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Zusammenfassung

Eine regelmäÿige und groÿ�ächige überwachung des Schi�sverkehrs gewinnt zunehmend
an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten recht-
zeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identi�ka-
tionssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und
weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten lie-
fern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise
Schi�e detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich au-
ÿerhalb der Reichweite der stationären AIS- und Radarstationen be�nden. Luftgestützte
Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenz-
ten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine groÿe räumliche
Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung.

In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radar-
daten für die Schi�sverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt.
Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodie-
rung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden
neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind
so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine
Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Al-
gorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch
robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von
Luftturbulenzen jederzeit auftreten können.

Die für die Untersuchungen verwendeten Daten sind ausschlieÿlich entfernungskompri-
mierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allge-
meinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokus-
sierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den
Weg für zukünftige Echtzeitanwendungen.

Der entwickelte neuartige Schi�sdetektor arbeitet direkt im Entfernungs-Doppler-
Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskom-
primierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im
Dopplerbereich fokussiert abgebildet. Wenn sich die Schi�e zusätzlich mit einer bestimm-
ten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinaus-
geschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit
die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von
der Meeresober�äche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-
Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für
eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig
zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur
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Zusammenfassung

automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete
Ozean-Clutter-Modelle. Da es sich bei Schi�en um ausgedehnte Ziele handelt, die in hoch-
au�ösenden Radardaten mehr als eine Au�ösungszelle belegen, werden nach der Detektion
mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst,
das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neu-
en Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des
Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch
ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert.

Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Bo-
den projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden.
Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele
vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schi�en bein-
halten, bewertet.
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Abstract

Frequent ship monitoring can not only facilitate a broad insight of sea tra�c situation
but may also deliver timely information about myriad maritime threats. Prominent state-
of-the art sensors that are used for this task are primarily the automatic identi�cation
system (AIS) and coastal radars. Air- and spaceborne radars, which have all-weather and
day-night acquisition capabilities, can supplement these systems by detecting ships that
are not equipped with AIS transponders or which are too far away from coastal AIS and
radar stations. Airborne radars allow for shorter revisits and longer observation times
at the cost of limited spatial coverage. On the contrary, spaceborne radars provide large
spatial coverage with the disadvantage of longer revisit times.

This doctoral thesis presents a comprehensive maritime surveillance radar data pro-
cessing concept for airborne radar sensors. The major components of this concept are
the detection, the tracking, the geocoding, the imaging and the fusion with AIS data.
Novel algorithms for the �rst three components are developed in the framework of this
doctoral thesis. The algorithms are structured in a way that they are suitable for future
real-time applications requiring onboard processing. In addition, the algorithms are ap-
plicable to arbitrarily �own nonlinear �ght tracks and are robust against attitude angle
changes occurring during data acquisition due to air turbulence.

The data used for the investigations are range-compressed (RC) radar data. Since for a
well-designed airborne radar, the signal-to-noise ratio in RC data is generally su�ciently
high, there is no need to use fully focused synthetic aperture radar (SAR) images. This
reduces the overall processing time signi�cantly and paves the way for future real-time
monitoring systems.

The developed novel target detector operates directly in range-Doppler domain on very
short coherent processing intervals (CPI) of the RC data. Due to the short CPIs the targets
appear focused in Doppler domain. If they are additionally moving with a certain line-
of-sight (LOS) velocity, their signals are shifted out of the clutter region, thus improving
their detectability due to an increased signal-to-clutter plus noise ratio. The accuracy
of the target detection relies strongly on the quality of the radar data backscattered by
the ocean surface, which are used for estimating the ocean clutter statistics needed for
deriving a constant false alarm rate (CFAR) detection threshold and keeping the number
of false alarms at a low level. Therefore, the proposed detector includes a novel automatic
ocean training data extraction method and suitable sea clutter models.

Furthermore, since ships are extended targets occupying more than one resolution
cell in high resolution radar data, after detection several target-originated pixels are clus-
tered to physical objects, which are then tracked over successive CPIs using a novel
range-Doppler-based target motion model and a multi-target tracking algorithm. During
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Abstract

tracking false or ghost target tracks are automatically recognized and terminated by an
incorporated powerful database-based track management system. The obtained target
tracks in range-Doppler domain are geocoded and projected to ground, respectively, after
estimating the direction-of-arrival (DOA) angles of all track points. Di�erent methods for
estimating the DOA angles for extended targets are proposed and evaluated using real
radar data containing real moving ships.

Measurement data acquired with DLR's F-SAR and DBFSAR airborne radar sensors
provide the proof of concept for all the novel algorithms presented in this doctoral thesis.
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b scale parameter of the K-distribution

bL lower bound of chi-square test at a certain signi�cance level α

br scale parameter of the K-Rayleigh distribution

bU upper bound of chi-square test at a certain signi�cance level α

cd weighting of discrete texture intensity level of 3MD model

dM Mahalanobis distance metric

dmin minimum Mahalanobis distance

d(u) beamforming vector or DOA angle vector

ex, ey, ez vectors for converting the target position from local to global
coordinates

f factor for setting the target pre-detection threshold

fa,st Doppler frequency of a stationary target

fa Doppler frequency of a moving target

fam measured Doppler frequency position of the target cluster

fr range sampling frequency

fcl[r, t] clutter Doppler centroid as a function of range and azimuth
time

fDC Doppler frequency shift or Doppler centroid

fNNCG Doppler frequency of the NNCG pixel

h platform height above ground

h(t) reference function in time domain

ht di�erence between the platform and the target height

hm histogram bin in least square �tting for sea clutter modeling

k0.75 scale factor representing the 0.75 quantile of the standard
Gaussian distribution

kr linear FM rate (or chirp slope)

ka Doppler slope or Doppler rate of the moving target signal

ka,st Doppler slope or Doppler rate of the stationary target signal

kals CPI at which Doppler aliasing occurs
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l dimension of the measurement states or the degrees of freedom
in chi-square-based hypothesis testing

m(k) radar measurement vector at CPI k

n dimension of the target states in the range-Doppler domain

ndet total number of false positive target pixels in a radar data patch

nmin minimum number of pixel-based detections needed to form a
cluster using DBSCAN

nr total number of range bins of a radar data patch

ntot total number of pixels in a radar data patch

q quadratic Doppler coe�cient

r slant range between TX/RX antenna phase center and the
target on the ground

r0 slant range of a stationary point-like target at t=0 (or antenna
beam center)

r10 slant range between the antenna and the moving target at t=0

r(fa) target range as a function of Doppler frequency

rt measured slant range of the target

rt,g ground range of the target

rt,ref reference slant range of the target

rst slant range of a stationary target

rm measured slant range position of the target cluster

rNNCG range of the NNCG pixel

s(t) uncompressed input signal in time domain

sout(t) compressed signal in time domain or the impulse response
function

sRX(τ) received single-channel pulse waveform in radio frequency
band

sRX,b(τ) received single-channel pulse waveform in baseband

sTX(τ) transmitted single-channel pulse waveform in radio frequency
band

sTX,b(τ) transmitted single-channel pulse waveform in baseband

t azimuth time or slow time

tk absolute center time of the CPI k

tolp azimuth time at which the moving target range histories
overlap

ur initial velocity of the target in the range-time domain

u(t) directional cosine as a function of slow time

v0 absolute target velocity on the ground

vdop target velocity in the range-Doppler domain

vp platform velocity in azimuth
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vr0 line-of-sight velocity of the target at t=0

vr,max maximum unambiguous target's radial velocity

vr,min minimum detectable LOS velocity of the target

vx0 moving target along-track velocity at t=0

vy0 moving target across-track velocity at t=0

(x, y, z) coordinate system whose x-axis is parallel to the aircraft's
azimuth direction

x0 x-position of the target at t=0

xm position of the antenna phase center in azimuth with respect to
the array origin

(xp, yp, zp) platform position in (x, y, z) coordinate system

xp platform position vector in (x, y, z) coordinate system

xp,UTM platform position vector in UTM coordinate system

x rd(k) target kinematics in the range-Doppler domain at CPI k

xs modi�ed speckle mean of the K-Rayleigh distribution

(xt, yt, zt) target position in (x, y, z) coordinate system

x t target position vector in (x, y, z) coordinate system

(xUTM, yUTM, zUTM) ENU or UTM coordinate system

x t,UTM target position vector in UTM coordinate system

y0 y-position of the target at t=0

z complex amplitude pixel in the range-time domain

z0 z-position of the target at t=0

Capital Letters

A look direction of the antenna (1 is for right-looking and -1 is for
left-looking antenna)

A(r) average amplitude pro�le as a function of range

ÂDS(fa) estimated average Doppler spectrum

Amed(r) one-dimensional moving median of A(r)

As coe�cient that comprises the refectivity of the scatterer

Bc clutter bandwidth in the Doppler domain

Br chirp bandwidth

C clutter signal

D number of discrete scatterers in 3MD model

D(k) innovation (or residual) matrix

Dr(u) receive antenna characteristics as a function of directional cosine
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Dt(u) transmit antenna characteristics as a function of directional cosine

F state transition matrix in Kalman �lter

H0 null hypothesis

H1 alternative hypothesis

H output transition matrix (or observation matrix)

I backscatter intensity in the Doppler domain

I identity matrix

K (k) Kalman gain

L e�ective number of looks

La antenna length in azimuth direction

M number of receving antennas in a multichannel radar system

N number of azimuth samples or addtive white Gaussian noise

NCPI number of consecutive azimuth samples within a CPI

NCPI,DS utilizable azimuth samples in a CPI for a certain Doppler bin size

NCPI,SR utilizable azimuth samples in a CPI without performing RCMC

Npred number of CPIs where the target positions are only �predicted�

NL total extracted track length in terms of total number of CPIs

Nvm validated measurements within the gating region of a track

P (r, fa) power sectral density

PCN(r, fa) power sectral density after clutter normalization

PFAest estimated or measured false alarm rate

PFAset desired false alarm rate

P(k) target state covariance matrix at CPI k

Q process (or system) noise covariance matrix

R total number of range samples used for target pre-detection

R measurement noise covariance matrix

RW clutter covariance matrix

S moving target signal

S(fa) target signal as a function of Doppler frequency

S(k) innovation covariance matrix

TCPI time duration (or the integration time) of a CPI

TCPI,DS integration time corresponding to a certain Doppler bin size

TSA synthetic aperture time

Z(r, fa) single-channel data in the range-Doppler domain

Z (r, fa) multichannel data in the range-Doppler domain

Zcs(r, fa) clutter suppressed data in the range-Doppler domain

Zsum(r, fa) sum-channel data in the range-Doppler domain

Z t(r, fa) target's multichannel data vector in the range-Doppler domain
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Z t,ACA(r, fa) average complex amplitude target pixel

Z t,MAA(r, fa) maximum of the absolute amplitude target pixel

Z t,norm(r, fa) normalized complex amplitude target pixel

Z t,NNCG(r, fa) complex target amplitude at the NNCG of the cluster

Z t,set(r, fa) clustered multichannel target data vector in a single CPI

Greek Symbols

α unknown parameters of a distrbution function or the signi�cance level
in a hypothesis testing

αp aircraft's course angle measured with respect to the UTM Easting

αt target moving direction with respect to its along-track motion

αwn factor accounting for the losses due to windowing in matched �ltering

δaz,RAR azimuth resolution of RAR

δaz,SAR azimuth resolution of SAR

δcr cross-range resolution of the image

δfa Doppler bandwidth or Doppler frequency spread

δg,raw ground range resolution of the radar image

δr,raw slant range resolution using single frequency waveform

δr slant range resolution after pulse compression using LFM waveform

∆ mulitplicative texture component of the K-distribution

∆ψDOA DOA angle di�erence between the measured and the reference DOA
angles

∆fa Doppler bin size of the range-Doppler image

∆fthres width of the rectangular search window along Doppler

∆rthres length of the rectangular search window along range

∆r slant range spacing

∆t time di�erence between two successive target positions on the ground

∆x azimuth displacement of the moving target in SAR image

∆xaz di�erence between measured and true azimuth position of the target

∆xr azimuth position di�erence between the radar and the target on the
ground

∆xg distance moved by the target in along-track in a given time interval

∆trc time interval where the range cell migration do not cross one slant
range spacing

∆tmng time interval used in track management

∆yg distance moved by the target in across-track in a given time interval

xxii



Acronyms and Symbols

∆yr ground range distance between the radar and the target

ϵc radius used in DBSCAN for expanding the clusters

ϵNIS normalized innovation squared

η target detection threshold based on CFAR

η̃ threshold error between the data and the model CCDF at a speci�c
CCDF value

ηdata threshold obtained from the data at a speci�c CCDF value

ηmodel threshold obtained from the model at a speci�c CCDF value

ηpre(r) range-dependent target pre-detection threshold

θD depression angle

θ3dB one-way 3 dB antenna azimuth beamwidth

θi incidence angle

θroll roll angle

θpitch pitch angle

θyaw yaw angle

λ radar wavelength

µ mean of the data

ν shape parameter of the K-distribution

νr shape parameter of the the K-Rayleigh distribution

ρc normalized clutter variance in 3MD model

ρn normalized noise variance in 3MD model or thermal noise in the
K-Rayleigh distribution

ρr extra Rayleigh component in the K-Rayleigh distribution

σ standard deviation

σDOA standard deviation in the measured DOA angles of an extended
target in a single CPI

σ2p0 parameter used for the initialization of the state covariance matrix

σ(r) standard deviation as a function of range for target pre-detection

τ range time or fast time

τp pulse duration

χ2 chi-square distribution

ψDOA,ar DOA angle with respect to the antenna array axis

ψDOA,az DOA angle with respect to the aircraft's azimuth axis

ψDOA,az,g ground projection of the DOA angle with respect to the aircraft's
azimuth axis

ψDOA,ref reference DOA angle computed using the reference target range
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Superscripts and Subscripts

k CPI number

m index of the RX channel

p relates to the platform

RX receive

t relates to the target

TX transmit

UTM relates to global UTM coordinate system
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1 Introduction

1.1 Background

Maritime transport is considered as the backbone of global trade and the world economy.
Despite having new modes of transport, they are responsible for carrying 90% of the
world's merchandise. Without maritime transport, large scale goods exchange necessary
to sustain the global society would not be possible. As of January 2021, there are around
55,000 merchant ships active in international trade [1].

With ever increasing sea tra�c volumes, several maritime threats, for instance, terro-
rism, piracy, human smuggling, illegal migration, arms or drugs supply, over�shing and
marine pollution have also escalated over the past few decades [2�4]. To cope with these
threats and to ensure the safety and security on the oceans, maritime surveillance systems
are deployed across the globe [5�7]. They facilitate a comprehensive insight into sea traf-
�c conditions and enhance maritime situational awareness. European Commission de�nes
the maritime surveillance as �the e�ective understanding of all activities carried out at

sea that could impact the security, safety, economy or environment of the European Union

and its Member States� [8]. In the next section some state-of-the-art maritime surveillance
systems which are dominating the maritime world and are currently operating worldwide
are discussed.

1.2 State-of-the-Art Maritime Surveillance Systems

Popular maritime surveillance systems are VTS (vessel tra�c services) [9], LRIT (long-
range identi�cation and tracking) [10], VMS (vessel monitoring system) [11], AIS (auto-
matic identi�cation system) [12], marine radars (radio detection and ranging) [13] and
HFSW-OTHR (high-frequency surface-wave over-the-horizon radar) [14]. In this section,
AIS, marine radars and HFSW-OTHR are brie�y discussed.

The AIS transceivers on the ships transmit and receive the ship-related messages and
allow vessels to exchange navigational data with one another and also with the shore and
the satellites that are equipped with onboard AIS receivers. There are two types of AIS:
terrestrial (or vessel-based) and satellite-based (S-AIS). Terrestrial-based AIS allow for
ship-to-ship and ship-to-shore communication. In S-AIS the messages are exchanged not
only between the AIS equipped ships, but also with the low-orbit satellites [15]. With
S-AIS it is possible to achieve global AIS coverage by monitoring vessels which are well
beyond the reach of terrestrial-based AIS.

One major disadvantage common to both the terrestrial and the S-AIS is that, for
detecting a ship, its AIS receiver must be turned on [16]. Vessels with illegal activities, e.g.,
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1 Introduction

�shing in protected areas, can conceal their location by turning o� their AIS transponders.
Marine radars can detect such vessels as long as the vessels are good re�ectors and are
within the line-of-sight (LOS) of the radar.

Marine radars are ship-borne or vessel-based radars that operate at X- (8-12 GHz)
and S-band (2-4 GHz) frequency region of the electromagnetic spectrum. They assist in
collision avoidance and safe navigation at sea by detecting other ships and land obstacles
[17]. Some excellent works related to ship monitoring using marine radars can be found
in [18�22].

Marine radars, however, have their own set of limitations. First, the structure of the
ship (eg., masts, derricks and funnels) and the objects on the ship can cause so-called
blind and shadow sectors. The targets lying in these sectors are shielded and as a result,
they do not appear on the radarscope. Furthermore, marine radars have limited range
visibility (between 24 and 40 nautical miles) due to the Earth's curvature and the radar
elevation [13,23].

Ground-based coastal radars are more comprehensive, large scale and cost-e�cient
long-range (around 96 nautical miles) maritime surveillance systems. They are responsible
for protecting the coastlines from several sea threats [24]. Despite having the long-ranging
capability due to their installations on higher altitude areas such as hills, their surveillance
area generally is limited to regions along the coast. Therefore, ships on open sea, far away
from the coast cannot be detected by the coastal radars.

HFSW-OTHR can overcome the limitations of both marine and coastal radars by
transmitting shortwave radio frequency (3-30 MHz) that reaches the target beyond the
horizon (up to 200 nautical miles) by refracting o� the ionosphere [25,26]. It has both long-
range tracking and real-time monitoring capability [27, 28]. However, the infrastructural
requirements of these systems are very high which makes them a very expensive investment
[24].

The aforementioned limitations of currently operating maritime surveillance systems
have encouraged the need for the development of space and air-based radars for ship
monitoring.

1.3 Airborne Radar-based Maritime Surveillance

Radars that are �ying at high altitudes have the ability to detect and monitor ships
that are not equipped with the AIS transceivers and are out of the LOS of the marine
radars. The operating frequencies of the high-�ying radar sensors can penetrate through
the clouds, fog and rain, and their active systems allow them to operate even during night
times. Airborne radars, in contrast to the spaceborne radar systems, can collect data with
shorter revisits and longer observation times on the land and the ocean surface, at the
cost of limited spatial coverage.

Compared to the stationary ground-based maritime surveillance radars, with airbor-
ne radars, the targets are observed and tracked di�erently. In the following some key
di�erences are detailed:
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Figure 1.1: Acquisition geometries and the received signal powers of (a) stationary ground-based
radar with rotating or electronically steerable long antenna and (b) air-based radar
with short and non-steerable antenna. The 3 dB antenna beams and targets within
the beams are shown in the �gure.

� A stationary ground radar shown in Figure 1.1(a) uses a large rotating antenna and
transmits a very narrow horizontal antenna beam. For a typical ground-based radar
system, its antenna rotates at 24-45 RPM (revolutions per minute), resulting in one
complete scan occurring at every 1.3-2.5 s [13]. The narrow antenna beam (in the
order of less than 1◦) allow these radars to measure the bearing (angular position)
of the target very precisely [23].

� On the other hand, as shown in Figure 1.1(b), the airborne radar uses a relatively
short antenna with a wide antenna beam. The target is detected and tracked as long
as it is illuminated by the antenna beam that moves by itself at the speed of the
aircraft. Note that the antenna in the shown example is non-steerable, has a wide
beamwidth and is typically designed for synthetic aperture radar (SAR) systems.
In SAR systems short antennas are used for obtaining high azimuth resolution since
the achievable azimuth resolution after SAR focusing is half the antenna length (cf.
Section 2.3).

Di�erent beamwidths of the ground and air-based radar sensors, as shown in Figure 1.1,
are due to their di�erent antenna lengths along the azimuth direction. The relationship
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between the antenna length La and one-way 3 dB beamwidth θ3dB of a planar antenna
with rectangular aperture can be expressed as [29]

θ3dB ≈ 0.886 · λ
La
, (1.1)

where λ is the radar wavelength. From (1.1) it is clear that long antennas radiate narrow
and highly directional beams. With such beams, high angular resolution and thus, high
target position accuracy can be achieved by the radar. However, if the antenna is non-
steerable, the narrow beam illuminates the target for a short amount of time. Therefore,
the antenna length requires a trade-o�: it should be short enough for increasing the
illumination time on the target and long enough for radiating directive beams in order to
improve the target location accuracy.

Airborne radar-based surveillance systems employ pulse-Doppler radars for detecting
and locating the moving targets [30]. Pulse-Doppler radars are also the basis of modern
day SAR systems. Although, SAR is a well-established imaging technique and have been
widely used for earth remote sensing [31, 32], it is originally designed for imaging the
stationary world and the moving targets in SAR images appear defocused and dislocated
from their original geographical positions (cf. Section 2.5.3) [33]. This happens due to the
di�erent Doppler frequencies of the moving objects in comparison to the stationary ob-
jects. Therefore, instead of using conventional SAR processing, pulse-Doppler radar-based
MTI (moving target indication) techniques are exploited for detecting and monitoring the
moving targets [34].

With pulse-Doppler MTI radars the Doppler frequency shift produced by the moving
target are used to estimate the target's LOS (or radial) velocity. The Doppler frequency
shift fDC of the moving target is expressed as [30]

fDC =
−2

λ
· vr0, (1.2)

where vr0 is the target's LOS velocity. The above equation shows that after measuring
the Doppler frequency shift, the LOS velocity of the moving target can be estimated.

Some state-of-the-art airborne SAR systems that are used for the maritime surveil-
lance activities are F-SAR [35] and DBFSAR [36] operated by the Microwaves and Radar
institute of DLR (German Aerospace Center), PAMIR from FHR (Fraunhofer Institute
for High Frequency Physics and Radar Techniques) [37, 38] and lngara airborne radar
developed by DST (Defence Science and Technology Organization), Australia [39, 40].
There are also some spaceborne radar systems with MTI capabilities such as the German
X-band satellites TerraSAR-X and TanDEM-X [41�43], Canadian C-band RADARSAT-2
satellite [44,45] and the X-band COSMO-Skymed satellite from Italy [46,47].

An example of a high resolution ISAR (inverse SAR) image of a ship using DLR's
DBFSAR airborne radar system is shown in Figure 1.2. The ship name is HAM 316, which
is a dredger of dimensions 129 m x 22 m (cf. Table B.3 in page 152).
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Figure 1.2: High resolution ISAR image of ship HAM 316 obtained using the DLR's DBFSAR
airborne radar system [36].

1.4 Main Objectives and Thesis Contributions

Airborne radars carry immense potential for supplementing the existing state-of-the-art
maritime surveillance systems. However, there is no substantial research work published
in the open literature that describes a comprehensive and complete operational ship sur-
veillance approach using moving airborne radar platforms. The available algorithms for
such platforms were originally designed for monitoring road vehicles with limited range-
resolution [48]. For monitoring extended targets like ships, additional e�orts are needed.

The requirements in the context of maritime moving target monitoring using airborne
radar sensors that shall be addressed in this thesis are:

1. Onboard processing concept for achieving real-time or near real-time target moni-
toring capability.

2. Developing algorithms in a way that they are also suitable for arbitrarily �own
(nonlinear) �ight tracks.

3. Detecting ships of low radar cross section (RCS) in the presence of moving back-
ground clutter.

4. Tracking and track management of multiple extended targets in dense multi-target
scenarios.

5. Estimating the actual geographical positions of the tracked targets.

Considering the aforementioned objectives, this thesis presents a novel maritime sur-
veillance processing chain using airborne radar sensors. A high-level �owchart of the air-
based ship monitoring is illustrated in Figure 1.3. As can be seen in the �gure, the major
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blocks of the processing �owchart are: (i) detection and clustering for �nding extended tar-
gets in the data; (ii) multi-target tracking (MTT) for extracting individual target tracks;
(iii) ground projection for visualizing the target tracks on the ground; (iv) ship data patch
extraction for saving the data downlink capacity; (v) ISAR imaging for generating high
resolution radar image sequences of the targets (cf. Figure 1.2) using the extracted data
patches, and (vi) AIS fusion. Novel algorithms for the �rst three components are develo-
ped in the frame of this doctoral thesis. For ISAR imaging an already available algorithm
is used [49]. AIS fusion is the future work, however, AIS data are used in this thesis for
validation purposes.

Source: US Navy

Range-Compressed Data
(Single- or Multichannel)

i. Detection and Clustering

ii. Multi-Target Tracking

iv. Patch Extraction in Time 
Domain

iii. Ground Projection using 
Multichannel Data

vi. AIS Fusion v. ISAR Imaging

Figure 1.3: High-level processing �owchart of the proposed radar-based ship monitoring concept
using an airborne radar sensor.

As an input to the proposed airborne radar-based maritime surveillance chain, instead
of using fully focused SAR images, as traditionally used when it comes to ship detection
using spaceborne SAR [50,51], range-compressed (RC) data (either single or multichannel
data) are used [52]. This is because for a well-designed airborne radar, signal-to-noise-ratio
(SNR) in most cases is su�ciently large. For instance, DLR's F-SAR system has a peak
power of approximately 2 kW which leads to su�cient high SNR values of RC data for
altitudes up to 6 km above ground [49]. Therefore, there is not a need to implement con-
ventional time-consuming SAR focusing techniques (cf. Section 2.3.1). This saves overall
processing time and paves the way for future real-time capability.

Novelties and major contributions of the thesis in the �eld of maritime

surveillance using airborne radar sensors are as follows:

� A novel range-Doppler-based constant false alarm rate (CFAR) ship detection al-
gorithm with automatic training data extraction using single-channel RC airborne
radar data (cf. Chapter 3). The algorithm has the following components:
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� A novel target pre-detection module running in time domain that excludes
bright peaks and spiky clutter from the data for avoiding estimation biases;

� Clutter normalization in the Doppler domain for extracting reliable ocean clut-
ter training samples; and

� Ocean clutter modeling and statistics estimation using CFAR-based stochastic
distribution functions followed by the target detection threshold computation.

� A novel target motion model for tracking targets in the range-Doppler domain.
The motion model is incorporated into the conventional Kalman �lter (KF) [53]
framework for recursively estimating the kinematics (eg., position, velocity and ac-
celeration) of the targets in the Doppler domain (cf. Chapter 4).

� A novel range-Doppler-based tracking and track management algorithm for tracking
multiple extended targets (cf. Chapter 5). The algorithm has the following com-
ponents:

� An SQLite [54] database structure written in Python as the core of the overall
MTT system;

� A powerful track management scheme that is running simultaneously within
the tracker for automatically updating the con�rmed tracks and terminating
the false or ghost targets;

� Fast and e�cient data association module for doing MTT; and

� Doppler aliasing block for extracting the target's true range and Doppler his-
tory by recognizing and correcting the Doppler back-folding.

� Novel methods for estimating the direction-of-arrival (DOA) angle of extended tar-
gets using multichannel RC airborne radar data. Estimated DOA angles of the
extended targets are used for computing their actual geographical positions. The
target ground position estimates using di�erent methods are validated with the
simultaneously acquired AIS-based ground truth data (cf. Chapter 6).

The structure of the proposed methods is chosen in such a way that, real-time capabili-
ty can be achieved after an e�cient implementation of the algorithms in a parallelized way
on a multicore or multiprocessor computer, taking also into account graphical processing
units (GPUs).

Furthermore, it is worth mention here that a major motivation to develop airborne
radar-based maritime surveillance chain is to integrate it in future high-altitude platforms
(HAP) or high-altitude pseudo satellites (HAPS). These platforms are expected to have a
much longer endurance than conventional aircraft. They will be �ying in the stratosphere
for several days, weeks, months or even years. With radars integrated in such platforms, a
continuous monitoring of hotspots like exclusive economic zone (EEZ) and larger regions
of interest in the order of several hundred to several thousand square kilometers is feasible
[52,55]. An example of a future HAPS in a circular �ight track con�guration is illustrated
in Figure 1.4.
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Figure 1.4: Observing a region of interest (ROI) using HAPS �ying in a circle. The HAPS antenna
beam on the left illuminate a ROI over the entire aspect angle of 360◦ whereas on
the right an annulus is repeatedly monitored [52].

1.5 Structure of the Thesis

This thesis is organized into seven chapters addressing di�erent aspects of the proposed
air-based maritime surveillance. The outline of the remaining chapter is as follows:

In Chapter 2, the acquisition geometry of airborne radar and its working principle
are discussed. Furthermore, details related to the range-Doppler processing of the radar
data and its bene�ts in the context of moving target are presented.

A range-Doppler-based CFAR ship detection algorithm using single-channel RC air-
borne radar data is presented in Chapter 3. The chapter proposes a novel automatic
training data extraction procedure for robust ocean statistics estimation and later, for an
accurate target detection threshold computation.

A KF-based target motion model for tracking targets in the range-Doppler domain is
introduced in Chapter 4. The outcomes of the proposed motion model are used as an
input to the MTT algorithm. In Chapter 5, an e�cient MTT and track management
algorithm in the range-Doppler domain is discussed. The MTT framework has several
components and each component is explained in detail in the chapter.

Chapter 6 presents multichannel RC radar data processing and geocoding techniques
for projecting the radar-based target detections to the ground. In the chapter di�erent
methods for computing the geographical position of extended targets are proposed. The
obtained target ground position estimates are compared with the simultaneously acquired
AIS data for validation purposes.

At the end of every chapter experimental results from real measurement airborne radar
data are presented to prove the concept. Finally, Chapter 7 concludes the thesis with a
summary and discussion. It also presents an outlook and recommendations for the future
research on radar-based ground moving target monitoring systems and techniques.
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2 Airborne Radar and Moving Targets

In this chapter the principle of airborne radar is explained and the concepts of real and
synthetic aperture radar (SAR) are brie�y reviewed. Di�erent types of real-world target
motions and single- and multichannel moving target signal models are presented in the
chapter. The e�ects of moving targets in SAR imagery are also brie�y discussed. Final-
ly, the concept of range-Doppler processing in the context of moving target signals is
presented.

2.1 Acquisition Geometry

This section presents the acquisition geometry and the working principle of airborne radar
and introduces some common radar terminologies. For simplifying the explanation two
main assumptions are considered in this section. First, it is assumed that the airborne
radar is �ying in a straight line over the �at Earth surface. Second, the acquisition mode
of the airborne radar is stripmap mode, i.e., the radar has a side-looking acquisition
geometry and as the radar platform moves, the antenna beam pointing direction is �xed.
The acquisition geometry of the moving airborne radar is illustrated in Figure 2.1.
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Figure 2.1: Airborne radar acquisition geometry. The radar in the shown �gure is left-looking
with respect to the �ight path.
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2 Airborne Radar and Moving Targets

As shown in Figure 2.1, the platform carrying the radar sensor moves parallel along
the x-axis with a constant velocity (CV) vp and at a constant height h. The radar system
mounted on the moving airborne platform has a side-looking geometry and the antenna
is tilted downward by the depression angle θD, measured from the horizontal plane at
the location of the platform. The moving direction of the radar is known as the azimuth
direction and the radar LOS direction is known as the slant range direction.

