌∶ Γ̃ → GL3𝑑(𝑑) be the
representation of Γ̃ defined by

𝜌(𝑎) =
⎛⎜⎜⎝
𝐼𝑑 0 0

0 𝜔𝐼𝑑 0

0 0 𝜔2𝐼𝑑

⎞⎟⎟⎠ and 𝜌(𝑥) =
⎛⎜⎜⎝

𝑋1 ⋯ 𝑋3𝑑
⋮ ⋱ ⋮

𝑋9𝑑2−3𝑑+1 ⋯ 𝑋9𝑑2

⎞⎟⎟⎠ ,
where 𝐼𝑑 denotes the 𝑑 × 𝑑-identity matrix.
Let now 𝑟1, … , 𝑟𝑚 ∈ Γ̃ be such that the quotient group Γ = Γ̃∕⟨⟨𝑥2, 𝑟1, … , 𝑟𝑚⟩⟩ ≅ ⟨𝑎, 𝑥 ∣

𝑎3, 𝑥2, 𝑟1, … , 𝑟𝑚⟩ is non-trivial and hyperbolic (in particular, Γ is a hyperbolic quotient of 𝐶3 ∗
𝐶2 ≅ PSL2(𝐙)). Let 𝑑 be the ideal in𝑑 generated by the (𝑚 + 1)9𝑑2 polynomials corresponding
to the entries of the𝑚 + 1matrices in the set {𝜌(𝑥2) − 𝐼3𝑑} ∪ {𝜌(𝑟𝑗) − 𝐼3𝑑 ∣ 𝑗 = 1,… ,𝑚}.
Does there exist 𝑑 ⩾ 1 such that the quotient ring𝑑∕𝑑 is non-zero?
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Remark 5.18. Question 5.17 is formally equivalent to the question whether every hyperbolic group
is residually finite. Indeed, if the answer to Question 5.17 is positive, then every non-trivial hyper-
bolic quotient of PSL2(𝐙) has a non-trivial finite-dimensional linear representation over 𝐂, and
hence a non-trivial finite quotient. Since every non-elementary hyperbolic group 𝐺 has a non-
elementary hyperbolic quotient in common with PSL2(𝐙) by Olshanskii’s Common Quotient
Theorem, it follows that 𝐺 has a non-trivial finite quotient. It then follows that all hyperbolic
groups are residually finite, see [41, Theorem 1.2] or [57, Theorem 2]. Conversely, if every hyper-
bolic group is residually finite, then the groupΓ fromQuestion 5.17 has a non-trivial finite quotient
𝑄 in which the cyclic group ⟨𝑎⟩ injects. In particular, the order of 𝑄 is 3𝑑 for some integer 𝑑 ⩾ 1,
and the image of 𝑎 in the regular representation of 𝑄 is conjugate to the matrix

⎛⎜⎜⎝
𝐼𝑑 0 0

0 𝜔𝐼𝑑 0

0 0 𝜔2𝐼𝑑

⎞⎟⎟⎠ .
Therefore, the representation variety of Γ whose coordinate ring is 𝑑∕𝑑, is non-empty, and
hence the ring𝑑∕𝑑 is non-zero.

The potential asset of the reformulation provided by Question 5.17 stems from the possibility
to approach the problem by Gröbner bases computations. Investigating Question 5.17 for random
quotients of PSL2(𝐙), such as those considered in [58], would be highly interesting.

6 FIVEFOLD HYPERBOLIC TRIANGLE GROUPSWITH
PROPERTY (T)

As mentioned in Section 3, the only trivalent triangle groups from our sample for which The-
orem 2.6 applies and guarantees property (T) are the four Ronan groups. For the majority of
the other groups, we could find a finite index subgroup with infinite abelianization and/or an
isometric action on a real or complex hyperbolic space, which show that property (T) fails.
Let us also remark that we cannot expect Theorem 2.6 to apply and guarantee property (T) for

non-positively curved trivalent triangle group with a vertex group of very large order, since by
Corollary 2.13, one of the representation angles is bounded above by arccos(

√
8

3
− 𝜖) ≈ 19.47◦. We

consider this as evidence that, in order for an infinite hyperbolic 𝑘-fold generalized triangle group
to have property (T), it is necessary that 𝑘 ⩾ 4.

Remark 6.1. A possible approach to confirm that a hyperbolic 𝑘-fold generalized triangle groups
with 𝑘 small cannot have property (T) would be to show that the conformal dimension of the
boundary of those hyperbolic groups is at most 2. This is known to be an obstruction to property
(T), see [12] and [5, Theorem 1.3(3)].

In this section, we will see that hyperbolic 𝑘-fold generalized triangle groups with property (T)
do exist for 𝑘 = 5. The following remark clarifies how we obtained experimental evidence that
such examples could be constructed using Theorem 2.6.

Remark 6.2. To a finite group𝑋 and two subgroups𝐴 and 𝐵, we can associate two kinds of angles:
one is 2𝜋∕g𝑋(𝐴, 𝐵) where g𝑋(𝐴, 𝐵) is the girth of the bipartite coset graph Γ𝑋(𝐴, 𝐵). The other is
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arccos 𝜀𝑋(𝐴, 𝐵), which we call the representation angle. In order for a generalized triangle group
associated to𝐴0,𝐴1, 𝐴2, 𝑋0, 𝑋1, 𝑋2 to be non-positively curved according to Theorem 3.1, the sum
over the three angles of the first kind needs to be ⩽ 𝜋. In order for Theorem 2.6 to guarantee
property (T), the sum over the three angles of the second kind needs to be > 𝜋. So in order for
both properties to be satisfied, for at least one triple (𝑋,𝐴, 𝐵) = (𝑋𝑖, 𝐴𝑖−1, 𝐴𝑖+1), one needs

arccos 𝜀𝑋(𝐴, 𝐵) >
2𝜋

g𝑋(𝐴, 𝐵)
. (1)

Among groups of small order this is rarely satisfied. Indeed, numerical evidence suggests that the
only groups 𝑋 of order |𝑋| ⩽ 2000 that admit subgroups 𝐴, 𝐵 of order 5 satisfying (1) are U3(5),
SL2(𝐅5), (bothwith girth 6 and representation angle> 60◦),U4(5), SL2(𝐅9), and a polycyclic group
of order 800 (all three with girth 8 and representation angle > 45◦). In fact, Proposition 2.15 pro-
vides certified estimates for SL2(𝐅5) and SL2(𝐅9). The groupsU3(5) andU4(5) will be introduced
and studied in Section 7 where their exact representation angle is determined.
From those experiments, it follows that the only candidates for being 5-fold generalized triangle

groups with all vertex groups of order ⩽ 2000 that would both be hyperbolic and have property
(T) by an application of Theorem 2.6 would have to be of half girth type (3, 3, 3). Moreover, all of
their vertex groups would be isomorphic toU3(5) or SL2(𝐅5). We shall see in Section 7 that, up to
isomorphism, there is only one non-positively curved 5-fold triangle group with all vertex groups
isomorphism to U3(5). That group has (T), but it is not hyperbolic (see Proposition 7.11).

Nonetheless, it turns out that if we allow (much) larger vertex groups, then we can indeed
construct hyperbolic 5-fold generalized triangle groups with property (T).

Proposition 6.3. Let 𝑋 be a finite group generated by two elements 𝑎, 𝑏 of order 5. Let𝐴 = ⟨𝑎⟩ and
𝐵 = ⟨𝑏⟩. Assume that:
(i) the girth of the coset graph Γ = Γ𝑋(𝐴, 𝐵) is at least 14;

(ii) 𝜀𝑋(𝐴, 𝐵) <
2
√
5

5
.

Then every generalized 5-fold triangle groupwith vertex groups, respectively, isomorphic to𝑋,𝐶5 × 𝐶5
and the Heisenberg group over 𝐅5, is infinite hyperbolic with Kazhdan’s property (T).

Proof. Let 𝐺( ) be 5-fold triangle group as in the statement. The coset graph of 𝐶5 × 𝐶5 with
respect to a generating pair of cyclic subgroups of order 5 is the complete bipartite graph 𝐾5,5. Its
girth is 4. Moreover, the corresponding representation angle is 𝜋∕2, see Example 2.1.
We shall see in Proposition 7.1 that the coset graph of theHeisenberg group over𝐅𝑝 with respect

to some (and in fact any) generating pair of cyclic subgroups of order 𝑝 is of girth 6. Moreover, the
cosine of the corresponding representation angle is

√
𝑝

𝑝
by Example 2.3.

Assume that (i) and (ii) hold. The half-girth type of 𝐺( ) is (2, 3, 𝑟), where 𝑟 is half the girth of
Γ. Therefore, the fundamental group 𝐺( ) is infinite hyperbolic by Theorem 3.1, in view of (i).
Since 𝜀𝑋(𝐴, 𝐵) <

2
√
5

5
by hypothesis, it follows from Theorem 2.6 that 𝐺( ) has (T). □

Analogously one can verify using Proposition 7.3:

Proposition 6.4. Let𝑋 be a finite group generated by two elements 𝑎, 𝑏 of order 5. Let𝐴 = ⟨𝑎⟩ and
𝐵 = ⟨𝑏⟩. Assume that:
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(i) the girth of the coset graph Γ = Γ𝑋(𝐴, 𝐵) is at least 10;

(ii) 𝜀𝑋(𝐴, 𝐵) <
√
15

5
.

Let𝐺( ) be a generalized 5-fold triangle group generatedwith vertex groups isomorphic to𝑋,𝐶5 × 𝐶5
and the 5-Sylow subgroup U4(5) of Sp2(5), respectively. Assume that the edge groups embed into
U4(5) as the generating pair of cyclic subgroups described in Section 7.1. Then𝐺 is infinite hyperbolic
with Kazhdan’s property (T).

Proof. Again 𝐶5 × 𝐶5 has a coset graph of girth 4 and a representation angle of 𝜋∕2. The group
U4(𝑝)with respect to the described subgroups has as coset graph of girth 8 by Proposition 7.1 and
a representation angle of arccos(

√
2∕𝑝) by Proposition 7.2.

The half-girth type of 𝐺( ) is (2, 4, 𝑟), where 𝑟 ⩾ 5 by (i). Therefore, the fundamental group
𝐺( ) is infinite hyperbolic by Theorem 3.1.
The cosines of the representation angles are (0,

√
2∕5, 𝜀)where 𝜀 <

√
3∕5 by (ii). It follows from

Theorem 2.6 that 𝐺( ) has (T). □

Two examples of triples (𝑋,𝐴, 𝐵) satisfying the hypotheses of Proposition 6.3 are given by the
cases 𝑝 = 109 and 𝑝 = 131 of Proposition 2.17. Two examples of triples (𝑋,𝐴, 𝐵) satisfying the
hypotheses of Proposition 6.4 are given by the cases 𝑝 = 31 and 𝑝 = 41 the same proposition.
This leads to several hyperbolic 5-fold generalized triangle groups with property (T). Two of these
feature in Theorem 1.2 from the introduction, whose proof can now be completed.

Proof of Theorem 1.2. The presentations ofH𝑝 make it clear that the groups are 5-fold generalized
triangle group.
Let 𝐿 = ⟨𝑎, 𝑏 ∣ 𝑎5, 𝑏5, 𝑅⟩, where𝑅 denotes the set consisting of the seven relators ofH109 involv-

ing both 𝑎 and 𝑏. The following procedure allows one to verify with Magma that 𝐿 is isomorphic
𝑋 ≅ PSL2(109). First, one computes that the assignments

𝑎 ↦

(
0 1

−1 11

)
and 𝑏 ↦

(
57 2

52 42

)
define a surjective homomorphism 𝐿 → 𝑋 ≅ PSL2(109). On the other hand, the Magma com-
mand #L confirms that 𝐿 is a finite group of order 647460 = |PSL2(109)|. The required
assertion follows.
By Proposition 2.17, the girth of Γ𝑋(𝐴, 𝐵) is 14 and 5𝜀𝑋(𝐴, 𝐵) < 2

√
5 ≈ 4.47213595. The

conclusion for H109 follows from Proposition 6.3.
Similarly if 𝑎, 𝑏, 𝑋,𝐴, 𝐵 are as in the 𝑝 = 31 case of Proposition 2.17, one verifies that the group

presented by the generators and relations of H31 involving only 𝑎 and 𝑏 is isomorphic to 𝑋 ≅
PSL2(31)where the generators are represented bymatrices with the same letter. We conclude that
the coset graph has girth 14 and that 5𝜀𝑋(𝐴, 𝐵) <

√
15 ≈ 3.8729833462. Let𝑀 = ⟨𝑏, 𝑐 ∣ 𝑆⟩ where

𝑆 are the relations of H31 involving only 𝑏 and 𝑐. We will see in the next section that𝑀 ≅ U4(5)

and that [𝑏, 𝑐] does not commute with 𝑐. Therefore, we can conclude with Proposition 6.4. □

Remark 6.5. Clearly, the method used above yields more examples of hyperbolic 5-fold general-
ized triangle groups with property (T) than those recorded in Theorem 1.2. We may indeed use
PSL2(41) instead of PSL2(31), and PSL2(131) instead of PSL2(109), as a consequence of Propo-
sition 2.17. Moreover, for each triple of vertex groups, we can take advantage of the freedom we
have in defining the homomorphisms identifying an edge group to a generator of the vertex group
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containing it. However, we have not been able to construct an infinite family of hyperbolic 5-fold
generalized triangle groups with property (T).

7 KAC–MOODY–STEINBERG GROUPS OF RANK 3

7.1 Coset graphs fromMoufang polygons

The Pappus graph and the Gray graph are members of an infinite family of graphs that can be
constructed as follows. Some of those graphs were considered in [48].
Given two elements 𝑥, 𝑦 in a group𝐺, we denote by [𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦 their commutator. Given

subgroups𝐴, 𝐵 ⩽ 𝐺, we denote by [𝐴, 𝐵] the subgroup generated by all elements of the form [𝑎, 𝑏]

with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
Let 𝑛 ∈ {3, 4, 6, 8} and  be a Moufang 𝑛-gon. Let (𝑈,𝑈1, … ,𝑈𝑛) be the root group sequence

associated with , as defined in [72, (8.10)]. This means in particular that𝑈 is a group, and that𝑈𝑖
is a subgroup of𝑈 for each 𝑖, that is called a root group.Moreover the productmap𝑈1 ×⋯ × 𝑈𝑛 →

𝑈 is bijective, and for all 𝑖 < 𝑗, we have [𝑈𝑖, 𝑈𝑗] ⩽ 𝑈𝑖+1 …𝑈𝑗−1.

Proposition 7.1. The (possibly disconnected) bipartite coset graph Γ𝑈(𝑈1,𝑈𝑛) is the subgraph of
the generalized 𝑛-gon  spanned by all the edges opposite the unique edge fixed by 𝑈. In particular,
the girth of Γ𝑈(𝑈1,𝑈𝑛) is 2𝑛.

Proof. The proof, formulated in a special case in [48, Theorem 3.1 and Proposition 3.2], applies in
full generality. □

We now focus on two specific examples.
Let 𝑞 be a power of a prime 𝑝. We denote by U3(𝑞) a copy of the 𝑝-Sylow subgroup in SL3(𝑞)

and by U4(𝑞) a copy of the 𝑝-Sylow subgroup in Sp4(𝑞). In those groups, each of the root groups
𝑈1,… ,𝑈𝑛 is isomorphic to the additive group of a field 𝑘 of order 𝑞. Denoting by 𝑥𝑖 ∶ 𝑘 → 𝑈𝑖 an
isomorphism, then the non-trivial commutation relations between the root subgroups of U𝑛(𝑞)

are as follows, for all 𝑎, 𝑏 ∈ 𝑘 (see [72, (16.2)]):

[𝑥1(𝑎), 𝑥3(𝑏)] = 𝑥2(𝑎𝑏)

if 𝑛 = 3, and

[𝑥2(𝑎), 𝑥4(𝑏)
−1] = 𝑥3(2𝑎𝑏)

[𝑥1(𝑎), 𝑥4(𝑏)
−1] = 𝑥2(𝑎𝑏)𝑥3(𝑎𝑏

2)

if 𝑛 = 4 (the root subgroups not involved with those relations commute). It is easy to see from
those commutation relations that the group U3(𝑞) is generated by 𝑈1 and 𝑈3, and similarly that
if 𝑞 > 2, then U4(𝑞) is generated by 𝑈1 and 𝑈4. Hence the graphs ΓU3(𝑞)

(𝑈1,𝑈3) (respectively,
ΓU4(𝑞)

(𝑈1,𝑈4) with 𝑞 > 2) are connected. The group U3(𝑞) is nothing but a Heisenberg group
over 𝑘.
In the special case where 𝑞 is a prime, the groups U3(𝑞) and U4(𝑞) admit the following

presentations, where the symbol [𝑥1, … , 𝑥𝑛] denotes the 𝑛th commutator [[[𝑥1, 𝑥2], … ], 𝑥𝑛].
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Proposition 7.2. Let 𝑝 be a prime. Then:

(i) U3(𝑝) ≅ ⟨𝑎, 𝑏 ∣ 𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏]⟩;
(ii) If 𝑝 > 2, thenU4(𝑝) ≅ ⟨𝑎, 𝑏 ∣ 𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏]⟩.
Proof. That ⟨𝑎, 𝑏 ∣ 𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏]⟩ is a presentation of the Heisenberg group over 𝐅𝑝 is
well known and easy to see.
Let 𝑈 = ⟨𝑎, 𝑏 ∣ 𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏]⟩. Observe that 𝑧 = [𝑎, 𝑏, 𝑏] commutes

with 𝑎 and 𝑏, and is thus a central element of 𝑈. The quotient 𝑈∕⟨𝑧⟩ is isomorphic to ⟨𝑎, 𝑏 ∣
𝑎𝑝, 𝑏𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏]⟩ ≅ U3(𝑝). Moreover, since 𝑧 is central, it follows that 𝑧𝑛 = [𝑎, 𝑏, 𝑏𝑛] for
all 𝑛. In particular, 𝑧𝑝 = 1. We infer that |𝑈| ⩽ 𝑝4.
On the other hand, the assignment 𝑎 ↦ 𝑥1(1) and 𝑏 ↦ 𝑥4(−1) extends to a homomorphism

𝜑∶ 𝑈 → U4(𝑝). Since 𝑝 > 2, it follows from the commutation relations described above that
U4(𝑝) is generated by 𝑈1 and 𝑈4, so that 𝜑 is surjective. Since |U4(𝑝)| = 𝑝4, we deduce from
the previous paragraph that 𝜑 is an isomorphism. □

We next compute the representation angles.