The antenna beam that moves at the speed of the aircraft illuminates an area on
ground with a certain swath width, referred to as antenna footprint. The point in the
swath nearest to the nadir point of the radar platform is called the near range and the
farthest point from the nadir is known as the far range. The incidence angle θi, which is
the angle between the radar beam and the ground surface, increases from near range to
far range.

The radar while moving in the along-track direction coherently sends a train of pulses
in its LOS direction at a certain pulse repetition frequency (PRF). The PRF is generally
�xed during a single acquisition, and it ranges from a few hundreds to a few thousand
Hertz for airborne and spaceborne radar systems, respectively.

2.2 Real Aperture Radar

Real aperture radar (RAR) is a side-looking radar which emits the antenna beam in the
slant range direction orthogonal to the aircraft's azimuth direction as shown in Figure
2.1. The transmitted beam then interacts with the ground objects and only a portion of
the transmitted signal energy is collected by the receiving antenna (same as the transmit
antenna for a monostatic radar or a di�erent one for a bi- or multistatic radar).

The received radar echoes from the ground objects arrive at the antenna at di�erent
times, depending on their slant ranges or LOS distances from the antenna. As the aircraft
moves forward and more pulses are transmitted, the associated received echoes from the
target are written into the successive rows and �nally, a two-dimensional re�ectivity map
of the imaged swath is generated [31].

The azimuth resolution of a RAR is determined by the 3 dB azimuth beamwidth of
the antenna and is approximated as [32]

δaz,RAR ≈ θ3dB · r ≈ 0.886 · λ r
La
, (2.1)

where r is the slant range of the target (cf. Figure 2.1). From this equation it is clear
that as the target's slant range increases, the azimuth resolution of the RAR degrades.
In order to improve the azimuth resolution, long antennas are needed. A discussion on
enhancing the azimuth resolution using long antennas is given in Section 2.3.

The slant range resolution (ability to distinguish two or more targets at di�erent slant
ranges) δr,raw is generally determined by the pulse duration τp and is given as
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2.2 Real Aperture Radar

δr,raw =
c0 τp
2

, (2.2)

where c0 is the speed of light in vacuum. The ground range resolution (projection of slant
range resolution on the ground) δg,raw is written as

δg,raw =
δr

sin θi
. (2.3)

For an exemplary airborne radar system where τp = 5µs, the achieved slant range reso-
lution according to (2.2) is 750 m. To increase the slant range resolution, short transmit
pulses are necessary. However, for sending short pulses, high transmit power is needed so
that received radar echoes have su�cient signal-to-noise-ratio (SNR). To overcome this
limitations, pulse compression techniques are used.

2.2.1 Pulse Compression

Pulse compression techniques also known as �matched �ltering�, employing linear fre-
quency modulated (LFM) signals known as �Chirp� signals are applied in the slant range
direction for improving the slant range resolution of the radar and also the SNR of the
targets embedded in additive white Gaussian noise. It allows the radar system to achieve
the resolution of a short pulse and the energy of a long pulse. With pulse compressi-
on along range, the slant range resolution can be improved up to a few meters or even
centimeters [56].

Pulse compression is performed by convolving an uncompressed received input signal
s(t) with a proper reference function h(t). The pulse compressed signal sout(t) is given
as

sout(t) = s(t) ∗ h(t) =
∫ ∞

−∞
s(τ)h(t− τ)dτ, (2.4)

where ∗ denotes convolution. The reference function h(t) is the time-reversed complex
conjugate of the expected input signal s(t).

After applying the matched �ltering, the range resolution δr for an LFM transmitted
pulse is given by [31]

δr = αwn ·
c0
2Br

, (2.5)

where Br is the chirp bandwidth and αwn accounts for the losses due to windowing, e.g.,
αwn ∼= 0.89 for a rectangular window. This equation suggests that large chirp bandwidths
should be used for achieving high slant range resolution.

An example after performing pulse compression in slant range direction is shown in
Figure 2.2 bottom left.
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2 Airborne Radar and Moving Targets

2.3 Synthetic Aperture Radar

Synthetic aperture radars (SAR) are used for overcoming the azimuth resolution limita-
tions of RAR systems. The principle of SAR was �rst discovered by Carl Atwood Wiley
in the 1950s [57]. Similar to conventional RAR, SAR is also a pulsed radar mounted on a
moving platform as shown in Figure 2.1. In the case of SAR, forward radar platform mo-
tion and the coherent integration of the received radar echoes along the aircraft's azimuth
direction are exploited for synthesizing a long synthetic antenna aperture and, hence, for
improving the azimuth resolution [32].

For SAR systems, the azimuth resolution δaz,SAR as a function of the integration time
or coherent processing intervals (CPI) is expressed as

δaz,SAR ≈ λ r

2 vp TCPI
, (2.6)

where TCPI is the coherent integration time . From the above equation it is clear that the
azimuth resolution of SAR can be increased by increasing TCPI. If TCPI is the complete
synthetic aperture time (= total illumination time of the radar) determined by the antenna
footprint in azimuth direction, the best achievable azimuth resolution of SAR is given
by [31]

δaz,SAR ≈ La

2
. (2.7)

According to this equation, in contrast to RAR (cf. (2.1)), the azimuth resolution of SAR
is range-independent and depends only on the actual azimuth antenna length. Therefore,
even with spaceborne SAR systems it is possible to acquire SAR images with high azimuth
resolution, provided, the antenna length is small enough so that a wider azimuth beam
and thus, an increased coherent integration time can be achieved.

2.3.1 SAR Image Generation

SAR processing or SAR image generation is regarded, particularly among GMTI
(ground moving target indication) community, as �Stationary World Matched Filtering
(SWMF)�. A simpli�ed �owchart of SAR processing for a single stationary point-like target
is shown in Figure 2.2. The steps of SAR image generation is described as follows:

1. Range compression: Pulse compression is performed along the range direction of the
raw radar data (cf. bottom left of Figure 2.2).

2. Range cell migration correction (RCMC): The curvature of the target range history
is corrected (cf. bottom right of Figure 2.2) [31].

3. Azimuth compression: Pulse compression is performed along the azimuth direction
(cf. top right of Figure 2.2).

12



2.4 Real-World Target Motions

RCMC Data

Raw Radar Data

R
a

n
g

e

Azimuth for each range line

Range Compression

Range-Compressed Data

R
a

n
g

e

Azimuth

Azimuth Compression

Fully Focused Data

for each azimuth line

R
a

n
g

e

Azimuth

R
a

n
g

e
Azimuth

Figure 2.2: Simpli�ed processing steps for generating a fully-focused SAR image of a single non-
moving point-like target. The dashed rectangular block shown in the �gure is only
needed for the proposed air-based maritime surveillance (cf. Figure 1.3).

After performing sequentially the aforementioned steps, a fully focused SAR image
can be obtained [31].

2.4 Real-World Target Motions

Treating radar as a range measuring sensor, it generates a unique range history for each
target in the scene. Compared to stationary targets, moving targets have di�erent range
histories due to their motions. Appropriate modeling of target motion is essential for
developing detection and motion parameter estimation algorithms. In this section two
types of real-world target motions, in particular ship motions, are discussed. In the �rst
type of ship motion, a model considering the linear motion of the ship moving with
constant acceleration (CA) on the ocean surface is presented. In the second type, an
overview on ship motions that arises due to the interaction between the vessel and the
moving ocean surface are provided.

2.4.1 Linear Motion with Constant Acceleration Model

Assume a target is moving with CA on the ground in the x-y plane at a constant altitude
zt. Its CA-based motion w.r.t. time (in Cartesian coordinates) is given as
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Figure 2.3: Moving target position at time t=0 in Cartesian coordinates. The target's absolute
velocity v0 and moving direction αt are shown in the �gure.

xt(t) = x0 + v0 cosαt︸ ︷︷ ︸
=vx0

t+
1

2
a cosαtt

2 (2.8)

yt(t) = y0 + v0 sinαt︸ ︷︷ ︸
=vy0

t+
1

2
a sinαtt

2, (2.9)

zt(t) = z0, (2.10)

where x0, y0 and z0 are the positions of the target at time t = 0 as shown in Figure
2.3. The terms αt, v0 and a are the moving or the heading direction w.r.t the target's
along-track motion, absolute velocity and acceleration, respectively. The magnitudes of
the velocity and acceleration can be expressed as

v0 =
√
vx02 + vy02 (2.11)

a =
√
ax2 + ay2, (2.12)

where vx0 = v0 cosαt and vy0 = v0 sinαt are the along-track and across-track velocity
components at time t = 0, respectively and ax and ay are the along-track and across-
track acceleration components, respectively.

The target range r(t) measured by the airborne radar for a CA-based target motion
on the ground (cf. Figure 2.4 top) is expressed as
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Figure 2.4: Top: Example range histories of a CA-based moving point target (orange curve) and
a stationary point target (dashed blue curve) in slant range/azimuth time domain.
The stationary point target is shown only for the comparison purposes. Bottom: Their
corresponding Doppler frequency histories. Simulation parameters of the moving tar-
get: vp = 91 m/s, x0 = 0 m, y0 = 3000 m, v0 = 5 m/s, a = 1 m/s2, αt = 60◦, zt=0
m, zp = 5000 m and λ = 0.0306 m.

r(t) =

√(
x0 + vx0t+

1

2
axt2 − vpt

)2

+

(
y0 + vy0t+

1

2
ayt2

)2

+ (zt − zp)2. (2.13)

The above range equation is true, without the loss of generality, only when:

� the platform is moving linearly with CV and �ying at a constant altitude, and

� at t = 0 the platform is directly above the origin of the Cartesian coordinate system
whose x-axis is parallel to the aircraft's �ight direction.

The moving target instantaneous Doppler frequency fa(t) as shown in Figure 2.4
bottom due to azimuth time-dependent range change can be written as

fa(t) =
−2

λ

dr(t)

dt
. (2.14)
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2 Airborne Radar and Moving Targets

Using (2.13) and (2.14), the �rst-order Taylor series approximation of the Doppler fre-
quency (cf. Figure 2.4 bottom) can be written as

fa(t) ≈ fDC + kat+ qt2, (2.15)

where fDC, ka and q denote the Doppler shift, the Doppler slope and the quadratic Doppler
coe�cient, respectively. The terms fDC, ka and q are mathematically expressed as [58]

fDC ≈ −2

λr10
{y0vy0 + x0(vx0 − vp)} (2.16)

ka ≈
−2

λr10

{
(vx0 − vp)

2 + v2y0

(
1−

y20
r210

)
+ y0ay

}
(2.17)

q ≈ −3

λr10

{
ax(vx0 − vp) + vy0ay

(
1−

y20
r210

)}
, (2.18)

where the term r10 is the range between the radar and the target at t = 0 (antenna
broadside). Using (2.16), (2.17) and (2.18) in (2.13) and after some mathematics, the
range history of a target moving with CA on ground can now be approximated using
Doppler parameters in the following way

r(t) ≈ r10 −
λ

2
fDCt−

λ

4
kat

2 − λ

6
qt3. (2.19)

For a non-moving target, as shown by the dashed blue curve in Figure 2.4, its slant range
rst(t) and Doppler history fa,st(t) are approximated as

rst(t) ≈ r0 −
λ

4
ka,stt

2 ≈ r0 +
v2p
2r0

t2 (2.20)

fa,st(t) ≈ ka,stt ≈
−2v2p
λr0

t, (2.21)

where r0 is the minimum range of the stationary target at t=0 and ka,st is its Doppler
slope. Note that in contrast to r0, the range position r10 of a moving target in (2.19) is not
the minimum range since due to target motion its minimum range is not at the antenna
broadside.
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2.5 Point Target Signal Models

2.4.2 Oscillatory Linear and Angular motions

Wave-induced ship motions in�uence not only the quality of high resolution ISAR imaging
but also play an important role in detection, clustering and geocoding since the scatte-
ring and, hence, the center of gravity of the ship may change signi�cantly due to these
motions.
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Figure 2.5: Ship and its six di�erent oscillatory motions with the sign conventions.

While moving on the ocean surface, a ship exhibit six degrees of freedom (DOF)
associated with six types of motions. They are the roll, pitch, yaw, surge, sway and heave
as shown in Figure 2.5. Roll, pitch and yaw are the oscillatory angular motions whereas,
surge, sway and heave are the oscillatory linear motions of the ship [59]. The main factor
that drives these motions is the waves on the sea surface. These waves after interacting
with the vessels induce all kinds of di�erent oscillatory motions. The most important ones
are the roll, pitch and yaw, and among them, roll and pitch are the most signi�cant.

The magnitude of the roll angle depends on the sea state and the beam of the ship. In
case of high sea states and small beam the roll angle can go up to several tens of degree.
The maximum pitch angle depends on the sea state and the ship lengths. For longer ships
the pitch angles are smaller [59].

2.5 Point Target Signal Models

Since in this doctoral thesis radar data based on both single and multiple receiving chan-
nels are investigated for monitoring ground moving targets (cf. Figure 1.3 top), target
signal models based on single and multichannel radar data are discussed in the next two
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sections. The presented signal models are applicable to both stationary targets and moving
targets.

2.5.1 Single-Channel Signal Model

One single pulse transmitted in range direction by the airborne radar is expressed as

sTX(τ) = sTX,b(τ) · exp
[
j
2π

λ
c0τ

]
, (2.22)

where TX stands for transmit, sTX,b(τ) is the pulse waveform in baseband, exp[·] is the
exponential term, j is the imaginary unit and τ is the range time, also known as fast
time.

In most airborne radar systems sTX,b(τ) is the LFM pulse waveform, also known as
�range chirp�. This waveform is used for obtaining better range resolution after applying
pulse compression techniques, as discussed in Section 2.2.1. The transmitted chirp in
baseband can be expressed as

sTX,b(τ) = exp(jπkrτ
2) · rect

[
τ

τp

]
, (2.23)

where rect[·] is the rectangular function and kr = Br/τp is the linear FM rate or chirp
slope expressed in hertz per second.

The target's echo signal received by the same antenna (= monostatic case) can be
expressed as

sRX(τ) = as · sTX
(
τ − 2r(τ)

c0

)
, (2.24)

where RX stands for receive and the coe�cient as covers the free-space attenuation, the
backscattering coe�cient and the two-way antenna pattern weighting. In the equation,
the received echo from the target is a delayed and attenuated copy of the transmitted
signal.

The extracted received signal in baseband after using a phase preserving quadrature
demodulator can be written in two-dimensional form as

sRX,b(τ, t) = as · sTX
(
τ − 2r(τ)

c0

)
· exp

[
− j

4π

λ
r(t)

]
. (2.25)

The factor of 2 in sTX(·) is due to the two-way range measurement of the radar system. The
exponential term in the equation represents the phase di�erence between the transmitted
and the received signal.
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For GMTI applications, the azimuth signal is most relevant. From (2.25) the single-
channel target azimuth signal is obtained as

s(t) = as · exp
[
− j

4π

λ
r(t)

]
· rect

[
t

TSA

]
, (2.26)

where rect[·] limits the duration of target illumination to the synthetic aperture or coherent
integration time TSA.

2.5.2 Multichannel Signal Model

In this section a target signal model using multiple receiving antennas is introduced and
brie�y discussed. The multichannel signal model is used for estimating the direction-of-
arrival (DOA) angle of the detected target (cf. Figure 2.6). With the known DOA angle
of the target and the aircraft navigation parameters, the target can directly be mapped
to ground for obtaining its actual geographical coordinates via a geocoding operation (cf.
Chapter 6). A multichannel radar system consisting of M number of receiving channels
is depicted in Figure 2.6.
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Figure 2.6: Multichannel radar system consisting of one TX antenna andM uniformly distributed
RX antennas. The antenna array in the shown �gure is left-looking with respect to
the �ight's azimuth direction.
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The multichannel target signal model in its time continuous form can be expressed
as [60]

s(t) = As · e−j 4π
λ
r(t)Dt(u(t))


Dr,1(u(t))e

j 2π
λ
u(t)x1

Dr,2(u(t))e
j 2π

λ
u(t)x2

...

Dr,M(u(t))ej
2π
λ
u(t)xM


= As · e−j 4π

λ
r(t)d(u(t)) ∈ CM×1.

(2.27)

Note that the single-channel target signal model expressed with (2.26) is one row of the
multichannel signal model shown in (2.27). The term As in (2.27) comprises the re�ectivity
of the scatterer, Dt(u) and Dr,M(u) are the transmit and receive characteristics of the
mth RX channel, xm is the position of the antenna center position in azimuth direction
with respect to the array origin and u(t) = cosψDOA,ar is the directional cosine where
ψDOA,ar is the DOA angle measured with respect to the antenna array axis (cf. Figure
2.6). The term ψDOA,az is the DOA angle measured with respect to the aircraft's azimuth
direction and ideally, for a non-tilted array, ψDOA,az = ψDOA,ar. However, in practice, due
to atmospheric turbulence the array may be tilted so that ψDOA,ar ̸= ψDOA,az. In this
case additional calibration is needed (cf. Section 6.6) [61]. The vector d is known as the
beamforming vector or DOA angle vector.

The multichannel signal model discussed in this section is primarily used in the space-
time adaptive processing (STAP) techniques [62]. STAP is an e�cient multichannel pro-
cessing technique that is used for suppressing the clutter and enhancing the target detec-
tability. It can additionally be used for estimating the target's LOS velocity (cf. Chapter
6).

2.5.3 SAR and Moving Targets

In focused SAR images moving targets often appear blurred and displaced from their
actual geographical positions. This is because SAR is originally designed for imaging
stationary targets and it is not adapted for the imaging of moving targets.

When the moving target has either an along-track velocity or across-track acceleration,
there is a Doppler slope change of the moving target with respect to the stationary target
(cf. Figure 2.4 bottom where ka ̸= ka,st ). After azimuth compression, the o�set ka − ka,st
causes a quadratic phase error in time domain that results in defocusing of moving targets
in azimuth direction, causing decreased peak amplitude and peak SCNR (signal-to-clutter-
plus-noise ratio) and thus, lower detection probability [33].

For targets that are moving with across-track velocity there is a Doppler frequency shift
fDC and a slight variation in the Doppler slope ka. The major e�ect seen in SAR images is
the target dislocation in azimuth direction [33]. For illustrating the azimuth displacement
problem of moving targets in fully focused SAR images, an example is shown in Figure
2.7.
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Figure 2.7: TerraSAR-X image of the region near Wolgograd, Russia. In the zoomed part of the
image, a train displaced in azimuth direction from its original rail track is clearly
visible [34].

In the �gure a moving train is displaced from its original rail track on the ground along
azimuth direction of the moving radar platform. For a non-tilted acquisition geometry,
the azimuth displacement ∆x can be approximated as [34]

∆x ≈ −y0
vp
vy0. (2.28)

According to this equation the azimuth displacement of a moving target is proportional
to its across-track velocity. For instance, if vy0 = 50 km/h, vp = 91 m/s, and y0 = 3000
m, the azimuth displacement of the target is in the order of 500 m.

Furthermore, targets accelerating in along-track direction change the quadratic Dopp-
ler coe�cient q which bends the Doppler history of the target. After azimuth compression,
the focused target has reduced peak amplitude and also the impulse response function
has asymmetric sidelobes [34].

The aforementioned moving target e�ects on SAR imagery are generally more severe
in airborne SAR than in spaceborne SAR due to the lower platform speeds and longer
integration times [33]. One desirable data for monitoring moving targets using airborne
platforms is the RC radar data. Such data are very attractive from the viewpoint that
they are generally acquired with su�cient SNR. Therefore, short integration times can
be used so that the moving target signal appears focused without performing additional
time-consuming RCMC and SAR imaging techniques (cf. Figure 2.2).
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Figure 2.8: Illustration of the range-Doppler processing for detecting moving targets in RC radar
data. Top: Real RC X-band HH polarized F-SAR radar data acquired using only one
receiving channel. The range history of a single real ship target can be seen in the
�gure. The RC data are partitioned into smaller CPIs along azimuth. Bottom left:
Detailed view of one extracted CPI in time domain. Bottom right: Range-Doppler
image of the extracted CPI after applying an azimuth FFT. The ship signal shifted
to the exo-clutter region can clearly be seen.

2.6 Moving Targets in Range-Doppler Domain

Moving target signals are processed in the range-Doppler domain of the RC radar data.
For generating the range-Doppler images, RC data are initially partitioned along the
aircraft's azimuth direction into smaller data patches, known as CPI. Individual CPIs are
transformed into the range-Doppler domain via azimuth FFT (fast Fourier transform).
An example is shown in Figure 2.8.

As shown in Figure 2.8 bottom right, the ship signal appears focused in range-Doppler
image. This is because the signal phase is linear since only a few number of azimuth
samples within a CPI and hence, a very short integration time is used. Criterion to select
optimum number of azimuth samples within a CPI are presented in Section 2.7.

The moving target signal S(fa) in the range-Doppler domain as a function of Doppler
frequency can be approximated as [34]

S(fa) ≈ exp

[
jπ

1

ka
f2a

]
, (2.29)
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and its range history as a function of Doppler frequency after using (2.13) and (2.15) is
approximated as [34,63]

r(fa) ≈ r10 +

(
−λfDC

2ka

)
(fa − fDC) +

1

2

(
−λ
2ka

)
(fa − fDC)

2. (2.30)

Substituting f̃a = fa − fDC, (2.30) is further written as

r(fa) ≈ r10 + vdopf̃a +
1

2
adopf̃a

2
, (2.31)

where vdop and adop can be considered as the velocity and the acceleration of the moving
target in the Doppler domain, respectively. Equation (2.31) is depicted in Figure 2.9
bottom where the quadratic behavior of the range histories of three simulated moving
point targets can be seen as a function of the Doppler frequency.

Reasons for using the range-Doppler domain for target detection and also for target
tracking are:

1. Moving ships in exo-clutter region: Ships moving with certain LOS velocities
are shifted to di�erent Doppler frequencies (cf. (1.2)). When the Doppler shift is
larger than half the clutter bandwidth, i.e., |fDC| > Bc/2 where Bc is the clutter
bandwidth, the target is shifted to the exo-clutter region (cf. Figure 2.8, bottom
right). In this region, generally a target detection is possible due to increased SCNR
values.

2. Compression gain: Due to the coherent integration of a certain number of samples
along azimuth, a compression gain in the order of 10 log10NCPI, where NCPI is the
number of consecutive azimuth samples within a CPI, can be achieved, causing an
increased target signal power in the Doppler domain. That means targets even of
low RCS, not detectable in the time domain, can principally be detected in the
Doppler domain.

3. Moving targets are separated in Doppler: Overlapping moving target signals
in the time domain are separated in the Doppler domain if they are moving with
di�erent LOS velocities. This is because the targets moving with di�erent LOS
velocities are shifted to di�erent Doppler frequencies (cf. (1.2)).

An example is shown in Figure 2.9 where three simulated moving targets with
di�erent absolute velocities on ground and heading directions are shown. From Fi-
gure 2.9 top it can be seen that Target_0 and Target_2 are crossing each other
at azimuth time tolp,0. At this azimuth time, these two targets are separated in the
Doppler domain (cf. Figure 2.9 bottom). Similarly, Target_0 and Target_1 that are
crossing each other at azimuth time tolp,1 are also separated in the Doppler domain
due to their di�erent Doppler frequency shifts. Therefore, it can be said that when
there are multiple targets in dense maritime scenarios, tracking in range-Doppler
domain is very advantageous.
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Figure 2.9: Three simulated moving targets shown in both range/azimuth time (top) and range-
Doppler domain (bottom). In the legend their absolute velocities v0 on ground and
their moving directions αt are listed. Used simulation parameters: vp = 91 m/s, zp
= 5000 m and λ = 0.0306 m.

The aforementioned bene�ts of range-Doppler domain clearly make it a suitable choice
for detecting and tracking multiple moving targets even in single-channel RC radar data.

2.7 Optimum CPI selection

Appropriate CPI length is one of the key parameters in range-Doppler-based moving tar-
get signal processing. This is because when the CPI is too long, the target signal migrates
from one resolution cell to another resolution cell, causing range/Doppler cell migration
e�ects and target defocusing. On the other hand, when the CPI is too small, the cross-
range (or azimuth) resolution is decreased (cf. (2.6)), thereby reducing the quality of
range-Doppler images. In this section two criterion for optimal CPI selection are discus-
sed. The �rst criteria is based on the slant range sample spacing and it gives maximum
number of utilizable azimuth samples that can be used without the need for RCMC. The
second criteria is discussed in terms of Doppler spacing and it ensures linear phase and,
hence, a focused target signal in Doppler domain without the need of additional phase
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2.7 Optimum CPI selection

compensation. For simplicity, a stationary point target is assumed for explaining the cri-
terion. Figure 2.10 shows the slant range and Doppler frequency history of the stationary
point target.

azimuth time, t

Doppler frequency, ��

���

��,��

broadside
(zero Doppler)

slant range, �

azimuth time, t

≈
��

∆�

max. utilizable
temporal azimuth 
samples

∆���

Figure 2.10: Slant range (top) and Doppler frequency (bottom) history of a stationary point
target [64].

In the �gure the maximum number of utilizable azimuth samples of the target signal is
shown. The target azimuth samples are within one slant range spacing of the radar data.
The slant range spacing ∆r is given by

∆r =
c0
2fr

, (2.32)

where fr is the range sampling frequency. The number of utilizable azimuth samples
NCPI,SR that can be considered within a CPI without doing RCMC can be expressed
as [58]

NCPI,SR = 2PRF |∆trc|, (2.33)

where ∆trc is the time interval where the range cell migration of the target do not cross
one slant range sample spacing, as shown in Figure 2.10 top. For a stationary point target
∆trc can be approximated as
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∆trc ≈
√
r0 c0
v2p fr

. (2.34)

Considering typical F-SAR/DBFSAR system parameters with PRF = 3000 Hz, vp = 91
m/s, r0 = 3000 m and fr = 500 MHz, NCPI,SR is calculated as 2797. That means NCPI,SR

for this particular system parameter must be less than 2797. Note here that for moving
targets, depending on their velocities and moving directions, NCPI,SR can vary [58].

After calculating the NCPI,SR limit based on �rst criteria, the number of samples per
CPI should also the satisfy the second criteria:

∆fa ≥ δfa, (2.35)

where ∆fa is the Doppler bin size and δfa is the Doppler bandwidth or the Doppler
frequency spread of the target signal (cf. Figure 2.10 bottom). The Doppler bin size is
given as

∆fa =
1

TCPI,DS
=

PRF
NCPI,DS

, (2.36)

whereNCPI,DS is the number of azimuth samples for a certain Doppler bin size and TCPI,DS

is its corresponding integration time. The Doppler bandwidth can be expressed as

δfa ≈ |ka,st|TCPI,DS ≈
∣∣∣∣−2v2p
λr0

∣∣∣∣TCPI,DS. (2.37)

Using (2.35) and after rearranging (2.36) and (2.37), NCPI,DS can be expressed as

NCPI,DS ≤

√∣∣∣∣ λr0−2v2p

∣∣∣∣PRF2. (2.38)

Finally, the NCPI that shall be used for range-Doppler processing of moving targets is
decided based on the following expression

NCPI ≤ min(NCPI,DS, NCPI,SR). (2.39)

Considering again typical F-SAR/DBFSAR acquisition parameters, NCPI,DS is calculated
as 224. In this doctoral thesis NCPI = 128 is used for all investigations. The selected NCPI

not only satis�es the right-hand-side expression of (2.39) but it is also a power of 2 which
is needed for an e�cient FFT processing.
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3 Ship Detection using Single-Channel
Range-Compressed Data

This chapter proposes a novel ship detection algorithm using RC airborne radar data.
The proposed algorithm is designed keeping in mind future real-time requirements and
arbitrarily �own nonlinear �ight tracks. A constant false alarm rate (CFAR)-based target
detection threshold is computed in the range-Doppler domain using suitable stochastic
sea clutter models. In order to determine a robust detection threshold, the ocean statistics
have to be described accurately. Bright target peaks in the background ocean data bias
the statistics and lead to an erroneous threshold. Therefore, an automatic ocean training
data extraction procedure is presented in this chapter. It includes (1) a novel target pre-
detection module that removes the bright peaks from the data in the time domain, (2)
clutter normalization in the Doppler domain using the remaining ocean training samples,
(3) ocean statistics estimation and �nally, (4) detection threshold computation. Various
sea clutter models are investigated and analyzed in this chapter for �nding the most
suitable models for the RC data. The robustness and the applicability of the proposed
method is validated using real radar data from DLR's airborne F-SAR system acquired
using linear and circular �ight tracks.

The methodology and the results provided in this chapter I have published in the
journal paper [65] and the conference papers [66�69].

3.1 Structure of the Algorithm

Target detection is carried out in the range-Doppler domain of the RC radar data. It was
already shown in (1.2) and discussed in Section 2.6 that in the Doppler domain ships
moving with su�ciently high LOS velocities appear out of the clutter region (cf. Figure
2.8 bottom right), thus improving their detectability.

The minimum detectable LOS velocity vr,min of the ship using a single-channel radar
can be expressed as [52]

|vr,min| ≈
λ

4
·Bc ≈ 0.886 ·

λvp
2La

. (3.1)

For a typical airborne radar with λ = 0.0306 m, vp = 91m/s and La = 0.3 m, vr,min is
calculated as 4.1 m/s. Note that the computed lower bound of vr,min can be increased in
case of high sea states since extreme ocean currents will increase the clutter bandwidth.

The major processing steps of the proposed algorithm for ship detection in the range-
Doppler domain using the RC data can be summarized as:
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3 Ship Detection using Single-Channel Range-Compressed Data

1. Extraction of a small data block from the RC radar data in the time domain.

2. Transformation of the data block to the range-Doppler domain via azimuth FFT.

3. Normalization over Doppler for achieving a ��at� spectrum (cf. Section 3.3.2).

4. Estimation of the ocean clutter statistics using various distribution functions (cf.
Section 3.4).

5. Computation of a CFAR detection threshold based on the estimated ocean clutter
statistics (cf. Section 3.4).

3.2 Algorithm Block Diagram

Figure 3.1 shows the detailed block diagram of the proposed methodology for ship detecti-
on in the range-Doppler domain using single-channel RC radar data as input. Apart from
the single-channel, the sum-channel or the clutter-suppressed channel data obtained, e.g.,
after applying the STAP technique on RC multi-channel data, can principally be used.
However, the focus of this chapter in on target detection using single-channel radar data
only.