Proposition 7.3. Let 𝑝 be a prime. Then:

(i) 𝜀U3(𝑝)
(𝑈1,𝑈3) = 1∕

√
𝑝;

(ii) if 𝑝 > 2, then 𝜀U4(𝑝)
(𝑈1,𝑈4) =

√
2∕𝑝.

In particular, the graphs ΓU3(𝑝)
(𝑈1,𝑈3) and ΓU4(𝑝)

(𝑈1,𝑈4) are Ramanujan graphs.

Proof. For the first assertion, see [30, §4]. We focus on U4(𝑝).
Let 𝑎 = 𝑥1(1) and 𝑏 = 𝑥4(−1). Let 𝑊 be the subgroup generated 𝑈1 ∪ 𝑈2 ∪ 𝑈3. Thus 𝑊 is

abelian of order 𝑝3 and U4(𝑝) is a semi-direct product 𝑊 ⋊𝑈4. We view 𝑊 as a vector space
over 𝐅𝑝. In view of Proposition 7.2, we see that the action of 𝑏 on𝑊 is represented by the matrix

𝐵 =

⎛⎜⎜⎜⎝
1 1 0

0 1 1

0 0 1

⎞⎟⎟⎟⎠
with respect to the basis ([𝑎, 𝑏, 𝑏], [𝑎, 𝑏], 𝑎).
We claim that every irreducible representation of 𝑈 = U4(𝑝) is either of degree 1, or is a

representation of degree 𝑝 induced by a degree 1 representation of𝑊.
To prove the claim, we let 𝜒 be a character of𝑊 and 𝜋 = Ind𝑈𝑊(𝜒) be the representation of 𝑈

induced by 𝜒. The representation 𝜋 can be realized as follows. Let (𝑒0, 𝑒1, … , 𝑒𝑝−1) denote a basis
of 𝐂𝑝. Then 𝜋(𝑏)𝑒𝑛 = 𝑒𝑛+1 (where the indices are taken modulo 𝑝), and 𝜋(𝑎)𝑒𝑛 = 𝜒(𝑏−𝑛𝑎𝑏𝑛)𝑒𝑛.
According to [67, Corollary to Proposition 23], the representation 𝜋 = Ind𝑈𝑊(𝜒) is irreducible

if and only if the characters 𝜒𝑏𝑛 ∶ 𝑊 → 𝐂∗ ∶ 𝑤 ↦ 𝜒(𝑏−𝑛𝑤𝑏𝑛) are pairwise distinct for distinct
values of 𝑛 mod 𝑝. In particular, if 𝜒([𝑎, 𝑏]) ≠ 1 or 𝜒([𝑎, 𝑏, 𝑏]) ≠ 1, then 𝜋 is irreducible. The
number characters of𝑊 satisfying that condition is 𝑝3 − 𝑝. Those characters from 𝑝2 − 1 orbits
under the action of ⟨𝑏⟩ by automorphisms. Thus we obtain 𝑝2 − 1 pairwise non-isomorphic irre-
ducible representations of 𝑈 in this way. Since the abelianization of 𝑈 has order 𝑝2, it follows
that 𝑈 has also 𝑝2 representations of degree 1. Since 𝑝4 = 𝑝2 + (𝑝2 − 1)𝑝2, it follows that every
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irreducible representation of 𝑈 is either of degree 1, or is of the form 𝜋 = Ind𝑈𝑊(𝜒) for some
character 𝜒 of𝑊 such that 𝜒([𝑎, 𝑏]) ≠ 1 or 𝜒([𝑎, 𝑏, 𝑏]) ≠ 1. This proves the claim.
Therefore, in order to finish the proof, we may fix such a representation 𝜋 and show that

𝜀𝑈(𝑈1,𝑈4; 𝜋) ⩽
√
2∕𝑝.

The fixed-point space of 𝑈4 = ⟨𝑏⟩ under the representation 𝜋 is the one-dimensional
subspace spanned by

∑𝑝1
𝑛=0

𝑒𝑛. Since the action of 𝑈1 = ⟨𝑎⟩ under 𝜋 is diagonal in the
basis (𝑒0, … , 𝑒𝑝−1), the fixed-point space of 𝑈1 is spanned by those 𝑒𝑛 which are fixed
by 𝑎. We have 𝜋(𝑎)𝑒𝑛 = 𝜒(𝑏

−𝑛𝑎𝑏𝑛)𝑒𝑛. Moreover 𝜒(𝑏−𝑛𝑎𝑏𝑛) = 𝜒(𝑎[𝑎, 𝑏]𝑛[𝑎, 𝑏, 𝑏]𝑛(𝑛−1)∕2) =
𝜒(𝑎)𝜒([𝑎, 𝑏])𝑛𝜒([𝑎, 𝑏, 𝑏])𝑛(𝑛−1)∕2.We know that𝜒(𝑎),𝜒([𝑎, 𝑏]) and𝜒([𝑎, 𝑏, 𝑏]) are three𝑝th roots
of unity, and moreover 𝜒([𝑎, 𝑏]) and 𝜒([𝑎, 𝑏, 𝑏]) are not both equal to 1. The number of values of
𝑛 mod 𝑝 such that 𝜒(𝑏−𝑛𝑎𝑏𝑛) = 1 is thus the number of solutions of a quadratic equation in
the prime field of order 𝑝. Hence the fixed point space of 𝑎 has dimension ⩽ 2. If its dimension
is 0, we have 𝜀𝑈(𝑈1,𝑈4; 𝜋) = 0. If its dimension is 1, it is spanned by some 𝑒𝑛 and we obtain
𝜀𝑈(𝑈1,𝑈4; 𝜋) =

|⟨𝑒𝑛,∑𝑘 𝑒𝑘⟩|‖𝑒𝑛‖‖∑𝑘 𝑒𝑘‖ = 1∕√𝑝. If its dimension is 2, it is spanned by a pair 𝑒𝑚, 𝑒𝑛 and we
obtain

𝜀𝑈(𝑈1,𝑈4; 𝜋) = sup

{ |⟨𝜆𝑒𝑚 + 𝜇𝑒𝑛,∑𝑘 𝑒𝑘⟩|‖𝜆𝑒𝑚 + 𝜇𝑒𝑛‖‖∑𝑘 𝑒𝑘‖ ∣ 𝜆, 𝜇 ∈ 𝐂, (𝜆, 𝜇) ≠ (0, 0)
}

=sup

{ |𝜆 + 𝜇|√|𝜆|2 + |𝜇2|√𝑝 ∣ 𝜆, 𝜇 ∈ 𝐂, (𝜆, 𝜇) ≠ (0, 0)
}

=
√
2∕𝑝

by the Cauchy–Schwarz inequality. Therefore, 𝜀𝑈(𝑈1,𝑈4) =
√
2∕𝑝.

The last assertion now follows from Corollary 2.14. □

Remark 7.4. For 𝑝 odd and 𝑞 any power of 𝑝, the estimate

𝜀U4(𝑞)
(𝑈1,𝑈4) ⩽

√
1 +

√
𝑝

𝑝

can be extracted from the work of Ershov–Rall [31].

7.2 Kac–Moody–Steinberg groups of rank 3

We now show that all the trivalent triangle groups considered in Section 3, all of whose vertex
groups are 3-groups, belong to a broad infinite family that contains numerous examples of infinite
hyperbolic Kazhdan groups.
Let 𝐺( ) be a triangle of groups with all edge groups cyclic of order 𝑝, and the vertex group 𝑋𝑖

isomorphic to U𝑟𝑖
(𝑝) for 𝑟𝑖 ∈ {2, 3, 4}, where 𝑖 = 0, 1, 2 and where U2(𝑝) is defined as the direct

product 𝐶𝑝 × 𝐶𝑝. Let 𝐺 = 𝐺( ) be its fundamental group. Thus 𝐺 is a generalized 𝑝-fold triangle
group. In view of Theorem 3.1 and Proposition 7.1, the half girth type of 𝐺( ) is (𝑟0, 𝑟1, 𝑟2). We
denote by  the collection of all non-positively curved generalized triangle groups obtained in
this way.
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F IGURE 4 Ten Dynkin diagrams of rank 3

Corollary 3.8 allows us to classify the groups in  up to isomorphism. In order to facilitate
the statement, we introduce additional notation. Let us first list ten Dynkin diagrams of rank 3,
see Figure 4. The notation for the diagrams of affine type, namely 𝐴2, 𝐵2, 𝐶2 and 𝐵𝐶2, is stan-
dard. The notation for the six other diagrams is inspired by Kac–Moody theory; the Weyl group
corresponding to each of those six diagrams is a hyperbolic triangle Fuchsian group.
To each of those Dynkin diagrams and to every odd prime 𝑝, we associate a finitely presented

group, as follows.

G𝐵2
(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏],

[𝑐, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑏], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩.
G𝐶2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑐]⟩.

G𝐵𝐶2
(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏],

[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩.
G𝐴2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐]⟩.

G
𝐻𝐶

(1)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑐]⟩.
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G
𝐻𝐵

(2)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑐, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑐], [𝑐, 𝑏, 𝑏, 𝑏], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩.

G
𝐻𝐶

(2)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑐]⟩.

G
𝐻𝐵𝐶

(2)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩.

G
𝐻𝐵

(3)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑎, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑎], [𝑎, 𝑐, 𝑐, 𝑐]⟩.

G
𝐻𝐵𝐶

(3)
2

(𝑝) = ⟨𝑎, 𝑏, 𝑐 ∣ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏],
[𝑏, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑏], [𝑏, 𝑐, 𝑐, 𝑐], [𝑐, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑐], [𝑐, 𝑎, 𝑎, 𝑎]⟩.

Remark 7.5. Setting 𝑝 = 3, we obtain ten trivalent triangle groups that belong to the sample from
Section 3 (see the presentations in Section A). The isomorphisms are as follows:

G𝐵2
(3) ≅ 𝐺6,54,54

2
, G𝐶2

(3) ≅ 𝐺6,54,54
8

, G𝐵𝐶2
(3) ≅ 𝐺6,54,54

0
,

G𝐴2
(3) ≅ 𝐺18,18,18

0
, G

𝐻𝐶
(1)
2

(3) ≅ 𝐺18,18,54
0

,

G
𝐻𝐵

(2)
2

(3) ≅ 𝐺18,54,54
2

, G
𝐻𝐶

(2)
2

(3) ≅ 𝐺18,54,54
8

, G
𝐻𝐵𝐶

(2)
2

(3) ≅ 𝐺18,54,54
0

,

G
𝐻𝐵

(3)
2

(3) ≅ 𝐺54,54,54
2

and G
𝐻𝐵𝐶

(3)
2

(3) ≅ 𝐺54,54,54
0

.

The following result implies in particular that for a fixed 𝑝, the ten groups above are pairwise
non-isomorphic.

Proposition 7.6. Let 𝑝, 𝑝′ be odd primes. Let 𝐺,𝐺′ ∈  be 𝑝- and 𝑝′-fold triangle groups of type
(𝑟0, 𝑟1, 𝑟2) and (𝑟′0, 𝑟

′
1
, 𝑟′
2
), respectively, with 𝑟0 ⩽ 𝑟1 ⩽ 𝑟2 and 𝑟′0 ⩽ 𝑟

′
1
⩽ 𝑟′

2
.

If 𝐺 ≅ 𝐺′, then 𝑝 = 𝑝′ and (𝑟0, 𝑟1, 𝑟2) = (𝑟
′
0
, 𝑟′
1
, 𝑟′
2
). Moreover, exactly one of the following

assertions holds.

∙ (𝑟0, 𝑟1, 𝑟2) = (2, 4, 4), and 𝐺 ≅ G𝐵2
(𝑝) or 𝐺 ≅ G𝐶2

(𝑝) or 𝐺 ≅ G𝐵𝐶2
(𝑝).

∙ (𝑟0, 𝑟1, 𝑟2) = (3, 3, 3) and 𝐺 ≅ G𝐴2
(𝑝).

∙ (𝑟0, 𝑟1, 𝑟2) = (3, 3, 4) and 𝐺 ≅ G
𝐻𝐶

(1)
2

(𝑝).
∙ (𝑟0, 𝑟1, 𝑟2) = (3, 4, 4), and 𝐺 ≅ G

𝐻𝐶
(2)
2

(𝑝) or 𝐺 ≅ G
𝐻𝐵

(2)
2

(𝑝) or 𝐺 ≅ G
𝐻𝐵𝐶

(2)
2

(𝑝).
∙ (𝑟0, 𝑟1, 𝑟2) = (4, 4, 4), and 𝐺 ≅ G

𝐻𝐵
(3)
2

(𝑝) or 𝐺 ≅ G
𝐻𝐵𝐶

(3)
2

(𝑝).
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Proof. The first assertion is a straightforward consequence of Corollary 3.8. For the second, we
use the following properties of U3(𝑝) andU4(𝑝).

∙ The subgroup of Aut(U3(𝑝)) which stabilizes the pair {𝑈1,𝑈3} is isomorphic to the wreath
product 𝐶𝑝−1 ≀ 𝐶2.

∙ The subgroup of Aut(U4(𝑝)) which stabilizes the pair {𝑈1,𝑈4} is isomorphic to the direct
product 𝐶𝑝−1 × 𝐶𝑝−1. In particular, no automorphism ofU4(𝑝) swaps 𝑈1 and 𝑈4.

Indeed, it is easily verified using Proposition 7.2 that for any 𝑟 ∈ {1, … , 𝑝 − 1}, the assignments
(𝑎, 𝑏) ↦ (𝑎𝑟, 𝑏) and (𝑎, 𝑏) ↦ (𝑎, 𝑏𝑟) both extend to automorphisms ofU3(𝑝) (respectively,U4(𝑝)).
In particular, the subgroup of Aut(U3(𝑝)) (respectively, U4(𝑝)) which stabilizes the pair {𝑈1,𝑈3}
(respectively, {𝑈1,𝑈4}) is contains Aut(𝑈1) × Aut(𝑈3) (respectively, Aut(𝑈1) × Aut(𝑈4)), which
is isomorphic to 𝐶2

𝑝−1
. Moreover, the assignment (𝑎, 𝑏) ↦ (𝑏, 𝑎) extends to an automorphism of

U3(𝑝), whereas no automorphism of U4(𝑝) swaps ⟨𝑎⟩ = 𝑈1 and ⟨𝑏⟩ = 𝑈4. The two properties
listed above follow.
In view of those assertions, the required conclusion is a consequence of Corollary 3.8. □

Following the terminology in [30], we say that a 𝑝-fold triangle group 𝐺 ∈  is a Kac–Moody–
Steinberg group or KMS group for short) over the field 𝐅𝑝 of order 𝑝.

Theorem 7.7. Let 𝐺 be a KMS group of half girth type (𝑟0, 𝑟1, 𝑟2) over 𝐅𝑝. Then 𝐺 is acylindrically
hyperbolic, and if 1∕𝑟0 + 1∕𝑟1 + 1∕𝑟2 < 1, then 𝐺 is hyperbolic. Moreover:

(i) if (𝑟0, 𝑟1, 𝑟2) = (2, 4, 4), then 𝐺 has property (T) if and only if 𝑝 ⩾ 5;
(ii) if (𝑟0, 𝑟1, 𝑟2) = (3, 3, 3), then 𝐺 has property (T) if and only if 𝑝 ⩾ 5;
(iii) if (𝑟0, 𝑟1, 𝑟2) = (3, 3, 4), then 𝐺 has property (T) for all 𝑝 ⩾ 7;
(iv) if (𝑟0, 𝑟1, 𝑟2) = (3, 4, 4), then 𝐺 has property (T) for all 𝑝 ⩾ 7;
(v) if (𝑟0, 𝑟1, 𝑟2) = (4, 4, 4), then 𝐺 has property (T) for all 𝑝 ⩾ 11.

Proof. In view of Theorem 3.1 and Proposition 7.1, we see that 𝐺 is infinite, and 𝐺 is hyperbolic if
1∕𝑟0 + 1∕𝑟1 + 1∕𝑟2 < 1. In all cases, 𝐺 is acylindrically hyperbolic by Theorem 3.6.
For the other assertions, we invoke Theorem 2.6 together with Proposition 7.3. If (𝑟0, 𝑟1, 𝑟2) =

(2, 4, 4), we find that 𝐺 has property (T) for all 𝑝 such that 𝑝 > 4. Moreover, for 𝑝 = 3, it follows
from Remark 7.5 and the results from Section B.1 that 𝐺 has a finite index subgroup with infinite
abelianization. Hence, 𝐺 does not have (T).
If (𝑟0, 𝑟1, 𝑟2) = (3, 3, 3), we find that𝐺 has property (T) for all𝑝 such that𝑝3 − 6𝑝2 + 9𝑝 − 4 > 0.