In Figure 3.1, the RC radar data (top) are initially divided into �green� regions, where
each green region is further partitioned along range into �red� sub-regions. Each red sub-
region consists of a group of �blue� data blocks where each data block is a CPI that
consists of a certain number of consecutive azimuth samples.

First, an average amplitude pro�le over azimuth is estimated for a red sub-region
(labeled with (1) in Figure 3.1). A trend along range is derived after performing median
�ltering (2). Then, for each blue data block, this median �ltered range trend is used for
performing range de-trending (3). This is important for normalizing the range varying
amplitude of the data to a constant value (4). After range de-trending, each data block or
each CPI is transformed into the range-Doppler domain by performing an azimuth FFT
(5).

From the �target pre-detection� module (6), the azimuth lines corresponding to �po-
tential targets� at certain range positions are detected and excluded in the range-Doppler
domain for each data block of the red sub-region (7). More details on the signi�cance of
target pre-detection and the proposed method are presented in Section 3.3.1. Afterwards,
an average Doppler spectrum without target signals is estimated using all data blocks
(8).

Normalization over Doppler (9) is performed individually for each �red� group of da-
ta blocks using the estimated average Doppler spectrum (10). As a result, a normalized
Doppler spectrum is obtained (11). More details on the average Doppler spectrum esti-
mation and normalization are given in Section 3.3.2. The normalized target-free data are
used as training data to estimate the local ocean clutter statistics (12). By using the esti-
mated statistics from the sea clutter model and by setting a desired probability of false
alarm (PFA) (acceptable probability limit to incorrectly label a background pixel or an
ocean sample as target), a CFAR detection threshold is computed (13).
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3.3 Training Data Selection

Figure 3.1: Block diagram of the proposed target detection algorithm which uses RC airborne
radar data as input. The individual blocks and processing steps are numbered from
1 to 17 and are discussed in detail in this section.

The average Doppler power spectrum (10) which was estimated before, is further used
to normalize the �original� �blue� range-Doppler data blocks (14). The CFAR threshold
is then applied individually to each of these data blocks to detect the ship pixels (15).
This procedure is repeated until all �red� groups of data blocks along range (i.e., within
the �green� region at the top of Figure 3.1) are covered.

Finally, clustering (16) is performed using all the available detections along the com-
plete range of the scene within a CPI (cf. black box in Figure 3.1 bottom right). The
computed cluster centroids in each �black� data block are then used for �Tracking�(17).
Details related to the clustering and the tracking algorithms are presented in Chapter 4
and Chapter 5, respectively.

3.3 Training Data Selection

An appropriate selection of ocean training data and sea clutter statistics estimation lead
to an accurate computation of the detection threshold. In reality, training samples within
a given ROI may be contaminated by target peaks and high clutter peaks. A typical
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3 Ship Detection using Single-Channel Range-Compressed Data

Figure 3.2: Patch of HH polarization X-band RC F-SAR radar data containing a ship target (at
a range of approx. 7570 m). For visualization purposes, the data were normalized to
the maximum power.

Figure 3.3: Logarithmic plot of the PDFs of the ocean only (red) and ocean with a ship signal
(blue) are shown. For visualization purposes, the intensity axis is truncated as the
maximum intensity due to ship is around 600.

example of the presence of a bright ship signal in the RC radar data in time domain is
shown in Figure 3.2.

To understand the e�ects of ocean clutter contamination due to bright targets, a
logarithmic plot of the probability density functions (PDFs) of �ocean only� and �ocean
with the bright ship signal� is shown in Figure 3.3. In the �gure it is shown how the
presence of the target and other high peaks in the background clutter skews the histogram
to extremely high intensity values (blue). Such high intensities can severely degrade the
performance of clutter models. The CFAR detection threshold may be raised to a very high
value which lowers the probability of detection. In the literature, such e�ects are termed
as �capture e�ects�. Other complications in the modeling of sea clutter arise due to the
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presence of high clutter peaks that causes sudden transition and shift in the background
intensity values. These e�ects are known as �clutter edge e�ects� [70].

An example of ship detection results using the K-distribution-based sea clutter model
(cf. Section 3.4.2) without excluding bright targets and high clutter peaks from the data
is shown in Figure 3.4(b). It can be seen in the �gure that the ship is not properly
detected (see also Figure 3.17 for comparison). This is because the bright targets and
spiky ocean clutter were included in the ocean statistics estimation which increased the
CFAR detection threshold. From the �gure it is now clear that in order to maximize the
target detectability, the bright peaks in the radar data must be removed in advance.

Figure 3.4: (a) Real RC X-band HH polarized F-SAR radar data acquired during a linear �ight
track (cf. Section B.1.1 in page 148). The ship signal is indicated in the �gure. (b)
K-distribution-based binary ship detection map without applying any kind of target
pre-detection. Poorly detected ship signal and high clutter peaks (in near ranges) can
be seen in the �gure.

Several versions of CFAR detectors were developed in the past to improve the target
detection performance by eliminating these outliers. Order-statistic CFAR (OS-CFAR),
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trimmed CFAR, censored mean level detector and iterative censoring are some of the
state-of-the-art methods used for removing the interfering targets. Despite showing rela-
tively good performance in homogeneous scenarios, these techniques either have limited
performance in heterogeneous environments or require wise choice of the parameters or
are computationally ine�ective [71�74]. More recently, a new algorithm based on trunca-
ted statistics CFAR (TS-CFAR) was developed in [75] where the threshold is estimated
from the truncated distribution functions. TS-CFAR has been shown as a very e�ective
way to eliminate the outliers and estimate a robust threshold. Although being a powerful
method, the truncation depth has �rst to be �xed to a certain value and the truncated sta-
tistical distribution functions have to be derived afterwards. Fixing the truncation depth
is di�cult and deriving the truncated version of the sophisticated sea clutter models is
both complex and time-consuming.

All these aforementioned developments and their associated limitations led to propose
a simple, robust and e�ective method to pre-detect the potential targets with real-time ca-
pability. In the following, the target pre-detection method in the time domain is explained
in detail.

3.3.1 Target Pre-Detection

The proposed target pre-detection method is based on deriving an adaptive threshold
in the time domain which varies along range. Such a threshold is needed because the
backscatter received by the radar system is range-dependent. The proposed target pre-
detection algorithm contains the following major steps:

1. RC radar data extraction in the time domain (cf. green region in Figure 3.1).

2. Incoherent summation over azimuth.

3. Range-dependent adaptive threshold computation.

4. Target peak detection and cancellation.

For an incoherent summation over azimuth consider a set of complex amplitude pixels
z spanning over N azimuth samples and R range bins of the scene (cf. green region from
Figure 3.1). The average amplitude pro�le A(r) for r = 1, 2, 3, ...R of the extracted RC
data is given as

A(r) =
1

N

N∑
n=1

|z(r, n)|. (3.2)

Figure 3.5 shows A(r) which is plotted for di�erent polarization channels of an F-SAR
data patch which is free of any ship targets.

It can be seen in Figure 3.5 that the amplitude variation is a function of range (or
incidence angle). High radar backscatter was received at low incidence angles, the am-
plitude decreases as the incidence angle increases. The intensity of the backscatter was
found highest in HH channel and lowest in HV channel. It is now clear that for detecting
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Figure 3.5: Amplitude over range pro�le of the sea backscatter in HH, VV and HV polarization
channels of RC F-SAR X-band radar data.

potential targets at any range, the pre-detection threshold has to be adaptive along ran-
ge. Therefore, the pre-detection threshold ηpre(r) is de�ned as a function of range, i.e.,
ηpre(r) = f(r) where r is the range.

Referring again to (3.2), the samples are incoherently added along azimuth and an
average amplitude for each range is computed. Applying a moving average �lter to A(r)
will not be an e�ective step to cancel the target peaks. These peaks might be extremely
high which could signi�cantly alter the center mean computed from the samples within
the moving window. Instead, a one-dimensional moving median �lter of a certain window
size is applied because the median is more robust and less sensitive to such outliers. The
median Amed(r) of A(r) is written as

Amed(r) = median(A(r)). (3.3)

Instead of using the standard deviation around the mean to compute a pre-detection
threshold, the median absolute deviation (MAD) is used. Compared to the standard
deviation computed from the mean, the MAD is a more robust estimator to measure
the statistical dispersion and it is resilient to the outliers present in the data [76]. The
MAD(r) is given as

MAD(r) = median(|A(r)− Amed(r)|). (3.4)

The MAD(r) is then used to estimate the standard deviation σ(r) de�ned as

σ(r) = k0.75 ·MAD(r), (3.5)
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where k0.75 is a scale factor with k0.75 ≈ 1.4826 representing the 0.75 quantile of the
standard Gaussian distribution.

The standard deviation σ(r) is further smoothened by applying a Savitzky-Golay (SG)
�lter [77] with the window size being the same as the one used in median �ltering. This
�lter performs a moving polynomial �t to the data in order to further reduce the noise
without greatly a�ecting the signal. The SG �lter becomes a simple moving average �lter
when the polynomial order is zero. Unlike the moving average �lter, which along with the
noise also removes the high frequency component of the signal, the SG �lter of a certain
polynomial order is able to preserve these components in the data. There are no general
guidelines to choose an appropriate parameter for the SG �lter. However, a polynomial
order of two is a good compromise which leads to reasonable results for the F-SAR data.

The �nal mathematical expression for the adaptive pre-detection threshold ηpre(r) can
be written as

ηpre(r) = Amed(r) + f · SG(σ(r)), (3.6)

where f > 1 is a factor used to determine the decision criterion to set the pre-detection
threshold. Figure 3.6 shows the in�uence of di�erent factors f on the outlier detection.

near mid far

ship signal

Figure 3.6: Average amplitude pro�le with range-dependent pre-detection thresholds. A high
target peak (= ship) is present at a range of approximately 7500 m. The e�ectiveness
of the MAD-based pre-detection is evaluated in three di�erent zones; near (red), mid
(green) and far range (blue). Details are shown in Figure 3.7.

From Figures 3.6 and 3.7 it is noticed that the pre-detection threshold is not only
able to detect target peaks but also other high clutter peaks. However, a threshold based
on a setting of f = 1 or 2 would cancel most of the peaks which might have originated
from the ocean. The goal of target pre-detection is to cancel only the bright targets and
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c

a b

Figure 3.7: Details of the pre-detection thresholds computed for di�erent factors f in (a) near
(b) mid and (c) far ranges.

high clutter peaks. Therefore, the best value for f has to be found empirically. For the
F-SAR X-band HH data it was found that a value of f = 3.5 or 4 e�ectively detects the
outliers.

To demonstrate the e�ectiveness of the proposed pre-detection algorithm, it is applied
to a real X-band HH polarized RC data in the time domain (cf. Figure 3.4(a)). For this
particular case, the suitable window size of the median �lter was set to 625. For an F-SAR
range sample spacing of 0.3 m, this value corresponds to an approximately 188 m slant
range distance. It is recommended that the window size of the median �lter should be in
the order of the maximum expected slant range length of the ships to be pre-detected.
This ensures proper peak detection capability. The binary pre-detection map of the bright
targets and outliers after applying the proposed pre-detection algorithm is shown in Figure
3.8.

To further illustrate the robustness of the proposed pre-detection algorithm, the ratio
of the actual (or measured) false alarm rate PFAest and the desired false alarm rate PFAset

before and after target pre-detection and cancellation was computed. The measured false
alarm rate is computed as

PFAest =
ndet
ntot

, (3.7)

where ndet is the total number of obtained detections assuming that the evaluated data
patch contains no ship targets, and ntot is the total number of samples contained in the
same data patch. A K-distribution-based sea clutter model was used for determining ndet
at a desired false alarm rate of PFAset = 10−6. In the optimum case, when the data
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Figure 3.8: Binary detection map after applying the proposed pre-detection algorithm to the RC
radar data shown in Figure 3.4(a). The pre-detected ship signal (left) as well as spiky
clutter peaks can clearly be seen.

Figure 3.9: Ratio of the measured and set false alarm rates over range for X-band HH (top), VV
(middle) and HV (bottom) polarizations before (blue) and after (red) pre-detection
and target cancellation. Note that a ship target is present at around 42◦ incidence
angle.

contain no ships and no spiky clutter, the ratio PFAest/PFAset should be one. Practically
this cannot be achieved, since there is always a slight di�erence between the chosen ocean
clutter model and the actual ocean clutter statistics.

From the data shown in Figure 3.4(a) its HH, VV and HV polarization channels were
chosen for the evaluation. The measured ratios PFAest/PFAset for all channels are shown
in Figure 3.9. The higher the ratio the worse is the detection performance.

As observed in Figure 3.9, irrespective of the polarization channels, the presence of
a target severely degrades the estimated false alarm rate. After applying the proposed
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a b

c d

Figure 3.10: Doppler centroid maps estimated from F-SAR L-band HH polarized RC data acqui-
red using (a) linear and (b) circular �ight tracks. The ship range histories in both
(a) and (b) can be clearly seen. (c, d) Doppler centroid maps re-estimated after
canceling the potential targets using the proposed pre-detection algorithm.

pre-detection algorithm which also cancels the target, the actual false alarm rate around
the target region gets drastically improved. However, the ratio is still higher in the near
and mid ranges of the HH and VV channels. This is due to the fact that the K-distribution
generally is not well suited for the RC F-SAR data. A further explanation and discussion
on the proper selection of the optimum sea clutter model is given later in Section 3.4.

In addition to this, the Doppler centroid maps of the data are also generated to further
examine the potential of the pre-detection algorithm. The Doppler centroid is estimated
from the data using the energy balance algorithm proposed in [78]. A moving window of
512 range samples and 128 azimuth samples was used for estimating the Doppler centroid
and was applied on RC F-SAR L-band data acquired using linear and circular �ight
tracks. Details about the acquired radar data are given in Section B.1.1 (cf. page 148).
The results are shown in Figure 3.10.

It can clearly be seen in the second row of Figure 3.10 that the bright target signals
contained in the �rst row, were canceled after applying the proposed pre-detection module.
Note that the Doppler centroid variations in Figure 3.10(c) are due to the presence of
sandbanks in the Wadden Sea area which lies in the southeastern part of the North Sea
close to the town Cuxhaven. The ocean surface is very heterogeneous in this area. This
is con�rmed by comparing its corresponding RC data and the fully focused Pauli image
with an optical Google Earth image (cf. Figure 3.11)
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a

b

c

b

Figure 3.11: (a) RC airborne radar data, (b) Google Earth image and (c) Pauli image correspon-
ding to Figure 3.10(a). Sandbanks are clearly visible in the Google Earth image.
The bright spots in the Pauli image are strong scatterers, e.g., buoys or ships.

3.3.2 Clutter Normalization

With the proposed target pre-detection algorithm running in the time domain, potential
targets are well detected and removed leaving behind the �ocean only� training data. These
clean data can directly be used to determine a single CFAR threshold using standard sea
clutter models. However, the steps of CFAR threshold computation cannot be applied one
to one in the Doppler domain, as conventionally applied in the time domain, because the
training sample amplitude varies along the Doppler frequency as shown by the red curve
in Figure 3.12(a).

If no whitening of the Doppler spectra is performed and if it is directly used as the
training data, then the CFAR threshold has to be estimated for each Doppler bin inde-
pendently. Computing such a threshold for each Doppler bin comes with higher computa-
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Figure 3.12: Illustration of the average Doppler spectrum of a range-Doppler image containing
clutter and ship targets (a) before and (b) after normalization over Doppler. The
red curve in (a) is the average Doppler pro�le estimated without considering the
targets. The green line in (b) is the CFAR-based detection threshold computed
based on clutter-plus-noise level.

tional cost. The idea is to derive a single Doppler frequency independent threshold which
is achieved by normalizing the clutter and noise power to 0 dB (cf. Figure 3.12(b)).

For the normalization, consider a data block in the Doppler domain consisting of nr
range samples and a certain number of Doppler bins. The clutter normalization is based
on the estimation of the average spectra ÂDS(fa) (cf. red curve in Figure 3.12(a)) which
can be expressed as [79,80]

ÂDS(fa) =
1

nr

nr∑
k=1

|Z(rk, fa)|2, (3.8)

where Z(r, fa) is the frequency domain representation of the time domain signal z(r, n)
(cf. (3.2)). For simplicity, |Z(r, fa)|2 = P (r, fa), which is known as power spectral density
or Doppler spectrum of the data Z(r, fa). The clutter normalized power spectral density
PCN(r, fa) can be written as

PCN(r, fa) =
P (r, fa)

ÂDS(fa)
. (3.9)

Upon estimating ÂDS(fa) with (3.8) for each Doppler bin and by using (3.9) the clutter
and noise are scaled to 0 dB. An example of clutter normalization is shown in Figure
3.13(b).
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a b

c

Figure 3.13: Range-Doppler image of a target-free image patch (a) before and (b) after clutter
normalization. The normalized average power pro�les of (a) and (b) are shown in
(c).

Table 3.1: Measured target SCNR before and after clutter normalization.

Range-Doppler Image Target SCNR [dB]

1. Before normalization (Figure 3.14(a)) 24.02

2. After normalization but without

pre-detection (Figure 3.14(c))
14.2

3. After normalization with exclusion of

pre-detected targets in training data (Figure 3.14(e))
23.08

The data in Figure 3.13(b) are the training data used for estimating the ocean clutter
statistics. However, when the range-Doppler image additionally contains a ship signal,
which may be the case if no target pre-detection is carried out, the clutter normalization
causes target self-whitening as shown in Figure 3.14(b)(c).

To examine this negative and unwanted target self-whitening e�ects, the target SCNRs
are estimated for Figure 3.14(a)(c) and (e) and are listed in Table 3.1. From the table it
is clear that the proper estimation of average Doppler spectrum to perform normalization
over Doppler maintains the target SCNR. However, if the high peaks are not removed
beforehand using pre-detection, then after normalization the target SCNR is severely de-
graded (≈ 10 dB in this case). Therefore, it is essential to apply the proposed pre-detection
and target cancellation algorithm before estimating the average Doppler spectrum used
for clutter normalization.
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a

c
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b

d

Figure 3.14: Data containing a ship target: (a) range-Doppler image before clutter normalization,
(b) average Doppler spectrum estimated without using pre-detection for removing
the target from (a), (c) normalized image after using the average Doppler spectrum
from (b), (d) target-free estimation of average power spectrum after using pre-
detection algorithm, (e) normalized image after using (d).

3.3.3 Importance of Training Data Update

Training data update is an important step because of two main reasons. The �rst reason
is due to the change of the Doppler centroid over range and azimuth time. Atmospheric
disturbances cause variations in the aircraft`s Euler angles (roll, pitch and yaw) and these
variations change the Doppler centroid of the data. In the special case of a non-moving
ocean surface, i.e., in case of stationary clutter, the clutter Doppler centroid fcl[r, t] is
given as [81]

fcl[r, t] =
2 · vp
λ

[cos(θi[r] + θroll[t]) tan(θpitch[t])+

sin(θi[r] + θroll[t]) tan(θyaw[t])],
(3.10)
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Figure 3.15: Clutter Doppler centroid map computed by using the measured aircraft Euler angles
for a circular �ight carried out with F-SAR (details about the �ight are given in
Section B.1.1 in page 148).

where θroll, θpitch and θyaw are the roll, pitch and yaw angles of the radar antenna mounted
on the aircraft, respectively.

For a non-moving ocean surface, the computed clutter Doppler centroid using (3.10)
is shown in Figure 3.15 for a real circular �ight of F-SAR. For computation, the Euler
angles (roll, pitch and yaw angles) obtained from the aircraft inertial measurement unit
and corrected by taking into account the antenna lever arms are used. The Doppler
centroid map shown in Figure 3.15 matches quiet well with the one computed using the
data (cf. Figure 3.10(d)). The observable di�erence is among others given by the fact that
the ocean surface moves itself.

From Figure 3.10(d) and Figure 3.15 it is clear that due to the change of the clutter
Doppler centroid along range and azimuth time, a regular update of training data in
range-Doppler is essential.

The second reason is due to the varying motion of the ocean surface. With a moving
ocean surface, the clutter statistics tend to change signi�cantly over range and time. To
show this behavior, the texture (or shape) parameter of the K-distribution (cf. Section
3.4.2) is estimated. The variation of the texture along range and azimuth time is shown
in Figure 3.16 for X-band HH polarized data acquired during a linear and circular �ight.
Lower values of texture indicate spiky clutter and higher values indicate Rayleigh-like
characteristics of the clutter intensity.

From Figure 3.16 it can clearly be observed that the K-distribution-based texture para-
meter varies along range and azimuth time. Signi�cant changes are observed along range
whereas, along the azimuth the variation tends to follow a sinusoidal pattern which may
be aligned with the wind direction [82]. Therefore, to consider these changes accurately,
the training data need to be updated frequently in order to obtain bias-free local sea
clutter statistics [83].
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3.4 Clutter Statistics and Target Detection

Figure 3.16: Estimated texture parameter of the K-distribution along (a),(c) range and (b),(d)
azimuth using real F-SAR radar data acquired during a linear and circular �ight.

3.4 Clutter Statistics and Target Detection

After target pre-detection and clutter normalization, the next step is to derive an ap-
propriate target detection threshold in the range-Doppler domain using target-free ocean
training data. In the next sections CFAR-based target detection principle is brie�y ex-
plained followed by various distribution functions used for sea clutter modeling.

3.4.1 Detection Principle

CFAR-based detection algorithms are pixel-based. Therefore, for a given complex am-
plitude pixel Z in the Doppler domain with or without normalization, there exist two
hypothesis H0 and H1 [62]

H0 : Z = C +N Moving target is absent (3.11)

H1 : Z = C +N + S Moving target is present, (3.12)

where C, N and S are the clutter, noise and target signals, respectively.

The sea clutter models discussed in this section are formulated based on the normalized
backscattered intensity in the Doppler domain, therefore, for simplicity, PCN(r, fa) =

I is written (cf. (3.9)). Once a PDF p(I) is chosen to model the ocean backscattered
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3 Ship Detection using Single-Channel Range-Compressed Data

intensity and the sea clutter parameters are estimated using the selected model, the PFA
is calculated by using

PFA =

∫ ∞

η

p(I)dI. (3.13)

where η is the target detection threshold. After setting the PFA to a �xed value, the
target detection threshold is computed using the above equation. Pixel intensity values
above threshold η are declared as moving target pixels.

3.4.2 K-Distribution

Equations (3.11) and (3.12) are applicable only when the clutter amplitude is Rayleigh
distributed (= homogeneous clutter) [84,85]. However, in the case of relatively low grazing
angles (10◦ - 50◦) and high resolution systems, the clutter returns are often spiky and
they no longer follow Rayleigh distribution [82]. To address this problem, an additional
independent random variable called texture ∆ is introduced. This leads to the following
expression

Z = ∆ · C +N + S. (3.14)

The introduction of the texture component leads to the product or compound clutter mo-
dels. One of the most popular and widely used compound models is the K-distribution.
It is a comprehensive representation of a Gamma distributed texture over Rayleigh dis-
tributed homogeneous clutter. For L number of looks, it is represented as [86, 87]

p(I, ν, b, L) =
2Γ(ν)−1

Γ(L)
(Lb)

L+ν
2 I

L+ν−2
2 Kν−L(2

√
LbI), (3.15)

where ν, b, Γ(·) and K(·) are the shape, scale, gamma function and the modi�ed Bessel
function of the second kind of order ν − L, respectively. The scale parameter b is related
to the mean µ of the data as b = ν

µ .

The shape parameter ν, also known as texture, mainly controls the shape of the
K-distribution. The range of ν is [0.1,∞], where for ν = ∞, the PDF reduces to a
Rayleigh distribution. Lower values of ν represents spiky clutter (cf. near ranges in Figure
3.16(a)(c)).

The PFA of the K-distribution obtained after using (3.13) can be expressed as [85]

PFA(η) = 2

L−1∑
l=0

(νL)
ν+l
2

Γ(l + 1)Γ(ν)
η

ν+l
2 Kν−l(2

√
νLη). (3.16)

There are in total three unknowns of K-distribution: shape (ν), scale ( νµ) and number of
looks (L) to be determined to �t the distribution.
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3.4 Clutter Statistics and Target Detection

Method of Moments (MoM)

One way to estimate µ and ν of the K-distribution is to use the �rst and second moments
of the data. This method is referred to as MV (mean and variance), contrast-based or
V-statistic. The equations are [88]

µ̂ = ⟨I⟩, (3.17)

(
1 +

1

ν̂

)(
1 +

1

L

)
=

⟨I2⟩
⟨I⟩2

, (3.18)

where ⟨·⟩ is the expectation operator. The number of looks L is either known or can
be estimated using the ratio of the square of the mean and the standard deviation [89].
Knowing the number of looks L and the estimated mean µ̂, the shape parameter ν̂ can
be computed using (3.18).

It is found that the V-statistic works quiet well in most of the cases and is therefo-
re preferred for estimating the parameters of K-distribution. Another estimator proposed
in [90] is referred as X-statistic, which is computationally faster and gives a more straight-
forward solution than other estimators. The mathematical expression for the X-statistic
is

(
1

ν̂
+

1

L

)
=

⟨I · log I⟩
⟨I⟩

− ⟨log I⟩. (3.19)

Nonlinear Least Squares Method (NLLSQ)

The parameters of K-distribution can also be estimated by using the NLLSQ method. The
NLLSQ method uses the Levenberg-Marquardt algorithm [91] to �nd the local minima of
a function by expressing the function as a sum of the squares of the di�erence between
the proposed PDF and the data PDF. The minimization function is expressed as

argmin
α

( M∑
m=1

p(I, α)− hm

)2

, (3.20)

where p(I, α) is the distribution function having α unknown parameters and hm is the
mth histogram bin of the normalized distribution.
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3.4.3 Chi-Square Distribution

The chi-square (χ2) distribution is one of the models that is used when the K-distribution
�t fails because the estimated shape parameter ν̂ of K-distribution gives negative values,
especially in case of highly homogeneous training samples [92].

The χ2 distribution function with two degrees of freedom (DOF) is represented as
[93]

p(I, σ, L) =
IL−1

2Lσ2LΓ(L)
exp
(−I
2σ2

)
, I ≥ 0. (3.21)

The number of unknowns of this distribution is 2: the number of looks L and the standard
deviation σ.

The PFA as a function of the threshold η can be written as

PFA(η) =
1

Γ(L)
Γ
(
L,

η

2σ2

)
. (3.22)

For a single look, the threshold becomes η = −2σ2 ln(PFA). The parameters in this case
are estimated using the NLLSQ method (cf. Section 3.4.2).

3.4.4 Tri-Modal Discrete (3MD) Texture Model

A new model called tri-modal discrete texture model (3MD) was recently proposed for
detecting moving targets with a very low PFA [85,94,95]. The model was mainly invented
for detecting ships in fully focused spaceborne SAR data. It is based on the idea of the
statistical modeling of the sea texture in a discrete form. The PDF of the 3MD model for
L number of looks can be written as

p(I,⊙, L, ρc) =
LL

Γ(L)
IL−1

D∑
d=1

cd
exp
(
− LI

ρca2
d+ρn

)
(ρca2d + ρn)L

, (3.23)

where ⊙ = [cd, ad], D corresponds to the number of discrete scatterers in a single pixel.
The variables ρc and ρn are the normalized clutter and noise variances, respectively, whose
sum is unity. The parameters ad and cd are the dth discrete texture intensity level and
their corresponding relative weightings, respectively, where

∑D
d=1 cd = 1, cd > 0.

The PFA as a function of the threshold η is given by [85]

PFA(η) =
D∑
d=1

cd
Γ
(
L, Lη

ρca2
d+ρn

)
Γ(L)

. (3.24)
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The value of D after testing even highly heterogeneous sea state was found to be 3 [94].
Therefore, for the 3MD clutter model there are eight unknown parameters: ⊙ = [cd, ad]

(six unknowns, three for each), ρc and L. In the frame of this doctoral thesis, these
unknowns are estimated using the NLLSQ method (cf. Section 3.4.2).

It has to be noted that di�erent estimation methods may lead to di�erent results,
especially for very low false alarm rates. For future systems, Christoph Gierull recom-
mends to use the method of moments proposed in [95] as the preferred estimation method
[personal email conversation]. The recommended method shall be investigated in future
for the RC radar data in the range-Doppler domain.

3.4.5 K-Rayleigh Distribution

The presence of non-Bragg scattering components in the ocean surface, better known
as discrete sea spikes, is the main reason why the K-distribution �t fails even when the
thermal noise in the data is taken into account [96]. An example of ship detection using
the K-distribution applied on the RC F-SAR X-band HH polarized data is shown in
Figure 3.17. In the �gure the detection map is obtained using the methodology described
in Section 3.2 at a desired of PFA = 10−6. Only for the visualization purposes, the
detections are projected back to the time domain. As shown in the �gure due to the high
intensities of the sea spikes, they are often confused with the target, giving rise to a very
high number of false detections.

ship signal

Figure 3.17: Binary detection map based on the K-distribution obtained from the real RC air-
borne radar data shown in Figure 3.4(a). The detected ship signal (left) and high
sea clutter spikes in near ranges can clearly be observed.

In recent studies, KA (K-class A), KK and Pareto distribution models, along with their
adaptations to consider thermal noise were proposed and investigated to model these sea
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3 Ship Detection using Single-Channel Range-Compressed Data

spikes. However, these models have many unknowns and require a prior knowledge of the
thermal noise [96].

The K-Rayleigh distribution function is one of the recently proposed distribution
functions that models sea spikes as an extra Rayleigh component which is typically not
captured by the K or even the K+Noise (K+N) distributions. The PDF of the K-Rayleigh
distribution has no closed form solution and is given as [96]

p(I|νr, br, ρr + ρn) =
bνrr

Γ(νr)

∫ ∞

0

xνr−1
s

xs + ρr + ρn
exp

(
− I

xs + ρr + ρn
− brxs

)
dxs, (3.25)

where νr, br are the shape and scale parameters of the K-Rayleigh distribution, respec-
tively. The sum xs+ρr is the total speckle mean; where xs and ρr are the modi�ed speckle
mean and the extra Rayleigh component which is modeled like the thermal noise ρn. If
ρr = 0, it takes the form of the K+N distribution. Furthermore, as shown in (3.25) there
are three unknowns in the K-Rayleigh distribution and they are computed by solving the
following set of equations [96]

ν̂r =
18
(
⟨I2⟩ − 2⟨I⟩2

)3(
12⟨I⟩3 − 9⟨I2⟩⟨I⟩+ ⟨I3⟩

)2 , (3.26)

ρ̂r+n = ⟨I⟩ −
√
ν̂r
2

(
⟨I2⟩ − 2⟨I⟩2

)
, (3.27)

b̂r =
ν̂r

⟨I⟩ − ρ̂r+n
. (3.28)

The term ρ̂r+n = ρr + ρn, where the Rayleigh o�set ρr and the thermal noise ρn are
estimated as a single parameter using (3.27). Even when the thermal noise is not known, all
the parameters needed to �t the data can be well estimated using the above equations.