In particular 𝐺 has (T) for 𝑝 ⩾ 5. Moreover, for 𝑝 = 3, it follows from Remark 7.5 and the results
from Section B.2 that 𝐺 has a finite index subgroup with infinite abelianization. Hence, 𝐺 does
not have (T).
If (𝑟0, 𝑟1, 𝑟2) = (3, 3, 4), we find that𝐺 has property (T) for all 𝑝 such that 𝑝3 − 8𝑝2 + 16𝑝 − 8 >

0. If (𝑟0, 𝑟1, 𝑟2) = (3, 4, 4), we find that 𝐺 has property (T) for all 𝑝 such that 𝑝3 − 10𝑝2 + 25𝑝 −
16 > 0. If (𝑟0, 𝑟1, 𝑟2) = (4, 4, 4), we find that 𝐺 has property (T) for all 𝑝 such that 𝑝3 − 12𝑝2 +
36𝑝 − 32 > 0. □

We shall see in Proposition 7.11 below that if (𝑟0, 𝑟1, 𝑟2) = (3, 3, 3), then 𝐺 is not hyperbolic.
The KMS groups G𝐴2

(𝑝) and G
𝐻𝐵𝐶

(3)
2

(𝑝) admit an automorphism of order 3 that permutes cycli-
cally the generators. In the same vein as in Section 5.5, we therefore obtain overgroups of index 3
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F IGURE 5 Epimorphisms between KMS groups over 𝐅𝑝

admitting the following presentations:

G̃𝐴2
(𝑝) = ⟨𝑡, 𝑎, 𝑏 ∣𝑡3, 𝑎𝑝, 𝑡𝑎𝑡−1𝑏−1, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏]⟩

G̃
𝐻𝐵𝐶

(3)
2

(𝑝) = ⟨𝑡, 𝑎, 𝑏 ∣𝑡3, 𝑎𝑝, 𝑡𝑎𝑡−1𝑏−1, [𝑎, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑎], [𝑎, 𝑏, 𝑏, 𝑏]⟩.
Clearly, the generator 𝑏 is redundant and the groups G̃𝐴2

(𝑝) and G̃
𝐻𝐵𝐶

(3)
2

(𝑝) are 2-generated.
Combining Theorem 7.7 with Proposition 7.2, we obtain infinite families of infinite hyperbolic

groups with property (T), each given by an explicit presentation.

Corollary 7.8. For every prime 𝑝 ⩾ 7, the groupsG
𝐻𝐶

(1)
2

(𝑝), G
𝐻𝐶

(2)
2

(𝑝), G
𝐻𝐵

(2)
2

(𝑝) and G
𝐻𝐵𝐶

(2)
2

(𝑝) are
infinite hyperbolic groups with property (T).
For every prime 𝑝 ⩾ 11, the groups G

𝐻𝐵
(3)
2

(𝑝), G
𝐻𝐵𝐶

(3)
2

(𝑝) and G̃
𝐻𝐵𝐶

(3)
2

(𝑝) are infinite hyperbolic
groups with property (T).

The number of relators in those presentations is uniformly bounded. Alternative presentations
whose total length is a logarithmic function of 𝑝 can be obtained using the results from [34, Sec-
tion 8], which provide short presentations of cylic groups that can be used to shorten the three
relators 𝑎𝑝, 𝑏𝑝 and 𝑐𝑝.

7.3 Epimorphisms of KMS groups

The quotient of the groupU4(𝑝) by its center is isomorphic toU3(𝑝). This can be used to construct
various epimorphisms between the KMS groups over a fixed prime field 𝐅𝑝, sending each of the
generator of the source KMS group to a generator of the target KMS group. The complete set of
epimorphisms constructed in this way is depicted in Figure 5.
In particular, the group G𝐴2

(𝑝) is a quotient of each hyperbolic KMS group over 𝐅𝑝. This
motivates further investigations of the former.
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7.4 Further properties of G𝑨𝟐(𝒑)

We start by observing that G𝐴2(𝑝) has a linear representation with infinite image.

Proposition 7.9. The assignments

𝑎 ↦

⎛⎜⎜⎜⎝
1 1 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠, 𝑏 ↦
⎛⎜⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞⎟⎟⎟⎠, 𝑐 ↦
⎛⎜⎜⎜⎝
1 0 0

0 1 0

𝑇 0 1

⎞⎟⎟⎟⎠
extend to a homomorphism

𝜌∶ G𝐴2
(𝑝) → SL3(𝐅𝑝[𝑇]).

The image of 𝜌 is a residually-𝑝 group of index (𝑝2 − 1)(𝑝3 − 1) in SL3(𝐅𝑝[𝑇]).

Proof. The fact that 𝜌 is a well-defined homomorphism G𝐴2
(𝑝) → SL3(𝐅𝑝[𝑇]) is straightforward

to verify from the presentation of G𝐴2
(𝑝). The fact that the subgroup of SL3(𝐅𝑝[𝑇]) generated

by the matrices 𝜌(𝑎), 𝜌(𝑏), 𝜌(𝑐) have the asserted properties can be deduced, for example, from
[1, Theorem M]. □

Corollary 7.10. Let 𝑝 be an odd prime and 𝑞 = 𝑝𝑒 for some 𝑒 ⩾ 3. Let also 𝐺 be G𝐴2
(𝑝), or any

of the six hyperbolic KMS groups over 𝐅𝑝 (that is, a KMS group of one of the six types appearing in
Corollary 7.8). Then𝐺 has an infinite pro-𝑝 completion, and𝐺 has a quotient isomorphic to SL3(𝐅𝑞).

Proof. In view of the epimorphisms from Figure 5, it suffices to prove those assertions for 𝐺 =
G𝐴2

(𝑝). To that end, consider the representation 𝜌 afforded by Proposition 7.9. Since the image
of 𝜌 is an infinite residually-𝑝 group, it follows that 𝐺 has an infinite pro-𝑝 completion. Observe
moreover that the field𝐅𝑞 is a quotient of the ring𝐅𝑝[𝑇], since themultiplicative group𝐅∗𝑞 is cyclic
It follows that SL3(𝐅𝑞) is a quotient group of SL3(𝐅𝑝[𝑇]). Since 𝑞 > 𝑝, it follows that the group
SL3(𝐅𝑞) does not admit any proper subgroup of index ⩽ (𝑝2 − 1)(𝑝3 − 1) since 𝑞 ⩾ 𝑝3. Therefore,
the composite map

must be surjective. □

Our next goal is to show that G𝐴2(𝑝) is not hyperbolic. In the following statement, the elements
𝑎, 𝑏, 𝑐 are the generators of G𝐴2(𝑝) as they appear in the presentation from Section 7.2.

Proposition 7.11. Let 𝑝 be an odd prime and let 𝐺 = G𝐴2
(𝑝). Then the elements

𝑥 = 𝑎𝑏𝑎
𝑝−1

2 𝑐 and 𝑦 = 𝑎𝑐𝑎
𝑝−1

2 𝑏

generate a subgroup of 𝐺 isomorphic to 𝐙 × 𝐙.
In particular, 𝐺 is an acylindrically hyperbolic group which is not hyperbolic.
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F IGURE 6 The elements in Proposition 7.11

Proof. From the presentation of 𝐺, it follows that the commutator [𝑏, 𝑎] commutes with 𝑎 and 𝑏.
Moreover, we have [𝑏, 𝑎𝑚] = [𝑏, 𝑎]𝑚 for all𝑚 ⩾ 0, and [𝑏, 𝑎]𝑝 = 1. Similar assertions hold for the
pairs {𝑎, 𝑐} and {𝑏, 𝑐}.
Set 𝑛 = 𝑝−1

2
. We have

𝑥𝑦 = 𝑎𝑏𝑎𝑛𝑐𝑎𝑐𝑎𝑛𝑏

= 𝑎𝑛+1𝑏[𝑏, 𝑎𝑛]𝑎𝑐[𝑐, 𝑎]𝑎𝑛𝑐[𝑐, 𝑎𝑛]𝑏

= 𝑎𝑛+1𝑏𝑎[𝑏, 𝑎]𝑛𝑐𝑎𝑛𝑐[𝑐, 𝑎]𝑛+1𝑏

= 𝑎𝑛+2𝑏[𝑏, 𝑎]𝑛+1𝑎𝑛𝑐[𝑐, 𝑎]𝑛𝑐[𝑐, 𝑎]𝑛+1𝑏

= 𝑎𝑛+2𝑏𝑎𝑛[𝑏, 𝑎]𝑛+1𝑐2[𝑐, 𝑎]2𝑛+1𝑏

= 𝑎2𝑛+2𝑏[𝑏, 𝑎]𝑛[𝑏, 𝑎]𝑛+1𝑐2[𝑐, 𝑎]2𝑛+1𝑏

= 𝑎𝑝+1𝑏[𝑏, 𝑎]𝑝𝑐2[𝑐, 𝑎]𝑝𝑏

= 𝑎𝑏𝑐2𝑏.

Similar computations show that 𝑦𝑥 = 𝑎𝑐𝑏2𝑐. Since 𝑏𝑐2𝑏 = 𝑏2𝑐2[𝑐2, 𝑏] = 𝑏2𝑐2[𝑐, 𝑏]2 and 𝑐𝑏2𝑐 =
𝑏2𝑐[𝑐, 𝑏2]𝑐 = 𝑏2𝑐2[𝑐, 𝑏]2, we infer that 𝑥𝑦 = 𝑦𝑥.
In order to show that ⟨𝑥, 𝑦⟩ ≅ 𝐙 × 𝐙, it remains to show that 𝑥 and 𝑦 are both of infinite order,

and that the cyclic subgroups they generate are not commensurate in 𝐺. We establish this using
the geometric action of 𝐺 on the 2-dimensional CAT(0) complex 𝑌 afforded by Theorem 3.1.
Let (𝑣0, 𝑣1, 𝑣2) be 2-simplex of𝑌 such that 𝑣0 is fixed by ⟨𝑎, 𝑏⟩, 𝑣1 is fixed by ⟨𝑏, 𝑐⟩ and 𝑣2 is fixed

by ⟨𝑐, 𝑎⟩. Let 𝑝 be the center of (𝑣0, 𝑣1, 𝑣2). From Lemma 3.2, we know that 𝑥 and 𝑦 are hyperbolic
isometries and that 𝑝 lies on an axis of each. As in the proof of the lemma, we see that [𝑝, 𝑥.𝑝]
contains 𝑣0 while the geodesic segment [𝑝, 𝑦.𝑝] contains 𝑣2, see Figure 6. That is, the axes of 𝑥
and 𝑦 are not parallel and hence the cyclic groups ⟨𝑥⟩ and ⟨𝑦⟩ are not commensurate.
Clearly, this implies that 𝐺 is not hyperbolic. That 𝐺 is acylindrically hyperbolic follows from

Theorem 3.6. □

Remark 7.12. Similar arguments show that in the group G𝐶2
(𝑝), the elements 𝑥 = 𝑎𝑐𝑏−1𝑐−1 and

𝑦 = 𝑏𝑐𝑎−1𝑐−1 generate a subgroup isomorphic to 𝐙 × 𝐙. In particular, G𝐶2(𝑝) is not hyperbolic.
We omit the details.
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We finish this section by reporting on a supplementary construction of finite quotients of the
groupG𝐴2

(𝑝). In viewof the epimorphisms fromFigure 5, it follows that the answer toQuestion 1.6
can only be negative if G𝐴2

(𝑝) fails to have quotients in S𝑑 for all 𝑑. The following variation
on Proposition 7.9 can be used to challenge this problem. It is inspired by the seminal work of
Kassabov [42, §4.1].

Proposition 7.13. Let 𝑞 be a positive power of the odd prime 𝑝, and let 𝑘 ⩾ 1 be an integer. Let also
𝑀𝑎,𝑀𝑏,𝑀𝑐 ∈ Mat𝑘×𝑘(𝐅𝑞) be any three𝑘 × 𝑘-matriceswith coefficients in𝐅𝑞 . Then the assignments

𝑎 ↦ 𝑈𝑎 ∶=

⎛⎜⎜⎜⎝
1 𝑀𝑎 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠, 𝑏 ↦ 𝑈𝑏 ∶=

⎛⎜⎜⎜⎝
1 0 0

0 1 𝑀𝑏

0 0 1

⎞⎟⎟⎟⎠, 𝑐 ↦ 𝑈𝑐 ∶=

⎛⎜⎜⎜⎝
1 0 0

0 1 0

𝑀𝑐 0 1

⎞⎟⎟⎟⎠,
where each entry represents a 𝑘 × 𝑘-block, extend to a homomorphism

𝜌𝑀𝑎,𝑀𝑏,𝑀𝑐
∶ G𝐴2

(𝑝) → SL3𝑘(𝐅𝑞).

Proof. Straightforward computation in view of the presentation of G𝐴2(𝑝) from Section 7.2. □

Thus, every subgroup of SL3𝑘(𝐅𝑞) generated by three matrices of the form𝑈𝑎,𝑈𝑏,𝑈𝑐 is a finite
quotient of G𝐴2(𝑝). It turns out that this construction does not produce finite simple quotients of
large rank, in view of the following observation.

Proposition 7.14. Retain the notation of Proposition 7.13 and let Γ = ⟨𝑈𝑎,𝑈𝑏,𝑈𝑐⟩. Then there is a
finite extension 𝐹 of 𝐅𝑞 and a subnormal series of Γ such that every subquotient from that series is
either a 𝑝-group, or isomorphic to a subgroup of GL3(𝐹).

Proof. Wework by induction on 𝑘. In the base case 𝑘 = 1, there is nothing to prove. Let now 𝑘 > 1.
We distinguish two cases.
Assume first that at least two of the matrices𝑀𝑎,𝑀𝑏,𝑀𝑐 ∈ Mat𝑘×𝑘(𝐅𝑞) have a non-zero deter-

minant. Without loss of generality, we may assume that det(𝑀𝑎) ≠ 0 ≠ det(𝑀𝑏). Let 𝑥 be the
block-diagonal matrix in GL3𝑘(𝐅𝑞) defined by

𝑥 =

⎛⎜⎜⎜⎝
𝑀−1
𝑎 0 0

0 1 0

0 0 𝑀𝑏

⎞⎟⎟⎟⎠,
and set 𝑈′𝑎 = 𝑥𝑈𝑎𝑥

−1, 𝑈′
𝑏
= 𝑥𝑈𝑏𝑥

−1 and 𝑈′𝑐 = 𝑥𝑈𝑐𝑥
−1. Then

𝑈′𝑎 =
⎛⎜⎜⎝
1 1 0

0 1 0

0 0 1

⎞⎟⎟⎠ , 𝑈′𝑏 =
⎛⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞⎟⎟⎠ , and 𝑈′𝑐 =
⎛⎜⎜⎝

1 0 0

1 1 0

𝑀𝑏𝑀𝑐𝑀𝑎 0 1

⎞⎟⎟⎠ .
In particular, the group 𝑥Γ𝑥−1 is a subgroup of SL3(), where  ⩽ Mat𝑘×𝑘(𝐅𝑞) is the
𝐅𝑞-subalgebra generated by the single element𝑀𝑏𝑀𝑐𝑀𝑎. Thus is commutative, and is in fact a
quotient of the polynomial ring 𝐅𝑞[𝑇]. Denoting by  a maximal ideal in, we obtain a congru-
ence quotient SL3() → SL3(∕) whose kernel is to be a 𝑝-group (see [27, §26.4] for a detailed
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proof of this well-known fact). Since∕ is a finite field extension of 𝐅𝑞, the required conclusion
holds in this case.
We now assume that at most one of the matrices 𝑀𝑎,𝑀𝑏,𝑀𝑐 ∈ Mat𝑘×𝑘(𝐅𝑞) has a non-zero

determinant. Then at least two of them have zero determinant. Without loss of generality, we
may assume that det(𝑀𝑏) = det(𝑀𝑐) = 0. Then there exists 𝐿1, 𝐿3 ∈ GL𝑘(𝐅𝑞) such that the first
column of𝑀𝑐𝐿

−1
1
and the first column of𝑀𝑏𝐿

−1
3
are both zero. If det(𝑀𝑎) = 0, we choose similarly

a matrix 𝐿2 ∈ GL𝑘(𝐅𝑞) such that the first column of 𝑀𝑎𝐿
−1
2

is zero. If det(𝑀𝑎) ≠ 0, then we set
𝐿2 = 𝐿1𝑀𝑎 ∈ GL𝑘(𝐅𝑞). In either case, we see that the matrices 𝑀′

𝑎 = 𝐿1𝑀𝑎𝐿
−1
2
, 𝑀′

𝑏
= 𝐿2𝑀𝑏𝐿

−1
3

and𝑀′
𝑐 = 𝐿3𝑀𝑐𝐿

−1
1

all belong to

 =

{(
∗ ∗

0 𝑋

)
∣ 𝑋 ∈ Mat(𝑘−1)×(𝑘−1)(𝐅𝑞)

}
.

Let 𝑦 be the block-diagonal matrix in GL3𝑘(𝐅𝑞) defined by

𝑦 =
⎛⎜⎜⎝
𝐿1 0 0

0 𝐿2 0

0 0 𝐿3

⎞⎟⎟⎠ .
Then the group 𝑦Γ𝑦−1 is generated by

𝑈′𝑎 = 𝑦𝑈𝑎𝑦
−1 =

⎛⎜⎜⎝
1 𝑀′

𝑎 0

0 1 0

0 0 1

⎞⎟⎟⎠ , 𝑈′𝑏 = 𝑦𝑈𝑏𝑦−1 =
⎛⎜⎜⎝
1 0 0

0 1 𝑀′
𝑏

0 0 1

⎞⎟⎟⎠ , and
𝑈′𝑐 = 𝑦𝑈𝑐𝑦

−1 =
⎛⎜⎜⎝
1 0 0

0 1 0

𝑀′
𝑐 0 1

⎞⎟⎟⎠ .
In particular, 𝑦Γ𝑦−1 is a subgroup of GL3(). Clearly, the set  is a 𝐅𝑞-subalgebra ofMat𝑘×𝑘(𝐅𝑞)
that maps onto Mat(𝑘−1)×(𝑘−1)(𝐅𝑞). This yields a homomorphism GL3() → GL3(𝑘−1)(𝐅𝑞). It is
easy to see that its kernel has a normal 𝑝-subgroup such that the quotient is isomorphic to
GL3(𝐅𝑞). Restricting to 𝑦Γ𝑦−1, we obtain a homomorphism taking values in SL3(𝑘−1)(𝐅𝑞), whose
kernel decomposes as an extension of a 𝑝-group by a subgroup of GL3(𝐅𝑞). Moreover, the image
of the generators 𝑈′𝑎, 𝑈

′
𝑏
and 𝑈′𝑐 under that homomorphism generate a subgroup of SL3(𝑘−1)(𝐅𝑞)

to which the induction hypothesis applies. The required conclusion follows. □

7.5 Further properties of G
𝑯𝑩(𝟐)

𝟐

(𝒑) and G𝑪𝟐(𝒑)

In view of Section 7.3, the quotients of G𝐴2(𝑝) described in the previous section are also quotients
of eachhyperbolicKMSgroup over𝐅𝑝.Wenow focusmore specifically onG

𝐻𝐶
(2)
2

(𝑝) andG
𝐻𝐵

(2)
2

(𝑝),
first establishing an analogue of Proposition 7.13.