The PFA and hence, the detection threshold in this case is computed numerically using
(3.13). A comparison between the detections obtained from the K- and the K-Rayleigh
distribution functions is shown in Figure 3.18. In the �gure it is clearly visible that the
threshold computed using the K-Rayleigh distribution function is much higher compa-
red to the K-distribution. As a consequence, the number of false alarms is signi�cantly
decreased but also could be the number of true detections.

3.5 Experimental Results and Discussion

In this section the performance of various clutter models discussed in Section 3.4 are eva-
luated using linearly and circularly acquired single-channel RC airborne radar data from
F-SAR radar system. The acquired radar data and the �ight experiments are described
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Figure 3.18: Binary detection map in the range-Doppler domain using K-distribution (left) and
K-Rayleigh distribution (right). The thresholds estimated in both the cases are
shown on the top right of both �gures. Real X-band HH pol F-SAR data were used
as an input. The detection maps were generated using 128 azimuth and 512 range
samples and the desired false alarm rate was set to PFA = 10−6.

in Section B.1.1 (cf. page 148) and the acquisition and system parameters are listed in
Table B.1 (cf. page 150).

3.5.1 Clutter Model Fitting

To test the clutter models �tting the acquired radar data are �rst partitioned into three
regions: (a) near range (10◦ - 30◦ incidence angle), (b) mid-range (30◦ - 50◦) and (c) far
range (> 50◦). Since the backscatter changes over the incidence angle (cf. Figure 3.5), it
is important to segment the data for a detailed investigation and understanding of the
chosen models.

The image patches, each from the near, mid and far ranges of the linear and circular
data, were independently chosen from each other to evaluate the models behavior. The RC
data patch used for the investigations has 1280 azimuth samples and 512 range samples (cf.
the red region shown at the top in Figure 3.1). Figures 3.19 and 3.20 show the �t between
the measured data PDF and the PDFs provided from di�erent sea clutter models.

From Figure 3.19(a)(b) and Figure 3.20(a)(b) it can be observed that in near and mid-
range the K-distribution, the chi-square distribution and the 3MD model �t only for the
intensity values of up to 2.5 and 4, respectively. In contrast, the K-Rayleigh distribution
is able to �t well in the near and mid-range for both linear and circular data. Due to the
presence of spiky clutter the data histogram is more skewed in the mid-range compared to
the near range. The K-Rayleigh distribution is able to model this skewness by estimating
an extremely low texture value of 0.04 (cf. Figure 3.19(b)) and 0.09 (cf. Figure 3.20(b)),
respectively. When the K-distribution is used instead of the preferred K-Rayleigh, then
the V-statistics rather than the X-statistics and the NLLSQ shall be used for parameter
estimation, since it leads to the best K-distribution performance in both near and mid
ranges.

In the far range however, only the K-distribution parameters estimated using the
NLLSQ method, the chi-square and the 3MD model �t well. Others do not �t because the
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Figure 3.19: Logarithmic PDFs of di�erent distribution functions plotted for (a) near (b) mid and
(c) far range using the data acquired during the linear �ight track. Google Earth
view of the �ight track is shown in Figure B.3(b) (cf. page 149). The estimated
parameters corresponding to di�erent distribution functions are shown in the legends
of the plots, apart from the 3MD model since it has 8 unknowns.
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Figure 3.20: Logarithmic PDFs of di�erent distribution functions plotted for (a) near (b) mid
and (c) far range using the data acquired during the circular �ight track. Google
Earth view of the �ight track is shown in Figure B.3(c) (cf. page 149). The estimated
parameters corresponding to di�erent distribution functions are shown in the legends
of the plots.
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estimated parameters have negative values. This is because the NLLSQ-based methods
�ts the data histogram in a least square sense, whereas the MoM doesn't have optimal
properties [97]. Another reason why they do not �t in far range is because, due to the
long range and shallow incidence angle, the clutter power in far range is comparable to
the noise power, as shown in Figure 3.21.

Figure 3.21: Average Doppler spectrum of real RC radar data estimated in near, mid and far
range. The ambiguities cause a variation in the average power in the noise region of
the spectrum.

From Figure 3.21 it is clear that due to high incidence angle, the backscatter power
received in far range is very low. It can also be said that in far range the intensities are
more Rayleigh distributed. This is evident from Figure 3.19(c) and Figure 3.20(c) where
the texture value from the K-distribution estimated using the NLLSQ method in both the
data is approximately 171. Such a high value implies Rayleigh distributed statistics [96].

Furthermore, the complementary cumulative distribution function (CCDF) computed
from the estimated data PDF and the CCDFs computed from di�erent clutter models
are also plotted. Plotting such functions is important due to their relationship with the
detection threshold. In the literature the CCDF is also known as PFA [96]. The logarithmic
CCDF plots of the radar data acquired using linear and circular �ights are shown in Figure
3.22 and Figure 3.23, respectively.

It can be observed from Figure 3.22(a)(b) and Figure 3.23(a)(b) (near and mid ranges)
that the CCDF from the K-Rayleigh distribution align very well with the estimated data
CCDF. In contrast in Figure 3.22(c) and Figure 3.23(c) (far range), the CCDF from
the K-Distribution using NLLSQ for parameter estimation, the chi-square and the 3MD
model �t very well with the data CCDF. The reason why other models don't �t in far
range can again be explained in terms of low clutter-to-noise ratio (CNR) and Rayleigh
distributed characteristics.
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3 Ship Detection using Single-Channel Range-Compressed Data

Figure 3.22: Logarithmic CCDFs of di�erent distribution functions plotted for (a) near (b) mid
and (c) far range. These plots are generated from the same data used for generating
the plots shown in Figure 3.19.
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Figure 3.23: Logarithmic CCDFs of di�erent distribution functions plotted for (a) near (b) mid
and (c) far range. These plots are generated from the same data used for generating
the plots shown in Figure 3.20.
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3.5.2 Performance Assessment

In this section methods for evaluating the accuracy of the investigated clutter models
are presented. Two error matrices are used for the assessment purposes: threshold error
at a �xed CCDF value and false alarm rate ratio (FARR) at a �xed PFAset = 10−6.
Based on these error matrices, suitable clutter models are selected which are later used
for generating �nal ship detection results in the RC radar data.

Threshold Error

In order to know which models give the best results the actual threshold errors are esti-
mated. The threshold error is computed by calculating the absolute di�erence between
the thresholds estimated from the data CCDF and the model CCDF at a certain CCDF
value in the tail region of the histogram as shown in Figure 3.24.

chosen 
CCDF value

threshold error

Figure 3.24: Threshold error computation using logarithmic CCDF plots from the data and the
K-Distribution NLLSQ method against the threshold. Threshold error and the cho-
sen CCDF value are marked in the �gure.

The threshold error η̃ is written as

η̃ = |ηdata − ηmodel|CCDF=10−4 (3.29)

where ηdata and ηmodel are the thresholds obtained from the data and the clutter model
at a speci�c CCDF value, respectively. The threshold error is computed in the tail region
because of two reasons: bright ship target signals lie mostly in that region and the tail
region is the region where most of the mismatch between reality and models occurs.
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The threshold errors (in log scale) computed using di�erent distribution functions for
near, mid and far ranges as well as for linear and circular data are shown in Table 3.2 and
Table 3.3, respectively.

Table 3.2: Estimated threshold errors for di�erent clutter models of the acquired F-SAR data
with linear �ight track.

Clutter Models

Near Range Mid-Range Far Range

CCDF (= PFA)

10−4 10−4 10−4 10−5

K-NLLSQ 3.97 8.01 -10.34 -2.16

K-Vstat 2.41 6.89 -

K-Xstat 3.23 7.61 -

Chi-square 6.98 8.87 -10.34 -4.98

3MD 5.62 8.27 -10.34 -5.17

K-Rayleigh -5.79 -0.26 -

Table 3.3: Estimated threshold errors for di�erent clutter models of the acquired F-SAR data
with circular �ight track.

Clutter Models

Near Range Mid-Range Far Range

CCDF(= PFA)

10−4 10−4 10−4

K-NLLSQ 6.89 6.02 -5.86

K-Vstat 5.19 4.6 -

K-Xstat 6.19 5.49 -

Chi-square 9.7 7.73 -11.65

3MD 8.94 6.94 -10.86

K-Rayleigh -6.68 2.27 -

From Table 3.2 and Table 3.3 it can be seen that the threshold error is minimum in case
of K-Rayleigh distribution and maximum in case of chi-square distribution in near and
mid-range. In circular data for far range the chi-square distribution gives the minimum
error.

In far range of linearly acquired data (cf. Table 3.2, right) the computed threshold
errors are the same for CCDF = 10−4 for the K-NLLSQ, chi-square and 3MD model.
Therefore, the threshold errors were additionally computed for CCDF = 10−5 and it is
found that the 3MD gives minimum error in far range of linear data.
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FARR

To further quantify the suitability of the clutter models FARRs are also evaluated for
di�erent ranges. The FARR is computed as the ratio of estimated false rate (cf. (3.7))
to the set false alarm rate where the latter is set as 10−6. It has to be noted that for
estimating the false alarm rate all the bright targets have �rst to be excluded from the
scene for avoiding biases. This can be done using the proposed pre-detection method
(cf. Section 3.3.1). The obtained results from all the clutter models using linearly and
circularly acquired data are shown in Table 3.4 and Table 3.5, respectively.

Table 3.4: FARR for the linearly acquired F-SAR radar data for a set false alarm rate of 10−6.

Clutter Models Near Range Mid-Range Far Range

K-NLLSQ 80.5 112.1 3.08

K-Vstat 35.1 57.1 -

K-Xstat 56.9 86.8 -

Chi-square 277.4 242.9 2.43

3MD 149.2 135.9 1.56

K-Rayleigh 1.31 1.68 -

Table 3.5: FARR for circularly acquired F-SAR radar data for a set false alarm rate of 10−6.

Clutter Models Near Range Mid-Range Far Range

K-NLLSQ 63.3 74.6 12.2

K-Vstat 30.6 38.9 -

K-Xstat 46.9 55.9 -

Chi-square 422.4 234.9 9.43

3MD 257.9 154.9 7.73

K-Rayleigh 2.03 2.08 -

From Tables 3.4 and 3.5 it can be concluded that the K-Rayleigh distribution gives
the least FARR in near and mid ranges, whereas the chi-square gives the highest error. In
far range the 3MD, chi-square and K-NLLSQ match well with the set false alarm rate.

Based on the analyses presented in this section, it can be concluded that for near and
mid ranges (15◦ − 50◦ incidence angle) the K-Rayleigh distribution function is the best
suitable choice, whereas for the far range (> 50◦ incidence angle), the 3MD model or the
chi-square is the preferred choice. This recommendation is valid for all the RC X-band
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ship signal

Figure 3.25: Binary detection map shown in the time domain after applying CFAR-based ship
detection in the range-Doppler domain. The corresponding RC data was already
shown in Figure 3.4(a). K-Rayleigh distribution function was used in the near and
mid ranges, and the 3MD model was used in the far range of the data. The desired
false alarm rate was set to PFAset = 10−6. The ship signal is clearly visible in the
binary detection map.

HH polarized airborne radar data used for the investigations and the current sea state
conditions during data acquisitions.

It has to be further noted that the detection rate of the proposed CFAR detector is
not evaluated. This is because the vessel size is larger than the spatial resolution of the
image which gives several pixel-based detections for a single vessel (cf. Figure 3.18). Thus,
even with the ground truth information the number of �true� detections belonging to a
vessel cannot be determined reliably. Therefore, it is di�cult when not even impossible
to accurately measure the probability of detection using data containing real ships. Even
if the detected pixels would be (manually) clustered to a single physical object, it is
important to set an appropriate detection criterion to consider it as a �true� detection.
Therefore, this kind of �object-based� detection and the derived �object-based� detection
rate so far cannot be compared with the established �pixel-based� probability of detection
used in any CFAR detection framework [98,99].

3.5.3 Detection Results

This section of the chapter provides the detection results obtained after the analyses
performed in Sections 3.5.1 and 3.5.2.

The K-Rayleigh distribution function is used in the near and mid ranges and the 3MD
model is used in the far range of the data. The detection threshold is estimated based on
a desired false alarm rate of 10−6. The binary ship detection maps of the linearly acquired
real X-band F-SAR radar data and circularly acquired real X- and L-band F-SAR radar
data are shown in Figures 3.25, 3.26(b) and Figure 3.27(b), respectively. The equations
that are �nally used to generate the detection results are (3.6), (3.9), (3.13), (3.24) and
(3.25).
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In Figure 3.26(a) the ship signal is not completely visible over the entire observation
time. There are some gaps. This is because the F-SAR X-band 3 dB azimuth antenna
beamwidth in the order of 8◦ is rather small. Since the antenna also cannot be steered
electronically or mechanically, during a circular �ight with a ship moving in the circle
center, the cross-wind may cause a signi�cant yaw angle so that the ship is not always
illuminated. In contrast to the X-band, the L-band 3 dB azimuth antenna beamwidth is in
the order of 18◦ so that the ship signal is always visible in the data as shown in Figure 3.27.
The 3 dB azimuth antenna beamwidths for both X- and L-band F-SAR radar systems
are given in Table B.1(cf. page 150).

a

b

ship signal

Figure 3.26: (a) Circularly acquired real single-channel HH polarized RC X-band F-SAR ra-
dar data. (b) Corresponding binary detection map shown in the time domain after
applying CFAR-based ship detection in the range-Doppler domain. K-Rayleigh dis-
tribution was used in the near and mid ranges, and the 3MD model was used in the
far range of the data. The desired false alarm rate was set to PFAset = 10−6. The
detections marked by the red circles are due to the interfering signals from a ground
surveillance radar located close to the test site (for visualization purposes not all of
the interfering signals are marked).
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a

b

ship signal

Figure 3.27: (a) Circularly acquired real single-channel HH polarized RC L-band F-SAR radar
data. (b) Binary detection map shown in the time domain after applying CFAR-
based ship detection in the range-Doppler domain. K-Rayleigh distribution was used
in the near and mid ranges, and the 3MD model was used in the far range of the
data. The desired false alarm rate was set to PFAset = 10−6. The detections marked
by the red circles are due to the interfering signals from a ground surveillance radar
located close to the test site (for visualization purposes not all of the interfering
signals are marked).

To summarize, the performance of the proposed CFAR ship detection algorithm main-
ly depends on two factors: the target pre-detection threshold (cf. Section 3.3.1) and the
accuracy of the clutter model. Inappropriate estimation of the target pre-detection thres-
hold in the time domain may prevent target cancellation and can directly impact the
average Doppler spectrum, and, hence, the normalization (cf. Figure 3.14(c)) and degrade
the performance of the clutter models. Therefore, the parameters for computing the tar-
get pre-detection threshold should be carefully selected for obtaining later a valid CFAR
threshold in the Doppler domain. Additionally, an appropriate selection of the clutter
model also plays a key role to improve the target detection by minimizing the detection
threshold amplitude error and the FARR (Section 3.5.2). It is recommended to use the
K-Rayleigh distribution in the near and mid ranges because of the numerous discrete sea
spikes present in the data at those ranges. For the far range where less sea spikes are
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observable in the experimental data, the clutter intensity is more Rayleigh distributed so
a chi-square or 3MD model is recommended.

One potential third factor which may negatively in�uence the performance of the
proposed algorithm is the sea state, although not investigated in this doctoral thesis
due to a lack of appropriate data. Especially in the case of high sea state, i.e., if the
pixels corresponding to the vessel have similar statistics and intensity as the surrounding
clutter, it may happen that the vessel is not detectable, especially not in the time or
imaging domain. However, high sea state does not prevent the vessel detection if it is
properly illuminated by the radar (i.e., if the illumination is not prevented by high sea
waves) and, if the LOS component is large enough so that the corresponding echo signal
is shifted to the exo-clutter region (cf. (1.2) and Figure 2.8 bottom right).

3.5.4 Processing Time Evaluation

This section evaluates the processing time of the proposed ship detection algorithm. The
detection algorithm for evaluation is written in the Python programming language and it
is processed on a 32-core 2.10 GHz Intel(R) Xeon(R) Gold 6130 CPU (central processing
unit) which is shared with several users and running tasks. The detection algorithm is
composed of several di�erent blocks as shown in Figure 3.1. Time needed to process
individual block is provided in this section.

For every individual block of the detector its mean processing time is calculated.
For this, each block is executed hundred times and after hundred consecutive runs, the
obtained processing times are averaged. After having the mean processing times of all
the blocks, the most time-consuming blocks of the detector are determined, so that the
overall detector can be optimized for the future onboard processing.

The radar data patch used for calculating the processing time is extracted from the
data shown in Figure 3.4(a). The data patch contains 1280 azimuth samples and 512
range samples (cf. the red region shown at the top in Figure 3.1). The results are shown
in Table 3.6. The table includes the processing time results of all the major blocks of the
detection processing chain except the blocks (12) and (13) which are the clutter statistics
estimation and threshold computation blocks, respectively (cf. Figure 3.1). This is because
for computing clutter statistics estimation and thresholds this doctoral thesis considers
not one but several sea clutter models and the processing time of each clutter model varies
depending on their complexities. Therefore, for these two blocks, their processing times
for di�erent sea clutter models are shown separately in Table 3.7.

From Table 3.6 and Table 3.7 it can be seen that amplitude average and the K-
Rayleigh-based statistics estimation and threshold computation are the most time consu-
ming blocks of the proposed ship detection algorithm, respectively. The former is time-
consuming because it involves computations like incoherent summation of azimuth samp-
les along azimuth followed by an averaging operation based on the methodology described
in Section 3.3.1.
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Table 3.6: Processing time calculated for each block of the proposed ship detection algorithm
shown in Figure 3.1. The value in bold is the most time-consuming process. The data
patch consisting of 1280 azimuth and 512 range samples was considered.

Major blocks of the CFAR-based

detection algorithm

Block number

as per Figure 3.1

Calculated processing

time [s]

Amplitude average 1 2.85e-02

Range detrending 3 3.85e-03

Azimuth FFT 5 7.51e-03

Target pre-detection 6 4.32e-05

Target azimuth lines exclusion 7 2.28e-04

Average Doppler spectrum estimation 8 4.87e-05

Normalization over Doppler without target 9 7.72e-04

Normalization over Doppler with target 14 9.64e-04

CFAR detection 15 5.72e-03

Table 3.7: Processing time calculated for the investigated sea clutter models. The results are
generated using the same data which are used in Table 3.6. The values in bold corre-
spond to the most time-consuming sea clutter model.

Clutter Models
Calculated processing time [s]

Clutter statistics

estimation (12)

CFAR threshold

computation (13)

K-NLLSQ 3.29e-02 8.39e-03

K-Vstat 5.69e-02 7.95e-03

K-Xstat 3.21e-03 7.87e-03

Chi-square 1.87e-02 2.71e-03

3MD 1.94e-02 4.26e-03

K-Rayleigh 7.39e-02 0.35136

The bottleneck of the proposed ship detector is the threshold computation using the
K-Rayleigh distribution function as clearly can be seen in Table 3.7. This is because K-
Rayleigh distribution has no closed-form solution for computing the threshold and the
threshold is computed iteratively using numerical integration (cf. (3.13)).

Using Table 3.6 and Table 3.7 the total processing time needed to execute the red
sub-region shown in Figure 3.1 using the K-Rayleigh-based sea clutter model (best model
in near and mid ranges based on the analyses in Section 3.5.2) is approximately calculated
as 0.5 s. Furthermore, the processing time required by the green region (including all the
range samples) in Figure 3.1 can be calculated by multiplying the time needed by the red
sub-region with the total number of red sub-regions available within the green region.

As an example, consider a typical scene size of 30 km2 (3 km in ground range and 10
km in azimuth). With the given F-SAR system parameters, an area of 30 km2 corresponds
to approximately 260×103 azimuth samples (≈ 106 s of total acquisition time) and 6×103
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range samples. Keeping in mind the processing time of 0.5 s which is required for target
detection in a data patch of 1280 azimuth and 512 range samples, the overall processing
time needed for detecting targets in 30 km2 ground area is approximately calculated as 20
minutes, which is nearly 11 times more than the total radar acquisition time. Note that
no multiprocessing is implemented so far since this was not the focus of the PhD topic.
With multiprocessing it is expected that the computation time will signi�cantly improve
as more than two processors will simultaneously be involved to process the program.

3.6 Chapter Summary

This chapter proposed a novel CFAR-based ship detection processing chain using RC air-
borne radar data. The major component of the proposed processing chain is the automatic
training data selection approach. It includes a novel target pre-detection module used for
successfully canceling the outliers, i.e., spiky clutter peaks and strong ship signals from the
training data. This ensures a proper �t of suitable sea clutter models, and consequently
an accurate CFAR threshold computation. A proper �t of the sea clutter models and an
accurate CFAR threshold computation are essential for keeping the threshold errors and
false alarm rate errors at a low level.

Various sea clutter models were thoroughly investigated in terms of threshold errors
and false alarm rate ratios using the experimental single-channel RC radar data acquired
with DLR's airborne sensor F-SAR during linear and circular �ight tracks. Many X-band
radar data with HH polarization and a range bandwidth of 384 MHz were used for these
investigations. It was found that as a sea clutter model the K-distribution (regardless of
any parameter estimation method) is generally not a good choice, especially not for near
(15◦−30◦ incidence angle) and mid ranges (30◦−50◦). The chi-square and the 3MD model
lead to extremely high threshold and false alarm rate errors in the near and mid ranges
but perform very well in the far range (> 50◦ incidence angle), which, for the F-SAR
system, is dominated by thermal noise. In contrast, the K-Rayleigh distribution results in
the smallest false alarm rate errors and threshold errors in the near and mid-ranges but
were found unsuitable for the far range.

Therefore, in terms of suitable sea clutter models, it is recommended to use the K-
Rayleigh distribution function for lower incidence angle ranges (15◦ − 50◦) and the 3MD
model or the chi-square model for higher incidence angles (> 50◦). It has also to be
pointed out that for the investigations presented in this chapter, mainly X-band radar
data acquired during two F-SAR �ight campaigns each lasting only a few hours have
been used. During that short time frame it can be expected that the sea state has not
changed signi�cantly. Therefore, the investigation of the in�uence of the sea state on the
sea clutter model performance cannot be made. This is an open topic for the future.
Further investigations using linearly and circularly acquired radar data at di�erent sea
states are recommended. However, to the best of my knowledge, so far, such an extensive
data set, which would allow for more sophisticated investigations, does not exist.

Furthermore, it has to be mentioned here that the proposed algorithm is mainly
foreseen for airborne radar but not for spaceborne radar-based vessel detection. The major
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reason is that the algorithm only uses a relatively small CPI for the azimuth FFT and
the ship detection. This generally is too small for obtaining a su�ciently high peak SNR
required for successful spaceborne-based vessel detection. In contrast, for the airborne
case, a short integration time in the order of a few milliseconds, and hence, a small
number of azimuth samples is su�cient for obtaining high enough peak SNR values.
Therefore, for the spaceborne radars, either single-channel algorithms optimized for fully
focused SAR images [100] or more sophisticated multi-channel algorithms, for instance, the
powerful Extended Displaced Phase Center Antenna (EDPCA) or Inverse STAP (ISTAP)
algorithms [101], should be used.
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This chapter proposes a target motion model for tracking ships in the range-Doppler
domain. Since ships are extended targets in high resolution data, extracted centroids of
the ships are tracked using the motion model. The motion model is integrated into the
framework of the Kalman Filter (KF) for fast and accurate target position and motion
parameter estimation. In addition to that, the KF is also used for predicting the target
position in the absence of its corresponding detection. By predicting the missed target
positions in the data larger gaps in the target trajectory can be bridged and the track
loss can be prevented. The robustness of the proposed range-Doppler-based target motion
model is validated using real ships in real experimental RC airborne radar data acquired
using DLR's F-SAR radar system.

Some parts of the results and discussions provided in this chapter I have published in
the peer-reviewed journal paper [63].

4.1 Clustering

Ships are generally extended targets occupying more than a single resolution cell in high
resolution data (cf. Figure 3.18). Therefore, after obtaining multiple pixel-based detections
from a single ship (cf. Chapter 3), clustering is applied to group these detections as a single
�physical object�. For clustering, a standard DBSCAN (density-based spatial clustering
of applications with noise) algorithm [102] is used. It is able to form clusters of arbitrary
shape. The basic principle of the DBSCAN algorithm is illustrated in Figure 4.1.

As shown in Figure 4.1, given a set of points, the DBSCAN algorithm starts with an
arbitrary point a. Point a is considered as a core point and it forms a cluster if there are at
least nmin (minimum points) of points (including a) within a radius of ϵc. Every reachable
point from point a belongs to the same cluster. For instance, point b is directly reachable
from point a because it is within distance ϵc from point a. Point c is also reachable from
point a via a chain of other core points. The edge of the cluster is de�ned by the reachable
non-core points, also known as the border points. The non-reachable points are considered
as outliers or noise [102]. The parameters nmin and ϵc are data-dependent and they are
de�ned by the user.

4.1.1 Clustering in Range-Doppler Geometry

The distance or the radius ϵc shown in Figure 4.1 is set based on the Euclidean distance.
The Euclidean distance metric can only be used when the image axes have the same unit.
However, in a range-Doppler image, the y-axis corresponds to the slant range (in meters)
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Figure 4.1: Principle of the DBSCAN algorithm. The green, blue and red points in the �gure
correspond to the core, border and noise points, respectively.

and the x-axis corresponds to the Doppler frequency (in Hertz). Therefore, to be able
to use the Euclidean distance metric and, hence, the DBSCAN algorithm, the detected
pixel dimensions are mapped to the ground geometry where both x- and y-axes have the
same unit (both are in meters). For this, the slant ranges of the detected pixels are �rst
converted to ground range using the following expression

rt,g = rt sin θi, (4.1)

where rt,g and rt are the ground range and the slant range of the target, respectively.
Then, the target's Doppler frequency bins (which are spaced in Hz) are mapped to meters
(= cross-range coordinates) using the approximation shown in (2.6).

After doing these necessary conversions, DBSCAN-based clustering algorithm is then
implemented. After clustering, the clustered cross-range/ground-range coordinates of the
ship are projected back to Doppler frequency/slant range coordinates for doing target
tracking in the range-Doppler domain.

An example of the clustering applied on a real X-band HH polarized F-SAR radar data
is shown in Figure 4.2(b). In the �gure the clustered ship signal and its corresponding
bounding box is shown. The bounding box is generated by using the nearest and farthest
Doppler and range positions of the cluster with some guard zones. The user-de�ned clus-
tering parameter nmin and ϵc in this case are chosen as 4 and 35 m, respectively. There
is no automatic way to determine these parameters, however, as a rule of thumb, nmin

is chosen as two times the data dimensionality (2 is the dimension of the data in this
case) [102] and ϵc is set based on the familiarity with the data set, e.g., the expected ship
size and the range resolution.
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Figure 4.2: (a) Real X-band HH polarized RC F-SAR radar data in the range-Doppler domain
for a speci�c azimuth time. The ship signal is shown within the yellow box. (b) The
clustered ship signal with its centroid (orange dot) and the bounding box.

4.1.2 Cluster Center Estimation

To perform tracking the center of the clustered ship, i.e., its Doppler frequency and range
position is to be estimated and tracked at successive times. For this, three di�erent me-
thods namely center of the bounding box (COBB), center corresponding to the maximum
peak (CMP) and center of gravity (COG) have been investigated.

As an example, Figure 4.3 shows the estimated cluster range position at each azimuth
time using the CMP-based method. The estimated range positions of the target are plotted
together with the reference range positions. To get the reference range, �rst of all, the
range positions are estimated at each azimuth time using all aforementioned cluster center
estimation methods. The estimated positions using these methods are then averaged at
each time and a higher order polynomial is �tted to the averaged range position. Such a
method to get the reference range position is chosen because the single true position of
an extended target in a high resolution data cannot be known accurately because of the
ship dimensions.
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Figure 4.3: (a) CMP-based estimates of the range position (red dots) and the reference range
(blue) over azimuth time of a real ship signal. The radar data for generating these
results were acquired with F-SAR along a linear �ight track (cf. Section B.1 in page
147). (b) Zoom in detail to highlight the error in the estimated range position.

As observed in Figure 4.3(b), the cluster range position (red dots) estimated using
CMP-based method is highly unstable and deviates from the reference range (blue). The
reason is the signal amplitude �uctuations over azimuth time. Therefore, it is necessary
to do a performance evaluation of all three cluster center estimation methods in order to
select a suitable cluster center for tracking, eg., the center that is less �uctuating and/or
closest to the reference position.

Figure 4.4 shows the mean error and standard deviation plots of the cluster range
positions estimated using the methods: COBB, CMP and COG. In the �gure it can
clearly be seen that the COG gives the minimum error followed by the COBB and the
CMP. Therefore, COG is the �rst choice for estimating the cluster center to be used for
extended target tracking. It is pointed out here that for the investigated airborne radar
data and for all ships, COG was found to be more stable.
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Figure 4.4: Mean error in range (blue) and standard deviation (black error bar) of the cluster
range positions estimated using COBB, CMP and COG methods.

4.2 Target Motion Model and Radar Measurements

The detected ships, i.e., the cluster centers at each CPI are tracked by using a target
motion model. In this section a state-space target motion model and radar measurements
for tracking targets in the range-Doppler domain are described. The former is used for
predicting the target position and the latter is used for updating the predicted position.
Tracking can still be performed without using any motion model. This is valid only when
the targets are detected at every time step and the time steps are relatively small so that
the target moves not more than its size. However, without a motion model, gaps due to
missing detections cannot be bridged. The ability of the motion model to �ll the gaps in
the detections are explained in Section 4.3.4.

4.2.1 State-Space Motion Model

For a target moving with constant acceleration (CA) on the ground, as shown in (2.8)
and (2.9), its Doppler frequency and slant range positions, which are assumed to evolve
in time can be modeled by (2.15) and (2.19), respectively. Due to short integration times
assumption the Doppler quadratic coe�cient q in these equations can be ignored and they
can be rewritten as

fa(t) ≈ fDC + kat (4.2)

and

r(t) ≈ r10 −
λ

2
fDCt−

λ

4
kat

2. (4.3)

For simplicity (4.3) is written as

67



4 Motion Model and Kalman Filter in Range-Doppler

r(t) ≈ r10 + urt+
1

2
art

2, (4.4)

where ur and ar can be considered as the initial range velocity and acceleration components
of the target and have values of −λ

2fDC and −λ
2ka, respectively.

Using (4.2) and (4.3), the target kinematics for tracking targets in range-Doppler can
be expressed by the state vector x rd(tk) ∈ Rn which is de�ned as

x rd(tk) ≜ [fa(tk) ḟa(tk) r(tk) ṙ(tk) r̈(tk)]
T (4.5)

where [·]T is the transpose operator, tk is the absolute center time of the CPI k and the
symbol ≜ is the de�nition sign. The estimates fa(tk) and ḟa(tk) are the Doppler frequency
and its �rst-order derivative (cf. (4.2)), and r(tk), ṙ(tk) and r̈(tk) are the range and its
�rst- and second-order derivatives (cf. (4.3)), respectively.

The components of the target state vector shown in (4.5) are written as

ḟa(tk) = ka (4.6)

ṙ(tk) = −λ
2
(fDC + ka.tk) (4.7)

r̈(tk) = −λ
2
ka. (4.8)

To estimate the target kinematics shown in (4.5), the target's Doppler frequency and range
can be approximated by CV and CA motion models (cf. (4.2) and (4.3)), respectively.
For the range history, a CV-based motion model can also be used by assuming that the
range is piece-wise linear between two adjacent CPIs. For this, the quadratic term in the
right-hand-side of (4.3) can be ignored.

4.2.2 Radar Measurements

After de�ning the target motion model in range-Doppler, radar measurements for upda-
ting the target states in (4.5) are de�ned in this section. The received radar measurements
in this case are the cluster centers, i.e., the Doppler frequencies and the range positions
(cf. Section 4.1.2). The two-dimensional target measurement vector m(tk) ∈ Rl is de�ned
as

m(tk) ≜ [fam(tk) rm(tk)]
T, (4.9)

where fam and rm are the measured Doppler frequency and slant range position of the
detected target.
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4.3 Kalman Filter

The (CV+CA)-based target state space motion model and the radar measurements dis-
cussed in the previous section are incorporated within the framework of the KF. The
KF is considered to be computationally fast since it uses the current measurement, the
estimated state and its uncertainty from the previous time step in order to estimate the
true state at the current time step.

4.3.1 Algorithm

The KF works in three stages: In the �rst stage, also known as the initialization stage,
the initial state mean estimate x̂ rd(0|0) (estimate of the state at time k = 0 conditioned
on the measurements up to time k = 0) and the initial posteriori error covariance P(0|0)
of the state are set up. It is assumed here that x̂ rd(0|0) is the �rst detected position of
the target, i.e., x̂ rd(0|0) = m(0) because the true position of the target at k = 0 cannot
be known in advance. Initialization of the error covariance matrix of the target state is
explained in Section 4.3.2.

In the prediction stage the target states are predicted by using a motion model which
is described in Section 4.2. The standard KF equations for the prediction stage are

x̂ rd(k|k − 1) = Fx̂ rd(k − 1|k − 1) (4.10)

P(k|k − 1) = FP(k − 1|k − 1)FT +Q , (4.11)

where x̂ rd(k|k−1) is the predicted state at CPI k given all measurements up to CPI k−1.
The matrices P(k|k − 1) and Q are the n× n covariance matrices of the predicted state
and the process noise, respectively. Here n is the dimension of the target state vector (cf.
(4.5) where n = 5).

The state transition model F applied to the previous state x̂(k − 1|k − 1) to predict
x̂ rd(k|k − 1) is written as

F =


1 TCPI 0 0 0

0 1 0 0 0

0 0 0 1 TCPI

0 0 0 0 1

 , (4.12)

where TCPI is the time interval corresponding to one CPI. In the last stage, i.e., in the
correction stage, the predicted state and the covariance matrix from (4.10) and (4.11)
are corrected based on the received noisy measurements (cluster centers from (4.9)). The
updated state x̂ rd(k|k) and the covariance matrix P(k|k) then becomes
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x̂ rd(k|k) = x̂ rd(k|k − 1) +K (k)D(k) (4.13)

P(k|k) = (I −K (k)H )P(k|k − 1), (4.14)

where I is the identity matrix, K (k) is the Kalman gain and D(k) is the innovation (or
the residual) which are expressed as

K (k) = P(k|k − 1)H TS(k)−1 (4.15)

D(k) = m(k)− m̂(k|k − 1), (4.16)

where m̂(k|k − 1) = H x̂ rd(k|k − 1). The matrix H is the l × n observation matrix
that maps the state-space to the measurement-space. Here l is the the dimension of the
measurement state vector (cf. (4.9) where l=2). The matrix S(k) in (4.15), commonly
known as the measurement prediction covariance matrix or innovation covariance matrix,
is written as

S(k) = HP(k|k)H T +R, (4.17)

where R is the l× l measurement noise covariance matrix. The signi�cance of the matrix
S(k) and the innovation D(k) in terms of multi-target tracking are explained in Chapter
5.

4.3.2 Initialization of Kalman Filter Matrices

Kalman �ltering requires the initialization of the P(0|0), R and Q matrices. They are set
o�ine based on either simulated or already available real experimental data and are kept
constant throughout the �ltering process. This is because the online estimation of these
matrices is di�cult as it is not possible to observe the process that is being estimated.
However, a fairly good approximation of R can be made by using the cluster centers
themselves.

In the next sections some plausible initialization values of R, P(0|0) and Q matrices
are given. To initialize these matrices three linearly acquired real X-band HH polarized
experimental RC data were investigated. Each data take had a real single controlled
moving ship. The speci�cations of the data (e.g. wavelength, PRF etc.) are listed in Table
B.1 (cf. page 150) and details about the �ight experiments are given in Section B.1.1
(cf. page 148). Additional details of the radar data and the ships in the data are given
in Table 4.1. It is mentioned here that these three acquisitions were found su�cient to
retrieve suitable initialization parameters of the KF.
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Table 4.1: Details of the real airborne radar data takes used for the initialization of KF matrices.
The data were acquired using linear F-SAR �ight tracks.

Data Takes

Flight Moving

Direction w.r.t.

Ship Motion

Ship

Dimension

[m]

Ship

Illumination

Time [s]

Data Take I 0◦ 66 × 11 18.3

Data Take II 45◦ 66 × 11 15.4

Data Take III 0◦ 66 × 11 19.8

Initialization of R matrix

The R matrix is a diagonal matrix that stores the variance of the deviations between the
received measurements and the true measurements (cf. Table 4.2). The received measu-
rements are the cluster centers that were computed at each CPI using the methodology
shown in Section 4.1. The true measurements are assumed as the higher order polynomial
�tting to the received noisy measurements. This is because the true position of the ship
cannot be known precisely due to the bias caused by the ship size.

After having at each time instant the true and the received measurements from the
ship, the variances are computed over azimuth. Figure 4.5 shows the standard deviation
plot of the measured Doppler and range positions of the ship in data take I (cf. Table
4.1).

As shown in Figure 4.5 the uncertainties for both Doppler and range vary signi�cantly
over time. This is mainly because of the unstable estimated cluster centers. The factors
that contribute to the instability of the cluster centers are the ship extents (cf. Table 4.1),
their amplitude �uctuations in the data and the Doppler and range bin sizes which for
the investigated F-SAR data are approximately 20 Hz and 0.3 m, respectively. In order to
set the initials for the R matrix the mean standard deviations in Doppler and range are
computed using the results shown in Figure 4.5. The obtained values are then squared to
get the mean variances which are listed in Table 4.2 for three di�erent data takes.

Table 4.2: EstimatedR matrix for data takes I-III. First and second values of the diagonal matrix
correspond to the variances in Doppler and range, respectively.

Data Estimated R (covariance matrix)

Data Take I diag(186,0.68)

Data Take II diag(312.3,2.26)

Data Take III diag(213.5,0.5)
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a

b

Figure 4.5: Standard deviation plots over azimuth for the (a) measured Doppler and (b) range
positions of a real ship signal in data take III.

Using Table 4.2 as reference the initial values of the R matrix are set as diag(350,5).
The initialization is however, data dependent and is usually recommended to be set higher
as the obtained estimates.

Initialization of P(0|0) matrix

The initialization of P(0|0) is based on the knowledge about the initialization error. If it is
assumed that the initial state is far from its true state, then P(0|0) should be set higher.
It is also assumed that there is no information about the typical values of P(0|0) and
therefore, P(0|0) = σ2p0I n. The term σ2p0 is now the only tuning parameter for P(0|0).
Figure 4.6 shows how di�erent initializations of σ2p0 a�ects the trajectory of a real moving
ship.

In Figure 4.6 it is observed with lower initialization values (i.e., P(0|0) = 0.01I 5), the
predictions are more reliable at the beginning. As a result, the cluster centers are ignored
and larger errors are observed. Therefore, P(0|0) = 1000I 5 is set in order to avoid the
discrepancies at the beginning of the estimation. Although it is �xed initially, with more
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larger error

Figure 4.6: KF-based trajectory reconstruction of a real moving ship present in data take I (cf.
Table 4.1). The noisy cluster centers can be seen in the �gure. The ship tracks is
shown in the range-Doppler domain using di�erent initialization values of σ2p0.

successive measurements, the position estimates converge quickly and the in�uence of
P(0|0) soon becomes negligible. This can clearly be observed in Figure 4.6 where the
position estimates obtained for di�erent initialization values of σ2p0 are similar after -200
Hz Doppler frequency.

Initialization of Q matrix

The Q matrix represents the expected uncertainties in the state equations. The uncer-
tainties are due to the modeling errors, measurement errors and the approximations ma-
de in the derivations (cf. (4.2) and (4.3)). The initialization of Q is not straightforward
and is constructed intuitively. To do so, di�erent initial values of Q are tabulated �xing
P(0|0) = 1000I 5 and R (cf. Figure 4.6 and Table 4.2, respectively) and checked how their
initialization a�ects the Doppler frequency and range position accuracies. The true state
to compute the RMSE (root mean square error) in Doppler and range is again the higher
order polynomial �t to the measurements (as done for Figure 4.3(a) and Figure 4.5). The
results are shown in Table 4.3 where the investigations are again performed for the same
three data takes listed in Table 4.1.

From Figure 4.6 and Table 4.3 it is clear that the best accuracy is achieved with a
high value of P(0|0) and low value of Q .

In a concluding remark for the matrix initialization of the KF, it can be said that R
should be estimated o�ine using either simulated or already available real experimental
data. The matrix P(0|0) should be set higher and Q should be set smaller. From now on,
for further investigations, R = diag(350,5), P(0|0) = 1000In and Q = 0.01I n are set.
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Table 4.3: Doppler frequency and range RMSE assessment for di�erent initializations of Q at
P(0|0) = 1000I 5 and R = diag(350,5). The numbers in bold show the best accuracy
achieved with the given combination of Q .

Data Take I Data Take II Data Take III

Q Doppler [Hz] Range [m] Doppler [Hz] Range [m] Doppler [Hz] Range [m]

10I5 11.42 0.80 15.39 1.45 13.60 0.68

I5 10.40 0.78 15.79 1.40 13.31 0.63

0.1I5 9.23 0.77 17.00 1.35 12.95 0.62

0.01I5 9.13 0.71 18.62 1.17 12.98 0.67

4.3.3 KF Consistency Check

In this section the consistency of the KF with the given initialization parameters is analy-
zed. The �lter consistency check ensures that the initialized KF covariance matrices have
acceptable level of performance and that the KF �lter has estimated the target states
correctly. With the given KF matrix initializations, the consistency of the KF can be
checked by:

1. Normalized (state) estimation error squared (NEES) test [103]

2. Innovation magnitude bound test [104]

3. Normalized innovation squared (NIS) test [103]

The NEES test is possible only through simulations where the �lter consistency is
checked after several Monte Carlo runs. This is because in reality the true states of a
target cannot be known and therefore, the state errors and the actual mean squared error
cannot be measured.

The last two tests are applicable for the real data since they take into account the real-
world measurements through the innovation (cf. (4.16)). In other words, the performance
of the KF �lter can be evaluated based on whether the measurements predicted by the
KF agree with the received measurements [103].

When the KF has optimal performance then according to innovation magnitude bound
test (second criteria), the magnitude of the innovation is bounded by ±2

√
S(k). Figure

4.7 shows the innovation sequence plots of the data take I-III (cf. Table 4.1) bounded
by the magnitude ±

√
S(k) and ±2

√
S(k). The plots indicate the unbiasedness of the

innovation sequence over time as more than 95% of the values lie within the ±2
√
S(k)

bounds. This simple test in most cases should be su�cient however, in practice, it is
important to perform the NIS test for a more robust KF performance assessment.

The NIS ϵNIS at CPI k is expressed as [103]

ϵNIS(k) = D(k)TS(k)−1
D(k). (4.18)
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Figure 4.7: Innovation magnitude bound of target's Doppler frequency and range over azimuth
time for data take I (top row), data take II (middle row) and data take III (bottom
row).

Under the hypothesis H0 that the �lter assumptions are properly met then ϵNIS(k) is
chi-square (χ2) distributed with l DOF. For l = 2 (cf. (4.9)), the hypothesis is accepted
if

ϵNIS(k) ∈ [bL, bU]. (4.19)

The interval [bL, bU] is determined such that

P (ϵNIS(k) ∈ [bL, bU|H0]) = 1− α, (4.20)

where bL and bU are the lower and upper bounds of the interval, respectively. For α = 0.05
and two sided 95% con�dence interval, bL and bU are 0.05 and 7.38, respectively. Figure
4.8 shows the NIS plot over azimuth time for data take I-III.
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7.38

0.05

Data Take I Data Take II

Data Take III

Figure 4.8: NIS plot computed over time for a real ship signal in data take I-III. The bounds are
marked by the horizontal red dashed lines in the �gure.

As shown in Figure 4.8 , the computed NIS is well within the given bounds (horizontal
red dashed lines in the �gure). Here only the upper bound is of interest because the lower
bound is practically zero, i.e., bL = 0.05 and it is shown that the NIS is well below the
upper bound [103]. That means for the real data with extended targets and the airborne
acquisition geometry the proposed motion model and the selected initialization parameters
can be used.

4.3.4 Motion Model Performance Assessment

In real scenarios it is expected that there will be missing measurements at certain azimuth
times. This could be due to the lower backscatter received from the moving target or when
the target is not illuminated by the antenna beam (cf. Figure 3.26(a)). In such situations
the KF is able to give a predicted position (cf. (4.10)).

However, inaccurate predictions of the missed measurements may lead to a track loss.
Therefore, �CV only� and (CV+CA) motion models of the KF are evaluated to assess
their performance in the presence of missed measurements. In the �CV only�-based motion
model, along with the Doppler, the range history is also modeled as CV by assuming it as
piece-wise linear in adjacent CPIs. The (CV+CA) motion model was already presented
in Section 4.2 where the target's Doppler frequency was modeled as CV and its range was
modeled as CA.

For the investigations the gaps in the data were arti�cially introduced (cf. Figure 4.9).
The gap duration was successively increased to a point after which the target track is lost.
The performance achieved using the motion models are compared with the one where no
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successively increasing 
artificial gaps

range history of the 
target 
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Figure 4.9: Illustration of the range history of a single moving target in range-time domain with
an arti�cially introduced gap.

Table 4.4: Analysis of di�erent methods in terms of time in seconds after which the target track
and the position are lost. The position accuracy achieved using di�erent methods are
also shown. The numbers in bold show the best achieved accuracy. The results are
from a real ship signal in X-band HH polarized F-SAR data.

Data Takes Methods
Gap Time

till Track

is Lost [s]

Position Accuracy

Doppler

RMSE [Hz]

Range

RMSE [m]

No Motion

Model
1.8 13.63 0.82

Data Take I CV Only 3.3 9.04 1.18

CV+CA 5.1 9.13 0.71

No Motion

Model
1.0 17.67 1.50

Data Take II CV Only 2.6 21.12 1.73

CV+CA 4.0 18.62 1.17

No Motion

Model
1.6 14.61 0.72

Data Take III CV Only 3.5 9.52 1.07

CV+CA 9.5 12.98 0.67

motion model is considered. The results are shown in Table 4.4 again for the same three
data takes (cf. Table 4.1). The position accuracy are also evaluated.

From Table 4.4 it can be said that, although, in terms of the position accuracy all me-
thods perform similarly, the (CV+CA)-based target motion model can still be considered
as a better model based on the gap duration till the track is lost (e.g., 9.5 s for data take
III).
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4.4 Chapter Summary

In this chapter a target motion model for tracking ships in the range-Doppler domain is
proposed. Real ships in real RC airborne radar data were used for assessing the perfor-
mance of the proposed motion model. The proposed motion model tracked the Doppler
frequency and the slant range position of the target based on CV and CA, respectively.
The motion model was incorporated within the structure of the KF for recursively pre-
dicting and updating the target positions over time. The KF requires the initialization
of noise covariance matrices, a discussion on the plausible initialization of these matrices
were also provided in this chapter. After setting the KF matrix initializations, the consis-
tency of the KF was also checked based on the innovations. Filter consistency test results
showed that the KF matrix initializations and the proposed motion model can be used
for target state estimation purposes.

The robustness of the proposed (CV+CA)-based target motion model was also eva-
luated in terms of track duration where it was found that in comparison to other methods
discussed in this chapter, the (CV+CA)-based motion model could maintain the target
track for the longest time in the absence of target detections.
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Range-Compressed Data

In this chapter a range-Doppler-based multi-target tracking (MTT) algorithm using single-
channel RC radar data is proposed. The proposed tracking algorithm is suitable for dense
multi-target scenarios. A powerful track management system is also developed which
runs simultaneously within the tracker for updating the con�rmed target tracks and for
recognizing and terminating false or ghost targets. An additional challenge associated
with MTT in the range-Doppler domain is the Doppler aliasing (or back-folding) e�ect.
In this chapter the aliasing problem is brie�y discussed with real experimental results. To
validate the proposed range-Doppler-based MTT algorithm, results from both simulated
and real linearly and circularly acquired experimental data from DLR's airborne radar
sensor F-SAR are presented.

Parts of the methodology and the results presented in this chapter I have published
in the peer-reviewed journal paper [63] and in the conference papers [105,106].

5.1 Principle of the Algorithm

A complete MTT algorithm typically has two major parts. The �rst part contains the
target motion and measurement model that aims to estimate the target kinematics over
time. The second part of the MTT algorithm is data association where newly available
measurements are assigned to already existing target tracks for reconstructing the trajec-
tories of individual targets. The former is described in detail in Chapter 4 and the later
is presented in this chapter.

Similar to the detection, MTT is also performed in the range-Doppler domain. Tracking
in range-Doppler has the bene�t that the target signals overlapping in time domain are
in most cases separated in the Doppler domain, if they are for instance, not located in
the same resolution cell or moving with di�erent LOS velocities. For the latter case an
example is shown in Figure 2.9 where di�erent LOS velocities of the targets shift them to
di�erent Doppler frequencies.

The target tracks in range-Doppler domain are needed for:

� Mapping the detections accurately on the ground after computing additionally the
DOA angle of the target. The ground tracks can later be compared with the AIS
data for validation purposes (cf. Chapter 6), and
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� Generating high resolution ISAR image sequences after successively extracting all
the required ship data (cf. Figure 5.17(c)), which later on aid to target recognition
and identi�cation [107�109].

Therefore, tracking in range-Doppler is indispensable and a pre-requisite for the afo-
rementioned applications.
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Figure 5.1: Simpli�ed processing �owchart of the proposed MTT algorithm. The components of
the tracker are shown within the range-Doppler tracking block. The dashed black
rectangular block in the �gure is important for ISAR imaging but not needed for
tracking.

The simpli�ed processing steps of the proposed multi-target tracker are shown in
Figure 5.1. The MTT methodology can be summarized as:

1. Estimate the cluster center positions for each target (cf. Section 4.1.2).

2. Store the target position and its related motion parameters in a database (cf. Section
5.2).

3. Associate the targets to already existing tracks for MTT or generate new tracks (cf.
Section 5.3).

4. Run track management after every ∆tmng seconds for updating the tracks (cf. Sec-
tion 5.4.1).
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5. Monitor also the Doppler frequency history of the target for taking into account the
Doppler aliasing (cf. Section 5.4.2).

Details related to each processing block shown in Figure 5.1 are sequentially presented
in the following sections.

5.2 SQLite Database Structure

A SQLite database structure was developed for storing the detection and clustering results
and for doing MTT. SQLite is a self-contained, serverless and portable SQL (Structured
Query Language) database engine with the disadvantage of supporting only a single wri-
ting process at a time. For writing several processes at a time, server-based databases
such as MySQL and MariaDB are generally preferred [110]. The SQLite database tables
can be extracted with low e�orts if required in future.

The SQLite database has a table where each row of the table represents a detected
target at each CPI. The column contains among others the target motion parameters. An
example of a database table is shown in Figure 5.2. Additional details about the database
table are given in Appendix A.
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Columns (measured motion parameters)

CPI = 0

CPI = 1

CPI = 2

. .

. . .
. .
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4 1 0

. . . .

1

5 1 0 2

6 1 0 3

. . . .

. . . .

7 2 0

. . . .

4

8 2 0 5

9 2 0 6

. . . .

. . . .

Figure 5.2: Simpli�ed representation of a database table. The detected targets (along the rows)
and their relevant motion parameters (along the columns) are shown in the table.

The table in Figure 5.2 shows that three exemplary targets were detected at CPI = 0.
These targets are stored in the database and have their unique IDs (= unique row num-
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5 Ship Tracking using Single-Channel Range-Compressed Data

bers) which increment automatically with subsequent detections in the following CPIs.
The database is designed for storing and tracking an arbitrary number of targets, limited
only by the available memory and the SQLite limitations. Other relevant parameters such
as the positions and extents of the targets and the data patches belonging to the targets
for ISAR imaging are also stored (dashed rectangular block in Figure 5.1). The table also
has additional columns like a relation and a predicted �ag (PF). Their importance and
need are explained in later sections.

5.3 Relation Generation

For tracking multiple targets it is essential to establish a relation between the detected
targets at a given CPI and the already existing tracks from the previous CPI. Figure 5.3
shows an example of the concept of relation generation using a database structure for
tracking three consecutively detected targets.

Unique ID CPI Number (�) Relation

1 0 -1

2 0 -1

3 0 -1

4 1 1

5 1 2

6 1 3

7 2 4

8 2 5

9 2 6

. . . . . 

. . . . . 

. . . . . 

. . . . . 

Figure 5.3: Principle of the relation generation using database. Arrows of the same color indicate
the link between the unique IDs for one target detected at each CPI. In the relation
�eld the unique ID of the previous detection belonging to the same track is listed.

In Figure 5.3 there are three detected targets at CPI=0. These targets are assigned to
unique IDs. The unique IDs are the row numbers of the database table and for a newly
added row it is incremented automatically.

If the same three targets are detected in the next CPI the unique IDs are again
generated (i.e., new rows are added into the database). The relation columns of these
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newly added rows are now updated with the unique IDs of the same targets from the
previous CPI (see the relation columns at CPI = 1 and the Unique ID column at CPI =
0 in Figure 5.3). After the tracking is over a link between the unique rows belonging to
the same target is established (arrows of the same color in Figure 5.3). For instance, in
the �gure it is shown that unique IDs 7-4-1 (green arrow) belong to the same target and
likewise for the other two targets. A relation of -1 indicates that the target is detected for
the �rst time and has no relation with any previously existing tracks.

5.3.1 Target-to-Track Association

In the previous section it was shown that unique row numbers belonging to the same
target at di�erent CPIs are linked to create the target tracks. Generating such links is
possible only when the target detections at a current CPI are associated with the already
established tracks from the previous CPI. In tracking literature this is known as data
association. The concept of data association in the range-Doppler domain for a single
target tracking is shown in Figure 5.4.
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Figure 5.4: Illustration of the data association concept in the range-Doppler domain. The rectan-
gular gate (gray color) in the current CPI is centered at the predicted measurement.
Detections in the previous and current CPIs are marked in the �gure as black dots.

In Figure 5.4 at CPI k − 1 (previous CPI) only one measurement is found which is
denoted as m (0)(k− 1). The track is initialized for this target and the motion parameters
are stored into the database. At CPI k (current CPI) two measurements are observed
(m (1)(k) and m (2)(k) in Figure 5.4). Data association is now performed as a two-step
procedure. First, the position of the previously detected target is predicted at the current
CPI. The position m̂ (0)(k|k − 1) (brown dot in the �gure) is the KF-based predicted
measurement of m (0)(k − 1) (cf. (4.16)). Second, a validation region centered around
the predicted measurement (which is now an established track) is created. This is done
in order to eliminate unlikely observation-to-track pairings. Detections falling within the
gate of the track are considered for updating the track (cf. Figure 5.4 where m (1)(k) lies
in the gating region of m̂ (0)(k|k− 1)). Detections lying outside the gate ( m (2)(k) in this
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case) could either be a false target or a new target. The tracker will initiate a new track
for such cases.

The gating concept illustrated in Figure 5.4 also works for MTT by creating the rectan-
gular gate around individual target track. However, in MTT, when there is measurement
uncertainty, i.e, when more than one measurement lie inside the gating region of a given
track, measurement-to-track association is required. For this, a method is presented in
Section 5.3.4.

5.3.2 Rectangular 1-Norm Gating

The rectangular gating shown in Figure 5.4 which is used for associating the radar-based
measurement to an exiting track is mathematically expressed as

|mfa(k)− m̂fa(k|k − 1)| < ∆fthres (5.1)

|mr(k)− m̂r(k|k − 1)| < ∆rthres (5.2)

where |mfa(k) − m̂fa(k|k − 1)| is the o�set between the detected and predicted Doppler
frequency and |mr(k) − m̂r(k|k − 1)| is the o�set between the detected and predicted
range (cf. (4.16)). The terms ∆fthres and ∆rthres are the width (along Doppler) and the
length (along range) of the rectangular region, respectively.

From Figure 5.4, (5.1) and (5.2), it is clear that the extents of the rectangular search
window have to be �rst determined for associating detections to their corresponding target
tracks. Before determining the extents of the rectangular gate, it is �rst necessary to
investigate how the o�sets shown in the left-hand-side of (5.1) and (5.2) vary in reality
so that reasonable values of gate extents can be set. These o�sets are obtained directly
from one of the KF equations shown in (4.16). In the equation the disparity between the
received measurement and the predicted measurement is clearly re�ected. An example of
these o�sets (also known as innovations) estimated for a real moving ship in data take III
(cf. Table 4.1) is shown over azimuth time in Figure 5.5.

From Figure 5.5 the maximum observed o�sets in Doppler and range are approximately
40 Hz and 4 m, respectively. Moreover, these o�sets also vary signi�cantly over time. The
factors that cause such variations were already explained in Section 4.3.2. For the relation
generation the size of the rectangular window must be larger than these estimated o�sets.
A wise choice for the extents of the search window can be set three times the maximum
o�sets. This will prevent the track loss even if the maximum o�sets are a bit larger than
what is observed in Figure 5.5.
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a

b

Figure 5.5: Residuals (or Innovations) computed using (4.16) for (a) Doppler frequency and (b)
range positions of a real moving ship.

5.3.3 Measurement Uncertainty

There are situations, especially in dense scenarios with numerous ships anchoring or mo-
ving close together, when multiple measurements may fall within the gate of a single track
causing measurement uncertainty. Two popular algorithms that are used for resolving such
uncertainties and which are applied in the real-world problems are GNN (global nearest
neighbor) [111] and JPDAF (joint probabilistic data association �lter) [20].

Given a set of measurements and tracks, both GNN and JPDAF �rst compute the
Mahalanobis distances [112] between the track and the measurements and compare them
to a gating threshold to select the candidate measurements for each track. GNN then uses
the Hungarian algorithm [113] for assigning the most likely measurements to the existing
tracks [111]. JPDAF on the other hand, uses all the measurements within the validation
region of the track and evaluates the measurement-to-track association probabilities and
combine them to update the target state and covariance [114, 115]. For tracking an un-
known number of targets, it is advisable to use a separate track management logic along
with GNN and JPDAF [116]. The reasons for not using the state-of-the art methods like
JPDAF in this thesis can be summarized as:
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� JPDAF has been designed keeping in mind the dense multitarget scenarios where
multiple targets are overlapping on the ground in the presence of heavily cluttered
environment. In the multitarget tracking approach, which is proposed in this doc-
toral thesis, tracking is performed in the range-Doppler domain. In Doppler domain
target overlapping is highly unlikely, as shown in Figure 2.9. Therefore, it is not
really bene�cial to use sophisticated and computation time intense tracking algo-
rithms such as JPDAF in order to track targets in the range-Doppler domain where
the targets are generally well-separated.

� With the increasing number of targets and measurement uncertainties, the compu-
tation time of JPDAF also increases. This happens because the JPDAF calculates
the association probabilities between all available target tracks and all validated
measurements in a single CPI. Afterwards, the target states and covariance for indi-
vidual tracks are calculated taking into account these estimated probabilities which
further increases the overall computation time.

5.3.4 Proposed Data Association Method

A rather simple but fast and e�cient data association approach is presented in this section.
The methodology is shown in Figure 5.6. To explain the method an example is shown in
Figure 5.7.

Existing Tracks Detections

Compute the Assignment Matrix

Relation Generation

Compute the Shortest Mahalanobis Distance

(From Previous CPI) (Current CPI)

Euclidean Distance-Based Rectangular 
Gating

Track Update

More 
Measurements in 
Single Track and 

Vice Versa

No

Yes

Figure 5.6: Data association methodology adopted in the range-Doppler domain when several
detections belongs to a single track or vice versa.
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Figure 5.7: Case when more than one measurement falls within the rectangular gating region of
an established track and vice versa. Arrows indicate the distances between the center
of the rectangular gate and the measurements falling within the validation region of
each track.

In Figure 5.7 at a given CPI, there are three established tracks (T1-T3) (predicted
measurements from the previous CPI) and �ve detections (D1-D5). Detections D1 and
D2 fall within T1, D2, D3 and D5 within T2, and D4 and D5 within T3.

As shown in Figure 5.6 to solve the measurement uncertainty an assignment matrix
is initially computed by providing the number of tracks and detections. The elements of
the assignment matrix are the Euclidean distance o�sets between the existing tracks and
the available detections. The assignment matrix is computed separately for Doppler and
range because both are measured in di�erent units. Based on the knowledge on Doppler
and range bin sizes a rectangular gating region around each track for selecting potential
target-originated measurements is created (cf. Figure 5.4, (5.1) and (5.2)).

After applying the gating if there are more than one candidate measurement of a
con�rmed track (cf. Figure 5.7 where there are three detections within the validation
region of track T2), the Mahalanobis distances only between the track and its validated
measurements are then computed (cf. Figure 5.8(b)). The Mahalanobis distance is used
because the dimensions are not equally weighted. To estimate the Mahalanobis distance
covariance matrix is required which in this case is the covariance of the innovation vector
D(k) (cf. S(k) in (4.17)).