Proposition 7.15. Let 𝑞 be a positive power of the odd prime 𝑝, and let 𝑘 ⩾ 1 be an integer. Let also
𝑀𝑎,𝑀𝑏,𝑀𝑐 ∈ Mat𝑘×𝑘(𝐅𝑞) be any three 𝑘 × 𝑘-matrices with coefficients in 𝐅𝑞 . Set
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𝑉𝑎 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

𝑀𝑎 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, 𝑉𝑏 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 𝑀𝑏 0 1

⎞⎟⎟⎟⎟⎟⎠
and 𝑉𝑐 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 𝑀𝑐

0 1 𝑀𝑐 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
,

where each entry represents a 𝑘 × 𝑘-block. Then the assignments (𝑎, 𝑏, 𝑐) ↦ (𝑉𝑎, 𝑉𝑏, 𝑉𝑐) extend to a
homomorphism 𝜎𝑀𝑎,𝑀𝑏,𝑀𝑐

∶ G𝐶2
(𝑝) → SL4𝑘(𝐅𝑞).

Similarly, the assignments (𝑎, 𝑏, 𝑐) ↦ (𝑉′𝑎, 𝑉
′
𝑏
, 𝑉′𝑐), where

𝑉′𝑎 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 𝑀𝑎

0 1 𝑀𝑎 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, 𝑉′

𝑏
=

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

𝑀𝑏 1 0 0

0 0 1 −𝑀𝑏

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
and 𝑉′𝑐 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 𝑀𝑐 0 1

⎞⎟⎟⎟⎟⎟⎠
extend to a homomorphism 𝜎′

𝑀𝑎,𝑀𝑏,𝑀𝑐
∶ G

𝐻𝐵
(2)
2

(𝑝) → SL4𝑘(𝐅𝑞).

Proof. Straightforward computation in view of the presentation of the KMS groups from
Section 7.2. □

It turns out that the outcome of the constructions from Proposition 7.15 is very different for the
groups G𝐶2

(𝑝) and G
𝐻𝐵

(2)
2

(𝑝). Indeed, for G𝐶2
(𝑝), the quotients from Proposition 7.15 are subjected

to analogous restrictions as in Proposition 7.14. This can easily be established by similar argu-
ments. We omit the details. Instead, we focus on G

𝐻𝐵
(2)
2

(𝑝), for which the situation is strikingly
different, as illustrated by the following.

Proposition 7.16. Let 𝑝 be an odd prime. For any prime 𝑘 ≠ 𝑝, there exist matrices𝑀𝑎,𝑀𝑏,𝑀𝑐 ∈

Mat𝑘×𝑘(𝐅𝑝) such that the subgroup of SL4𝑘(𝐅𝑝) generated by the three elements 𝑉′𝑎, 𝑉
′
𝑏
, 𝑉′𝑐, defined

as in Proposition 7.15, has a quotient inS𝑘−1.

The proof of that proposition requires some preparation.We startwith a special case of a general
result due to Shangzhi Li.

Theorem 7.17 (See [49, Theorem 1]). Let 𝐹 be a finite field of order 𝑞 and 𝐾 be a finite extension of
𝐹 of degree 𝑘. We assume that 𝑘 is prime and that (𝑞, 𝑘) ≠ (2, 2). Embed the group𝑁 = SL2(𝐾) as a
subgroup of 𝐺 = SL2𝑘(𝐹) by identifying the natural 𝑁-module 𝐾2 with the 𝐺-module 𝐹2𝑘 . Let also
𝑋 be a subgroup of 𝐺 containing𝑁. Then one of the following holds.

(i) 𝑋 normalizes𝑁.
(ii) 𝑋 contains a normal subgroup isomorphic to Sp2𝑘(𝐹).
(iii) 𝑋 = 𝐺.

The group 𝑁 embedded as a subgroup of 𝐺 as in Theorem 7.17 is called a field extension sub-
group. Specializing Theorem 7.17, we obtain the following result describing subgroups of SL2𝑘(𝐅𝑝)
generated by three unipotent block matrices.
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Proposition 7.18. Let 𝑝, 𝑘 be primes with 𝑝 > 2. Let also𝑀1,𝑀2,𝑀3 ∈ Mat𝑘×𝑘(𝐅𝑝) and define the
elements 𝑉1, 𝑉2, 𝑉3 ∈ 𝐺 = SL2𝑘(𝐅𝑝) by

𝑉1 =

(
1 𝑀1

0 1

)
𝑉2 =

(
1 0

𝑀2 1

)
and 𝑉3 =

(
1 𝑀3

0 1

)
,

where each entry represents a 𝑘 × 𝑘-block. We assume that 𝑀1𝑀2 is invertible, of multiplicative
order 𝑝𝑘 − 1. Then the following assertions hold.

(i) ⟨𝑉1, 𝑉2⟩ is isomorphic to a field extension subgroup SL2(𝐅𝑝𝑘 ) ⩽ 𝐺.
(ii) If in addition, we have 𝑀1𝑀2𝑀3 ≠ 𝑀3𝑀2𝑀1 and 𝑝 ≠ 𝑘, then ⟨𝑉1, 𝑉2, 𝑉3⟩ either contains a

normal subgroup isomorphic to Sp2𝑘(𝐅𝑝), or is the whole group 𝐺 = SL2𝑘(𝐅𝑝).

Proof. An element 𝐶 of the group GL𝑘(𝐅𝑝) of order 𝑝𝑘 is called a Singer element. If 𝐶 is a Singer
element, the cyclic group ⟨𝐶⟩ acts irreducibly on𝐅𝑘𝑝. Therefore, it follows from Schur’s lemma and
Wedderburn’s theorem that the subalgebra ofMat𝑘×𝑘(𝐅𝑝) generated by𝐶 is a subfield, isomorphic
to 𝐅𝑝𝑘 . It then follows from the work of Dickson (see [45, §2.1]) that the subgroup of 𝐺 generated
by (

1 1

0 1

)
and

(
1 0

𝐶 1

)
is isomorphic to a field extension subgroup SL2(𝐅𝑝𝑘 ) ⩽ 𝐺.
By hypothesis, the matrix 𝐶 = 𝑀1𝑀2 is a Singer element of GL𝑘(𝐅𝑝). Moreover, the matrix

𝑑 =

(
1 0

0 𝑀1

)
conjugates 𝑉1 and 𝑉2, respectively, to(

1 1

0 1

)
and

(
1 0

𝐶 1

)
.

The first assertion follows.
Let now 𝑀3 ∈ Mat𝑘×𝑘(𝐅𝑝) be such that 𝑀1𝑀2𝑀3 ≠ 𝑀3𝑀2𝑀1, and assume 𝑝 ≠ 𝑘. We claim

that 𝑉3 does not normalize the field extension subgroup ⟨𝑉1, 𝑉2⟩. In view of Theorem 7.17, the
required assertion follows from that claim.
In order to prove the claim, it suffices to show that

𝑑𝑉3𝑑
−1 =

(
1 𝑀3𝑀

−1
1

0 1

)
does not normalize

𝐻 =

⟨(
1 1

0 1

)
,

(
1 0

𝐶 1

)⟩
.

By [49, Theorem 1], the full normalizer of the field extension subgroup 𝐻 in GL2𝑘(𝐅𝑝) is isomor-
phic toGL2(𝐅𝑝𝑘 )⋊ Aut(𝐅𝑝𝑘 ). In particular, since𝑝 ≠ 𝑘, the𝑝-Sylow subgroups of that normalizer
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are all contained in 𝐻, and are conjugate to{(
1 𝑋

0 1

)
∣ 𝑋 ∈ 

}
,

where  denotes the subalgebra of Mat𝑘×𝑘(𝐅𝑝) generated by 𝐶. Since 𝑑𝑉3𝑑−1 is of order 𝑝 and
centralizes the latter subgroup,we deduce that𝑑𝑉3𝑑−1 normalizes𝐻 if and only if𝑀3𝑀

−1
1
belongs

to . As mentioned above, the subalgebra  is isomorphic to 𝐅𝑝𝑘 , and is thus commutative. Since
𝑀1𝑀2𝑀3 ≠ 𝑀3𝑀2𝑀1, it follows that (𝑀1𝑀2)(𝑀3𝑀

−1
1
) ≠ 𝑀3𝑀2 = (𝑀3𝑀

−1
1
)(𝑀1𝑀2), so that 𝐶 =

𝑀1𝑀2 and𝑀3𝑀
−1
1

do not commute. This confirms that 𝑑𝑉3𝑑−1 does not normalize𝐻. The claim
follows. □

Proof of Proposition 7.16. Let𝑀𝑎 be the matrix with (𝑀𝑎)𝑖+1,𝑖 = 1 for all 𝑖 = 1, … , 𝑘 − 1 and with
all other entries equal to 0. Let 𝑀𝑏 be the matrix with (𝑀𝑏)𝑖,𝑖+1 = 1 for all 𝑖 = 1, … , 𝑘 − 1 and
with all other entries equal to 0. Set 𝑀1 = 𝑀𝑎𝑀𝑏 +𝑀𝑏𝑀𝑎 = diag(1, 2, … , 2, 1). Choose a Singer
element 𝐶 ∈ Mat𝑘×𝑘(𝐅𝑝) whose last column is (1, 0, … , 0)⊤; clearly, such a Singer element exists
sinceGL𝑘(𝐅𝑝) acts transitively on ordered pairs of linearly independent vectors in 𝐅𝑘𝑝. Finally, set
𝑀𝑐 = 𝑀

−1
1
𝐶. We claim that these matrices satisfy the required conditions.