Assume that in a CPI there are Nvm number of validated measurements lying wi-
thin the rectangular validation region of a particular track. The Mahalanobis distances
{dMi}Nvm

n=1 between the track and its validated measurements is calculated. The measu-
rement corresponding to the minimum Mahalanobis distance is considered for the track
update. For a given track the minimum Mahalanobis distance dmin can be mathematically
expressed as

dmin = min({dMi}Nvm

n=1), (5.3)

where dM is the Mahalanobis distance which is written as
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{dMi}Nvm

n=1 = ({D(k)}Nvm

n=1)
TS(k)−1{D(k)}Nvm

n=1, (5.4)

where the terms D(k) and S(k) are shown in (4.16) and (4.17), respectively. An example
to resolve the measurement uncertainty is shown in Figure 5.8 which is speci�cally solved
for the situation illustrated in Figure 5.7.
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Figure 5.8: Illustration of the measurement uncertainty situation corresponding to Figure 5.7.
(a) Binary matrix computed after applying rectangular gating. Bold values in the
matrix show that more than one detection is in the gating region of each track (see
also Figure 5.7). (b) Mahalanobis distances measured only between the track and
its validated measurements. Detections assigned to their respective tracks (shortest
Mahalanobis distance) are highlighted in green and the unassigned detections are
highlighted in red.

As shown in Figure 5.8(b), after using (5.3), the detections D1, D3 and D4 are assigned
to tracks T1, T2 and T3, respectively. The unassociated detections D2 and D5 initiate
their own new tracks. This method of data association works well for all the investigated
airborne radar data.

5.4 Track Handling

The approaches discussed so far in this chapter are mandatory for doing multitarget
tracking. However, during tracking, several false targets either from the sea clutter or
from the true target itself might appear in the scene which needs to be handled in order
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to control or reduce the number of false tracks and maintain the continuity of true target
tracks. This section addresses these problems in detail using both simulated and real
experimental radar data with real targets.

5.4.1 Track Management

Every unassigned detection initiates a tentative track. If the detection belongs to a real
target then the target is expected to be detected in several subsequent CPIs. Such a track
then becomes a con�rmed track. Once the target moves out of the antenna beam it is no
longer detected and therefore, should be terminated. Also, if there exist some false targets
(or clutter), they should also be terminated as they are not originated from real targets.
To do this, a track management scheme is employed for updating the con�rmed tracks
and also for terminating the �nished tracks and false targets [117].

The concept of the track management is illustrated in Figure 5.9. Track management
runs periodically within the tracker. For the F-SAR radar data, it is run after, e.g., every
2 s (can be de�ned by the user) which corresponds to approximately 40 CPIs as per the
current F-SAR system con�guration (cf. Table B.1 in page 150).

. . . . .

0 2 4 6 Azimuth Time (s)

Real 
Target

8

too small track 
lengths

Range 
History
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Figure 5.9: Schematic representation of track management when real and false targets are present
in the scene. Green dots are target detections and blue dots are �only predictions�.
The predictions are given by the KF. Terminated target positions are marked by the
red dots.

As an example, in Figure 5.9, there are three targets. One of them is a real target and
the others are false targets. Each target initiates its own track in its very �rst detection
(given by the green dots). A value of �zero� is then assigned in the predicted �ag (PF)
column (cf. Figure 5.2) of each target which implies that these are detected targets. In
the next time step, only the real target is detected and the rest are not detected. In the
absence of the detection, the target position is predicted by the KF (given by the blue
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real ship signal

false detections initiates 
new tracks

real ship signal

a

b

falsely detected targets 
are terminated

c

Figure 5.10: (a) Real single moving ship in X-band F-SAR radar data. Tracking results (b)
without and (c) with track management. Target ID_0 is the trajectory of the real
ship. The real ship and the false targets are marked in the �gure. For visualization
purposes, the tracks are shown in time domain rather than in range-Doppler where
the detection and tracking were actually carried out.

dots). For the predicted measurement a value of �one� is now assigned in its PF column.
As the tracking continues, at CPI = 40 (i.e., nearly after 2 s), the individual target tracks
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are extracted and their track lengths are determined. As shown in the �gure each target
should at least be tracked for 2 s. This is because the observation time of less than 2 s
is too small to terminate the targets (see false targets in Figure 5.9). For the tracks that
are equal to 2 s, their prediction percentage (PP) are estimated using

PP(%) =
Npred × 100

NL
, (5.5)

where for each extracted track, Npred is the total number of CPIs in which the target
is only predicted and NL is the total extracted track length, i.e., 40 CPIs (= 2 s) in
the shown example. The PP threshold is set to 70% which means that the targets that
are �only predicted� for more than 70% of the time without having their corresponding
detections are terminated. In the �gure the real target is also terminated after 10 s (it
was last observed at 8 s).

An example of tracking a single real ship target in data take III (cf. Table 4.1) in
the presence of false targets and with and without using track management is shown in
Figure 5.10. As shown in the �gure Target ID_0 belongs to a real ship target, whereas
Target ID_1 and Target ID_2 are the false targets, which are also termed as �ghost
targets�. With track management it was possible to terminate such target tracks after a
short time.

5.4.2 Doppler Aliasing

Another major challenge while tracking targets in the range-Doppler domain is to handle
the Doppler aliasing. It is a special condition that occurs mainly when the Doppler shift
of the target is larger than the PRF limit of the radar system [118�120]. Larger Doppler
shifts of the target are the consequences of either squinted radar acquisition geometry or
its high radial velocity (cf. (2.14)). The maximum unambiguous radial velocity vr,max of
the target in the non-squinted case depends on the PRF and can be written as

vr,max =
λ · PRF

2
. (5.6)

When the target's radial velocity is larger than vr,max, the target appears back-folded (or
aliased) in Doppler domain.

To illustrate the aliasing e�ect an exemplary range history of a single moving target
in the range-Doppler plane is shown in Figure 5.11. The target track has already been
initialized (cf. CPI k0 in Figure 5.11) and the detections are tracked in subsequent CPIs.
At CPI = kals, the KF predicts the Doppler frequency that is smaller than -PRF/2. The
target detection to be used to assign to this track is found approximately one PRF apart
and nearly at the same range (aliased detection). This is because the target's Doppler
frequency shifts that are smaller than -PRF/2 are back-folded and detected from PRF/2
onward. As a result, the tracker initiates a new track for the aliased detection (cf. orange
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Figure 5.11: Illustration of the Doppler aliasing e�ect of a single target. In the �gure the actual
and the ambiguous range histories belonging to the same target are shown in blue
and orange colors, respectively. Red dots indicate the CPIs.

curve in Figure 5.11). In reality however, there is only one target in the scene (complete
blue curve in Figure 5.11).

To further understand the aliasing problem, a real moving ship signal in real X-band
F-SAR radar data is shown in Figure 5.12. The target is moving towards -PRF/2. For
demonstration purposes, the data are sub-sampled to a PRF of approximately 800 Hz.

In Figure 5.12(a), the center position of the real ship is at around -180 Hz. After
tracking the ship for some CPIs, the same ship appears simultaneously at both ends of
the PRF limits (cf. Figure 5.12(b)). This is due to the ship motion which causes a smear
along Doppler and the extended nature of the ship in high resolution data. Depending on
the ship size, the situation shown in Figure 5.12(b) can occur in multiple consecutive CPIs.
Finally, in Figure 5.12(c) the ship is completely aliased and appears roughly at around
250 Hz and continues to move further. The goal is to recognize the back-folding occurring
in Doppler in order to extract the unambiguous target range and Doppler history without
wrapping e�ects.

For resolving the Doppler aliasing the Doppler frequency of the aliased detection must
be updated during tracking or track management. If the target is moving towards -PRF/2
and the aliased (or the backfolded) detection occurred in the right as shown in Figure 5.11
and Figure 5.12(b)(c), then from the Doppler frequency of the aliased detection one PRF
interval has to be subtracted. If the target is moving towards PRF/2, which practically
does not occur if the aircraft velocity is much higher than the target velocity, one PRF
interval has to be added. By doing this a new track initiation from the aliased target can
be avoided and a single unambiguous target track in range-Doppler can be extracted.

Figure 5.13 shows the real single ship trajectory reconstruction before and after solving
the aliasing problem. The PRF used in this case is approximately 1.2 kHz. In Figure
5.13(a) after tracking the ship for nearly 1 s it is found aliased. That is why in Figure
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Figure 5.12: Range-Doppler images of a single real moving ship observed at di�erent CPIs. (a)
Ship is originally moving towards -PRF/2. (b) Ship now appears simultaneously at
both ends of the PRF bandwidth (indicated by the arrow). (c) Ship shown in (a)
now appears at positive Doppler.

5.13(a) there are two target tracks belonging to the same target. Target ID_0 is terminated
after certain time because of track management (cf. Section 5.4.1) and Target ID_1 gets
initialized at the point of aliasing. However, after the aliasing correction only one target
appears during the entire illumination time (cf. Target ID_0 in Figure 5.13(b)).
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Figure 5.13: Real ship track (a) before and (b) after the aliasing correction. The corresponding
real ship signal was already shown in Figure 5.10(a). The point of aliasing is marked
in the �gure. The tracking is performed in the range-Doppler domain, for visualiza-
tion purposes the target tracks are projected back to time domain.

5.4.3 Simulation Results

In the previous sections the e�ects of false targets and Doppler aliasing were shown using a
single target and the results after resolving these e�ects are shown in Figures 5.10 and 5.13,
respectively. In this section these e�ects are shown using three simulated moving targets.
The targets have overlapping range histories in time domain (cf. Figure 5.14(b)) and the
aforementioned e�ects together with missing target detections are arti�cially included in
the simulation. Simulated radar data acquisition and moving target parameters are given
in Table 5.1.

The tracking results of the three simulated moving targets are shown in Figure 5.14.
Tracking is implemented in the range-Doppler domain, only for visualization purposes,
the target tracks are shown in time domain.

In Figure 5.14(b), the gaps are arti�cially introduced for TargetID_0 (blue) and
Target ID_2 (green) which are �lled by the KF-based predictions (cf. (4.10)). Moreover,
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Figure 5.14: Simulated tracked range histories of three targets (a) without and (b) with con-
sidering the motion model, track management and Doppler aliasing. Arti�cially
introduced gaps, false detections and aliasing points are marked in the �gure.

Table 5.1: Moving Target Simulation Parameters

Simulation Parameters, Assumed Values

Platform velocity [m/s] 91

Platform altitude above ground [m] 5000

Wavelength [m] 0.0306

Pulse repetition frequency [Hz] 1500

Chirp bandwidth [MHz] 100

Target absolute ground velocities [m/s] 5, 20, 35 (cf. Figure 5.14)

Target moving directions w.r.t. azimuth [◦] 60, -45, 30 (cf. Figure 5.14)

Scene duration [s] 12.5

TX/RX antenna length [m] 0.3
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they are also found aliased at 2.4 s and 7.9 s, respectively, which in the end resulted
in several ambiguous targets as shown in Figure 5.14(a). The reason is that the PRF
is not su�ciently high (cf. Table 5.1 where the PRF is 1.5 KHz) to accommodate the
larger Doppler shifts caused due to their higher ground velocities (20 m/s and 35 m/s for
TargetID_0 and TargetID_2, respectively). In addition, without using track management,
the arti�cially added false target tracks are also never terminated. However, from Figure
5.14(b) it is clear that after using a Kalman �lter with (CV+CA)-based target motion
model as discussed in Section 4.2, track management (running here approximately after
every 2 s) and recognizing and correcting the Doppler back-folding (cf. Section 5.4.2), the
total number of tracked target tracks is reduced from 14 to 3 (plus 2 arti�cially introduced
false targets which are terminated after 2 to 4 s), which can be considered as very good.

5.5 Data Patch Extraction

One of the primary outcomes of the MTT algorithm is the ship data patches in range-
time domain (cf. dashed rectangular block in Figure 5.1). The extracted data patches are
used for generating high resolution ISAR image sequences of the ships which can later be
utilized for ship recognition and identi�cation purposes.

For explaining the data patch extraction procedure, consider Figure 4.2(b). In the
�gure it is shown that in a single CPI in range-Doppler, a clustered ship target has a
centroid position and a bounding box. The bounding box contains the range and Doppler
extents of the ship cluster with some guard zones. For patch extraction in time domain
and, hence, for ISAR imaging, the ship's range bins obtained from the bounding box are
used. An example is illustrated in Figure 5.15.

In Figure 5.15 top, there is only one ship present in the radar data. Furthermore,
the ship occupies a certain number of azimuth and range samples in the data. For ISAR
imaging either of the two variants of the ship data patches, as shown in Figure 5.15
bottom are needed. Variant 1 in the �gure contains the ship data patches which are
directly retrieved from the tracker, whereas for obtaining variant 2, an additional rough
range cell migration correction is performed on variant 1 as a preliminary step for ISAR
imaging. For this rough range cell migration correction, again the known target track, i.e.,
range over azimuth time, can be used.

An example of ship data patch extraction on real RC airborne radar data containing
a real ship signal is shown in Figure 5.16. Details related to the acquired radar data is
discussed in Section B.1.1 (cf. page 148) and the radar system and acquisition geometry
parameters are given in Table B.1 (cf. page 150).

Figure 5.16 top shows real airborne radar data acquired over a large area on the ground
(≈ 65 km2). After tracking a very small part of the acquired radar data, as shown in Figure
5.16 bottom is extracted. Note that the non-uniform ship data patches in the �gure are
due to cluster size variations caused by signal amplitude �uctuations over time.
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Figure 5.15: Illustration showing the ship data patch extraction for the potential future onboard
air-based maritime surveillance. Top: Acquired RC airborne radar data in the range-
time domain. A single ship signal present in the data is marked in the �gure. Bottom
left: Extracted ship data patch with some guard zones after performing detection
and tracking onboard the aircraft. Bottom right: Ship data patch after a rough range
cell migration correction. Either of the two variants in the �gure can be transferred
to the ground for further processing.

5.5.1 Data Reduction

The volume of the acquired airborne radar data is generally very high, especially if the
radar data are acquired with very high resolution over large swaths and long observation
times. Transferring the entire raw or RC radar data to ground is a very time-consuming
process. The data transfer could even take hours, depending upon numerous factors such
as the scene size, system parameters, data resolution, number of receiving channels and
mainly the available transmission bandwidth. Therefore, in the future, almost all pro-
cessing related to air-based ship surveillance is suggested to be carried out onboard the
aircraft. Only the data patches or the ISAR image sequences (if ISAR imaging is also
performed onboard) of individual ships shall be transferred to the ground. By doing this,
large amount of data reduction is possible.

As an example, consider a scene size of 30 km2 (3 km in ground range and 10 km in
azimuth) of the ocean surface. Already discussed in Section 3.5.4, for 30 km2 of ocean
area there are approximately 260 × 103 azimuth and 6 × 103 number of range samples.
Furthermore, assume that there is only one ship in the data. The ship is 100 m long and
it is moving perpendicular w.r.t the aircraft motion and it is illuminated by the radar
antenna beam for nearly 10 s. The number of azimuth and range samples for this ship

97



5 Ship Tracking using Single-Channel Range-Compressed Data

ship signal

Figure 5.16: Top: Real X-band VV polarized F-SAR RC airborne radar data. The data were
acquired using a linear �ight track. A real single ship signal contained in the acquired
radar data is marked in the �gure. Bottom: Extracted ship data patch in the azimuth
time domain after using the tracking information.

is approximately calculated as 25 × 103 and 200, respectively. Considering that there
are 1 to 10 ships of same length in the surveillance area then only 0.3% to 3% of the
total radar data needs to be transferred to the ground for further processing, respectively.
This could not only save a lot of time on data downlink but also enable an e�cient ship
surveillance.

5.5.2 ISAR Imaging

ISAR is a radar imaging technique which is used for generating two- or even three-
dimensional images of non-cooperative moving targets [108,121]. For the proposed airborne-
based maritime surveillance the data patches of individual ships along azimuth (cf. Fi-
gure 5.15 bottom) are fed to the ISAR processor for generating their focused image
sequences [49, 122].

A typical ISAR imaging algorithm is comprised of motion compensation step followed
by Fourier transform along azimuth for getting a focused range-Doppler image of the ship.
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Motion compensation is achieved by range realignment [123] and phase compensation
[124]. The former corrects the misaligned range pro�les of the detected ships and the
later compensates the phase errors that arises due to target motion. After doing these
operations and afterwards an additional cross-range scaling, a focused ISAR image of the
ship in ground range/cross-range can be obtained (cf. Figure 5.19) [108] .

5.6 Experimental Results with Real Data

In this section tracking and some preliminary ISAR results of a real ship using real RC
airborne radar data are provided. The radar data were acquired simultaneously in X-
and L-band using F-SAR sensor. The data contained a real controlled German police ship
which was observed for more than 400 s using circular acquisition geometry. Details of the
�ight experiments are given in Section B.1.1 (cf. page 148) and the system and acquisition
geometry parameters of the acquired airborne radar data are listed in Table B.1 (cf. page
150).

5.6.1 Tracking Results

Figure 5.17 shows the tracking results of a real moving ship in circularly acquired X-band
HH polarized F-SAR airborne radar data. Additional information related to the tracked
targets in Figure 5.17(b) is listed in Table 5.2.

In the circular radar data shown in Figure 5.17(a), the detected and clustered real
ship signal (cf. Section 4.1.2) is tracked using the (CV+CA) motion model-based KF (cf.
Section 4.2) and the data association method presented in Section 5.3.4. From detection
to tracking, all the algorithms are implemented in the range-Doppler domain.

As shown in Figure 5.17(b) there are in total nine target tracks. It is also observed
that if the gaps are signi�cantly larger (in the order of several minutes) multiple new
target tracks from a single target are created (cf. Figure 5.17(b) and Table 5.2 where a
single police ship has �ve di�erent target tracks).

In addition, some false targets or clutter are also detected, but they are very well
handled by the track management system (cf. Section 5.4.1). Since there were larger gaps
in the data, the tracks were therefore checked by the track management after every 4 s
(cf. Table 5.2 where the false targets are tracked for more than 4 s).

Using the tracked range information of the ship, the data belonging to the ship signal
are also successively extracted in time domain and are shown in Figure 5.17(c). The
extracted ship signals are used for generating the ISAR image sequences.
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Figure 5.17: (a) Circularly acquired real single-channel HH pol RC X-band radar data. (b)
Tracking results are shown in time domain after applying the detection and tracking
algorithms in the range-Doppler domain. The police ship, false and unknown targets
and gaps are marked in the �gure. (c) Zoomed-in detail of the successively extracted
ship data patch in time domain for ISAR imaging.

100



5.6 Experimental Results with Real Data

Table 5.2: Track duration of each tracked target from the tracking results shown in Figure
5.17(b).

Tracked Targets Track Duration [s] Remarks

Target ID_0 19.16 police ship

Target ID_1 4.26 false target

Target ID_2 4.89 police ship

Target ID_3 143.7 police ship

Target ID_4 4.26 false target

Target ID_5 3.51 police ship

Target ID_6 4.47 unknown

Target ID_7 5.75 unknown

Target ID_8 53.6 police ship

5.6.2 State-of-the-Art Tracker Performance Metrics

To evaluate the tracker performances there exist several state-of-the-art metrics like opti-
mal sub-pattern assignment (OSPA) [125] or generalized OSPA (GOSPA) [126]. However,
these metrics are primarily used for coastal radars or ship-borne radars with rotating
antennas with narrow pencil-shaped azimuth beams [20, 127]. In order to evaluate such
metrics, information like the true ground position of the target and the time duration of
its true trajectory in the region of interest must be known. These metrics in our airborne
radar scenario cannot be used because of two main reasons:

� Due to the use of only a single receiving channel, there is no angle information of
the target. As a result, the tracks cannot be projected on the ground and therefore,
its position on the ground cannot be calculated.

� As shown in Figure 1.1, due to the antenna pattern weighting, wider antenna be-
am and the non-ideal platform motion, it is also impossible to know exactly when
the target will enter and exit the beam. Therefore, true time on target cannot be
determined.

Considering the aforementioned reasons, it can be said that the popular metrics which
have been used for evaluating the multitarget tracking performance for marine radar
datasets are not suitable for the airborne radar data which are investigated in this thesis.

5.6.3 Range Accuracy in Circular Data

In this section the range position accuracy results of the controlled police ship using both
X- and L-band real single-channel airborne radar data acquired simultaneously during the
circular �ight track are presented. The X- and L-band circular radar data with the police
ship were already shown in Figure 5.17(a) and Figure 3.27(a), respectively.
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RMSE X-band: 13.18 m; RMSE L-band:  13.75 m Ship Dimension: 66 m x 11 m
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Figure 5.18: Range position di�erences computed over azimuth time for the controlled police
ship with dimensions 66 m × 11 m in both X- and L-band real airborne radar
data acquired simultaneously during the circular �ight track. Gaps marked in the
�gure, e.g., between 250-305 s, occur when the target is not illuminated by the
radar antenna beams. In the �gure, red and green vertical dashed lines with colored
guard zones correspond to the time instants when the ship moving direction was
perpendicular (either towards or away) and parallel or anti-parallel with respect to
the aircraft �ight direction, respectively.

For the accuracy assessment, the measured range position of the ship is compared
with its reference range position. The measured range position is derived from the center
of gravity of the ship cluster (cf. Section 4.1.2) and since it is a single position for the
ship, it is biased by the ship size (cf. Table 4.1 where the ship's length and beam are 66
m and 11 m, respectively).

The reference range position of the ship is calculated by using the GPS (Global Posi-
tioning System) position of the ship and the position of the aircraft at the same azimuth
time. Note here that the position of the GPS antenna on the ship is not known. Therefore,
the reference range position of the ship is also biased by the ship size.

After having the measured and the reference range positions of the ship at each
azimuth time, the range position di�erences are computed and the results are shown in
Figure 5.18.

From Figure 5.18 it can be seen that there are signi�cant gaps in the computed range
position di�erences in X-band circular data compared to the L-band data. This is because
the 3 dB azimuth beamwidth of the X-band antenna is smaller than that of the L-band
antenna (cf. Table B.1 in page 150). Moreover, during a circular �ight, the cross-wind
signi�cantly change the yaw angle of the aircraft and the target is not always illuminated
by the narrower antenna beam of the X-band radar.

Furthermore, it is also observed that the range position di�erences vary signi�cant-
ly during the total illumination time. Signal amplitude �uctuations and its constantly
changing moving direction with respect to the aircraft (magenta curve in Figure 5.18) are
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responsible for changing the measured and true range positions of the ship because of the
bias caused by the ship size.

The minimum and the maximum range position di�erences for the X- and L-band
circular radar data are (0.002 m, 23.25 m) and (0.005 m and 32.22 m), respectively. For
both the frequency bands, the observed maximum range position di�erences are within
66 m, which is the length of the ship.

Finally, the RMSEs of the tracked ship range history in X- and L-band radars are
calculated and they are found to be 13.18 m and 13.75 m, respectively. For the ship that
has a length of 66 m and a beam of 11 m, the calculated RMSE can be considered as very
good.

5.6.4 Preliminary ISAR Imaging Results

One primary advantage of circular �ights is that, due to the very long observation time,
dozens or even hundreds of ISAR images of the ships can be obtained under di�erent
aspect angles and used later for ship classi�cation and recognition purposes. In Figure
5.19 a small cut of such an ISAR image sequence is shown.

Figure 5.19: Some ISAR images obtained from the extracted RC ship data shown in Figure
5.17(c). The data were extracted after using the tracking information. The images
correspond to di�erent azimuth times and the coherent integration time for each
image is 1.7 s [49].

In the �gure the ISAR images were generated from the extracted data patch shown in
Figure 5.17(c) by applying the ISAR processor discussed in [49]. A coherent integration
time of 1.7 s was used for each ISAR image. The achievable azimuth (or cross-range)
resolution is a function of the radar system wavelength, the coherent integration time and
the target motion itself [108].
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5.7 Chapter Summary

This chapter proposed a novel range-Doppler-based MTT algorithm using single-channel
RC airborne radar data. The algorithm is applicable for linear and circular �ight tracks,
as shown in this chapter. However, there exists also no restriction for arbitrary �ight
tracks if the data are processed using small CPIs. The proposed MTT algorithm is also
expected to have real-time capability after an e�cient implementation of the algorithm
in a parallelized way using multicore or multiprocessing computers. The proposed tracker
is comprised of the following components:

1. a simple but e�cient data association block to do MTT and also to resolve detection
uncertainties;

2. a powerful track management system running simultaneously within the tracker for
updating the con�rmed tracks and for terminating the false and already �nished
tracks;

3. a Doppler aliasing block for extracting the true target range history and, hence,
the unambiguous Doppler history by identifying and considering the Doppler back-
folding.

The tracker also extracts simultaneously the ship data patches in time domain that
can later be used for ISAR image generation and recognition purposes. The complete
tracking module including the track management is designed using an SQLite database
as the core. The proposed tracking methodology was validated by using both simulated
and real experimental airborne radar data.

It is pointed out here that the proposed MTT algorithm can be integrated into mul-
tichannel radar systems where with the help of an additional estimated direction-of-arrival
(DOA) angle, the tracked Doppler and range history of the target can directly be projec-
ted to the ground. Details related to multichannel radar data processing and geocoding
techniques are presented in Chapter 6.
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This chapter presents methods for geocoding the extended targets using multichannel RC
airborne radar data. With multiple receiving antennas that are arranged in the along-
track direction of the aircraft, the radar-based detections from the targets can directly be
projected to the ground after computing their DOA angles. Most state-of-the-art DOA
angle estimation methods assume one detection per target. These methods cannot be
applied one-to-one on extended targets like ships, because individual ships in high reso-
lution data are generally composed of several distinct radar detections. In this chapter
di�erent methods for estimating the DOA angle for extended targets are formulated and
discussed. The performance of the proposed methods is assessed by using simultaneously
acquired AIS data of real ships. Experimental radar data from the DLR's multichannel
airborne DBFSAR system are used for validating the proposed methods in real maritime
scenarios.

Parts of the results and discussions provided in this chapter I have published in the
peer-reviewed journal paper [128]. I have also co-authored the journal papers [36,61] where
I have contributed in the development of the algorithms, and the geocoding results shown
in these papers are based on the methodology proposed in this chapter.

6.1 Introduction

In the previous chapters of this doctoral thesis the focus was on a single receiving channel
which was solely used for detecting and tracking targets in the range-Doppler domain.
However, single-channel systems have some limitations, for instance, with single-channel
systems it is not possible to do e�cient clutter suppression in order to detect slowly moving
targets with low RCS that are embedded inside the clutter bandwidth. Furthermore, such
systems are also incapable of projecting the radar-based target detections to the ground
due to lack of angle information of the target. To overcome these limitations of single-
channel systems, multichannel systems are used.

In a multichannel radar system when multiple receiving antennas are arranged in the
azimuth direction of the aircraft and if they are separated with a certain along-track
baseline, the signals received by these antennas can be combined after applying, e.g,
STAP-based clutter suppression techniques [129] for suppressing the ocean clutter. By
doing this, the detectability of low observable slowly moving targets which are present
inside the clutter Doppler spectrum can be enhanced. For suppressing the clutter and
to improve the target's detectability, at least two receive (RX) channels separated with
a certain baseline in azimuth are necessary. Clutter suppression techniques are brie�y
discussed but not investigated in detail in this chapter.
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Figure 6.1: Simpli�ed �owchart for estimating the target ground position using multichannel
airborne radar data. The DOA angle estimation block (shown in red) is the focus of
this chapter.

With an additional third receiving antenna, along with clutter suppression, it is also
possible to robustly estimate the motion parameters of the targets on the ground [33],
especially the target position on the ground after computing additionally the DOA angle
of the detected targets. The focus of this chapter is on the DOA angle estimation methods
using multiple receiving channels.

Before estimating the target's DOA angle and its ground position the phases of the
received signals are �rst calibrated [130�132]. Phase calibration is indispensable becau-
se in real-world, nonlinear aircraft motion caused by the atmospheric turbulence causes
unwanted phases di�erences among di�erent RX channels of a multichannel system. In-
correct phases can signi�cantly degrade the accuracy of the target's DOA angle which
then impacts the target's position accuracy on the ground. Therefore, in multichannel
data processing phase calibration is necessary in order to obtain accurate DOA angles
and, hence, accurate positions of the targets on the ground.

A simpli�ed multichannel airborne radar data processing �owchart for DOA angle
estimation and target geolocation is shown in Figure 6.1.

The algorithm operates on multichannel RC airborne radar data (receive channels RX
1, RX 2.... RX M in the �gure are the multiple receiving channels). The multichannel
data are initially partitioned into smaller CPIs along the azimuth direction. The length of
the CPI is system parameter dependent (cf. Section 2.7). The CPIs are then calibrated for
correcting the phase o�sets among the receiving channels [61]. After calibration individual
CPIs are then transformed into the range-Doppler domain via azimuth FFT (cf. Section
2.6).
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6.2 Target Detection using Multichannel Data

Target detection is carried out in the range-Doppler domain, where after detection, its
slant range and Doppler frequency position are measured and tracked over time. Details
related to the detection and tracking algorithms are presented in Chapter 3 and Chapter
5, respectively.

Once a target is detected its DOA angle is estimated via a beamforming operation [133].
With the estimated DOA angle, the measured slant range, the known terrain elevation,
and the known geographical aircraft position and the attitude angles, the target position
on the ground can directly be computed. Successive target detection and mapping on the
ground creates the target track that can further be fused with the simultaneously acquired
AIS data for validation purposes [63]. Note that an additional tracking can also be applied
on the geographical positions as the second tracking step, with the main goal of improving
the accuracy of the computed geographical positions. Ground track re�nement methods
are the future outlook of this doctoral thesis.

In the next sections multichannel radar data processing steps with the �nal goal of
calculating the geographical positions of the targets are presented.

6.2 Target Detection using Multichannel Data

Most state-of-the-art methods for target detection using multichannel data generally use
single-channel data structure [33]. In this sense, the detection framework shown in Figure
3.1 which operates on single-channel radar data, can be used for target detection using
multichannel data after transforming the multichannel data to single-channel data. The
multichannel radar data can be reduced to single-channel data in three di�erent ways, as
shown in Figure 6.2.

In the �gure it can be seen that the single-channel radar data in the presence of
multiple receiving channels can either be the data acquired using one of the receiving
channels (mode 1), the sum-channel data (mode 2) or the clutter-suppressed data (mode
3). In this thesis target detection is carried out using one of the receiving channels, as
shown by the mode 1 in the top left of Figure 6.2. From computation-time perspective,
target detection using this mode is the fastest with the disadvantage of degraded detection
capability of slow moving targets with low RCS.

For improving the detectability of such targets, the sum-channel or the clutter-
suppressed radar data can be used. In the sum-channel data, due to the coherent addition
of the number of receiving channels, the target SNR and, hence, the target detectability
can be increased. The sum-channel data Zsum(r, fa) in Doppler domain can be expressed
as

Zsum(r, fa) = |dH(u)Z (r, fa)|, (6.1)

where (·)H is the Hermitian operator (conjugate transpose), d(u) is the beamforming
vector (cf. (2.27)) and Z (r, fa) denotes the complex multichannel data in the range-
Doppler domain. Note that the sum-channel data only improves the target SNR but does
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Figure 6.2: Target detection strategy using multiple receiving channels. The multichannel radar
data are transformed into three di�erent single-channel radar data types. The detec-
tion, DOA estimation and geocoding algorithms are same for all the modes. In this
case, RX 1, RX 2,.. RX M are the multichannel range-compressed data of a CPI in
range-Doppler domain.

not guarantee the detectability of low RCS targets that are embedded within the clutter
band. This is because by adding channels coherently, along with the target power the
clutter power is also coherently added. For such situations, clutter suppression becomes
necessary.
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STAP is a very prominent multichannel clutter suppression technique. It not only
suppresses the clutter but also enhances the target signal energy. The STAP-based clutter
suppressed data Zcs(r, fa) can be written as

Zcs(r, fa) = |dH(u)R̂
−1
W(fa)Z (r, fa)|, (6.2)

where R̂W(fa) is the clutter covariance matrix (CCM). For achieving a good clutter
suppression capability, the CCM is generally estimated from the real data. For taking
into account the statistical variability of the data over space and time, the estimated
CCM needs to be frequently updated. When the CCM is estimated from the real data, it
is called �empirical CCM� which can be computed as [62,134]

R̂W =
1

nr

nr∑
k=1

Z kZ
H

k (6.3)

where nr is the total number of range bins.

The performance of sum-channel data and STAP-based clutter suppressed data for
target detection is not investigated in this doctoral thesis. However, the beamforming
vector d(u) in (6.1) is used for estimating the DOA angle of the detected target, and in
case of strong clutter contribution, the covariance matrix R̂W(fa) in (6.2) can be used
for clutter suppression purposes.

6.3 State-of-the-art DOA Angle Estimation for Point-Like Targets

After detecting the targets in the range-Doppler domain, the DOA angle is estimated for
projecting the radar-based target detections to the ground via a geocoding operation. A
point-like target is assumed for estimating the DOA angle. The multichannel acquisition
geometry for this task with the target of interest is shown in Figure 6.3 (cf. also Figure
2.6). In the �gure an antenna array that consists of M number of receiving channels
is shown. The multiple receiving channels are arranged in the along-track (or azimuth)
direction of the aircraft. The multichannel signal model for this acquisition geometry was
already given in (2.27).

Referring to (2.27), the beamforming vector d shown in the equation is used for estima-
ting the directional cosine and, hence, the DOA angle of the target. This is done through
a maximum likelihood estimator which is expressed as [135]

û = argmax
u

|dH(u)R̂
−1
W(fa)Z t(r, fa)|2, (6.4)

where û is the estimated directional cosine and Z t(r, fa) denotes the target's multichannel
data vector at slant range r and Doppler frequency fa, which is obtained after detecting
the target in the range-Doppler domain.
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Figure 6.3: Simpli�ed multichannel data acquisition geometry with M receiving channels and
the target of interest. The target range r and its corresponding DOA angle ψDOA

are shown in the �gure. The terms x1, x2, ...xM are the antenna center positions in
azimuth direction with respect to the array origin.

When the targets are expected to have high SCNR, they can be detected without
performing any clutter suppression. Therefore, the term R̂W(fa) shown in (6.4) can be
omitted and the directional cosine of the target can be rewritten as

û = argmax
u

|dH(u)Z t(r, fa)|2. (6.5)

This simpler equation is used later on for avoiding any biases on the performance assess-
ment caused by clutter suppression. The DOA angle of the target with respect to the
antenna array axis is then computed as

ψ̂DOA,ar = cos−1(û). (6.6)

The directional cosine u with respect to the antenna array can also be expressed as a
function of Doppler frequency fa and the LOS velocity vr0 of the target as [60]

u(fa, vr0) = cos(ψDOA) =
λfa
2vp

+
vr0
vp
. (6.7)

Rearranging (6.7), the LOS velocity of the target can be calculated as

vr0 = vp · u−
λ

2
· fa. (6.8)

After estimating the target's Doppler frequency and directional cosine unambiguously,
the above equation can directly be used for computing the target's LOS velocity.
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6.4 DOA Angle Estimation Methods for Extended Targets

6.4 DOA Angle Estimation Methods for Extended Targets

6.4.1 Problem Statement

For estimating the DOA angle the targets in classical moving target indication (MTI)
algorithms are assumed as point-like targets, as shown in Section 6.3. This assumption is
certainly valid for smaller targets (e.g., road vehicles) in low resolution data where each
target of interest is within a single radar resolution cell [48]. However, in high resolution
data, targets like ships usually appear as extended targets occupying more than a single
resolution cell and, as a result, state-of-the-art DOA angle estimation methods which are
designed for point-like targets,cannot be applied directly to extended targets.

An example is shown in Figure 6.4, where the ship HAM 316 (cf. Table B.3 in page
152 for speci�cations) has more than 4000 radar-based detections in a single CPI.

32 m

pixel-based geocoded 
radar detections

extent based on 
ship dimension 
from the AIS onboard GPS 

antenna 
location 
obtained from 
AIS data

Ship Name: HAM 316

AIS track

Google Earth

actual geographical 
ship center position 
obtained from AIS data

Figure 6.4: Geocoded radar-based detections obtained from a real ship at a speci�c time instant
using real multichannel airborne radar data. Due to the side-looking acquisition geo-
metry of the radar and the ship height, the detections are slightly displaced towards
the radar in its LOS direction. Positions 1, 2, 3 and 4 in the �gure are based on the
methods proposed in Section 6.4.2.

It can be seen from the �gure that the pixel-based detections obtained from the
ship are spatially distributed. This is because each detection is mapped on the ground
according to a speci�c DOA angle. The goal is to determine a single DOA angle, so
that a single position of the extended target on the ground can be determined. By doing
this, the target tracking becomes easier. In the next section four di�erent methods for
estimating a single representative DOA angle of an extended target are presented. All
point-like target detections of the extended target are combined in di�erent ways, �rstly
for being able to provide an object-based position estimation at all and, secondly, for
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improving the geocoding accuracy. The goal is to have a single representative position for
each extended target which, e.g., can be used later on for tracking purposes as described
in [52] and [36].

6.4.2 Proposed Methods

For an extended target, after detecting and clustering its several pixel-based de-
tections in a single CPI, the complex pixels belonging to the target are arranged as
Z t,set = {Z t(r1, fa1),Z t(r2, fa2)......,Z t(rN, faN)}, where N is the number of target-
originated pixels in a cluster (cf. Figure 6.4 where N>4000).

With the given set of complex target pixels Z t,set, the DOA angle of an extended
target is computed based on: 1) the average complex amplitude (ACA); 2) the maximum
of the absolute amplitude (MAA); 3) the complex amplitude at the nearest neighbor to the
center of gravity (NNCG) of the cluster and 4) the mean DOA angle of the target pixels.
For the �rst three methods, their respective complex signals that are used to estimate a
single DOA angle for an extended target are expressed as

Z t,ACA(r, fa) =
1

N

N∑
n=1

Z t(rn, fan), (6.9)

Z t,MAA(r, fa) = max |{Z t(rn, fan)}Nn=1|, (6.10)

Z t,NNCG(r, fa) = Z t(rNNCG, fNNCG), (6.11)

where rNNCG and fNNCG are the range and Doppler positions of the NNCG pixel. By
inserting independently the left-hand-side variables of the equations (6.9)-(6.11) in (6.5),
the directional cosine is obtained, and �nally, the DOA angle of the target can be computed
using (6.6).

For the fourth method, the DOA angle of the extended target is estimated as

ψ̄DOA =
1

N

N∑
n=1

ψ̂DOAn
, (6.12)

where ψ̄DOA is the mean DOA angle of the target and ψ̂DOAn
is the DOA angle of the nth

target pixel, which is computed using (6.6).

Although not investigated in this chapter the mean DOA method shown in (6.12) is
generally not robust against 2π phase wrappings. For instance, phase transitions from
2π to 0 would lead to wrong mean DOA angle estimates. To avoid this, some additional
e�orts are needed.
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One approach would be to �rst normalize the complex amplitude of the target pixel so
that a unity vector, and hence, only the signal phase is obtained. The normalized complex
amplitude Z t,norm(r, fa) can be computed as

Z t,norm(r, fa) =
1

|Z t|
Z t(r, fa), ∀Z t(r, fa) ∈ Z t,set (6.13)

After normalizing all target-originated complex pixel amplitudes to a value of 1, the DOA
angle estimation method based on ACA (cf. (6.9)) can be applied afterwards on all unit
vector complex amplitudes. By doing this, it can be expected that the biased caused by
the phase wrapping in mean DOA method is eliminated. This method is brie�y discussed
in this section but its performance is not evaluated. In this chapter more emphasis has
been given on the four methods which are described using equations (6.9)-(6.12).

As an example, these four methods are used for estimating the geographical position
of the ship HAM 316 at a speci�c time instant. The geocoding results are shown in
Figure 6.4. It can be seen from the �gure that the estimated ground positions of the ship
are di�erent because for each method, the computed DOA angle is di�erent. In Section
6.7.6 the accuracy of the estimated target ground positions achieved by these methods is
evaluated and discussed in detail.

6.5 Target Geolocation

After estimating the DOA angle of a target its position on the ground is computed based on
the acquisition geometry shown in Figure 6.5. In the �gure the coordinate system (x, y, z)
whose x-axis is parallel to the aircraft's azimuth direction and the global coordinate system
(xUTM, yUTM, zUTM), referred to as ENU (east, north, up) or UTM (Universal Transverse
Mercator) coordinates are shown. Note that the z-axis in the �gure is parallel to zUTM.

The distances ∆xr and ∆yr which are measured between the platform and the target
on the ground in (x, y, z) coordinate system are computed as

∆xr = rt cos(ψ̂DOA,az), (6.14)

∆yr =

√
(rt sin(ψ̂DOA,az))2 − h2t , (6.15)

respectively, where rt is the target's slant range, ψ̂DOA,az is the DOA angle estimated with
respect to the aircraft's azimuth direction and ht = zp − zt.

Finally, the target position vector x t,UTM in UTM coordinates can be calculated as

x t,UTM = xp,UTM +∆xr ex +∆yr ey − ht ez, (6.16)
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Figure 6.5: Simpli�ed top-view acquisition geometry for estimating the target position on the
ground. In the �gure xp and x t are the platform and the target position vectors,
respectively. The terms ψDOA,az,g and rt,g are the ground projections of ψDOA,az and
rt, respectively.

where xp,UTM is the platform position vector in UTM coordinates. The vectors shown in
(6.16) are written as [61]

ex = [cos(αp), sin(αp), 0]
T, (6.17)

ey = [A sin(αp),−A cos(αp), 0]
T, (6.18)

ez = [0, 0, 1]T, (6.19)

where αp is the aircraft's course angle measured with respect to the UTM Easting (x-axis).
The term A in (6.18) is equal to 1 for a right-looking antenna and -1 for a left-looking
antenna.

6.6 Multichannel Data Calibration

Data calibration is a crucial step in multichannel radar data processing for obtaining
accurate DOA angle and, hence, accurate position of the ground moving targets. To
explain the need for calibration, Figure 6.6 is shown.

In Figure 6.6 two DOA angles can be seen. One DOA angle is measured with respect
to the antenna array (ψDOA,ar), as shown by the red axis in the �gure and the other
DOA angle is measured with respect to the �ight direction (ψDOA,az), as shown by the
blue axis. For estimating accurately the ground position of the target using multichannel
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Figure 6.6: Simpli�ed multichannel antenna array with tilted acquisition geometry due to air-
craft's Euler angle variations. In the �gure DOA angles measured with respect to the
antenna array and the aircraft's azimuth axis are shown. The acquisition geometry
is shown in the (x, y, z) coordinate system (cf. Figure 6.5) [61].

data, ψDOA,az is used (cf. Figure 6.5, (6.14) and (6.15)). However, conventional DOA angle
estimation algorithms estimate ψDOA,ar (cf. (6.6)). In order to use ψDOA,ar for computing
the target's ground position the antenna array must be perfectly aligned with the aircraft's
azimuth direction so that after alignment, ψDOA,az = ψDOA,ar (cf. Figure 2.6).

However, in practice, atmospheric turbulence causes variations in the aircraft's Euler
angles (cf. Figure 6.6). These variations tilt the antenna array with respect to the air-
craft's azimuth direction (cf. red axis in Figure 6.6). Such tilts introduce unwanted phase
di�erences among multiple receiving channels and as a result, ψDOA,az ̸= ψDOA,ar. These
undesired phase di�erences among multiple RX channels need to be compensated so that
the DOA angle and, hence, the target ground position can be accurately estimated. By
calibrating the phases this will give the same results which will be obtained if the antenna
array would be perfectly aligned with the aircraft's azimuth direction. In other words, it
can be said that after phase calibration, ψDOA,az = ψDOA,ar.

In this thesis the algorithm proposed in [61] is used for calibrating the phases of the
multichannel radar data. The proposed phase calibration algorithm has real-time capa-
bility and it is also robust against strong aircraft Euler angle variations. It compensates
the undesired phase di�erences via �rst-order motion compensation techniques. For this,
it uses the precise geographical positions of all bistatic phase centers of the receiving
antennas as well as the terrain's elevation from a digital elevation model (DEM).

To examine the robustness of the phase correction algorithm, Figure 6.7 shows the
ATI (along-track interferometry) phase o�sets between channel 1 and channel 2 of real
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Figure 6.7: ATI phase o�sets calculated between channel 1 and channel 2 of multichannel radar
data set IV (cf. Figure 6.9 top)(a) before and (b) after applying the phase correction
algorithm proposed in [61]. (c) Histogram plots of the ATI phases for the ROI shown
in (a) and (b).

multichannel radar data (cf. data set IV in Figure 6.9 top) before and after phase correc-
tion. The ATI phase o�sets are estimated by multiplying the complex signal received by
the �rst antenna element in the aircraft's azimuth direction with the complex conjugate
of the co-registered signal of the second antenna.

In Figure 6.7(a) it can be seen that without applying the phase correction, the com-
puted ATI phase o�sets vary along range and azimuth due to the Euler angle variations
caused by the atmospheric turbulence. However, after phase correction, the obtained ATI
phases are well compensated and are nearly equal to zero (cf. Figure 6.7(b)). This is con-
�rmed by the histogram plot shown in Figure 6.7(c) where the ATI phase o�sets for the
selected ROI are centered at zero degrees for the phase calibrated data.

6.7 Experimental Results and Discussion

After discussing important multichannel data processing steps and proposing di�erent
DOA angle estimation methods for extended targets, the performance of the proposed
methods are evaluated in this section. Real ships present in real multichannel airborne
radar data are used for the evaluation purposes. The multichannel radar data were acqui-
red using DLR's DBFSAR airborne radar system in real maritime scenarios. This section
�rst provides some details of the multichannel �ight campaigns that were conducted using
DBFSAR senor followed by the experimental results and discussions.
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Figure 6.8: Google Earth image showing the test site in North Sea near Cuxhaven, Germany.
The data sets marked in the �gure are described in Table B.2 (cf. page 151).
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Figure 6.9: Top: Google Earth image of the Ammersee test site. The data sets marked in the
�gure are described in Table B.4 (cf. page 153). Bottom: Optical ground image of
�ve small controlled electrical boats and one sailing boat with their corresponding
GPS tracks [61].

6.7.1 Multichannel Flight Campaigns

Two multichannel �ight campaigns using the DBFSAR airborne radar sensor were carried
out in the frame of this doctoral thesis. The �rst �ight campaign was conducted in 2019 in
the North Sea near town Cuxhaven in Germany where several ships of opportunity were
observed. Figure 6.8 shows the Google Earth image of the North Sea test site where several
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multichannel radar data were acquired. In the �gure data sets I and II were acquired
during a linear �ight track (in stripmap mode) and the data set III were acquired during
a circular �ight track to observe a semi-annulus region. The acquisition geometry and the
system parameters of the acquired radar data are listed in Table B.2 (cf. page 151).

The second �ight campaign was conducted in 2020 over the Lake Ammersee in southern
Germany. Figure 6.9 top shows the the Google Earth view of the Ammersee test site. For
the investigations three radar data sets from this campaign were considered. In the �gure
data set IV and V were acquired in the same azimuth direction. The radar data acquisition
and geometry parameters for these data sets are listed in Table B.4 (cf. page 153).

The goal of the Ammersee �ight campaign was to detect, track and geolocate slowly
moving small boats. For this reason, �ve electrical boats (size ≈ 3.5 m x 1.5 m) and a
sailboat (size ≈ 5.0 m x 2.0 m) were considered in this experiment. It can be seen in the
bottom right of Figure 6.9 that the boats #1-4 moved in linear tracks whereas, boat #5
moved in circles and boat #6 moved freely within the given ROI.

6.7.2 Ground Truth Data

Ground truth data are needed for assessing the performance of the proposed DOA angle
estimation methods and for evaluating the position accuracy achieved by these methods.
For the North Sea campaign the received AIS positions from the ships (cf. Figure B.5)
and for the Ammersee campaign the GPS positions of the boats (cf. Figure 6.9, bottom),
obtained from handheld GPS tracking devices, are used as the ground truth.

Reference Ship Position

The GPS antenna of the AIS transceiver is used for determining the ship's �true� position
on the ocean surface and for evaluating the ground position accuracy. However, the GPS
antenna may be mounted at di�erent positions on di�erent ships. For instance, in Figure
6.4, the GPS antenna is located in the front of the ship, as shown by the red circle in
the �gure. Because of such inconsistency in the GPS antenna or the AIS positions, it is
not advisable to use them directly for evaluating the position accuracy on the ground.
Moreover, in Figure 6.4 it also can be observed, that the position estimates labeled with
the red pins 1, 2, 3 and 4 are never located at the edges of the clustered pixel-based
detections (white dots in Figure 6.4), but are located closer to the cluster center.

To address this issue and to make the evaluation fair and consistent, the actual geo-
graphical ship center position is computed for each ship and it is used as the reference
position for accuracy assessment purposes. This ship center position is derived from the
AIS data by taking into account the known ship dimensions (yellow border in Figure 6.4)
and the known location of onboard GPS antenna (red dot in Figure 6.4). An example is
already shown in Figure 6.4 where the green circle in the �gure is the ship center position
obtained from the AIS data. Note that this operation is required for the ships that are
present in the North Sea data sets due to their large size, and it is not necessary for the
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boats in the Ammersee campaign since the boats in the data are very small (less than 5
m).

Ship Center Position Computed Using the AIS Data

Interpolated Position

Extrapolated Position

ship moving 
direction

moving 
ship

radar illumination time

time

Obtained after Linear 
Interpolation

10 s3 s 5 s

Ship Trajectory after Interpolation

Figure 6.10: Exemplary illustration showing the interpolated AIS-based ship center positions
which are obtained after linear interpolation. The �gure also shows the time during
which the airborne radar illuminates the ship. Ship center position computed from
the AIS, interpolated and extrapolated (where the ship position is predicted after
some time) positions in the �gure are indicated by the black, red and green dots,
respectively.

After computing the ship center positions, they are interpolated. Interpolation is ne-
cessary because the AIS-based ship position messages are obtained irregularly and their
reporting interval can vary between two seconds and three minutes depending on the ves-
sel's speed and/or course angle changes [136]. Besides, the time corresponding to the ship's
center position do not usually match with the CPI center time of the radar acquisition.

To explain this, a simple example is shown in Figure 6.10. In the �gure, irregularly
received ship center positions from the AIS and the time when the airborne radar il-
luminates the ship (blue shaded region) can be seen. During the illumination the radar
computes the geographical positions of the ship for di�erent time instants. However, there
are no corresponding AIS-based ship center positions available at the time of illumination.
To �ll the gaps in ship center positions, linear interpolation is performed with an assump-
tion that between two ship center positions, the ship is moving with a constant velocity
(cf. ship trajectory after interpolation in Figure 6.10). After interpolating the ship center
positions it can be expected the true and the measured positions are both time-aligned
and the position accuracy can be evaluated over time or over several successive CPIs (cf.
Figure 6.13 center). Note that for future applications high precision is required. Therefo-
re, instead of linear interpolation, a quadratic function or even higher order polynomial
functions shall be used.

119



6 Multichannel Data Processing and Geocoding

Reference DOA angle

The reference DOA angle is computed for validating the proposed DOA angle estimation
methods. For computing the reference DOA angle, the reference range is �rst obtained.

If (xt, yt, zt) is the target position (reference ship center position) and (xp, yp, zp) is
the aircraft position in (x, y, z) coordinate system (cf. Figure 6.5), the reference range
rt,ref is calculated as

rt,ref =
√

(xt − xp)2 + (yt − yp)2 + (zt − zp)2. (6.20)

The reference DOA angle ψDOA,ref is then computed using the following expression

ψDOA,ref = cos−1

(
xt − xp
rt,ref

)
. (6.21)

6.7.3 Phase Calibration Results

Before evaluating the accuracy of the proposed DOA angle estimation methods, the per-
formance of phase calibration is �rst evaluated. For this, geocoding results of real targets
in real multichannel data obtained before and after phase calibration are presented in
this section. The results are shown in Figure 6.11. They are generated for the controlled
boats which were present in the multichannel data set IV of the Ammersee campaign (cf.
Figure 6.9 top). The ACA-based DOA angle estimation method shown in (6.9) and the
geocoding method discussed in Section 6.5 are used for mapping the detections to the
ground.

From Figure 6.11 top it can be seen that without applying phase correction the radar-
based geocoded detections from the boats are signi�cantly displaced from their correspon-
ding actual GPS tracks, giving an average position error of approximately 200 m. However,
after correcting the phases, the geocoded detections from the boats are found closer to
their corresponding GPS tracks and the position error signi�cantly reduced to less than
20 m. More discussions on the ground position accuracy achieved with and without phase
calibration for all the boats in the multichannel data sets are provided in [61].

It is mentioned here that all plots, accuracy assessment tables and �nal geocoding
results which will be shown in the next sections are obtained after phase calibration. This
is because only after phase calibration the accuracy of the obtained estimates can be
evaluated and compared with the ground truth data.
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Figure 6.11: Geocoded radar detections (orange) and GPS tracks (white) of the moving boats
in multichannel data set IV (cf. Figure 6.9 top): without (top) and with phase
correction (bottom). The boats are shown in Figure 6.9 bottom. Boat #4 is not
detected in the data due to its low SCNR. Arrows in the �gure indicate the moving
directions of the boats [61].

6.7.4 DOA Angle Distribution

Figure 6.12 provides a visual representation of the measured DOA angle distribution by
plotting the PDF of the DOA angles for ship HAM 316 (cf. Figure 6.4 and data set I in
Table B.3) obtained from a single CPI, together with the DOA angles computed using
the methods proposed in Section 6.4.2.

From the �gure it can be seen that the DOA angles seemingly follow a Gaussian
distribution. In addition, the DOA angles estimated using the four methods, the DOA
angle estimated from the AIS position and the reference DOA angle estimated from the
ship center position are all within the ±3σDOA limit of the distribution.

In the next sections the performance of the proposed DOA angle estimation methods
are evaluated. For the assessment of the proposed methods, the target's DOA angle dif-
ference, the azimuth position di�erence and the RMSE of the target absolute position on
the ground are used as the performance metrics.
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Figure 6.12: Normalized histogram of the estimated DOA angles available from ship HAM 316
(cf. Figure 6.4) in a single CPI. In the �gure, the DOA angles estimated using the
four proposed methods, the DOA angles based on the AIS position and the ship
center position are shown.

6.7.5 DOA Angle and Azimuth Position Difference

The DOA angle di�erence ∆ψDOA is computed between the estimated and the reference
DOA angles of the target. The DOA angle di�erence is further used for computing the
target's azimuth position di�erence ∆xaz which is expressed as [60]

∆xaz = rt · sin(∆ψDOA), (6.22)

where the term rt is the target's slant range which in case of an extended target is obtained
based on the method discussed in Section 4.1.2.

Figure 6.13 top and center show ∆ψDOA and ∆xaz estimates for the proposed methods
over several successive CPIs for the ship AURORA, respectively. The ship is detected in
data set III (cf. Figure 6.9) and its AIS-based speci�cation are given in Table B.3 (cf.
page 152).

For Figure 6.13 top the average DOA angle di�erences obtained using the ACA, MAA,
NNCG and the mean DOA methods are 0.12◦, 0.28◦, 1.03◦ and 0.18◦, respectively. Their
corresponding average azimuth position di�erences are calculated as 7.06 m, 16.22 m,
59.73 m and 10.77 m, respectively.

For the methods based on MAA and NNCG, the DOA angle and the azimuth position
di�erences are the highest. This is because the DOA angles calculated for these methods
are based on the phase derived from a single pixel. Such a phase value is susceptible
to a high additive phase noise component that can bias the estimated DOA angle and,
hence, the ground position accuracy of the extended target, especially under low SCNR
conditions which may occur due to small aspect angle change.

On the other hand, for the method based on ACA, the DOA angle is estimated after
averaging the complex amplitude pixels of the target. By averaging it is expected that
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Figure 6.13: Ship AURORA: DOA angle di�erence (top), its corresponding azimuth position
di�erence (center) and its SCNR band (bottom) over several successive CPIs.

the phase �uctuations among the detected target pixels is signi�cantly reduced and thus,
the estimated DOA angle is improved as shown by the brown curve in Figure 6.13 top.
For the method based on the mean DOA angle, it can be seen that, like the ACA-based
method, the estimated DOA angles and the azimuth position di�erences also show low
�uctuations.

However, it is pointed out here that if individual CPIs contain thousands of detected
target pixels, as shown in Figure 6.4, the ACA-based method can be up to thousand
times faster than the mean DOA angle method. To show this, the average processing
time needed for computing the DOA angles using all proposed methods are calculated
and the results are shown in Table 6.1. Ship HAM 316 shown in Figure 6.4 was chosen
for calculating the processing times needed by each method. Each method is executed
hundred times and an average processing time is then obtained. The processing server
used for this purpose is a 32-core 2.10 GHz Intel(R) Xeon(R) Gold 6130 CPU, which has
several running tasks and is simultaneously used by other users (cf. Section 3.5.4).

In Table 6.1 it can be seen that in comparison to the ACA-based method, the mean
DOA method is nearly four thousand times slower. This is because for the latter method,
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Table 6.1: Average processing time of the proposed DOA estimation methods needed for deter-
mining the geographical positions of the ship HAM 316 shown in Figure 6.4 in a single
CPI.

Estimation Methods Processing time [s]

ACA 6.5e-03

MAA 5.07e-03

NNCG 5.46e-03

Mean DOA 21.22

Google Earth55 m

AIS Tracks 

Radar Detections

Figure 6.14: Google Earth visualization of ship AURORA. The AIS tracks (white) and radar-
based geocoded detections (orange) of the ship for all CPIs are shown in the �gure.

the beamforming and, hence, the DOA angle is estimated for each detected target pixel
(cf. (6.5)) and for the ACA-based method, beamforming is performed only once, i.e., on
the average complex target amplitude only. Therefore, the method based on ACA is more
suitable for real-time applications.

The ACA-based method is used for geocoding the ship AURORA and its Google Earth
representation is shown in Figure 6.14. In the �gure the geocoded detections from the ship
are shown for all CPIs (cf. Figure 6.13 where the ship has been detected and tracked in
over 80 CPIs).

6.7.6 Ground Position Estimation Accuracy

This section is divided into two parts. In the �rst part the performance of the proposed
DOA angle estimation methods using all ships present in 2019 North Sea multichannel
radar data sets are evaluated. Based on the geocoding results, an appropriate DOA angle
estimation method is then selected. In the second part the selected DOA angle estimation
method from the �rst part is used for evaluating the ground position estimation accuracy
of the boats in the Ammersee data sets followed by their Google Earth visualizations.
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Table 6.2: RMSE assessment of the absolute ground positions of all the ships in the North Sea
multichannel data sets using the proposed DOA angle estimation methods. The AIS-
based speci�cations of the ships are given in Table B.5 (cf. page 151). The numbers in
bold show the best accuracy achieved with the proposed methods. Tracking time and
the target average SCNR values are some additional information of the ships obtained
after tracking (cf. Chapter 5).

Absolute Ground

Position Error [m]

Tracked

Time

[s]

Target

Average

SCNR

[dB]

ACA MAA NNCG Mean

Ship Name Data Set I

LANGELAND 27.27 62.17 110.47 12.22 4.31 28.76

LONGDUIN 34.83 35.91 59.79 11.82 2.85 19.32

HAM 316 37.44 51.34 159.92 27.55 4.25 27.71

Data Set II

CHARISMA 15.98 41.71 89.76 12.32 4.72 23.45

HOFFNUNG CUX10 11.91 48.33 80.79 14.44 4.85 22.16

SAPHIR 9.21 38.82 98.08 6.67 5.49 29.11

GEO GRAPH 17.39 32.31 69.29 13.43 4.13 25.18

UTHOERN 11.39 24.67 86.42 6.05 4.13 27.43

WANGEROOGE 14.22 52.21 52.86 11.86 3.96 25.35

FAIR LADY 30.03 66.38 129.65 28.13 6.62 32.35

MT BLUE STAR 111.54 98.63 166.17 100.93 4.68 28.64

VEGA GRANAT 69.02 58.18 135.95 37.05 4.17 31.03

Data Set III

GEO GRAPH 14.66 64.31 126.49 12.18 4.04 28.55

TINA CUX-5 17.35 50.99 144.35 19.65 4.72 25.64

AURORA 13.52 45.06 110.19 17.33 4.04 26.07

PILOTVESSEL HANSE 23.08 106.84 109.24 42.97 3.45 31.93

RMS RATINGEN 32.82 53.03 140.59 33.25 3.49 33.25

LONGDUIN 48.93 54.05 188.77 26.03 3.79 30.11

Average 30.03 54.72 114.38 24.14

The ground position accuracy results for all the ships in North Sea data sets obtained
using the DOA estimation methods proposed in Section 6.4.2 are shown in Table 6.2. The
methods based on the mean DOA angle and the ACA are the best ones, achieving an
overall position accuracy of 24 m and 30 m, respectively. Among these two methods, the
ACA-based method is preferred because it is by a factor of thousand times computatio-
nally more e�cient than the mean DOA angle method (cf. Table 6.1), making it a suitable
choice for future real time applications where low processing time is important.
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Figure 6.15: Geocoding results for multichannel radar data set III. (a) Real RC X-band VV
polarized airborne radar data. The data were acquired during a circular �ight track
to observe a semi-annulus region. RC data containing only the ocean is shown within
the yellow box in the �gure. (b) Binary target detection map of the processed RC
data shown in (a). (c) Ship tracking results. Tracked ships with their individual
IDs are marked in the �gure. Targets with ID_2, ID_4, ID_6, ID_11, ID_17 and
ID _18 corresponds to ships PILOTVESSEL HANSE, TINA CUX-5, AURORA,
LONGDUIN, RMS RATINGEN and GEO GRAPH, respectively (cf. Data set III in
Table 6.2). (d) Google Earth visualization of the geocoded radar-based detections
of all the tracked ships in the data. Detailed view of the mapped detections from
(e) Ship PILOTVESSEL HANSE and (f) Ship TINA CUX-5. Ship dimensions are
shown in the �gure. The arrows indicate the ships' moving direction.