In order to verify this, we set 𝑀2 = 𝑀𝑐 and 𝑀3 = 𝑀𝑎𝑀𝑏𝑀𝑐𝑀𝑏𝑀𝑎. Observe that
𝑀1𝑀2𝑀3𝑀

−1
1
= 𝐶diag(0, 2−1, … , 2−1, 1)𝐶diag(1, 2−1, … , 2−1, 0). In particular, the last col-

umn of 𝑀1𝑀2𝑀3𝑀
−1
1

is zero. On the other hand, we have 𝑀3𝑀2 = diag(0, 2
−1, … , 2−1, 1)

𝐶diag(1, 2−1, … , 2−1, 0)𝐶. Applying that element to the 𝑛th vector 𝑒𝑘 of the canonical basis of
𝐅𝑘𝑝, we obtain 𝑀3𝑀2(𝑒𝑘) = diag(0, 2

−1, … , 2−1, 1)𝐶(𝑒1) since 𝐶(𝑒𝑘) = 𝑒1 by the definition of 𝐶.
Since 𝐶 is a Singer element, the vector 𝐶(𝑒1) is not colinear with 𝑒1. Since the kernel of the linear
map represented by the diagonal matrix diag(0, 2−1, … , 2−1, 1) is spanned by 𝑒1, we deduce that
𝑀3𝑀2(𝑒𝑘) ≠ 0. It follows that𝑀1𝑀2𝑀3 ≠ 𝑀3𝑀2𝑀1.
Computations show that

[𝑉′𝑎, 𝑉
′
𝑏
] =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 −𝑀𝑎𝑀𝑏 −𝑀𝑏𝑀𝑎

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 −𝑀1

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
and

[𝑉′𝑐, 𝑉
′
𝑏
, 𝑉′

𝑏
, 𝑉′𝑎, 𝑉

′
𝑎] =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 −4𝑀𝑎𝑀𝑏𝑀𝑐𝑀𝑏𝑀𝑎

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 −4𝑀3

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Since𝑀1𝑀2 = 𝐶 is a Singer element, it follows from Proposition 7.18(i) that ⟨𝑉′𝑐, [𝑉′𝑎, 𝑉′𝑏]⟩ is iso-
morphic to SL2(𝐅𝑝𝑘 ). Since SL2(𝐅𝑝𝑘 ) is perfect, this implies in particular that 𝑉′𝑐 belongs to the
derived subgroup of𝐻 = ⟨𝑉′𝑎, 𝑉′𝑏, 𝑉′𝑐⟩.
Moreover, Proposition 7.18(i) implies that ⟨𝑉′𝑐, [𝑉′𝑎, 𝑉′𝑏]⟩ is a field extension subgroup of

SL2𝑘(𝐅𝑝), which is itself embedded in SL4𝑘(𝐅𝑝) as the subgroup consisting of block matrices of
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the form

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 ∗ 0 ∗

0 0 1 0

0 ∗ 0 ∗

⎞⎟⎟⎟⎟⎠
.

This implies that ⟨𝑉′𝑐, [𝑉′𝑎, 𝑉′𝑏]⟩ contains the matrix
𝑑 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 2−1 0 0

0 0 1 0

0 0 0 2

⎞⎟⎟⎟⎟⎠
where, as before, each entry represents a 𝑘 × 𝑘-block. Now, we compute that the commuta-
tor [𝑑, (𝑉′𝑎)

−1] coincides with 𝑉′𝑎. Similarly, we have [𝑑, (𝑉
′
𝑏
)−1] = 𝑉′

𝑏
. It follows that the group

𝐻 = ⟨𝑉′𝑎, 𝑉′𝑏, 𝑉′𝑐⟩ is perfect.
On the other hand, we have seen above that 𝑀1𝑀2𝑀3 ≠ 𝑀3𝑀2𝑀1. Therefore, Proposi-

tion 7.18(ii) implies that ⟨𝑉′𝑐, [𝑉′𝑎, 𝑉′𝑏], [𝑉′𝑐, 𝑉′𝑏, 𝑉′𝑏, 𝑉′𝑎, 𝑉′𝑎]⟩ either contains a normal subgroup
isomorphic to Sp2𝑘(𝐅𝑝), or it is isomorphic to SL2𝑘(𝐅𝑝).
Let finally 𝑆 be a smallest non-trivial quotient of 𝐻. Since 𝐻 is perfect, the group 𝑆 is

a non-abelian finite simple group. The image of 𝑉′𝑐 in 𝑆 is non-trivial, since otherwise 𝐻
would be a quotient of ⟨𝑉′𝑎, 𝑉′𝑏⟩, which is a 𝑝-group. Therefore, the image of the subgroup⟨𝑉′𝑐, [𝑉′𝑎, 𝑉′𝑏], [𝑉′𝑐, 𝑉′𝑏, 𝑉′𝑏, 𝑉′𝑎, 𝑉′𝑎]⟩ must contain a normal subgroup isomorphic to (𝑃)Sp2𝑘(𝐅𝑝),
or to (𝑃)SL2𝑘(𝐅𝑝). Any of these groups contain a copy of Alt(𝑘 − 1). The required conclusion
follows. □

Corollary 7.19. Let 𝑝 be an odd prime. The groups G
𝐻𝐵

(2)
2

(𝑝) and G
𝐻𝐵

(3)
2

(𝑝) both admit a quotient
inS𝑑 for all 𝑑.

Proof. The statement for G
𝐻𝐵

(2)
2

(𝑝) is followed by combining Propositions 7.15 and 7.16. In view of
Section 7.3, the group G

𝐻𝐵
(2)
2

(𝑝) is a quotient of G
𝐻𝐵

(3)
2

(𝑝). The conclusion follows. □

Remark 7.20. Propositions 7.13 and 7.15 afford simple quotients of the groupsG𝐴2(𝑝) andG
𝐻𝐵

(2)
2

(𝑝),
respectively, based on closely related constructions. However, the outcome of those constructions
are in sharp contrast, as one can see by comparing Proposition 7.14 with Proposition 7.16. Recall
that the triangle group G𝐴2

(𝑝) is of half-girth type (3, 3, 3), whereas G
𝐻𝐵

(2)
2

(𝑝) is of half-girth
type (3, 4, 4). This somehow corroborates our experimental results on trivalent triangle groups,
for which the most stringent restrictions on the existence of small finite simple quotients were
observed for the groups of half-girth type (3, 3, 3) as well. In some sense, the results of this study
seem to indicate that for generalized triangle groups, the small size of the girth of the vertex links
is more tightly related to the scarcity of finite simple quotients than the validity of Kazhdan’s
property (T).

Let 𝑅 = 𝐅𝑞⟨𝑥, 𝑦, 𝑧⟩ denote the free associative non-commutative ring in three indeterminates
over𝐅𝑞. The homomorphismshighlighted by Propositions 7.13 and 7.15 can be factored as the com-
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position of representations 𝐺 → GL𝑑(𝑅), where 𝐺 ∈ {G𝐴2(𝑝),G𝐶2(𝑝),G𝐻𝐵(2)2
(𝑝)} and 𝑑 ∈ {3, 4},

followed by the homomorphisms

GL𝑑(𝑅) → GL𝑑
(
Mat𝑘×𝑘(𝐅𝑞)

)
induced by the homomorphism of 𝐅𝑞-algebras 𝑅 → Mat𝑘×𝑘(𝐅𝑞) defined by the assignments
(𝑥, 𝑦, 𝑧) ↦ (𝑀𝑎,𝑀𝑏,𝑀𝑐). The following result provides analogous representations for the KMS
groups G

𝐻𝐶
(2)
2

(𝑝) and G
𝐻𝐵𝐶

(2)
2

(𝑝).

Proposition 7.21. Let 𝑅 = 𝐅𝑞⟨𝑥, 𝑦, 𝑧⟩ denote the free associative non-commutative ring in
three indeterminates over 𝐅𝑞 , where 𝑞 is a power of the odd prime 𝑝. Then the assignments

𝑎 ↦

⎛⎜⎜⎜⎜⎜⎝

1 𝑥 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, 𝑏 ↦

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

𝑦 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, 𝑐 ↦

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 𝑧 0

0 0 1 𝑧

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
,

extend to a homomorphism G
𝐻𝐶

(2)
2

(𝑝) → GL4(𝑅).
Similarly, the assignments

𝑎 ↦

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 𝑥 𝑥2

2
0

0 0 1 𝑥 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑏 ↦

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

𝑦 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑐 ↦

⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑧 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 𝑧

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

extend to a homomorphism G
𝐻𝐵𝐶

(2)
2

(𝑝) → GL5(𝑅).

Proof. Straightforward computation in view of the presentation of the KMS groups from
Section 7.2. □

As before, numerous quotients of those KMS groups are obtained by postcomposing the
representations from Proposition 7.21 with congruence homomorphisms.
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