The ACA-based method is used for geocoding the radar-based detections of all the
ships in North Sea data sets. Figure 6.15 shows the geocoding results of the multichannel
data set III (semi-circular �ight in Figure 6.8). Along with the geocoding results, its
corresponding detection and tracking results are also provided. For the multichannel data
sets I and II, their �nal geocoding results are shown in Figures C.1 (page 155) and C.2
(page 156), respectively.

The ACA-based DOA angle estimation method is also used for calculating the absolute
ground position errors of the detected boats in the Ammersee data sets IV-VI (cf. Figure
6.9). The results are shown in Table 6.3. From the table it can be seen that the position
errors of the boats are better than 20 m, which can be considered very good, given the
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Table 6.3: Absolute ground position errors of the detected boats in multichannel data sets IV-
VI. Boats #1-5 are the electric boats and Boat #6 is the sailboat (cf. Figure 6.9
bottom) [61].

Boat (#)

Absolute Ground

Position Error

[m]

Tracking

Time

[s]

Target

Average

SCNR

[dB]

Ship Moving

Direction w.r.t

the Aircraft

[◦]

Data Set IV

1 17.21 3.83 17.40 12

2 16.62 3.06 16.43 180

3 10.42 1.96 15.96 262

5 10.21 3.53 15.29 141

6 9.72 3.62 18.63 177

Data Set V

1 9.67 2.34 19.27 195

2 15.84 3.45 17.95 176

4 10.19 2.55 16.83 227

5 14.33 2.46 14.27 -47

6 10.31 3.74 19.11 40

Data Set VI

1 19.16 3.28 17.12 175

2 10.21 3.36 15.71 -23

3 7.63 0.68 13.71 239

4 10.39 3.48 19.44 186

5 13.38 3.23 14.15 -72

6 9.31 2.04 22.61 -13

SCNR of the moving boats and the strongly changing aircraft Euler angles of the acquired
radar data (cf. Figure 6.6 left).

Note that in data set IV and V in Table 6.3, Boat #4 and Boat #3 were not detected,
respectively. This is because the boats have low re�ectivity due to their dimensions and
structure. Moreover, since the boats were also moving very slow, they were embedded
inside the clutter region, making them harder to detect. One way to enhance the detecta-
bility of these boats is to use either sum-channel data or STAP-based clutter-suppressed
data (cf. mode 2 and mode 3 in Figure 6.2). However, these investigations are out of the
scope of the present doctoral thesis.

Finally, Figure 6.16 shows the geocoding results obtained for data set VI using the
ACA method. Similar to Figure 6.15, its corresponding detection and tracking results
are also provided. For multichannel data sets IV and V, their �nal geocoding results are
shown in Figures C.3 and C.4 in pages 157 and 158, respectively.
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Figure 6.16: Geocoding results for multichannel radar data set VI. (a) Real RC X-band VV
polarized airborne radar data. Data containing the radar backscatter from the lake
region is shown within the yellow box in the �gure. (b) Binary target detection map
of the processed RC data shown in (a). (c) Tracking results. Tracked targets with
their individual IDs are marked in the �gure. (d) Zoom in detail of the ROI shown
in (c). The ROI contains the controlled boats used for the experiments. All boats
are detected in this data set. Targets with ID_7, ID_8, ID_10, ID_11, ID_12, and
ID_15 corresponds to Boat numbers 2, 4, 5, 3, 1 and 6, respectively (cf. Data set VI
in Table 6.3). (e) Google Earth visualization of the geocoded radar-based detections
of all the tracked targets in the data. Detailed view of the mapped detections from
(f) Boat #1 and (g) Boat #4. Arrows indicate the boats' moving direction.
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6.7.7 Line-of-Sight Velocity and Moving Direction Estimation

Although not investigated in this chapter the velocity and the moving direction of the
target can be estimated using the ground track information shown in Figure 6.17. In the
�gure the target is assumed to move along a straight line with a certain velocity v0 and
moving direction αt. For simplicity, the target acceleration is ignored in the estimation
and the target is assumed to move with a constant velocity.
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Figure 6.17: Target moving along a straight line in Cartesian coordinates. In the �gure target's
absolute ground velocity and moving direction are shown.

Assuming that the target has moved distances ∆xg in along-track and ∆yg in across-
track direction in time ∆t, then the target's along-track velocity v̂x0 and the ground range
velocity v̂y0 can be estimated as

v̂x0 =
∆xg
∆t

, (6.23)

v̂y0 =
∆yg
∆t

, (6.24)

respectively. The absolute ground velocity of the target is then computed as

v̂0 =
√
v̂2x0 + v̂2y0. (6.25)

The target's moving direction with respect to the along-track direction can be obtained
by using
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α̂t = arctan

(
v̂y0
v̂x0

)
. (6.26)

For estimating the target motion parameters using (6.25) and (6.26), large tracking times
are required so that the targets are able to travel at least their size during the total
observation time. However, not all ships, especially larger ones with short tracking times,
manage to travel their own lengths in total illumination time. For these vessels the LOS
velocity computed from (6.8) and the estimated Doppler slope obtained as a byproduct
of the ISAR imaging algorithm can be used for a rough velocity and moving direction
estimation [33,137]. The investigation of these promising approaches are left for the future
(cf. #3 in Section 7.2).

6.8 Chapter Summary

In this chapter a comprehensive multichannel radar data processing and geocoding techni-
ques for projecting extended targets on the ground were presented. Targets were mapped
to the ground after estimating their DOA angles via a geocoding operation. Di�erent
DOA angle estimation methods for extended targets were proposed and discussed in this
chapter. The accuracy of the proposed methods were evaluated using real X-band VV po-
larized multichannel radar data sets acquired with the DLR's DBFSAR system, in which
ships and boats with di�erent dimensions and moving directions were contained. Based
on the experimental results, it is recommended using the average complex amplitude me-
thod for estimating the DOA angles of extended targets. This method allows not only for
achieving an acceptable position accuracy, but it is also computationally e�cient and has
real-time processing capability.

It is pointed out here that in two of the investigated multichannel radar data, two
slowly moving boats (one in each data) were not detected because of very strong clutter
power contribution. In the future clutter suppression techniques based either on STAP or
displaced phase center antenna (DPCA) [138] are envisaged to improve the target detecti-
on capability. Furthermore, in this doctoral thesis, due to lack of appropriate multichannel
radar data, target motion parameters such as absolute velocity on the ground and moving
direction were not estimated. Therefore, more �ight experiments shall be planned in the
future, especially circular �ights with long observation times like the one shown in Figure
B.1 bottom (cf. page 147) which unfortunately, was carried out without having multiple
RX channels. In future campaigns, similar �ight tracks will be considered but with the
multichannel DBFSAR system.
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This section summarizes the results obtained in this doctoral thesis and provides an
outlook for the future research and development on airborne radar-based maritime moving
target monitoring using these results.

7.1 Discussion

In this thesis a maritime surveillance processing chain using airborne radar sensors was
presented. The thesis contributed to the development of novel algorithms for target detec-
tion, tracking and geocoding modules of the processing chain. As input range-compressed
(RC) airborne radar data were used for developing the algorithms. For target detection
and tracking, single-channel RC radar data whereas for geocoding, multichannel RC radar
data were used. The reasons for preferring RC data over fully focused SAR images were
justi�ed in Chapter 2.

Target detection was carried out in the range-Doppler domain of the RC data. The
bene�ts of detecting targets in the range-Doppler domain were explained in Section 2.6.
Targets were detected after computing a threshold using CFAR-based sea clutter models.
For a valid and bias-free detection threshold computation, �target-free� ocean training data
is necessary. Therefore, an automatic training data extraction procedure was developed in
Chapter 3. It has a novel target pre-detection module which cancels the outliers in the form
of bright target peaks and high clutter peaks in time domain, followed by normalization
over Doppler with remaining samples and �nally, detection threshold computation using
a suitable sea clutter model.

Considering the strong sea spikes, present mainly in the near and mid range (15◦−30◦

incidence angle), and the low CNR (clutter-to-noise ratio) in the far range (> 50◦ incidence
angle) of the airborne radar data, it was found that the conventional K-distribution model
is not a good choice. Therefore, several stochastic sea clutter models were investigated
in the chapter and two di�erent models for CFAR detection were recommended: the K-
Rayleigh distribution in near and mid ranges and the 3MD model in far range. In these
models, the threshold amplitude errors and the false alarm rate errors were found to be
at the minimum level, which signi�cantly improved the target detection capability at the
cost of increased computation time.

After detection, individual ships were tracked in the range-Doppler domain using a
motion model proposed in Chapter 4. Since ships are extended targets in high resolution
data, the center of gravity of the ship clusters were tracked by the motion model. The mo-
tion model was incorporated in the framework of the Kalman �lter for a more robust and
e�cient target state estimation. The proposed motion model together with the Kalman
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�lter provide not only an accurate target motion modeling but it also has the ability to
close the gaps in the target trajectory caused due to several missed target detections.

Furthermore, in a multi-target tracking (MTT) scenario, along with the target motion
model and the Kalman �lter, a data association method was proposed in Chapter 5
for associating the detections at the current time step with already existing tracks for
reconstructing the trajectory of individual targets. During tracking, several false or ghost
target tracks were automatically recognized and terminated by the track management
algorithm, which was integrated within the tracker. In addition, the tracker was also able
to detect and correct the Doppler aliasing for obtaining target range and Doppler history
without any wrapping e�ects. The entire MTT framework was developed using a SQLite
database structure. The database can store all the tracked targets with their relevant
motion-related parameters which can easily be extracted with low e�orts, if required in
future. The target tracks in range-Doppler were then utilized for two main applications;
�rst, for extracting simultaneously the ship data patches in time domain which can be
used for generating the high resolution inverse SAR (ISAR) image sequences of the target
and second, for projecting the target tracks to ground after computing additionally the
DOA angle using the multichannel radar system.

In Chapter 6 di�erent DOA angle estimation methods for geocoding the extended
targets using multichannel radar data were proposed. Based on the experimental results
which contained real ships and small boats with di�erent dimensions and moving direc-
tions, it was recommended to use the method based on the average complex amplitude.
This method was found not only computationally more e�cient, but also gave a position
accuracy of less than 30 m, which is very good for radar-based ship monitoring using an
airborne radar sensor.

In this thesis, all the aforementioned algorithms are complete and fully functional.
The overall performance of these algorithms have high potential for airborne radar-based
moving target monitoring, especially when taking into account that the algorithms are
applicable for simple to complex real maritime scenarios and to strongly changing aircraft
attitude angles.

7.2 Future Work and Outlook

The ongoing research activities presented in this section will incorporate the results and
�ndings of this doctoral thesis to further strengthen the ship surveillance capability of
airborne radars.

1. Optimization of the detection algorithm: The detection algorithm presented in
Chapter 3 showed very good detection performance at the cost of high computation
time (cf. Table 3.6). In future a multiprocessing approach where multiple cores
will be used for implementing the algorithm in a parallelized manner, taking also
into account graphical processing units (GPUs) is recommended for reducing the
computation time.
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2. Clutter suppression using multichannel data: In the case of high sea states
where the radar backscatter received from the sea clutter is very strong, the de-
tectability of slow moving targets with low RCS signi�cantly decreases. In order to
improve the target detection capability various clutter suppression techniques based
on, e.g., DPCA or STAP shall be investigated. By suppressing the clutter and incre-
asing the target SCNR, these techniques will enable the detectability of the targets
with low RCS embedded within the clutter Doppler spectrum. For this, additional
�ight campaigns over locations with di�erent sea states are needed.

3. Ship motion parameter estimation: Methods for estimating relevant ship mo-
tion parameters such as its absolute ground velocity and moving direction shall be
investigated. For instance, the DOA equation shown in (6.7) and the focusing para-
meters obtained from the ISAR imaging may be used for estimating the LOS velocity
and the moving direction, respectively. In addition, for ships that have traveled mo-
re than their size during the entire observation time, their motion parameters can
also be estimated using (6.25) and (6.26). Note that to improve the accuracy of
the estimated motion parameters, an additional tracking of the computed geoco-
ded positions might be needed. Such a tracking may re�ne the ground position of
the target, thereby improving not only the accuracy of the target's position on the
ground but also the accuracy of the estimated motion parameters.

4. Ship size estimation: Ship dimensions are one of the salient features for ship
discrimination and classi�cation. High resolution radar data (i.e., ISAR images) have
an advantage that ships usually appear as extended targets occupying more than
a single radar resolution cell. Such data can be exploited for ship size estimation.
In the future various methods, for instance, polygon �tting or deep learning-based
methods [139, 140] shall be investigated for estimating the ship size and also its
orientation over several successive CPIs.

5. More �ight experiments:More radar data sets are needed to further enhance the
robustness of the algorithms developed in the frame of this thesis. Therefore, more
�ight experiments shall be planned in the future acquiring multichannel radar data
along circular or even arbitrary �ight tracks with longer observation times. These
data sets shall be acquired at di�erent sea states and shall contain di�erent types
of boats moving at di�erent speeds and moving directions.
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A SQLite Database Specifications

This appendix provides information related to the target motion parameters stored in the
columns of each row of the SQLite database table. The SQLite database was used for
multi-target tracking which is described in detail in Chapter 5 (cf. page 79). Table A.1
shows 22 di�erent parameters of each detected target which is stored in a single row in
the SQLite database table.

Table A.1: Target motion parameters stored in each row (or for each detected target at each
CPI) of the SQLite database table.

Column Parameters Unit Datatype Example Explanation

0 target azimuth bin bin integer 25600
azimuth bin w.r.t. the origin of the

entire radar data array

1 target range bin bin integer 7401

range bin of the cluster centroid

w.r.t. the origin of the entire radar

data array

2 GPS seconds of week s �oat 315122
GPS time in seconds starting on

Sundays at 00:00 a.m.

3 target Doppler bin bin integer 99 Doppler bin of the cluster centroid

4
target Doppler

frequency
Hz �oat 657.31

Kalman Filter corrected Doppler

frequency of the cluster centroid

5
target cluster

lower Doppler bin
bin integer 97

lower Doppler bin of target

cluster bounding box

6
target cluster

lower range bin
bin integer 7391

near range bin (w.r.t. the origin of

the entire data array) of target

cluster bounding box

7 cluster width in Hz Hz �oat 130.78 width of cluster bounding box

8 cluster height in m m �oat 9.89 height of cluster bounding box

9 cluster width in bins bin integer 7 cluster width in Doppler bins

10 cluster height in bins bin integer 33 cluster height in range bins

11 target pixels none integer 51
total number of radar-based

target detections in a cluster

12 predicted �ag none integer 0

0 means target was �detected�

at a given instant of time and 1

means it was �predicted�

13 relation none integer -1

contain unique ID of target from

previous CPI or it is -1 if target

is detected �rst time

continued on next page
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Table A.1 � continued from previous page

Column Parameters Unit Datatype Example Explanation

14 target slant range m �oat 7618.02
Kalman Filter corrected slant range

of the cluster centroid

15 target SCNR dB �oat 25.12
estimated signal-to-clutter-plus-

noise ratio

16 DOA angle deg �oat 90.45
direction-of-arrival angle of the

detected target

17 LOS velocity m/s �oat 2.32 line-of-sight velocity of the target

18 target latitude deg �oat 53.452
latitude of the detected target

in WGS84 datum

19 target longitude deg �oat 8.895
longitude of the detected target

in WGS84 datum

20
target data patch

in time domain
none text none

�lename of the extracted patch in

range-time domain

21
target data patch

in Doppler domain
none text none

�lename of the extracted patch in

range-Doppler domain
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B Experimental Setup and Radar Datasets

This appendix provides details about the single- and multichannel channel �ight cam-
paigns conducted using DLR's F-SAR and DBFSAR airborne radar systems, respective-
ly.

B.1 Single-channel F-SAR Campaign

The airborne radar sytem F-SAR (Flugzeug-SAR) [35] is developed and operated by the
DLR's Microwaves and Radar Institute. The F-SAR system is capable of acquiring fully
polarimetric radar data simultaneously at di�erent frequencies namely, X-, C-, S-, L- and
P-band.

Green: F-SAR flight track with inactive radar
Red: F-SAR with active radar

circle with antenna
pointing to the outside

Blue: Track of police ship BP 24 Bad Bramstedt
Green: F-SAR flight track, radar inactive
Red: F-SAR with active radar

Bad Bramstedt (66 m length)

F-SAR

Figure B.1: Flight tracks �own during the two-day North Sea F-SAR campaign in the year 2016
(top: day 1; bottom: day 2) [122].
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B.1.1 2016 North Sea Flight Campaign

A two-day F-SAR �ight campaign was conducted in June 2016 in the North Sea [49].
All single-channel radar data, in total more than 1 terabytes (TB), were acquired fully
polarimetric and simultaneously in X- and L-band. Additionally, the AIS data transmitted
by the ships were also available for ground truth purposes. At the �rst day of the campaign,
the island Helgoland and the town Cuxhaven, including the coastal areas and ships of
opportunity were observed, mainly during linear �ight tracks but also during a circular
track with the radar antenna pointing not to the circle center but to the opposite direction
(cf. red circle in Figure B.1, top). At the second day, a dedicated experiment with a
controlled ship operated by the German federal police was carried out. The ship moved
with velocities of 0 to 20 kn (knots) between three di�erent waypoints. The circular �ight
tracks, this time with the antenna pointing to the circle center, were �own with a radius
of 5600 m resulting in a total ship observation time of approximately 400 seconds (= 6.7
minutes) per circle (cf. red circle in Figure B.1, bottom) [49].

Figure B.2: Simultaneously acquired fully polarimetric X- and L-band radar data and the AIS
data available from 2016 F-SAR �ight campaign conducted in the region around
Cuxhaven in Germany [122].
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54° 7'19.89"N, 
8° 9'26.97"E

54°13'58.27"N,
8° 9'0.85"E

54°14'6.74"N,
8°20'38.54"E

54° 7'26.32"N,
8°20'40.13"E

a

b c

Figure B.3: (a) Google Earth image showing a part of the test site in North Sea. The region
within the white box marks the area where the data were acquired during (b) a
linear and (c) a circular F-SAR �ight track. The red and yellow ellipses in (b) and
(c) are the 3 dB antenna footprints of the X- and L-band antenna, respectively.

A small part of the acquired fully polarimetric radar data as well as the available AIS
data are shown in Figure B.2. Corresponding Google Earth image of the scene where the
�ight experiments were conducted is shown in Figure B.3. In Table B.1 the X- and L-band
system and acquisition geometry parameters used during the experiments are provided.

B.2 Multichannel DBFSAR Campaigns

The DBFSAR (digital beamforming SAR) system [36] is an advanced new airborne radar
system also developed by the DLR's Microwaves and Radar Institute. The DBFSAR
antenna con�guration for MTI applications is shown in Figure B.4. In the �gure two
single-pol X-band transmit antennas, six independent single-pol receive antennas and a
dual-pol imaging antenna can be seen. The short transmit antenna TX1 allows for a
longer observation and tracking time due to its wide azimuth antenna beam. The long
transmit antenna TX2 is used for limiting the clutter bandwidth and, thus, for decreasing
the minimum detectable velocity of the target (cf. (3.1)).

The aircraft is additionally equipped with a LTE (long term evolution) router for
transferring the data onto ground and a dual-channel AIS receiver for anomaly detection
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Table B.1: Important F-SAR system and acquisition geometry parameters.

Parameters Typical Values

Average platform velocity [m/s] 83.55

Average platform altitude over ground [m] 5637

Polarization HH, HV, VH and VV

Chirp bandwidth for X- and L-band [MHz] 384, 150

Range resolution for X- and L-band [m] 0.39, 1.0

Incidence angle range [◦] 15-60

Radar wavelength for X- and L-band [m] 0.0306, 0.226

Pulse repetition frequency [Hz] 2403.85

3 dB antenna azimuth beamwidth for X- and L-band [◦] 8, 18

Azimuth antenna length for X- and L-band [m]
0.3 m (TX), 0.2 m (RX) (X-band)

0.3 m (TX), 0.3 m (RX) (L-band)

Geographical coordinates Shown in Figure B.3a

Figure B.4: Multichannel DBFSAR antenna con�guration for MTI applications [141].

and for validation purposes. In the next two sections some details of the real experimental
multichannel �ight campaigns conducted using the DBFSAR system are provided.

B.2.1 2019 North Sea Flight Campaign

In November 2019 a multichannel �ight campaign using DBFSAR was carried out in the
North Sea near Cuxhaven, Germany. The aircraft was �ying at an altitude of approxi-
mately 2400 m above ground. The AIS receiver onboard the aircraft received the AIS
signals from ships with distances up to 200 km away from the aircraft, as shown in Figure
B.5. Radar data and acquisition geometry parameters are given in Table B.2 and the
AIS-based speci�cations of the ships which were observed in the acquired radar data are
given in Table B.3.
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Figure B.5: Received AIS messages during a �ight campaign conducted in the North Sea. Yellow
dots in the �gure are the received ship AIS position messages [36].

Table B.2: Radar system and acquisition geometry parameters of the real X-band multichannel
DBFSAR airborne radar data for the 2019 North Sea campaign. Data set I-III in the
table are shown in Figure 6.8 top (cf. page 117).

Parameters Values

Data Set I Data Set II Data Set III

Average platform velocity [m/s] 90.9 90.5 84.9

Average platform altitude over ground [m] 2469.7 2465.3 2468.6

Aircraft course angle [◦] 135 282 235-358

Maximum squint angle [◦] 2

Number of TX/RX channels 1/6

Physical antenna separation [m] 0.2

Polarization VV

Chirp bandwidth [MHz] 500

Range resolution [m] 0.3

Incidence angle range [◦] 19.5-59.7 18.8-59.6 19.3-64

Radar wavelength [m] 0.0309

Pulse repetition frequency [Hz] 3004.8

Total observation time along azimuth [s] 70 270 210

Mean terrain height above ellipsoid [m] 39.96
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Table B.3: AIS-based speci�cations of the ships present in the multichannel radar data acquired
in the North Sea, Germany during the 2019 DBFSAR �ight campaign. In the table,
SOG (speed over ground) is the absolute speed of the ship over the ground and MMSI
(Maritime Mobile Service Identity) is the unique 9-digit ship identi�cation number.

Ship Name MMSI
SOG

[m/s]

Ship

Length/Beam

[m]

Ship Moving

Direction w.r.t.

the Aircraft

[◦]

Data Set I

LANGELAND 211204290 2.72 82/12 -8.35

LONGDUIN 246484000 6.94 112/15 195.93

HAM 316 244521000 3.96 129/22 -1.23

Data Set II

CHARISMA 211327400 4.47 12/4 7.67

HOFFNUNG CUX10 211458000 1.64 15/5 -0.32

SAPHIR 211476000 1.85 17/6 1.59

GEO GRAPH 218084000 1.18 18/6 -150.48

UTHOERN 211216410 3.75 31/9 -182.02

WANGEROOGE 211211960 1.38 52/13 20.14

FAIR LADY 211208430 9.82 68/10 4.39

MT BLUE STAR 215691000 7.76 126/18 23.31

VEGA GRANAT 636091919 4.73 180/20 -169.94

Dataset III

GEO GRAPH 218084000 3.34 18/6 -11.81

TINA CUX-5 211721570 2.21 19/5 -173.52

AURORA 211552000 4.06 20/6 -104.68

PILOTVESSEL HANSE 211324470 4.83 49/21 -182.36

RMS RATINGEN 304346000 4.27 88/11 -185.16

LONGDUIN 246484000 6.07 112/15 -3.75

B.2.2 2020 Ammersee Flight Campaign

In October 2020 another multichannel �ight campaign using again the DBFSAR radar
system was carried out over the lake Ammersee located in southern Germany. The goal of
this campaign was to detect slowly moving small controlled boats (cf. Figure 6.9 bottom
in page 117).

During the campaign several �ight tracks were �own around the lake region. Figure
B.6 shows the entire trajectory of the DLR's Dornier 228-212 aircraft which was used for
acquiring the multichannel radar data sets. For the investigations, three radar data sets
from this campaign were considered and they are shown in Figure 6.9 top (cf. page 117).
Their corresponding acquisition geometry parameters are listed in Table B.4.
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Figure B.6: Several �ight tracks of the aircraft containing the DBFSAR antenna �own over the
lake Ammersee in Germany (screenshot from �ightradar24.com).

Table B.4: Radar system and acquisition geometry parameters of the real X-band multichannel
DBFSAR airborne radar data for the 2020 Ammersee campaign. Data sets IV-VI in
the table are shown in Figure 6.9 top (page 117).

Parameters Values

Data Set IV Data Set V Data Set VI

Average platform velocity [m/s] 90.3 90.5 90.5

Average platform altitude over ground [m] 2499.6 2500.2 2947.4

Aircraft course angle [◦] 269 269 245

Maximum squint angle [◦] 5

Number of TX/RX channels 1/6

Physical antenna separation [m] 0.2

Polarization VV

Chirp bandwidth [MHz] 500

Range resolution [m] 0.3

Incidence angle range [◦] 21.7-59.8 22.1-59.8 21.7-59.8

Radar wavelength [m] 0.0315

Pulse repetition frequency [Hz] 3004.8

Total observation time along azimuth [s] 85 85 100

Mean terrain height above ellipsoid [m] 579
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C Geocoding Results for Multichannel Flight
Campaigns

In Figures C.1 and C.2 detection, tracking and geocoding results obtained from the mul-
tichannel data sets I and II from the 2019 North Sea campaign (cf. Figure 6.8 in page
117) are shown.

Land Clutter from Cuxhaven

Ocean Data with Moving Ships

Google Earth3 km
ID_0

ID_1

ID_2

ID_3

ID_4

ID_6

ID_5

ID_7

ID_8

ID_9

ID_10
ID_11

ID_12

ID_13 ID_14

ID_15

ID_16

ID_17

LONGDUIN

HAM 316

a b

c d

two bright ship 
signals

AIS Tracks 
Radar Detections

Ship LONGDUIN
Size: 112 m x 15 m  

Ship HAM 316
Size: 129 m x 22 m  

60 m60 m Google EarthGoogle Earth

e f

Figure C.1: Geocoding results for multichannel radar data set I. (a) Real RC X-band VV pola-
rized airborne radar data. In the data land clutter from town Cuxhaven and ocean
clutter with two bright ship signals can clearly be seen. (b) Binary target detection
map of the data from the yellow box in (a). (c) Ship tracking results. Tracked ships
with their individual IDs are marked in the �gure. Targets with ID_0, ID_8 and ID
_12 in the �gure corresponds to ships LONGDUIN, HAM 316 and LANGELAND,
respectively (cf. Data Set I in Table B.3). (d) Google Earth visualization of the
geocoded radar-based detections of all the tracked ships in the data. Detailed view
of the mapped detections from (e) ship LONGDUIN and (f) ship HAM 316. Ship
dimensions are shown in the �gure. Arrows indicate the ships' moving direction.
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Google Earth6 km

UTHOERN
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ID_12
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AIS Tracks 
Radar Detections

Google Earth
40 m

Google Earth40 m

Ship HOFFNUNG CUX10
Size: 15 m x 5 m  

Ship UTHOERN
Size: 31 m x 9 m  
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Figure C.2: Geocoding results for multichannel radar data set II. (a) Real RC X-band VV po-
larized airborne radar data. (b) Binary target detection map of the data. (c) Ship
tracking results. Tracked ships with their individual IDs are marked in the �gure.
Targets with ID_0, ID_1, ID_8, ID_15, ID_16, ID_18, ID_20, ID_23 and ID
_27 in the �gure corresponds to ships GEO GRAPH, MT BLUE STAR, VEGA
GRANAT, WANGEROOGE, CHARISMA, HOFFNUNG CUX10, SAPHIR, FAIR
LADY and UTHOERN, respectively (cf. Data Set II in Table B.3). (d) Google Earth
visualization of the geocoded radar-based detections of all the tracked ships in the
data. Detailed view of the mapped detections from (e) ship HOFFNUNG CUX10
and (f) ship UTHOERN. Ship dimensions are shown in the �gure. Arrows indicate
the ships' moving direction.

In Figures C.3 and C.4 detection, tracking and geocoding results obtained from the
multichannel data sets IV and V from the 2020 Ammersee campaign (cf. Figure 6.9 top
in page 117) are shown.
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Processed 
RC Data
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ID_6 ID_8
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Radar Detections

Figure C.3: Geocoding results for multichannel radar data set IV. (a) Real RC X-band VV
polarized airborne radar data. Data containing the radar backscatter from the lake
region is shown within the yellow box in the �gure. (b) Binary target detection map
of the processed RC data shown in (a). (c) Tracking results. Tracked targets with
their individual IDs are marked in the �gure. (d) Zoom in detail of the ROI shown
in (c). The ROI contains the controlled boats used for the experiments. Boat #4 is
not detected in this data set. Targets with ID_8, ID_11, ID_13, ID_14 and ID_15
corresponds to boat numbers 1, 3, 5, 2 and 6, respectively (cf. Data Set IV in Table 6.3
in page 127). (e) Google Earth visualization of the geocoded radar-based detections
of all the tracked targets in the data. Detailed view of the mapped detections from
(f) Boat #6 and (g) Boat #2. Arrows indicate the boats' moving direction.
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Processed 
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Figure C.4: Geocoding results for multichannel radar data set V. (a) Real RC X-band VV po-
larized airborne radar data. Data containing the radar backscatter from the lake
region is shown within the yellow box in the �gure. (b) Binary target detection map
of the processed RC data shown in (a). (c) Tracking results. Tracked targets with
their individual IDs are marked in the �gure. (d) Zoom in detail of the ROI shown
in (c). The ROI contains the controlled boats used for the experiments. Boat #3 is
not detected in this data set. Targets with ID_4, ID_5, ID_8, ID_10 and ID_11
corresponds to Boat numbers 6, 4, 1, 5 and 2, respectively (cf. Data set V in Table 6.3
in page 127). (e) Google Earth visualization of the geocoded radar-based detections
of all the tracked targets in the data. Detailed view of the mapped detections from
(f) Boat #2 and (g) Boat #1. Arrows indicate the boats' moving direction.
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